1
|
Cruz ES, Fortanier E, Michel CP, Delmont E, Verschueren A, Hostin M, Bendahan D, Attarian S. Intraepineurial Fat Fraction: A Novel MR Neurography-Based Biomarker in Transthyretin Amyloidosis Polyneuropathy. Eur J Neurol 2025; 32:e70168. [PMID: 40256985 PMCID: PMC12010196 DOI: 10.1111/ene.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/29/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
INTRODUCTION Hereditary transthyretin amyloid polyneuropathy (ATTRv-PN) is a rare and progressive neurodegenerative disorder characterized by axonal neuropathy and amyloid deposits. Early detection of disease onset and progression is crucial for timely therapeutic intervention. Quantitative MRI (qMRI) can be used to measure potential biomarkers. Intraepineurial fat fraction (ieFF) may reflect lipid droplets in amyloid deposits as described in histological studies or the replacement of nerve fiber loss with fatty-rich interfascicular epineurium. This study investigates the potential utility of ieFF as a novel imaging-related biomarker in differentiating ATTRv-PN, asymptomatic carriers (ATTRv-C), and healthy controls (HCs). METHODS Fifty-three patients with TTR mutations were imaged (31 ATTRv-PN patients, 22 ATTRv-C, and 24 HC) and both clinical and electrophysiological parameters were quantified. 3D volume, ieFF, and magnetization transfer ratio (MTR) were quantified in sciatic and tibial nerves using qMRI. RESULTS Symptomatic ATTRv-PN patients exhibited significantly higher ieFF in both sciatic (32.4% IQR [24.4-38.1]) and tibial nerves (13.7%, IQR [9.97-20.7]) compared to controls (sciatic 22.3%, IQR [16.6-28.5]; tibial 9.74%, IQR [6.36-12.5]) (p < 0.05). ieFF values were positively correlated in both uni and multivariate analyses with the main clinical scores and electrophysiological measures. ATTRv-C also showed increased ieFF values compared to controls (p < 0.05). Comparatively, MTR and nerve volumes exhibited less pronounced differences across groups. CONCLUSION This study demonstrates that ieFF effectively differentiates symptomatic and asymptomatic ATTRv patients from HC and correlates strongly with electrophysiological and clinical severity parameters. Furthermore, we compare ieFF with conventional qMRI biomarkers, highlighting its superior potential for monitoring nerve structural impairment.
Collapse
Affiliation(s)
- Eva Sole Cruz
- Reference Center for Neuromuscular Diseases and ALSLa Timone University Hospital, Aix‐Marseille UniversityMarseilleFrance
| | - Etienne Fortanier
- Reference Center for Neuromuscular Diseases and ALSLa Timone University Hospital, Aix‐Marseille UniversityMarseilleFrance
| | - Constance P. Michel
- Center for Magnetic Resonance in Biology and MedicineAix‐Marseille University, UMR CNRSMarseilleFrance
| | - Emilien Delmont
- Reference Center for Neuromuscular Diseases and ALSLa Timone University Hospital, Aix‐Marseille UniversityMarseilleFrance
| | - Annie Verschueren
- Reference Center for Neuromuscular Diseases and ALSLa Timone University Hospital, Aix‐Marseille UniversityMarseilleFrance
| | - Marc‐Adrien Hostin
- Center for Magnetic Resonance in Biology and MedicineAix‐Marseille University, UMR CNRSMarseilleFrance
| | - David Bendahan
- Center for Magnetic Resonance in Biology and MedicineAix‐Marseille University, UMR CNRSMarseilleFrance
| | - Shahram Attarian
- Reference Center for Neuromuscular Diseases and ALSLa Timone University Hospital, Aix‐Marseille UniversityMarseilleFrance
- Aix‐Marseille UniversityINSERM, GMGFMarseilleFrance
| |
Collapse
|
2
|
Martin BA, Dalmolin LF, Lemos CN, de Menezes Vaidergorn M, da Silva Emery F, Vargas-Rechia CG, Ramos AP, Lopez RFV. Electrostimulable polymeric films with hyaluronic acid and lipid nanoparticles for simultaneous topical delivery of macromolecules and lipophilic drugs. Drug Deliv Transl Res 2024; 14:2499-2519. [PMID: 38381316 DOI: 10.1007/s13346-024-01526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
This study focused on developing electrically stimulable hyaluronic acid (HA) films incorporating lipid nanoparticles (NPs) designed for the topical administration of lipophilic drugs and macromolecules. Based on beeswax and medium-chain triglycerides, NPs were successfully integrated into silk fibroin/chitosan films containing HA (NP-HA films) at a density of approximately 1011 NP/cm2, ensuring a uniform distribution. This integration resulted in a 40% increase in film roughness, a twofold decrease in Young's modulus, and enhanced film flexibility and bioadhesion work. The NP-HA films, featuring Ag/AgCl electrodes, demonstrated the capability to conduct a constant electrical current of 0.2 mA/cm2 without inducing toxicity in keratinocytes and fibroblasts during a 15-min application. Moreover, the NPs facilitated the homogeneous distribution of lipophilic drugs within the film, effectively transporting them to the skin and uniformly distributing them in the stratum corneum upon film administration. The sustained release of HA from the films, following Higuchi kinetics, did not alter the macroscopic characteristics of the film. Although anodic iontophoresis did not noticeably affect the release of HA, it did enhance its penetration into the skin. This enhancement facilitated the permeation of HA with a molecular weight (MW) of up to 2 × 105 through intercellular and transcellular routes. Confocal Raman spectroscopy provided evidence of an approximate 100% increase in the presence of HA with a MW in the range of 1.5-1.8 × 106 in the viable epidermis of human skin after only 15 min of iontophoresis applied to the films. Combining iontophoresis with NP-HA films exhibits substantial potential for noninvasive treatments focused on skin rejuvenation and wound healing.
Collapse
Affiliation(s)
- Bianca Aparecida Martin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Luciana Facco Dalmolin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Camila Nunes Lemos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Miguel de Menezes Vaidergorn
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Flavio da Silva Emery
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Carem Gledes Vargas-Rechia
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Ana Paula Ramos
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Renata F V Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
3
|
Bézard M, Zaroui A, Kharoubi M, Lam F, Poullot E, Teiger E, Agbulut O, Damy T, Kordeli E. Internalisation of immunoglobulin light chains by cardiomyocytes in AL amyloidosis: what can biopsies tell us? Amyloid 2024; 31:209-219. [PMID: 38973117 DOI: 10.1080/13506129.2024.2373748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Cardiac involvement in systemic light chain amyloidosis (AL) leads to chronic heart failure and is a major prognosis factor. Severe cellular defects are provoked in cardiac cells by tissue-deposited amyloid fibrils of misfolded free immunoglobulin light chains (LCs) and their prefibrillar oligomeric precursors. OBJECTIVE Understanding the molecular mechanisms behind cardiac cell cytotoxicity is necessary to progress in therapy and to improve patient management. One key question is how extracellularly deposited molecules exert their toxic action inside cardiac cells. Here we searched for direct evidence of amyloid LC uptake by cardiomyocytes in patient biopsies. METHODS We immunolocalized LCs in cardiac biopsies from four AL cardiac amyloidosis patients and analysed histopathological images by high resolution confocal microscopy and 3D image reconstruction. RESULTS We show, for the first time directly in patient tissue, the presence of LCs inside cardiomyocytes, and report their proximity to nuclei and to caveolin-3-rich areas. Our observations point to macropinocytosis as a probable mechanism of LC uptake. CONCLUSIONS Internalisation of LCs occurs in patient cardiomyocytes. This event could have important consequences for the pathogenesis of the cardiac disease by enabling interactions between amyloid molecules and cellular organelles inducing specific signalling pathways, and might bring new insight regarding treatment.
Collapse
Affiliation(s)
- Mélanie Bézard
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Paris-France
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Amira Zaroui
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Mounira Kharoubi
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - France Lam
- Sorbonne Université, I2PS, Imaging Core Facility, Institut de Biologie Paris-Seine (IBPS), Paris-France
| | - Elsa Poullot
- Department of Anatomopathology, Henri-Mondor Hospital, AP-HP, Créteil, France
| | - Emmanuel Teiger
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Paris-France
| | - Thibaud Damy
- Department of Cardiology and French Referral Centre for Cardiac Amyloidosis, Henri-Mondor Hospital, AP-HP, Université Paris Est Creteil, Inserm U955, IMRB, Créteil, France
| | - Ekaterini Kordeli
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Paris-France
| |
Collapse
|
4
|
Delrue C, Vandendriessche A, Dendooven A, Van der Linden M, Speeckaert MM, De Bruyne S. Pilot Study on the Use of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy for Diagnosing and Characterizing Cardiac Amyloidosis. Int J Mol Sci 2024; 25:9358. [PMID: 39273305 PMCID: PMC11395672 DOI: 10.3390/ijms25179358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Amyloidosis diagnosis relies on Congo red staining with immunohistochemistry and immunofluorescence for subtyping but lacks sensitivity and specificity. Laser-microdissection mass spectroscopy offers better accuracy but is complex and requires extensive sample preparation. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy offers a promising alternative for amyloidosis characterization. Cardiac tissue sections from nine patients with amyloidosis and 20 heart transplant recipients were analyzed using ATR-FTIR spectroscopy. Partial least squares discriminant analysis (PLS-DA), principal component analysis (PCA), and hierarchical cluster analysis (HCA) models were used to differentiate healthy post-transplant cardiac tissue from amyloidosis samples and identify amyloidosis subtypes [κ light chain (n = 1), λ light chain (n = 3), and transthyretin (n = 5)]. Leave-one-out cross-validation (LOOCV) was employed to assess the performance of the PLS-DA model. Significant spectral differences were found in the 1700-1500 cm-1 and 1300-1200 cm-1 regions, primarily related to proteins. The PLS-DA model explained 85.8% of the variance, showing clear clustering between groups. PCA in the 1712-1711 cm-1, 1666-1646 cm-1, and 1385-1383 cm-1 regions also identified two clear clusters. The PCA and the HCA model in the 1646-1642 cm-1 region distinguished κ light chain, λ light chain, and transthyretin cases. This pilot study suggests ATR-FTIR spectroscopy as a novel, non-destructive, rapid, and inexpensive tool for diagnosing and subtyping amyloidosis. This study was limited by a small dataset and variability in measurements across different instruments and laboratories. The PLS-DA model's performance may suffer from overfitting and class imbalance. Larger, more diverse datasets are needed for validation.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| | - Sander De Bruyne
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Heath SG, Naughton JD, Magon NJ, Gray SG, Smith BR, Morris VK, Göbl C. Characterizing the amyloid core region of the tumor suppressor protein p16 INK4a using a limited proteolysis and peptide-based approach. J Biol Chem 2024; 300:107590. [PMID: 39032649 PMCID: PMC11375262 DOI: 10.1016/j.jbc.2024.107590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
The human tumor suppressor p16INK4a is a small monomeric protein that can form amyloid structures. Formation of p16INK4a amyloid fibrils is induced by oxidation which creates an intermolecular disulfide bond. The conversion into amyloid is associated with a change from an all α-helical structure into β-sheet fibrils. Currently, structural insights into p16INK4a amyloid fibrils are lacking. Here, we investigate the amyloid-forming regions of this tumor suppressor using isotope-labeling limited-digestion mass spectrometry analysis. We discover two key regions that likely form the structured core of the amyloid. Further investigations using thioflavin-T fluorescence assays, electron microscopy, and solution nuclear magnetic resonance spectroscopy of shorter peptide regions confirm the self-assembly of the identified sequences that include methionine and leucine repeat regions. This work describes a simple approach for studying protein motifs involved in the conversion of monomeric species into aggregated fibril structures. It provides insight into the polypeptide sequence underlying the core structure of amyloid p16INK4a formed after a unique oxidation-driven structural transition.
