1
|
Qiu J, Wei Y, Shu J, Zheng W, Zhang Y, Xie J, Zhang D, Luo X, Sun X, Wang X, Wang S, Wang X, Qiu T. Integrated in-silico design and in vivo validation of multi-epitope vaccines for norovirus. Virol J 2025; 22:166. [PMID: 40426240 PMCID: PMC12117790 DOI: 10.1186/s12985-025-02796-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Norovirus (NoVs) is a foodborne pathogen that causes acute gastroenteritis. The diversity of its principal antigenic protein poses a significant challenge to vaccine development and the prevention of large-scale outbreaks globally. Currently, no licensed vaccines against norovirus have been approved. METHODS We developed a novel pipeline that integrates multiple bioinformatics tools to design broad-spectrum vaccines against NoVs. Specifically, broad-spectrum T-cell epitope vaccines were designed based on consensus sequences and optimized epitope screening, while broad-spectrum B-cell spatial epitope vaccines were constructed using high-throughput antigenicity calculations and epitope mapping. RESULTS This pipeline underwent rigorous validation at three levels: firstly, In silico validation: Analysis of properties and structures demonstrated the appropriateness of amino acid composition and the structural integrity of the vaccine sequences. Secondly, theoretical assessment: Evaluation of human leukocyte antigen (HLA) subtype and antigenicity coverage indicated a broad theoretical protective spectrum for the designed vaccine immunogens. Furthermore, in silico simulation confirmed their ability to elicit an immune response. Finally, animal-level validation: Experiments in mice showed that both vaccine immunogens stimulated high levels of IgG and IgA. Notably, Vac-B induced a strong IgG response against GII.2 and a robust IgA response against GII.17, comparable to the immune response elicited by the wild-type NoV non-replicating virus-like particle (VLP) protein group. CONCLUSIONS Both in silico and in vivo experimental findings suggest that the proposed pipeline and vaccine immunogens could serve as valuable theoretical guidance for the development of multi-epitope vaccines against NoVs.
Collapse
Affiliation(s)
- Jingxuan Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiwen Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jiayi Shu
- Institute of Clinical Science, Clinical Center of Biotherapy, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Wenjing Zheng
- Institutes of Biomedical Sciences; Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical. Molecular Virology of MoE&MoH, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yuxi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junting Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Dong Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaochuan Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu,, 214122, China
| | - Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, Shanghai, 200093, China
| | - Sijie Wang
- Institutes of Biomedical Sciences; Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical. Molecular Virology of MoE&MoH, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Xuanyi Wang
- Institutes of Biomedical Sciences; Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical. Molecular Virology of MoE&MoH, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Tianyi Qiu
- Institute of Clinical Science, Clinical Center of Biotherapy, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
2
|
Mizukoshi F, Kimura R, Shirai T, Hirata-Saito A, Hiraishi E, Murakami K, Doan YH, Tsukagoshi H, Saruki N, Tsugawa T, Kidera K, Suzuki Y, Sakon N, Katayama K, Kageyama T, Ryo A, Kimura H. Molecular Evolutionary Analyses of the RNA-Dependent RNA Polymerase ( RdRp) Region and VP1 Gene in Sapovirus GI.1 and GI.2. Microorganisms 2025; 13:322. [PMID: 40005689 PMCID: PMC11858432 DOI: 10.3390/microorganisms13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Human sapovirus (HuSaV) is a significant cause of gastroenteritis. This study aims to analyze the evolutionary dynamics of the RNA-dependent RNA polymerase (RdRp) and capsid (VP1) genes of the HuSaV GI.1 and GI.2 genotypes between 1976 and 2020. Using bioinformatics tools such as the Bayesian phylogenetics software BEAST 2 package (v.2.7.6), we constructed time-scale evolutionary trees based on the gene sequences. Most of the recent common ancestors (MRCAs) of the RdRp region and VP1 gene in the present HuSaV GI.1 diverged around 1930 and 1933, respectively. The trees of the HuSaV GI.1 RdRp region and VP1 gene were divided into two clusters. Further, the MRCAs of the RdRp region and VP1 gene in HuSaV GI.2 diverged in 1960 and 1943, respectively. The evolutionary rates were higher for VP1 gene in HuSaV GI.1 than that in HuSaV GI.2, furthermore, were higher in GI.1 Cluster B than GI.1 Cluster A. In addition, a steep increase was observed in the time-scaled genome population size of the HuSaV GI.1 Cluster B. These results indicate that the HuSaV GI.1 Cluster B may be evolving more actively than other genotypes. The conformational B-cell epitopes were predicted with a higher probability in RdRp for GI.1 and in VP1 for GI.2, respectively. These results suggest that the RdRp region and VP1 gene in HuSaV GI.1 and GI.2 evolved uniquely. These findings suggest unique evolutionary patterns in the RdRp region and VP1 gene of HuSaV GI.1 and GI.2, emphasizing the need for a 'One Health' approach to better understand and combat this pathogen.