Collapse
Affiliation(s)
- Sarah G Heath
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Jennifer D Naughton
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nicholas J Magon
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shelby G Gray
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Briana R Smith
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Vanessa K Morris
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Christoph Göbl
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
6
|
Wang J, Li J, Zhong L. Current status and prospect of anti-amyloid fibril therapy in AL amyloidosis. Blood Rev 2024; 66:101207. [PMID: 38692939 DOI: 10.1016/j.blre.2024.101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
Amyloid light-chain (AL) amyloidosis is a rare hematological disease that produces abnormal monoclonal immunoglobulin light chains to form amyloid fibrils that are deposited in tissues, resulting in organ damage and dysfunction. Advanced AL amyloidosis has a very poor prognosis with a high risk of early mortality. The combination of anti-plasma cell therapy and amyloid fibrils clearance is the optimal treatment strategy, which takes into account both symptoms and root causes. However, research on anti-amyloid fibrils lags far behind research on anti-plasma cells, and there is currently no approved treatment that could clear amyloid fibrils. Nevertheless, anti-amyloid fibril therapies are being actively investigated recently and have shown potential in clinical trials. In this review, we aim to outline the preclinical work and clinical efficacy of fibril-directed therapies for AL amyloidosis.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Liye Zhong
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Lavatelli F, Natalello A, Marchese L, Ami D, Corazza A, Raimondi S, Mimmi MC, Malinverni S, Mangione PP, Palmer MT, Lampis A, Concardi M, Verona G, Canetti D, Arbustini E, Bellotti V, Giorgetti S. Truncation of the constant domain drives amyloid formation by immunoglobulin light chains. J Biol Chem 2024; 300:107174. [PMID: 38499153 PMCID: PMC11016911 DOI: 10.1016/j.jbc.2024.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
AL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (VL) as well as different length segments of the constant region (CL), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway. Here, we investigate the role of major truncated species of the disease-associated AL55 light chain that were previously identified in natural deposits. Specifically, we study structure, molecular dynamics, thermal stability, and capacity to form fibrils of a fragment containing both the VL and part of the CL (133-AL55), in comparison with the full-length protein and its variable domain alone, under shear stress and physiological conditions. Whereas the full-length light chain forms exclusively amorphous aggregates, both fragments generate fibrils, although, with different kinetics, aggregate structure, and interplay with the unfragmented protein. More specifically, the VL-CL 133-AL55 fragment entirely converts into amyloid fibrils microscopically and spectroscopically similar to their ex vivo counterpart and increases the amorphous aggregation of full-length AL55. Overall, our data support the idea that light chain structure and proteolysis are both relevant for amyloidogenesis in vivo and provide a novel biocompatible model of light chain fibrillogenesis suitable for future mechanistic studies.
Collapse
Affiliation(s)
- Francesca Lavatelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Loredana Marchese
- Pathology Unit, Fondazione IRCSS Policlinico San Matteo, Pavia, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessandra Corazza
- Department of Medicine (DAME), University of Udine, Udine, Italy; Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Maria Chiara Mimmi
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Malinverni
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - P Patrizia Mangione
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Manel Terrones Palmer
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alessio Lampis
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Monica Concardi
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guglielmo Verona
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Diana Canetti
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vittorio Bellotti
- Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
8
|
Espinosa-Oliva AM, Ruiz R, Soto MS, Boza-Serrano A, Rodriguez-Perez AI, Roca-Ceballos MA, García-Revilla J, Santiago M, Serres S, Economopoulus V, Carvajal AE, Vázquez-Carretero MD, García-Miranda P, Klementieva O, Oliva-Martín MJ, Deierborg T, Rivas E, Sibson NR, Labandeira-García JL, Machado A, Peral MJ, Herrera AJ, Venero JL, de Pablos RM. Inflammatory bowel disease induces pathological α-synuclein aggregation in the human gut and brain. Neuropathol Appl Neurobiol 2024; 50:e12962. [PMID: 38343067 DOI: 10.1111/nan.12962] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024]
Abstract
AIMS According to Braak's hypothesis, it is plausible that Parkinson's disease (PD) originates in the enteric nervous system (ENS) and spreads to the brain through the vagus nerve. In this work, we studied whether inflammatory bowel diseases (IBDs) in humans can progress with the emergence of pathogenic α-synuclein (α-syn) in the gastrointestinal tract and midbrain dopaminergic neurons. METHODS We have analysed the gut and the ventral midbrain from subjects previously diagnosed with IBD and form a DSS-based rat model of gut inflammation in terms of α-syn pathology. RESULTS Our data support the existence of pathogenic α-syn in both the gut and the brain, thus reinforcing the potential role of the ENS as a contributing factor in PD aetiology. Additionally, we have analysed the effect of a DSS-based rat model of gut inflammation to demonstrate (i) the appearance of P-α-syn inclusions in both Auerbach's and Meissner's plexuses (gut), (ii) an increase in α-syn expression in the ventral mesencephalon (brain) and (iii) the degeneration of nigral dopaminergic neurons, which all are considered classical hallmarks in PD. CONCLUSION These results strongly support the plausibility of Braak's hypothesis and emphasise the significance of peripheral inflammation and the gut-brain axis in initiating α-syn aggregation and transport to the substantia nigra, resulting in neurodegeneration.
Collapse
Affiliation(s)
- Ana M Espinosa-Oliva
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Rocío Ruiz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Sarmiento Soto
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK
| | - Antonio Boza-Serrano
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ana I Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Health Research Institute (IDIS), Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María A Roca-Ceballos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Juan García-Revilla
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Marti Santiago
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Sébastien Serres
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Vasiliki Economopoulus
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ana E Carvajal
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | | | - Pablo García-Miranda
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Oxana Klementieva
- Dementia Research Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - María J Oliva-Martín
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Eloy Rivas
- Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, UK
| | - José L Labandeira-García
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Health Research Institute (IDIS), Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Machado
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - María J Peral
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonio J Herrera
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - José L Venero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Rocío M de Pablos
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
9
|
Anand SK, Sanchorawala V, Verma A. Systemic Amyloidosis and Kidney Transplantation: An Update. Semin Nephrol 2024; 44:151496. [PMID: 38490903 DOI: 10.1016/j.semnephrol.2024.151496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Amyloidosis is a heterogeneous disorder characterized by abnormal protein aggregate deposition that often leads to kidney involvement and end-stage kidney disease. With advancements in diagnostic techniques and treatment options, the prevalence of patients with amyloidosis requiring chronic dialysis has increased. Kidney transplantation is a promising avenue for extending survival and enhancing quality of life in these patients. However, the complex and heterogeneous nature of amyloidosis presents challenges in determining optimal referral timing for transplantation and managing post-transplantation course. This review focuses on recent developments and outcomes of kidney transplantation for amyloidosis-related end-stage kidney disease. This review also aims to guide clinical decision-making and improve management of patients with amyloidosis-associated kidney disease, offering insights into optimizing patient selection and post-transplant care for favorable outcomes.
Collapse
Affiliation(s)
- Shankara K Anand
- Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA
| | - Vaishali Sanchorawala
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA; Section of Hematology and Oncology, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Ashish Verma
- Renal Section, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA; Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA; Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA.
| |
Collapse
|
10
|
Cascella R, Banchelli M, Abolghasem Ghadami S, Ami D, Gagliani MC, Bigi A, Staderini T, Tampellini D, Cortese K, Cecchi C, Natalello A, Adibi H, Matteini P, Chiti F. An in situ and in vitro investigation of cytoplasmic TDP-43 inclusions reveals the absence of a clear amyloid signature. Ann Med 2023; 55:72-88. [PMID: 36495262 PMCID: PMC9746631 DOI: 10.1080/07853890.2022.2148734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/12/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Several neurodegenerative conditions are associated with a common histopathology within neurons of the central nervous system, consisting of the deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43). Such inclusions have variably been described as morphologically and molecularly ordered aggregates having amyloid properties, as filaments without the cross-β-structure and dye binding specific for amyloid, or as amorphous aggregates with no defined structure and fibrillar morphology.Aims and Methods: Here we have expressed human full-length TDP-43 in neuroblastoma x spinal cord 34 (NSC-34) cells to investigate the morphological, structural, and tinctorial properties of TDP-43 inclusions in situ. We have used last-generation amyloid diagnostic probes able to cross the cell membrane and detect amyloid in the cytoplasm and have adopted Raman and Fourier transform infrared microspectroscopies to study in situ the secondary structure of the TDP-43 protein in the inclusions. We have then used transmission electron microscopy to study the morphology of the TDP-43 inclusions.Results: The results show the absence of amyloid dye binding, the lack of an enrichment of cross-β structure in the inclusions, and of a fibrillar texture in the round inclusions. The aggregates formed in vitro from the purified protein under conditions in which it is initially native also lack all these characteristics, ruling out a clear amyloid-like signature.Conclusions: These findings indicate a low propensity of TDP-43 to form amyloid fibrils and even non-amyloid filaments, under conditions in which the protein is initially native and undergoes its typical nucleus-to-cell mislocalization. It cannot be excluded that filaments emerge on the long time scale from such inclusions, but the high propensity of the protein to form initially other types of inclusions appear to be an essential characteristic of TDP-43 proteinopathies.KEY MESSAGESCytoplasmic inclusions of TDP-43 formed in NSC-34 cells do not stain with amyloid-diagnostic dyes, are not enriched with cross-β structure, and do not show a fibrillar morphology.TDP-43 assemblies formed in vitro from pure TDP-43 do not have any hallmarks of amyloid.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Martina Banchelli
- Institute of Applied Physics “Nello Carrara”, National Research Council, Sesto Fiorentino, Italy
| | | | - Diletta Ami
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
- Milan Center of Neuroscience (NeuroMI), Milan, Italy
| | - Maria Cristina Gagliani
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Tommaso Staderini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Davide Tampellini
- U 1195 INSERM-Université Paris-Saclay, Paris, France
- Institut Professeur Baulieu, Paris, France
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Antonino Natalello
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
- Milan Center of Neuroscience (NeuroMI), Milan, Italy
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Paolo Matteini
- Institute of Applied Physics “Nello Carrara”, National Research Council, Sesto Fiorentino, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Condino F, Crocco MC, Pirritano D, Petrone A, Del Giudice F, Guzzi R. A Linear Predictor Based on FTIR Spectral Biomarkers Improves Disease Diagnosis Classification: An Application to Multiple Sclerosis. J Pers Med 2023; 13:1596. [PMID: 38003911 PMCID: PMC10672539 DOI: 10.3390/jpm13111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system that can lead to long-term disability. The diagnosis of MS is not simple and requires many instrumental and clinical tests. Sampling easily collected biofluids using spectroscopic approaches is becoming of increasing interest in the medical field to integrate and improve diagnostic procedures. Here we present a statistical approach where we combine a number of spectral biomarkers derived from the ATR-FTIR spectra of blood plasma samples of healthy control subjects and MS patients, to obtain a linear predictor useful for discriminating between the two groups of individuals. This predictor provides a simple tool in which the contribution of different molecular components is summarized and, as a result, the sensitivity (80%) and specificity (93%) of the identification are significantly improved compared to those obtained with typical classification algorithms. The strategy proposed can be very helpful when applied to the diagnosis of diseases whose presence is reflected in a minimal way in the analyzed biofluids (blood and its derivatives), as it is for MS as well as for other neurological disorders.
Collapse
Affiliation(s)
- Francesca Condino
- Department of Economics, Statistics and Finance ”Giovanni Anania”, University of Calabria, 87036 Rende, Italy;
| | - Maria Caterina Crocco
- STAR Research Infrastructure, University of Calabria, 87036 Rende, Italy;
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy
| | - Domenico Pirritano
- SOC Neurologia, Azienda Ospedaliero-Universitaria Renato Dulbecco, 88100 Catanzaro, Italy;
- UOC Neurologia, Azienda Ospedaliera dell’Annunziata, 87100 Cosenza, Italy; (A.P.); (F.D.G.)
| | - Alfredo Petrone
- UOC Neurologia, Azienda Ospedaliera dell’Annunziata, 87100 Cosenza, Italy; (A.P.); (F.D.G.)
| | - Francesco Del Giudice
- UOC Neurologia, Azienda Ospedaliera dell’Annunziata, 87100 Cosenza, Italy; (A.P.); (F.D.G.)
- SOC Neurologia, Ospedale Jazzolino, Azienda Ospedaliera Provinciale, 89900 Vibo Valentia, Italy
| | - Rita Guzzi
- STAR Research Infrastructure, University of Calabria, 87036 Rende, Italy;
- CNR-NANOTEC, Department of Physics, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
12
|
Gvazava N, Konings SC, Cepeda-Prado E, Skoryk V, Umeano CH, Dong J, Silva IAN, Ottosson DR, Leigh ND, Wagner DE, Klementieva O. Label-Free
High-Resolution Photothermal Optical Infrared
Spectroscopy for Spatiotemporal Chemical Analysis in Fresh, Hydrated
Living Tissues and Embryos. J Am Chem Soc 2023; 145. [PMCID: PMC10655180 DOI: 10.1021/jacs.3c08854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 06/24/2024]
Abstract
Label-free chemical imaging of living and functioning systems is the holy grail of biochemical research. However, existing techniques often require extensive sample preparation to remove interfering molecules such as water, rendering many molecular imaging techniques unsuitable for in situ structural studies. Here, we examined freshly extracted tissue biopsies and living small vertebrates at submicrometer resolution using optical photothermal infrared (O-PTIR) microspectroscopy and demonstrated the following major advances: (1) O-PTIR can be used for submicrometer structural analysis of unprocessed, fully hydrated tissue biopsies extracted from diverse organs, including living brain and lung tissues. (2) O-PTIR imaging can be performed on living organisms, such as salamander embryos, without compromising their further development. (3) Using O-PTIR, we tracked the structural changes of amyloids in functioning brain tissues over time, observing the appearance of newly formed amyloids for the first time. (4) Amyloid structures appeared altered following standard fixation and dehydration procedures. Thus, we demonstrate that O-PTIR enables time-resolved submicrometer in situ investigation of chemical and structural changes in diverse biomolecules in their native conditions, representing a technological breakthrough for in situ molecular imaging of biological samples.
Collapse
Affiliation(s)
- Nika Gvazava
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- NanoLund, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Sabine C. Konings
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- MultiPark, Lund University, 22180 Lund, Sweden
- NanoLund, Lund University, 22180 Lund, Sweden
| | - Efrain Cepeda-Prado
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- MultiPark, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
| | - Valeriia Skoryk
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- MultiPark, Lund University, 22180 Lund, Sweden
- NanoLund, Lund University, 22180 Lund, Sweden
| | - Chimezie H. Umeano
- Department
of Laboratory Medicine, Molecular Medicine
and Gene Therapy, 22184 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Jiao Dong
- NanoLund, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Iran A. N. Silva
- NanoLund, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Daniella Rylander Ottosson
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- MultiPark, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
| | - Nicholas D. Leigh
- Department
of Laboratory Medicine, Molecular Medicine
and Gene Therapy, 22184 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Darcy Elizabeth Wagner
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- NanoLund, Lund University, 22180 Lund, Sweden
- Lund
Stem Cell Center, Lund University, 22100 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Oxana Klementieva
- Department
of Experimental Medical Science, Lund University, 22180 Lund, Sweden
- MultiPark, Lund University, 22180 Lund, Sweden
- NanoLund, Lund University, 22180 Lund, Sweden
| |
Collapse
|
13
|
Kim JH, Zhang C, Sperati CJ, Barman I, Bagnasco SM. Hyperspectral Raman Imaging for Automated Recognition of Human Renal Amyloid. J Histochem Cytochem 2023; 71:643-652. [PMID: 37833851 PMCID: PMC10617441 DOI: 10.1369/00221554231206858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
In the clinical setting, routine identification of the main types of tissue amyloid deposits, light-chain amyloid (AL) and serum amyloid A (AA), is based on histochemical staining; rarer types of amyloid require mass spectrometry analysis. Raman spectroscopic imaging is an analytical tool, which can be used to chemically map, and thus characterize, the molecular composition of fluid and solid tissue. In this proof-of-concept study, we tested the feasibility of applying Raman spectroscopy combined with artificial intelligence to detect and characterize amyloid deposits in unstained frozen tissue sections from kidney biopsies with pathologic diagnosis of AL and AA amyloidosis and control biopsies with no amyloidosis (NA). Raman hyperspectral images, mapped in a 2D grid-like fashion over the tissue sections, were obtained. Three machine learning-assisted analysis models of the hyperspectral images could accurately distinguish AL (types λ and κ), AA, and NA 93-100% of the time. Although very preliminary, these findings illustrate the potential of Raman spectroscopy as a technique to identify, and possibly, subtype renal amyloidosis.
Collapse
Affiliation(s)
- Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chi Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - C. John Sperati
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Serena M. Bagnasco
- Clinical Renal Biopsy Service, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Kim L, Jo S, Kim GJ, Kim KH, Seo SE, Ryu E, Shin CJ, Kim YK, Choi JW, Kwon OS. Recombinant protein embedded liposome on gold nanoparticle based on LSPR method to detect Corona virus. NANO CONVERGENCE 2023; 10:51. [PMID: 37902883 PMCID: PMC10615991 DOI: 10.1186/s40580-023-00399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Antibody sensor to detect viruses has been widely used but has problems such as the difficulty of right direction control of the receptor site on solid substrate, and long time and high cost for design and production of antibodies to new emerging viruses. The virus detection sensor with a recombinant protein embedded liposome (R/Li) was newly developed to solve the above problems, in which R/Li was assembled on AuNPs (Au@R/Li) to increase the sensitivity using localized surface plasmon resonance (LSPR) method. Recombinant angiotensin-converting enzyme-2 (ACE2) was used as host receptors of SARS-CoV and SARS-CoV-2, and the direction of enzyme active site for virus attachment could be controlled by the integration with liposome. The recombinant protein embedded liposomes were assembled on AuNPs, and LSPR method was used for detection. With the sensor platform S1 protein of both viruses was detected with detection limit of 10 pg/ml and SARS-CoV-2 in clinical samples was detected with 10 ~ 35 Ct values. In the selectivity test, MERS-CoV did not show a signal due to no binding with Au@R/Li. The proposed sensor platform can be used as promising detection method with high sensitivity and selectivity for the early and simple diagnosis of new emerging viruses.
Collapse
Affiliation(s)
- Lina Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seongjae Jo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Gyeong-Ji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Eunsu Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Chan Jae Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yu Kyung Kim
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| |
Collapse
|
15
|
Freiburg CD, Solomon-Degefa H, Freiburg P, Mörgelin M, Bolduc V, Schmitz S, Ala P, Muntoni F, Behrmann E, Bönnemann CG, Schiavinato A, Paulsson M, Wagener R. The UCMD-Causing COL6A1 ( c.930 + 189 C > T) Intron Mutation Leads to the Secretion and Aggregation of Single Mutated Collagen VI α1 Chains. Hum Mutat 2023; 2023:6892763. [PMID: 40225172 PMCID: PMC11919215 DOI: 10.1155/2023/6892763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 04/05/2025]
Abstract
Collagen VI is a unique member of the collagen family. Its assembly is a complex multistep process and the vulnerability of the process is manifested in muscular diseases. Mutations in COL6A1, COL6A2, and COL6A3 lead to the severe Ullrich Congenital Muscular Dystrophy (UCMD) and a spectrum of disease of varying severity including the milder Bethlem muscular dystrophy. The recently identified dominant intronic mutation in COL6A1 (c.930 + 189C > T) leads to the partial in-frame insertion of a pseudoexon between exon 11 and exon 12. The pseudoexon is translated into 24 amino acid residues in the N-terminal region of the triple helix and results in the interruption of the typical G-X-Y motif. This recurrent de novo mutation leads to UCMD with a severe progression within the first decade of life. Here, we demonstrate that a mutation-specific antibody detects the mutant chain colocalizing with wild type collagen VI in the endomysium in patient muscle. Surprisingly, in the cell culture of patient dermal fibroblasts, the mutant chain is secreted as a single α chain, while in parallel, normal collagen VI tetramers are assembled with the wild-type α1 chain. The mutant chain cannot be incorporated into collagen VI tetramers but forms large aggregates in the extracellular matrix that may retain the ability to interact with collagen VI and potentially with other molecules. Also, α1 chain-deficient WI-26 VA4 cells transfected with the mutant α1 chain do not assemble collagen VI tetramers but, instead, form aggregates. Interestingly, both the wild type and the mutant single α1 chains form amorphous aggregates when expressed in HEK293 cells in the absence of α2 and α3 chains. The detection of aggregated, assembly incompetent, mutant collagen VI α1 chains provides novel insights into the disease pathophysiology of UCMD patients with the COL6A1 (c.930 + 189C > T) mutation.