Collapse
Affiliation(s)
- Fuminori Mizukoshi
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Japan; (T.S.); (A.R.)
| | - Ryusuke Kimura
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi 371-8511, Japan;
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Japan
| | - Tatsuya Shirai
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Japan; (T.S.); (A.R.)
| | - Asumi Hirata-Saito
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya-shi 329-1196, Japan;
| | - Eri Hiraishi
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Japan;
| | - Kosuke Murakami
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Shinjuku-ku 162-8640, Japan;
| | - Yen Hai Doan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Japan; (Y.H.D.); (T.K.)
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi 371-0052, Japan; (H.T.); (N.S.)
| | - Nobuhiro Saruki
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi 371-0052, Japan; (H.T.); (N.S.)
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo-shi 060-8543, Japan;
| | - Kana Kidera
- Laboratory of Viral Infection Control, Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Shirogane, Minato-ku 108-8641, Japan; (K.K.); (K.K.)
| | - Yoshiyuki Suzuki
- Division of Biological Science, Department of Information and Basic Science, Graduate School of Sciences, Nagoya City University, Nagoya-shi 467-8501, Japan;
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka 537-0025, Japan;
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Shirogane, Minato-ku 108-8641, Japan; (K.K.); (K.K.)
| | - Tsutomu Kageyama
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Japan; (Y.H.D.); (T.K.)
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Japan; (T.S.); (A.R.)
| | - Hirokazu Kimura
- Advanced Medical Science Research Center, Gunma Paz University, Takasaki-shi 370-0006, Japan
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, Takasaki-shi 370-0006, Japan;
| |
Collapse
|
3
|
Wang T, Zeng H, Kang J, Lei L, Liu J, Zheng Y, Qian W, Fan C. Establishment of a Nucleic Acid Detection Method for Norovirus GII.2 Genotype Based on RT-RPA and CRISPR/Cas12a-LFS. Pol J Microbiol 2024; 73:253-262. [PMID: 38905280 PMCID: PMC11192556 DOI: 10.33073/pjm-2024-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 06/23/2024] Open
Abstract
To establish a rapid detection method for norovirus GII.2 genotype, this study employed reverse transcription recombinase polymerase amplification (RT-RPA) combined with CRISPR/Cas12a and lateral flow strip (RT-RPA-Cas12a-LFS). Here, the genome of norovirus GII.2 genotype was compared to identify highly conserved sequences, facilitating the design of RT-RPA primers and crRNA specific to the conserved regions of norovirus GII.2. Subsequently, the reaction parameters of RT-RPA were optimized and evaluated using agar-gel electrophoresis and LFS. The results indicate that the conserved sequences of norovirus GII.2 were successfully amplified through RT-RPA at 37°C for 25 minutes. Additionally, CRISPR/Cas12a-mediated cleavage detection was achieved through LFS at 37°C within 10 minutes using the amplification products as templates. Including the isothermal amplification reaction time, the total time is 35 minutes. The established RT-RPA-Cas12a-LFS method demonstrated specific detection of norovirus GII.2, yielding negative results for other viral genomes, and exhibited an excellent detection limit of 10 copies/μl. The RT-RPA-Cas12a-LFS method was further compared with qRT-PCR by analyzing 60 food-contaminated samples. The positive conformity rate was 100%, the negative conformity rate was 95.45%, and the overall conformity rate reached 98.33%. This detection method for norovirus GII.2 genotype is cost-effective, highly sensitive, specific, and easy to operate, offering a promising technical solution for field-based detection of the norovirus GII.2 genotype.
Collapse
Affiliation(s)
- Ting Wang
- School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xian, China
| | - Hao Zeng
- School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xian, China
| | - Jie Kang
- Shaanxi Institute of Supervision and Testing on Product Quality, Xian, China
| | - Lanlan Lei
- Shaanxi Institute of Supervision and Testing on Product Quality, Xian, China
| | - Jing Liu
- Shaanxi Institute of Supervision and Testing on Product Quality, Xian, China
| | - Yuhong Zheng
- Shaanxi Institute of Supervision and Testing on Product Quality, Xian, China
| | - Weidong Qian
- School of Biomedical and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xian, China
| | - Cheng Fan
- Shaanxi Institute of Supervision and Testing on Product Quality, Xian, China
| |
Collapse
|
4
|
Yi HW, Wang XM, Tan X, Ding CZ, Zhang CL, Wu JH, Li Q, Xin CQ, Fan W. Simultaneous detection of human norovirus GI, GII and SARS-CoV-2 by a quantitative one-step triplex RT-qPCR. Front Microbiol 2024; 14:1269275. [PMID: 38260899 PMCID: PMC10800780 DOI: 10.3389/fmicb.2023.1269275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Background There are many similarities in the clinical manifestations of human norovirus and SARS-CoV-2 infections, and nucleic acid detection is the gold standard for diagnosing both diseases. In order to expedite the identification of norovirus and SARS-CoV-2, a quantitative one-step triplex reverse transcription PCR (RT-qPCR) method was designed in this paper. Methods A one-step triplex RT-qPCR assay was developed for simultaneous detection and differentiation of human norovirus GI (NoV-GI), GII (NoV-GII) and SARS-CoV-2 from fecal specimens. Results The triplex RT-qPCR assay had high detection reproducibility (CV < 1%) and sensitivity. The lower limits of detection (LLOD95) of the triplex RT-qPCR assay for each target site were 128.5-172.8 copies/mL, and LLOD95 of the singleplex RT-qPCR assay were 110.3-142.0 copies/mL. Meanwhile, among the detection of clinical oropharyngeal swabs and fecal specimens, the results of the singleplex and triplex RT-qPCR assay showed high agreement. Conclusion The triplex RT-qPCR assay for simultaneous detection of NoV-GI, NoV-GII and SARS-CoV-2 from fecal specimens has high clinical application value.
Collapse
Affiliation(s)
- Hua-Wei Yi
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Xian-Mo Wang
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Xin Tan
- Health Science Center of Yangtze University, Jingzhou, Hubei, China
| | - Cai-Zhi Ding
- The People's Hospital of Songzi, Jingzhou, Hubei, China
| | - Chang-Li Zhang
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Jia-Hao Wu
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Qi Li
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Chen-Qi Xin
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| | - Wen Fan
- The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- The First People's Hospital of Jingzhou, Jingzhou, Hubei, China
| |
Collapse
|
5
|
Nagasawa N, Kimura R, Akagawa M, Shirai T, Sada M, Okayama K, Sato-Fujimoto Y, Saito M, Kondo M, Katayama K, Ryo A, Kuroda M, Kimura H. Molecular Evolutionary Analyses of the Spike Protein Gene and Spike Protein in the SARS-CoV-2 Omicron Subvariants. Microorganisms 2023; 11:2336. [PMID: 37764181 PMCID: PMC10537508 DOI: 10.3390/microorganisms11092336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