Collapse
Affiliation(s)
- Carolin D. Freiburg
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Patrick Freiburg
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | | | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Sebastian Schmitz
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Pierpaolo Ala
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Elmar Behrmann
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Del Pozo-Yauner L, Herrera GA, Perez Carreon JI, Turbat-Herrera EA, Rodriguez-Alvarez FJ, Ruiz Zamora RA. Role of the mechanisms for antibody repertoire diversification in monoclonal light chain deposition disorders: when a friend becomes foe. Front Immunol 2023; 14:1203425. [PMID: 37520549 PMCID: PMC10374031 DOI: 10.3389/fimmu.2023.1203425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
The adaptive immune system of jawed vertebrates generates a highly diverse repertoire of antibodies to meet the antigenic challenges of a constantly evolving biological ecosystem. Most of the diversity is generated by two mechanisms: V(D)J gene recombination and somatic hypermutation (SHM). SHM introduces changes in the variable domain of antibodies, mostly in the regions that form the paratope, yielding antibodies with higher antigen binding affinity. However, antigen recognition is only possible if the antibody folds into a stable functional conformation. Therefore, a key force determining the survival of B cell clones undergoing somatic hypermutation is the ability of the mutated heavy and light chains to efficiently fold and assemble into a functional antibody. The antibody is the structural context where the selection of the somatic mutations occurs, and where both the heavy and light chains benefit from protective mechanisms that counteract the potentially deleterious impact of the changes. However, in patients with monoclonal gammopathies, the proliferating plasma cell clone may overproduce the light chain, which is then secreted into the bloodstream. This places the light chain out of the protective context provided by the quaternary structure of the antibody, increasing the risk of misfolding and aggregation due to destabilizing somatic mutations. Light chain-derived (AL) amyloidosis, light chain deposition disease (LCDD), Fanconi syndrome, and myeloma (cast) nephropathy are a diverse group of diseases derived from the pathologic aggregation of light chains, in which somatic mutations are recognized to play a role. In this review, we address the mechanisms by which somatic mutations promote the misfolding and pathological aggregation of the light chains, with an emphasis on AL amyloidosis. We also analyze the contribution of the variable domain (VL) gene segments and somatic mutations on light chain cytotoxicity, organ tropism, and structure of the AL fibrils. Finally, we analyze the most recent advances in the development of computational algorithms to predict the role of somatic mutations in the cardiotoxicity of amyloidogenic light chains and discuss the challenges and perspectives that this approach faces.
Collapse
Affiliation(s)
- Luis Del Pozo-Yauner
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | - Guillermo A. Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | - Elba A. Turbat-Herrera
- Department of Pathology, University of South Alabama-College of Medicine, Mobile, AL, United States
- Mitchell Cancer Institute, University of South Alabama-College of Medicine, Mobile, AL, United States
| | | | | |
Collapse
|
17
|
Kim JH, Zhang C, Sperati CJ, Bagnasco SM, Barman I. Non-Perturbative Identification and Subtyping of Amyloidosis in Human Kidney Tissue with Raman Spectroscopy and Machine Learning. BIOSENSORS 2023; 13:bios13040466. [PMID: 37185541 PMCID: PMC10136711 DOI: 10.3390/bios13040466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023]
Abstract
Amyloids are proteins with characteristic beta-sheet secondary structures that display fibrillary ultrastructural configurations. They can result in pathologic lesions when deposited in human organs. Various types of amyloid protein can be routinely identified in human tissue specimens by special stains, immunolabeling, and electron microscopy, and, for certain forms of amyloidosis, mass spectrometry is required. In this study, we applied Raman spectroscopy to identify immunoglobulin light chain and amyloid A amyloidosis in human renal tissue biopsies and compared the results with a normal kidney biopsy as a control case. Raman spectra of amyloid fibrils within unstained, frozen, human kidney tissue demonstrated changes in conformation of protein secondary structures. By using t-distributed stochastic neighbor embedding (t-SNE) and density-based spatial clustering of applications with noise (DBSCAN), Raman spectroscopic data were accurately classified with respect to each amyloid type and deposition site. To the best of our knowledge, this is the first time Raman spectroscopy has been used for amyloid characterization of ex vivo human kidney tissue samples. Our approach, using Raman spectroscopy with machine learning algorithms, shows the potential for the identification of amyloid in pathologic lesions.
Collapse
Affiliation(s)
- Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chi Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Serena M Bagnasco
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
18
|
Crocco MC, Moyano MFH, Annesi F, Bruno R, Pirritano D, Del Giudice F, Petrone A, Condino F, Guzzi R. ATR-FTIR spectroscopy of plasma supported by multivariate analysis discriminates multiple sclerosis disease. Sci Rep 2023; 13:2565. [PMID: 36782055 PMCID: PMC9924868 DOI: 10.1038/s41598-023-29617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases showing various symptoms both of physical and cognitive type. In this work, we used attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy to analyze plasma samples for discriminating MS patients from healthy control individuals, and identifying potential spectral biomarkers helping the diagnosis through a quick non-invasive blood test. The cohort of the study consists of 85 subjects, including 45 MS patients and 40 healthy controls. The differences in the spectral features both in the fingerprint region (1800-900 cm-1) and in the high region (3050-2800 cm-1) of the infrared spectra were highlighted also with the support of different chemometric methods, to capture the most significant wavenumbers for the differentiation. The results show an increase in the lipid/protein ratio in MS patients, indicating changes in the level (metabolism) of these molecular components in the plasma. Moreover, the multivariate tools provided a promising rate of success in the diagnosis, with 78% sensitivity and 83% specificity obtained through the random forest model in the fingerprint region. The MS diagnostic tools based on biomarkers identification on blood (and blood component, like plasma or serum) are very challenging and the specificity and sensitivity values obtained in this work are very encouraging. Overall, the results obtained suggest that ATR-FTIR spectroscopy on plasma samples, requiring minimal or no manipulation, coupled with statistical multivariate approaches, is a promising analytical tool to support MS diagnosis through the identification of spectral biomarkers.
Collapse
Affiliation(s)
- Maria Caterina Crocco
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036, Rende, Italy
- STAR Research Infrastructure, University of Calabria, 87036, Rende, CS, Italy
| | | | | | - Rosalinda Bruno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Domenico Pirritano
- Neurological and Stroke Unit, Multiple Sclerosis Clinic, Annunziata Hospital, 87100, Cosenza, Italy
- SOC Neurologia-Azienda Ospedaliera Pugliese-Ciaccio, 88100, Catanzaro, Italy
| | - Francesco Del Giudice
- Neurological and Stroke Unit, Multiple Sclerosis Clinic, Annunziata Hospital, 87100, Cosenza, Italy
- SOC Neurologia-Ospedale Jazzolino, Azienda Ospedaliera Provinciale, 89900, Vibo Valentia, Italy
| | - Alfredo Petrone
- Neurological and Stroke Unit, Multiple Sclerosis Clinic, Annunziata Hospital, 87100, Cosenza, Italy
| | - Francesca Condino
- Department of Economics, Statistics and Finance "Giovanni Anania", University of Calabria, Arcavacata di Rende, CS, Italy
| | - Rita Guzzi
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, 87036, Rende, Italy.
- CNR-Nanotec Rende, Via P. Bucci, 87036, Rende, Italy.
| |
Collapse
|
19
|
Impaired Extracellular Proteostasis in Patients with Heart Failure. Arch Med Res 2023; 54:211-222. [PMID: 36797157 DOI: 10.1016/j.arcmed.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Proteostasis impairment and the consequent increase of amyloid burden in the myocardium have been associated with heart failure (HF) development and poor prognosis. A better knowledge of the protein aggregation process in biofluids could assist the development and monitoring of tailored interventions. AIM To compare the proteostasis status and protein's secondary structures in plasma samples of patients with HF with preserved ejection fraction (HFpEF), patients with HF with reduced ejection fraction (HFrEF), and age-matched individuals. METHODS A total of 42 participants were enrolled in 3 groups: 14 patients with HFpEF, 14 patients with HFrEF, and 14 age-matched individuals. Proteostasis-related markers were analyzed by immunoblotting techniques. Fourier Transform Infrared (FTIR) Spectroscopy in Attenuated Total Reflectance (ATR) was applied to assess changes in the protein's conformational profile. RESULTS Patients with HFrEF showed an elevated concentration of oligomeric proteic species and reduced clusterin levels. ATR-FTIR spectroscopy coupled with multivariate analysis allowed the discrimination of HF patients from age-matched individuals in the protein amide I absorption region (1700-1600 cm-1), reflecting changes in protein conformation, with a sensitivity of 73 and a specificity of 81%. Further analysis of FTIR spectra showed significantly reduced random coils levels in both HF phenotypes. Also, compared to the age-matched group, the levels of structures related to fibril formation were significantly increased in patients with HFrEF, whereas the β-turns were significantly increased in patients with HFpEF. CONCLUSION Both HF phenotypes showed a compromised extracellular proteostasis and different protein conformational changes, suggesting a less efficient protein quality control system.
Collapse
|
20
|
Viorica R, Pawel P, Płociński T, Gloc M, Dobrucka R, Kurzydłowski KJ, Boguslaw B. Consideration of a new approach to clarify the mechanism formation of AgNPs, AgNCl and AgNPs@AgNCl synthesized by biological method. NANOSCALE RESEARCH LETTERS 2023; 18:2. [PMID: 36723754 DOI: 10.1186/s11671-023-03777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 05/24/2023]
Abstract
The biological methods are considered as environmental-eco-friendly methods for the silver nanocomposites mediation and are widely used in this context. However, the biological methods go along with the relevant limitations, for instance simultaneous synthesis of silver chlorides (AgNCl) type during the AgNPs mediation process. Therefore, the present research is coming to summarize several aspects in this context. Firstly, to present the possible promotion of the sustainable development using bioactive source (e.g. milk) as a source of two different available and new lactobacillus strains (Lactobacillus curvatus and Lactobacillus fermentum). Secondly, to show the ability of the respective isolates to be involved in mediation of various biosilver nanocomposites ((Bio)NCs) synthesis. Moreover, at this stage, for the first time, two (Bio)NCs mediation methods, called "direct method" and "modified method", have been developed, thus three types (AgNPs, AgNCl and AgNP@AgNCl) of nanocomposites mediated by two different Lactobacillus isolates take place. The interdisciplinary approach included using several spectroscopic, microscopic, spectrometric and thermogravimetric methods demonstrated that all six synthesized nanoparticles (three AgNPs, AgNCl and AgNP@AgNCl types from each source) consist of complex structure including both metallic silver core as well as organic surface deposits. The spectrometric technique allowed to identification of the organics branching surface, naturally secreted by the used Lactobacillus isolates during the inoculation step, suggesting the presence of amino-acids sequences which are direct connected with the reduction of silver ion to metal silver, and subsequently with the formation of coated (Bio)NCs and nucleation process. Moreover, based on the obtained results, the mediation mechanism of each (Bio)NCs has been proposed, suggesting that the formation of AgNPs, AgNCl and AgNP@AgNCl types occurs in different manners with faster synthesis firstly of AgNCl, then of the AgNPs type. No differences between the (Bio)NCs synthesized by two different Lactobacillus isolates have been noticed indicating no discrepancies between metabolites secreted by the respective sources.
Collapse
Affiliation(s)
- Railean Viorica
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Toruń, Poland.
| | - Pomastowski Pawel
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Toruń, Poland
| | - Tomasz Płociński
- Faculty of Materials Science and Engineering Warsaw, University of Technology, Ul. Wołoska 141, 02-507, Warsaw, Poland
| | - Michał Gloc
- Faculty of Materials Science and Engineering Warsaw, University of Technology, Ul. Wołoska 141, 02-507, Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering Warsaw, University of Technology, Ul. Wołoska 141, 02-507, Warsaw, Poland
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875, Poznan, Poland
| | - Krzysztof Jan Kurzydłowski
- Faculty of Mechanical Engineering, Bialystok University of Technology, Ul. Wiejska 45C, 15-351, Białystok, Poland
| | - Buszewski Boguslaw
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Toruń, Poland
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| |
Collapse
|
21
|
Rodzik A, Railean V, Pomastowski P, Žuvela P, Wong MW, Buszewski B. The influence of zinc ions concentration on β-lactoglobulin structure – physicochemical properties of Zn–β-lactoglobulin complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
22
|
Rodzik A, Railean V, Pomastowski P, Žuvela P, Wong MW, Sprynskyy M, Buszewski B. Study on silver ions binding to β-lactoglobulin. Biophys Chem 2022; 291:106897. [DOI: 10.1016/j.bpc.2022.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
|
23
|
Schaefer A, Naser D, Siebeneichler B, Tarasca MV, Meiering EM. Methodological advances and strategies for high resolution structure determination of cellular protein aggregates. J Biol Chem 2022; 298:102197. [PMID: 35760099 PMCID: PMC9396402 DOI: 10.1016/j.jbc.2022.102197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
Aggregation of proteins is at the nexus of molecular processes crucial to aging, disease, and employing proteins for biotechnology and medical applications. There has been much recent progress in determining the structural features of protein aggregates that form in cells; yet, owing to prevalent heterogeneity in aggregation, many aspects remain obscure and often experimentally intractable to define. Here, we review recent results of structural studies for cell-derived aggregates of normally globular proteins, with a focus on high-resolution methods for their analysis and prediction. Complementary results obtained by solid-state NMR spectroscopy, FTIR spectroscopy and microspectroscopy, cryo-EM, and amide hydrogen/deuterium exchange measured by NMR and mass spectrometry, applied to bacterial inclusion bodies and disease inclusions, are uncovering novel information on in-cell aggregation patterns as well as great diversity in the structural features of useful and aberrant protein aggregates. Using these advances as a guide, this review aims to advise the reader on which combination of approaches may be the most appropriate to apply to their unique system.
Collapse
Affiliation(s)
- Anna Schaefer
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Dalia Naser
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Michael V Tarasca
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
24
|
The Association of Lipids with Amyloid Fibrils. J Biol Chem 2022; 298:102108. [PMID: 35688209 PMCID: PMC9293637 DOI: 10.1016/j.jbc.2022.102108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/02/2023] Open
Abstract
Amyloid formation continues to be a widely studied area because of its association with numerous diseases, such as Alzheimer’s and Parkinson’s diseases. Despite a large body of work on protein aggregation and fibril formation, there are still significant gaps in our understanding of the factors that differentiate toxic amyloid formation in vivo from alternative misfolding pathways. In addition to proteins, amyloid fibrils are often associated in their cellular context with several types of molecule, including carbohydrates, polyanions, and lipids. This review focuses in particular on evidence for the presence of lipids in amyloid fibrils and the routes by which those lipids may become incorporated. Chemical analyses of fibril composition, combined with studies to probe the lipid distribution around fibrils, provide evidence that in some cases, lipids have a strong association with fibrils. In addition, amyloid fibrils formed in the presence of lipids have distinct morphologies and material properties. It is argued that lipids are an integral part of many amyloid deposits in vivo, where their presence has the potential to influence the nucleation, morphology, and mechanical properties of fibrils. The role of lipids in these structures is therefore worthy of further study.
Collapse
|
25
|
Ami D, Mereghetti P, Natalello A. Contribution of Infrared Spectroscopy to the Understanding of Amyloid Protein Aggregation in Complex Systems. Front Mol Biosci 2022; 9:822852. [PMID: 35463965 PMCID: PMC9023755 DOI: 10.3389/fmolb.2022.822852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Infrared (IR) spectroscopy is a label-free and non-invasive technique that probes the vibrational modes of molecules, thus providing a structure-specific spectrum. The development of infrared spectroscopic approaches that enable the collection of the IR spectrum from a selected sample area, from micro- to nano-scale lateral resolutions, allowed to extend their application to more complex biological systems, such as intact cells and tissues, thus exerting an enormous attraction in biology and medicine. Here, we will present recent works that illustrate in particular the applications of IR spectroscopy to the in situ characterization of the conformational properties of protein aggregates and to the investigation of the other biomolecules surrounding the amyloids. Moreover, we will discuss the potential of IR spectroscopy to the monitoring of cell perturbations induced by protein aggregates. The essential support of multivariate analyses to objectively pull out the significant and non-redundant information from the spectra of highly complex systems will be also outlined.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- *Correspondence: Diletta Ami, ; Antonino Natalello,
| | | | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
- *Correspondence: Diletta Ami, ; Antonino Natalello,
| |
Collapse
|
26
|
Kazmer ST, Hartel G, Robinson H, Richards RS, Yan K, van Hal SJ, Chan R, Hind A, Bradley D, Zieschang F, Rawle DJ, Le TT, Reid DW, Suhrbier A, Hill MM. Pathophysiological Response to SARS-CoV-2 Infection Detected by Infrared Spectroscopy Enables Rapid and Robust Saliva Screening for COVID-19. Biomedicines 2022; 10:biomedicines10020351. [PMID: 35203562 PMCID: PMC8962262 DOI: 10.3390/biomedicines10020351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Fourier transform infrared (FTIR) spectroscopy provides a (bio)chemical snapshot of the sample, and was recently used in proof-of-concept cohort studies for COVID-19 saliva screening. However, the biological basis of the proposed technology has not been established. To investigate underlying pathophysiology, we conducted controlled infection experiments on Vero E6 cells in vitro and K18-hACE2 mice in vivo. Potentially infectious culture supernatant or mouse oral lavage samples were treated with ethanol or 75% (v/v) Trizol for attenuated total reflectance (ATR)-FTIR spectroscopy and proteomics, or RT-PCR, respectively. Controlled infection with UV-inactivated SARS-CoV-2 elicited strong biochemical changes in culture supernatant/oral lavage despite a lack of viral replication, determined by RT-PCR or a cell culture infectious dose 50% assay. Nevertheless, SARS-CoV-2 infection induced additional FTIR signals over UV-inactivated SARS-CoV-2 infection in both cell and mouse models, which correspond to aggregated proteins and RNA. Proteomics of mouse oral lavage revealed increased secretion of kallikreins and immune modulatory proteins. Next, we collected saliva from a cohort of human participants (n = 104) and developed a predictive model for COVID-19 using partial least squares discriminant analysis. While high sensitivity of 93.48% was achieved through leave-one-out cross-validation, COVID-19 patients testing negative on follow-up on the day of saliva sampling using RT-PCR was poorly predicted in this model. Importantly, COVID-19 vaccination did not lead to the misclassification of COVID-19 negatives. Finally, meta-analysis revealed that SARS-CoV-2 induced increases in the amide II band in all arms of this study and in recently published cohort studies, indicative of altered β-sheet structures in secreted proteins. In conclusion, this study reveals a consistent secretory pathophysiological response to SARS-CoV-2, as well as a simple, robust method for COVID-19 saliva screening using ATR-FTIR.
Collapse
Affiliation(s)
- Seth T. Kazmer
- Precision & Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.T.K.); (H.R.); (R.S.R.)
| | - Gunter Hartel
- Biostatistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Harley Robinson
- Precision & Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.T.K.); (H.R.); (R.S.R.)
| | - Renee S. Richards
- Precision & Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.T.K.); (H.R.); (R.S.R.)
| | - Kexin Yan
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.Y.); (D.J.R.); (T.T.L.); (A.S.)
| | - Sebastiaan J. van Hal
- New South Wales Health Pathology-Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (S.J.v.H.); (R.C.)
| | - Raymond Chan
- New South Wales Health Pathology-Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (S.J.v.H.); (R.C.)
| | - Andrew Hind
- Agilent Technologies Australia, Mulgrave, VIC 3170, Australia; (A.H.); (D.B.); (F.Z.)
| | - David Bradley
- Agilent Technologies Australia, Mulgrave, VIC 3170, Australia; (A.H.); (D.B.); (F.Z.)
| | - Fabian Zieschang
- Agilent Technologies Australia, Mulgrave, VIC 3170, Australia; (A.H.); (D.B.); (F.Z.)
| | - Daniel J. Rawle
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.Y.); (D.J.R.); (T.T.L.); (A.S.)
| | - Thuy T. Le
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.Y.); (D.J.R.); (T.T.L.); (A.S.)
| | - David W. Reid
- Lung Inflammation & Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
- The Prince Charles Hospital, Chermside, QLD 4032, Australia
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.Y.); (D.J.R.); (T.T.L.); (A.S.)
- Australian Infectious Disease Research Centre, GVN Centre of Excellence, Brisbane, QLD 4029, Australia
| | - Michelle M. Hill
- Precision & Systems Biomedicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (S.T.K.); (H.R.); (R.S.R.)
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Correspondence:
| |
Collapse
|
27
|
Ami D, Natalello A. Characterization of the Conformational Properties of Soluble and Insoluble Proteins by Fourier Transform Infrared Spectroscopy. Methods Mol Biol 2022; 2406:439-454. [PMID: 35089573 DOI: 10.1007/978-1-0716-1859-2_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The FTIR (micro-)spectroscopy method applied to the study of the structural properties of different soluble and insoluble proteins will be illustrated. In particular, we will discuss the procedure to analyze proteins in form of hydrated films and in solution by means of attenuated total reflection (ATR) measurements. Moreover, we will describe the procedure to characterize bacterial inclusion bodies (IBs) and amyloid deposits within human tissues by means of FTIR microspectroscopy.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
28
|
Kim EK, Cho K, Lee H, Chung I, Lee JC. Solid electrolyte membranes based on polybenzimidazole containing graphitic carbon nitride moiety (PBICN) for high-temperature fuel cell applications. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Huang J, Liu Y, Liu C, Xie L, Zhang R. Heterogeneous distribution of shell matrix proteins in the pearl oyster prismatic layer. Int J Biol Macromol 2021; 189:641-648. [PMID: 34425123 DOI: 10.1016/j.ijbiomac.2021.08.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Shell formation in molluscan bivalves is regulated by organic matrices composed of biological macromolecules, but how these macromolecules assemble in vitro remains elusive. Prismatic layer in the pearl oyster Pinctada fucata consists of polygonal prisms enveloped by thick organic matrices. In this study, we found that the organic matrices were heterogeneously distributed, with highly acidic fractions (EDTA-soluble and EDTA-insoluble) embedded inside the prism columns, while basic EDTA-insoluble faction as inter-column framework enveloping the prisms. The intra-column matrix was enriched in aspartic acid whereas the inter-column matrix was enriched in glycine, tyrosine and phenylalanine. Moreover, the intra-column matrix contained sulfo group further contributing to its acidic property. Proteomics data showed that the intra-column proteins mainly consisted of acidic proteins, while some typical matrix proteins were absent. The absent matrix proteins such as shematrin family and KRMP family were highly basic and contained aromatic amino acids, suggesting that electric charge and hydrophobic effect might play a role in the matrix heterogeneity. Interestingly, chitin metabolism related proteins were abundant in the inter-column matrix, which may be involved in reconstructing the prism organic matrix. Overall, our study suggests that each single prism grew in an enclosed organic envelope and the organic matrix undergoes rearrangement, thus leading to the peculiar growth of the prismatic layer.
Collapse
Affiliation(s)
- Jingliang Huang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yangjia Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuang Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rongqing Zhang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314000, China.
| |
Collapse
|
30
|
Morgan GJ, Buxbaum JN, Kelly JW. Light Chain Stabilization: A Therapeutic Approach to Ameliorate AL Amyloidosis. HEMATO 2021; 2:645-659. [PMID: 35757512 PMCID: PMC9218996 DOI: 10.3390/hemato2040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-native immunoglobulin light chain conformations, including aggregates, appear to cause light chain amyloidosis pathology. Despite significant progress in pharmacological eradication of the neoplastic plasma cells that secrete these light chains, in many patients impaired organ function remains. The impairment is apparently due to a subset of resistant plasma cells that continue to secrete misfolding-prone light chains. These light chains are susceptible to the proteolytic cleavage that may enable light chain aggregation. We propose that small molecules that preferentially bind to the natively folded state of full-length light chains could act as pharmacological kinetic stabilizers, protecting light chains against unfolding, proteolysis and aggregation. Although the sequence of the pathological light chain is unique to each patient, fortunately light chains have highly conserved residues that form binding sites for small molecule kinetic stabilizers. We envision that such stabilizers could complement existing and emerging therapies to benefit light chain amyloidosis patients.
Collapse
Affiliation(s)
- Gareth J. Morgan
- Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- The Amyloidosis Center, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence:
| | - Joel N. Buxbaum
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
31
|
Rognoni P, Mazzini G, Caminito S, Palladini G, Lavatelli F. Dissecting the Molecular Features of Systemic Light Chain (AL) Amyloidosis: Contributions from Proteomics. ACTA ACUST UNITED AC 2021; 57:medicina57090916. [PMID: 34577839 PMCID: PMC8471912 DOI: 10.3390/medicina57090916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Amyloidoses are characterized by aggregation of proteins into highly ordered amyloid fibrils, which deposit in the extracellular space of tissues, leading to organ dysfunction. In AL (amyloid light chain) amyloidosis, the most common form in Western countries, the amyloidogenic precursor is a misfolding-prone immunoglobulin light chain (LC), which, in the systemic form, is produced in excess by a plasma cell clone and transported to target organs though blood. Due to the primary role that proteins play in the pathogenesis of amyloidoses, mass spectrometry (MS)-based proteomic studies have gained an established position in the clinical management and research of these diseases. In AL amyloidosis, in particular, proteomics has provided important contributions for characterizing the precursor light chain, the composition of the amyloid deposits and the mechanisms of proteotoxicity in target organ cells and experimental models of disease. This review will provide an overview of the major achievements of proteomic studies in AL amyloidosis, with a presentation of the most recent acquisitions and a critical discussion of open issues and ongoing trends.
Collapse
Affiliation(s)
- Paola Rognoni
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Correspondence: (P.R.); (F.L.); Tel.: +39-0382502984 (P.R.); +39-0382502994 (F.L.)
| | - Giulia Mazzini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
| | - Serena Caminito
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, V.le Golgi 19, 27100 Pavia, Italy; (G.M.); (S.C.); (G.P.)
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Correspondence: (P.R.); (F.L.); Tel.: +39-0382502984 (P.R.); +39-0382502994 (F.L.)
| |
Collapse
|
32
|
Musto M, Parisse P, Pachetti M, Memo C, Di Mauro G, Ballesteros B, Lozano N, Kostarelos K, Casalis L, Ballerini L. Shedding plasma membrane vesicles induced by graphene oxide nanoflakes in brain cultured astrocytes. CARBON 2021; 176:458-469. [DOI: 10.1016/j.carbon.2021.01.142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Biswas PP, Liang B, Turner-Walker G, Rathod J, Lee YC, Wang CC, Chang CK. Systematic changes of bone hydroxyapatite along a charring temperature gradient: An integrative study with dissolution behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142601. [PMID: 33071118 DOI: 10.1016/j.scitotenv.2020.142601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The applicability of bone char as a long-term phosphorus nutrient source was assessed by integrating their mineral transformation and physicochemical properties with their dissolution behavior. We have explored synchrotron-based spectroscopic and imaging techniques (FTIR, XRD, and TXM) to investigate the physicochemical changes of bone and bone char along a charring temperature gradient (300-1200 °C) and used a lab incubation experiment to study their dissolution behaviors in solutions of different pH (4, 6, and 6.9). The thermal decomposition of inorganic carbonate (CO32-) and the loss of organic components rendered a crystallographic rearrangement (blueshift of the PO43- peak) and mineral transformation with increasing temperatures. The mineral transformation from B-type to AB- and A-type carbonate substitution occurred mainly at <700 °C, while the transformation from carbonated hydroxyapatite (CHAp) to more mineralogically and chemically stable HAp occurred at >800 °C. The loss of inorganic carbonate and the increase of structural OH- with increasing temperatures explained the change of pH buffering capacity and increase of pH and their dissolution behaviors. The higher peak area ratios of phosphate to carbonate and phosphate to amide I band with increasing temperatures corroborated the higher stability and resistivity to acidic dissolution by bone chars made at higher temperatures. Our findings suggest that bone char made at low to intermediate temperatures can be a substantial source of phosphorus for soil fertility via waste management and recycling. The bone char made at 500 °C exhibited a high pH buffering capacity in acidic and near-neutral solutions. The 700 °C bone char was proposed as a suitable liming agent for raising the soil pH and abating soil acidity. Our study has underpinned the systematic changes of bone char and interlinked the charring effect with their dissolution behavior, providing a scientific base for understanding the applicability of different bone chars as suitable P-fertilizers.
Collapse
Affiliation(s)
| | - Biqing Liang
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan.
| | - Gordon Turner-Walker
- Department of Cultural Heritage Conservation, National Yunlin University of Science & Technology, Douliu, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Chang Lee
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu, Taiwan; Department of Optics and Photonics, National Central University, Chung-Li, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Chieh Wang
- X-ray Imaging Group, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chung-Kai Chang
- Material Science Group, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| |
Collapse
|
34
|
Ganguly K, Jeong MS, Dutta SD, Patel DK, Cho SJ, Lim KT. Protaetia brevitarsis seulensis Derived Protein Isolate with Enhanced Osteomodulatory and Antioxidative Property. Molecules 2020; 25:molecules25246056. [PMID: 33371481 PMCID: PMC7767527 DOI: 10.3390/molecules25246056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023] Open
Abstract
The osteogenic differentiation of stem cells is profoundly affected by their microenvironmental conditions. The differentiation behavior of stem cells can be tuned by changing the niche environments. The proteins or peptides that are derived by living organisms facilitate the osteogenic differentiation of stem cells. Here, we have evaluated the osteoinductive and antioxidative potential of the Protaetia brevitarsis seulensis insect-derived protein for human bone marrow-derived mesenchymal stem cells (hBMSCs). The amino acid contents in the isolated protein were determined by an amino acid analyzer. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were used to analyze the extract’s functional groups and surface morphology. The extracted protein exhibited 51.08% β-sheet conformation. No adverse effects were observed in extract-treated cells, indicating their biocompatibility. The protein isolate showed an excellent antioxidative property. Besides this, an enhancement in the hBMSCs’ mineralization has been observed in the presence of treated protein isolates. Notably, osteogenic marker genes and proteins were effectively expressed in the treated cells. These results indicated that the P. brevitarsis-derived protein isolate can be used as a potential antioxidative biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (K.G.); (S.D.D.); (D.K.P.)
| | - Min-Soo Jeong
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (K.G.); (S.D.D.); (D.K.P.)
| | - Dinesh K. Patel
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (K.G.); (S.D.D.); (D.K.P.)
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (S.-J.C.); (K.-T.L.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (K.G.); (S.D.D.); (D.K.P.)
- Correspondence: (S.-J.C.); (K.-T.L.)
| |
Collapse
|
35
|
Pachetti M, Zupin L, Venturin I, Mitri E, Boscolo R, D’Amico F, Vaccari L, Crovella S, Ricci G, Pascolo L. FTIR Spectroscopy to Reveal Lipid and Protein Changes Induced on Sperm by Capacitation: Bases for an Improvement of Sample Selection in ART. Int J Mol Sci 2020; 21:ijms21228659. [PMID: 33212829 PMCID: PMC7698301 DOI: 10.3390/ijms21228659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Although being a crucial step for Assisted Reproduction Technologies (ART) success, to date sperm selection is based only on morphology, motility and concentration characteristics. Considering the many possible alterations, there is a great need for analytical approaches allowing more effective sperm selections. The use of Fourier Transform Infrared (FTIR) may represent an interesting possibility, being able to reveal many macromolecular changes in a single measurement in a nondestructive way. As a proof of concept, in this observational study, we used a FTIR approach to reveal features related to sperm quality and chemical changes promoted by in vitro capacitation. We found indication that α-helix content is increased in capacitated sperm, while high percentages of the β-structures seem to correlate to poor-quality spermatozoa. The most interesting observation was related to the lipid composition, when measured as CH2/CH3 vibrations (ratio 2853/2870), which resulted in being strongly influenced by capacitation and well correlated with sperm motility. Interestingly, this ratio is higher than 1 in infertile samples, suggesting that motility is related to sperm membranes stiffness and lipid composition. Although further analyses are requested, our results support the concept that FTIR can be proposed as a new smart diagnostic tool for semen quality assessment in ART.
Collapse
Affiliation(s)
- Maria Pachetti
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy; (M.P.); (I.V.); (E.M.); (F.D.); (L.V.)
- Department of Physics, University of Trieste, Via Valerio 2, 34143 Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (R.B.); (G.R.)
| | - Irene Venturin
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy; (M.P.); (I.V.); (E.M.); (F.D.); (L.V.)
| | - Elisa Mitri
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy; (M.P.); (I.V.); (E.M.); (F.D.); (L.V.)
| | - Rita Boscolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (R.B.); (G.R.)
| | - Francesco D’Amico
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy; (M.P.); (I.V.); (E.M.); (F.D.); (L.V.)
| | - Lisa Vaccari
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy; (M.P.); (I.V.); (E.M.); (F.D.); (L.V.)
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, P.O. Box 2713 Doha, Qatar;
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (R.B.); (G.R.)
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (R.B.); (G.R.)
- Correspondence: ; Tel.: +39-040-378-5526
| |
Collapse
|
36
|
Rodzik A, Pomastowski P, Railean-Plugaru V, Sprynskyy M, Buszewski B. The Study of Zinc Ions Binding to α S1-, β- and κ-Casein. Int J Mol Sci 2020; 21:E8096. [PMID: 33142990 PMCID: PMC7662941 DOI: 10.3390/ijms21218096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 01/28/2023] Open
Abstract
The presented studies focused on the specificity binding of particular casein fractions: αS1-, β- and κ-casein (αS1CN, βCN, κCN), with zinc ions. The binding mechanism was determined by kinetic modeling using results of batch sorption. For this goal, models of zero-order kinetics, pseudo-first-order, pseudo-second-order and Weber-Morris intraparticle diffusion were used. The formation of Zn-αS1CN, Zn-βCN and Zn-κCN complexes was additionally monitored using spectroscopic methods such as Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy, characterizing active functional groups involved in the binding process. Additionally, a mass spectrometry technique-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-was used to characterize respective protein fractions and obtained complexes. Spectroscopic and spectrometric studies were carried out both before and after binding the protein with zinc ions. The obtained results showed the difference in Zn-αS1CN, Zn-βCN and Zn-κCN complexes created at separate kinetic stages. On the basis of instrumental studies, a significant influence of acidic (glutamic acid (Glu), aspartic acid (Asp)) and aromatic (tryptophan (Trp), phenylalanine (Phe), tyrosine (Tyr)) amino acids on the formation of metal complexes was proven. In turn, spectrometric studies allowed determining the molecular masses of casein isoforms before and after binding to zinc ions.
Collapse
Affiliation(s)
- Agnieszka Rodzik
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (V.R.-P.); (M.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (V.R.-P.); (M.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (V.R.-P.); (M.S.); (B.B.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland; (A.R.); (V.R.-P.); (M.S.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
37
|
Jain A, Hu G, Kumar Ratnakaram SS, Johnson DK, Picking WD, Picking WL, Middaugh CR. Preformulation Characterization and the Effect of Ionic Excipients on the Stability of a Novel DB Fusion Protein. J Pharm Sci 2020; 110:108-123. [PMID: 32916136 PMCID: PMC7750262 DOI: 10.1016/j.xphs.2020.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Shigella ssp cause bacillary dysentery (shigellosis) which has high global morbidity in young children and the elderly. The virulence of Shigella relies upon a type III secretion system (T3SS) which injects host altering effector proteins into targeted intestinal cells. The Shigella T3SS contains two components, invasion plasmid antigen D (IpaD) and invasion plasmid antigen B (IpaB), that were previously identified as broadly protective antigens. When IpaD and IpaB were co-expressed to give the DB fusion (DBF) protein, vaccine efficacy was further improved. Biophysical characterization under various pH conditions showed that DBF is most stable at pH 7 and 8 and loses its conformational integrity at 48 and 50 °C respectively. Forced degradation studies revealed significant effects on the secondary structure, tertiary structure and conformational stability of DBF. In the presence of phosphate buffers as well as other anionic excipients, DBF demonstrated a concentration dependent conformational stabilization. Molecular docking revealed potential polyanion binding sites in DBF that may interact with phytic acid. These sites can be exploited to stabilize the DBF protein. This work highlights potential destabilizing and stabilizing factors, which not only improves our understanding of the DBF protein but helps in future development of a stable Shigella vaccine.
Collapse
Affiliation(s)
- Akshay Jain
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS 66047, USA
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS 66047, USA
| | | | - David K Johnson
- Computational Chemical Biology Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - William D Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA.
| | - Charles Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA; Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
38
|
Sala BM, Le Marchand T, Pintacuda G, Camilloni C, Natalello A, Ricagno S. Conformational Stability and Dynamics in Crystals Recapitulate Protein Behavior in Solution. Biophys J 2020; 119:978-988. [PMID: 32758421 DOI: 10.1016/j.bpj.2020.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022] Open
Abstract
A growing body of evidences has established that in many cases proteins may preserve most of their function and flexibility in a crystalline environment, and several techniques are today capable to characterize molecular properties of proteins in tightly packed lattices. Intriguingly, in the case of amyloidogenic precursors, the presence of transiently populated states (hidden to conventional crystallographic studies) can be correlated to the pathological fate of the native fold; the low fold stability of the native state is a hallmark of aggregation propensity. It remains unclear, however, to which extent biophysical properties of proteins such as the presence of transient conformations or protein stability characterized in crystallo reflect the protein behavior that is more commonly studied in solution. Here, we address this question by investigating some biophysical properties of a prototypical amyloidogenic system, β2-microglobulin in solution and in microcrystalline state. By combining NMR chemical shifts with molecular dynamics simulations, we confirmed that conformational dynamics of β2-microglobulin native state in the crystal lattice is in keeping with what observed in solution. A comparative study of protein stability in solution and in crystallo is then carried out, monitoring the change in protein secondary structure at increasing temperature by Fourier transform infrared spectroscopy. The increased structural order of the crystalline state contributes to provide better resolved spectral components compared to those collected in solution and crucially, the crystalline samples display thermal stabilities in good agreement with the trend observed in solution. Overall, this work shows that protein stability and occurrence of pathological hidden states in crystals parallel their solution counterpart, confirming the interest of crystals as a platform for the biophysical characterization of processes such as unfolding and aggregation.
Collapse
Affiliation(s)
| | - Tanguy Le Marchand
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon), Université de Lyon, Villeurbanne, France
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon), Université de Lyon, Villeurbanne, France
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
39
|
Simpson LW, Good TA, Leach JB. Protein folding and assembly in confined environments: Implications for protein aggregation in hydrogels and tissues. Biotechnol Adv 2020; 42:107573. [PMID: 32512220 DOI: 10.1016/j.biotechadv.2020.107573] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/03/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022]
Abstract
In the biological milieu of a cell, soluble crowding molecules and rigid confined environments strongly influence whether the protein is properly folded, intrinsically disordered proteins assemble into distinct phases, or a denatured or aggregated protein species is favored. Such crowding and confinement factors act to exclude solvent volume from the protein molecules, resulting in an increased local protein concentration and decreased protein entropy. A protein's structure is inherently tied to its function. Examples of processes where crowding and confinement may strongly influence protein function include transmembrane protein dimerization, enzymatic activity, assembly of supramolecular structures (e.g., microtubules), nuclear condensates containing transcriptional machinery, protein aggregation in the contexts of disease and protein therapeutics. Historically, most protein structures have been determined from pure, dilute protein solutions or pure crystals. However, these are not the environments in which these proteins function. Thus, there has been an increased emphasis on analyzing protein structure and dynamics in more "in vivo-like" environments. Complex in vitro models using hydrogel scaffolds to study proteins may better mimic features of the in vivo environment. Therefore, analytical techniques need to be optimized for real-time analysis of proteins within hydrogel scaffolds.
Collapse
Affiliation(s)
- Laura W Simpson
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Eng 314, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Theresa A Good
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Ave, Alexandria, VA 22314, USA
| | - Jennie B Leach
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Eng 314, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
40
|
Wilkosz N, Czaja M, Seweryn S, Skirlińska-Nosek K, Szymonski M, Lipiec E, Sofińska K. Molecular Spectroscopic Markers of Abnormal Protein Aggregation. Molecules 2020; 25:E2498. [PMID: 32471300 PMCID: PMC7321069 DOI: 10.3390/molecules25112498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Abnormal protein aggregation has been intensively studied for over 40 years and broadly discussed in the literature due to its significant role in neurodegenerative diseases etiology. Structural reorganization and conformational changes of the secondary structure upon the aggregation determine aggregation pathways and cytotoxicity of the aggregates, and therefore, numerous analytical techniques are employed for a deep investigation into the secondary structure of abnormal protein aggregates. Molecular spectroscopies, including Raman and infrared ones, are routinely applied in such studies. Recently, the nanoscale spatial resolution of tip-enhanced Raman and infrared nanospectroscopies, as well as the high sensitivity of the surface-enhanced Raman spectroscopy, have brought new insights into our knowledge of abnormal protein aggregation. In this review, we order and summarize all nano- and micro-spectroscopic marker bands related to abnormal aggregation. Each part presents the physical principles of each particular spectroscopic technique listed above and a concise description of all spectral markers detected with these techniques in the spectra of neurodegenerative proteins and their model systems. Finally, a section concerning the application of multivariate data analysis for extraction of the spectral marker bands is included.
Collapse
Affiliation(s)
| | | | | | | | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Kraków, Poland; (N.W.); (M.C.); (S.S.); (K.S.-N.); (M.S.)
| | - Kamila Sofińska
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Kraków, Poland; (N.W.); (M.C.); (S.S.); (K.S.-N.); (M.S.)
| |
Collapse
|
41
|
Martel C, Tsutsumi T, Cément V, Khuong HT, Dupré N, Ismail AA, Gros-Louis F. Diagnosis of idiopathic amyotrophic lateral sclerosis using Fourier-transform infrared spectroscopic analysis of patient-derived skin. Analyst 2020; 145:3678-3685. [PMID: 32307493 DOI: 10.1039/c9an02282a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the great challenges in identifying effective therapy in many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is the lack of reliable biomarkers. In this study, we applied infrared imaging microspectroscopy, a valuable technique to investigate biomolecule fingerprints and secondary structure of proteins within biological tissue. We hypothesized that, since skin and CNS have the same embryonic origin, spectral differences associated with ALS-specific pathological events will be readily detectable through skin testing using this technique. Cells from healthy individuals and ALS patients were isolated from skin biopsies in order to generate tissue-engineered in vitro skin (TES). Infrared spectra of the generated TES were recorded using a focal-plane-array Fourier transform infrared (FPA-FTIR) spectrometer, and hierarchical cluster analysis of the spectral data was performed in order to establish clear differences between the tested TES specimens. Interestingly, our analyses showed that it was readily possible to discriminate ALS- and control-TES solely based on differences in associated FTIR spectra, mainly located between 1149 and 1473 cm-1, attributed to disruption of phospholipid cell membranes, extracellular matrix remodeling or cholesterol accumulation. Spectral differences within the TES samples may therefore be associated with disease state, paving the way for the identification of biomarkers in ALS.
Collapse
Affiliation(s)
- Christian Martel
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| | | | | | | | | | | | | |
Collapse
|
42
|
Donnarumma F, Leone S, Delfi M, Emendato A, Ami D, Laurents DV, Natalello A, Spadaccini R, Picone D. Probing structural changes during amyloid aggregation of the sweet protein MNEI. FEBS J 2019; 287:2808-2822. [DOI: 10.1111/febs.15168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Federica Donnarumma
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Serena Leone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Masoud Delfi
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Alessandro Emendato
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Douglas V. Laurents
- Institute of Physical Chemistry ‘Rocasolano’ Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Antonino Natalello
- Department of Biotechnology and Biosciences University of Milano‐Bicocca Italy
| | - Roberta Spadaccini
- Department of Science and Technology Università degli Studi del Sannio Benevento Italy
| | - Delia Picone
- Department of Chemical Sciences University of Naples ‘Federico II’ Napoli Italy
| |
Collapse
|
43
|
Zhang C, Springall JS, Wang X, Barman I. Rapid, quantitative determination of aggregation and particle formation for antibody drug conjugate therapeutics with label-free Raman spectroscopy. Anal Chim Acta 2019; 1081:138-145. [PMID: 31446951 PMCID: PMC6750807 DOI: 10.1016/j.aca.2019.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/21/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022]
Abstract
Lot release and stability testing of biologics are essential parts of the quality control strategy for ensuring therapeutic material dosed to patients is safe and efficacious, and consistent with previous clinical and toxicological experience. Characterization of protein aggregation is of particular significance, as aggregates may lose the intrinsic pharmaceutical properties as well as engage with the immune system instigating undesirable downstream immunogenicity. While important, real-time identification and quantification of subvisible particles in the monoclonal antibody (mAb) drug products remains inaccessible with existing techniques due to limitations in measurement time, sensitivity or experimental conditions. Here, owing to its exquisite molecular specificity, non-perturbative nature and lack of sample preparation requirements, we propose label-free Raman spectroscopy in conjunction with multivariate analysis as a solution to this unmet need. By leveraging subtle, but consistent, differences in vibrational modes of the biologics, we have developed a support vector machine-based regression model that provides fast, accurate prediction for a wide range of protein aggregations. Moreover, in blinded experiments, the model shows the ability to precisely differentiate between aggregation levels in mAb like product samples pre- and post-isothermal incubation, where an increase in aggregate levels was experimentally determined. In addition to offering fresh insights into mAb like product-specific aggregation mechanisms that can improve engineering of new protein therapeutics, our results highlight the potential of Raman spectroscopy as an in-line analytical tool for monitoring protein particle formation.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy S Springall
- AstraZeneca, R&D Biopharmaceuticals, Biopharmaceutical Product Development, Analytical Sciences, Gaithersburg, MD, USA.
| | - Xiangyang Wang
- AstraZeneca, R&D Biopharmaceuticals, Biopharmaceutical Product Development, Analytical Sciences, Gaithersburg, MD, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Stevenson H, Jaggard M, Akhbari P, Vaghela U, Gupte C, Cann P. The role of denatured synovial fluid proteins in the lubrication of artificial joints. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biotri.2019.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Ami D, Mereghetti P, Foli A, Tasaki M, Milani P, Nuvolone M, Palladini G, Merlini G, Lavatelli F, Natalello A. ATR-FTIR Spectroscopy Supported by Multivariate Analysis for the Characterization of Adipose Tissue Aspirates from Patients Affected by Systemic Amyloidosis. Anal Chem 2019; 91:2894-2900. [PMID: 30676723 DOI: 10.1021/acs.analchem.8b05008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Deposition of misfolded proteins as extracellular amyloid aggregates is the pathological hallmark of systemic amyloidoses. Subcutaneous fat acquired by fine needle aspiration is the preferred screening tissue in suspected patients. In this study we employed Fourier transform infrared (FTIR) spectroscopy in attenuated total reflection (ATR) to investigate human abdominal fat aspirates with the aim of detecting disease-related changes in the molecular structure and composition of the tissue and exploiting the potentiality of the method to discriminate between amyloid-positive and -negative samples. The absorption and second-derivative spectra of Congo Red (CR) positive and CR-negative specimens were analyzed by three multivariate methods in four spectral regions. The proposed ATR-FTIR method is label-free, rapid, and relatively inexpensive and requires minimal sample preparation. We found that the ATR-FTIR approach can differentiate fat aspirates containing amyloid deposits from control specimens with high sensitivity and specificity, both at 100 [89-100]%. It is worth noting that the wavenumbers most important for discrimination indicate that changes both in the protein conformation and in resident lipids are intrinsic features of affected subcutaneous fat in comparison with the CR-negative controls. In this proof of concept study, we show that this approach could be useful for assessing tissue amyloid aggregates and for acquiring novel knowledge of the molecular bases of the disease.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Paolo Mereghetti
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| | - Andrea Foli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Masayoshi Tasaki
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy.,Department of Morphological and Physiological Sciences, Graduate School of Health Sciences , Kumamoto University , 4-24-1 Kuhonji , Kumamoto 862-0976 , Japan.,Department of Neurology, Graduate School of Medical Sciences , Kumamoto University , 1-1-1 Honjo , Kumamoto 860-0811 , Japan
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Mario Nuvolone
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine , University of Pavia , Viale Golgi 19 , 27100 Pavia , Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milano , Italy
| |
Collapse
|
46
|
Gastl M, Peereboom SM, Gotschy A, Fuetterer M, von Deuster C, Boenner F, Kelm M, Schwotzer R, Flammer AJ, Manka R, Kozerke S. Myocardial triglycerides in cardiac amyloidosis assessed by proton cardiovascular magnetic resonance spectroscopy. J Cardiovasc Magn Reson 2019; 21:10. [PMID: 30700314 PMCID: PMC6354424 DOI: 10.1186/s12968-019-0519-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cardiac involvement of amyloidosis leads to left-ventricular (LV) wall thickening with progressive heart failure requiring rehospitalization. Cardiovascular magnetic resonance (CMR) is a valuable tool to non-invasively assess myocardial thickening as well as structural changes. Proton CMR spectroscopy (1H-CMRS) additionally allows assessing metabolites including triglycerides (TG) and total creatine (CR). However, opposing results exist regarding utilization of these metabolites in LV hypertrophy or thickening. Therefore, the aim of this study was to measure metabolic alterations using 1H-CMRS in a group of patients with thickened myocardium caused by cardiac amyloidosis. METHODS 1H-CMRS was performed on a 1.5 T system (Achieva, Philips Healthcare, Best, The Netherlands) using a 5-channel receive coil in 11 patients with cardiac amyloidosis (60.5 ± 11.4 years, 8 males) and 11 age- and gender-matched controls (63.2 ± 8.9 years, 8 males). After cardiac morphology and function assessment, proton spectra from the interventricular septum (IVS) were acquired using a double-triggered PRESS sequence. Post-processing was performed using a customized reconstruction pipeline based on ReconFrame (GyroTools LLC, Zurich, Switzerland). Spectra were fitted in jMRUI/AMARES and the ratios of triglyceride-to-water (TG/W) and total creatine-to-water (CR/W) were calculated. RESULTS Besides an increased LV mass and a thickened IVS concomitant to the disease characteristics, patients with cardiac amyloidosis presented with decreased global longitudinal (GLS) and circumferential (GCS) strain. LV ejection fraction was preserved relative to controls (60.0 ± 13.2 vs. 66.1 ± 4.3%, p = 0.17). Myocardial TG/W ratios were significantly decreased compared to controls (0.53 ± 0.23 vs. 0.80 ± 0.26%, p = 0.015). CR/W ratios did not show a difference between both groups, but a higher standard deviation in patients with cardiac amyloidosis was observed. Pearson correlation revealed a negative association between elevated LV mass and TG/W (R = - 0.59, p = 0.004) as well as GCS (R = - 0.48, p = 0.025). CONCLUSIONS A decrease in myocardial TG/W can be detected in patients with cardiac amyloidosis alongside impaired cardiac function with an association to the degree of myocardial thickening. Accordingly, 1H-CMRS may provide an additional diagnostic tool to gauge progression of cardiac amyloidosis along with standard imaging sequences. TRIAL REGISTRATION EK 2013-0132.
Collapse
Affiliation(s)
- Mareike Gastl
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department Cardiology, Pneumology and Angiology, Heinrich Heine University, Düsseldorf, Germany
| | - Sophie M. Peereboom
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Alexander Gotschy
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Florian Boenner
- Department Cardiology, Pneumology and Angiology, Heinrich Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Department Cardiology, Pneumology and Angiology, Heinrich Heine University, Düsseldorf, Germany
| | - Rahel Schwotzer
- Comprehensive Cancer Center Zürich, University Hospital Zurich, Zurich, Switzerland
| | - Andreas J. Flammer
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Robert Manka
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|
47
|
Antimonova OI, Lebedev DV, Zabrodskaya YA, Grudinina NA, Timkovsky AL, Ramsay E, Shavlovsky MM, Egorov VV. Changing times: Fluorescence-lifetime analysis of amyloidogenic SF-IAPP fusion protein. J Struct Biol 2019; 205:78-83. [DOI: 10.1016/j.jsb.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/02/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022]
|
48
|
Martial B, Lefèvre T, Auger M. Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR. Biophys Rev 2018; 10:1133-1149. [PMID: 29855812 PMCID: PMC6082320 DOI: 10.1007/s12551-018-0427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
It is well established that amyloid proteins play a primary role in neurodegenerative diseases. Alzheimer's, Parkinson's, type II diabetes, and Creutzfeldt-Jakob's diseases are part of a wider family encompassing more than 50 human pathologies related to aggregation of proteins. Although this field of research is thoroughly investigated, several aspects of fibrillization remain misunderstood, which in turn slows down, or even impedes, advances in treating and curing amyloidoses. To solve this problem, several research groups have chosen to focus on short fragments of amyloid proteins, sequences that have been found to be of great importance for the amyloid formation process. Studying short peptides allows bypassing the complexity of working with full-length proteins and may provide important information relative to critical segments of amyloid proteins. To this end, efficient biophysical tools are required. In this review, we focus on two essential types of spectroscopic techniques, i.e., vibrational spectroscopy and its derivatives (conventional Raman scattering, deep-UV resonance Raman (DUVRR), Raman optical activity (ROA), surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS), infrared (IR) absorption spectroscopy, vibrational circular dichroism (VCD)) and solid-state nuclear magnetic resonance (ssNMR). These techniques revealed powerful to provide a better atomic and molecular comprehension of the amyloidogenic process and fibril structure. This review aims at underlining the information that these techniques can provide and at highlighting their strengths and weaknesses when studying amyloid fragments. Meaningful examples from the literature are provided for each technique, and their complementarity is stressed for the kinetic and structural characterization of amyloid fibril formation.
Collapse
Affiliation(s)
- Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
49
|
Zn 2+-triggered self-assembly of Gonadorelin [6-D-Phe] to produce nanostructures and fibrils. Sci Rep 2018; 8:11280. [PMID: 30050082 PMCID: PMC6062538 DOI: 10.1038/s41598-018-29529-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/12/2018] [Indexed: 12/23/2022] Open
Abstract
A synthetic derivative, GnRH [6-D-Phe], stable against enzymatic degradation, self-assembles and forms nanostructures and fibrils upon a pH shift in the presence of different concentrations of Zn2+in vitro. Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR–FTIR) revealed the existence of higher order assembly of Zn2+: GnRH [6-D-Phe]. Nuclear Magnetic Resonance spectroscopy (NMR) indicated a weak interaction between Zn2+ and GnRH [6-D-Phe]. Atomic Force Microscopy (AFM) showed the existence of GnRH [6-D-Phe] oligomers and fibrils. Molecular Dynamic (MD) simulation of the 10:1 Zn2+: GnRH [6-D-Phe] explored the interaction and dimerization processes. In contrast to already existing short peptide fibrils, GnRH [6-D-Phe] nanostructures and fibrils form in a Tris-buffered pH environment in a controlled manner through a temperature reduction and a pH shift. The lyophilized Zn2+: GnRH [6-D-Phe] assembly was tested as a platform for the sustained delivery of GnRH [6-D-Phe] and incorporated into two different oil vehicle matrices. The in vitro release was slow and continuous over 14 days and not influenced by the oil matrix.
Collapse
|
50
|
Olsson TT, Klementieva O, Gouras GK. Prion-like seeding and nucleation of intracellular amyloid-β. Neurobiol Dis 2018; 113:1-10. [PMID: 29414379 DOI: 10.1016/j.nbd.2018.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/22/2017] [Accepted: 01/21/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) brain tissue can act as a seed to accelerate aggregation of amyloid-β (Aβ) into plaques in AD transgenic mice. Aβ seeds have been hypothesized to accelerate plaque formation in a prion-like manner of templated seeding and intercellular propagation. However, the structure(s) and location(s) of the Aβ seeds remain unknown. Moreover, in contrast to tau and α-synuclein, an in vitro system with prion-like Aβ has not been reported. Here we treat human APP expressing N2a cells with AD transgenic mouse brain extracts to induce inclusions of Aβ in a subset of cells. We isolate cells with induced Aβ inclusions and using immunocytochemistry, western blot and infrared spectroscopy show that these cells produce oligomeric Aβ over multiple replicative generations. Further, we demonstrate that cell lysates of clones with induced oligomeric Aβ can induce aggregation in previously untreated N2a APP cells. These data strengthen the case that Aβ acts as a prion-like protein, demonstrate that Aβ seeds can be intracellular oligomers and for the first time provide a cellular model of nucleated seeding of Aβ.
Collapse
Affiliation(s)
- Tomas T Olsson
- Experimental Dementia Research Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Oxana Klementieva
- Experimental Dementia Research Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|