To better understand the evolution of the SARS-CoV-2 Omicron subvariants, we performed molecular evolutionary analyses of the spike (S) protein gene/S protein using advanced bioinformatics technologies. First, time-scaled phylogenetic analysis estimated that a common ancestor of the Wuhan, Alpha, Beta, Delta variants, and Omicron variants/subvariants diverged in May 2020. After that, a common ancestor of the Omicron variant generated various Omicron subvariants over one year. Furthermore, a chimeric virus between the BM.1.1.1 and BJ.1 subvariants, known as XBB, diverged in July 2021, leading to the emergence of the prevalent subvariants XBB.1.5 and XBB.1.16. Next, similarity plot (SimPlot) data estimated that the recombination point (breakpoint) corresponded to nucleotide position 1373. As a result, XBB.1.5 subvariants had the 5' nucleotide side from the breakpoint as a strain with a BJ.1 sequence and the 3' nucleotide side as a strain with a BM.1.1.1 sequence. Genome network data showed that Omicron subvariants were genetically linked with the common ancestors of the Wuhan and Delta variants, resulting in many amino acid mutations. Selective pressure analysis estimated that the prevalent subvariants, XBB.1.5 and XBB.1.16, had specific amino acid mutations, such as V445P, G446S, N460K, and F486P, located in the RBD when compared with the BA.4 and BA.5 subvariants. Moreover, some representative immunogenicity-associated amino acid mutations, including L452R, F486V, R493Q, and V490S, were also found in these subvariants. These substitutions were involved in the conformational epitopes, implying that these mutations affect immunogenicity and vaccine evasion. Furthermore, these mutations were identified as positive selection sites. These results suggest that the S gene/S protein Omicron subvariants rapidly evolved, and mutations observed in the conformational epitopes may reduce the effectiveness of the current vaccine, including bivalent vaccines such as mRNA vaccines containing the BA.4/BA.5 subvariants.
Collapse
Affiliation(s)
- Norika Nagasawa
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1, Tonya-machi, Takasaki-shi 370-0006, Gunma, Japan; (N.N.); (K.O.)
- Department of Medical Technology, Gunma Paz University School of Medical Science and Technology, 1-7-1, Tonya-machi, Takasaki-shi 370-0006, Gunma, Japan;
| | - Ryusuke Kimura
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, 1338-4, Shibukawa, Shibukawa-shi 377-0008, Gunma, Japan; (R.K.); (T.S.)
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi-shi 371-8514, Gunma, Japan
| | - Mao Akagawa
- Department of Clinical Laboratory, Juntendo University Hospital, Bunkyo-ku, Tokyo 113-8431, Japan;
| | - Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, 1338-4, Shibukawa, Shibukawa-shi 377-0008, Gunma, Japan; (R.K.); (T.S.)
| | - Mitsuru Sada
- Department of Respiratory Medicine, Kyourin University School of Medicine, 6-20-2, Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan;
| | - Kaori Okayama
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1, Tonya-machi, Takasaki-shi 370-0006, Gunma, Japan; (N.N.); (K.O.)
| | - Yuka Sato-Fujimoto
- Department of Medical Technology, Gunma Paz University School of Medical Science and Technology, 1-7-1, Tonya-machi, Takasaki-shi 370-0006, Gunma, Japan;
| | - Makoto Saito
- Department of Clinical Engineering, Gunma Paz University School of Medical Science and Technology, Takasaki-shi 370-0006, Gunma, Japan; (M.S.); (M.K.)
| | - Mayumi Kondo
- Department of Clinical Engineering, Gunma Paz University School of Medical Science and Technology, Takasaki-shi 370-0006, Gunma, Japan; (M.S.); (M.K.)
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Shirogane, Minato-ku, Tokyo 108-8641, Japan;
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashimurayama-shi 208-0011, Tokyo, Japan;
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan;
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1, Tonya-machi, Takasaki-shi 370-0006, Gunma, Japan; (N.N.); (K.O.)
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, 1338-4, Shibukawa, Shibukawa-shi 377-0008, Gunma, Japan; (R.K.); (T.S.)
- Department of Clinical Engineering, Gunma Paz University School of Medical Science and Technology, Takasaki-shi 370-0006, Gunma, Japan; (M.S.); (M.K.)
| |
Collapse
|
6
|
Suzuki Y. Predicting Dominant Genotypes in Norovirus Seasons in Japan. Life (Basel) 2023; 13:1634. [PMID: 37629491 PMCID: PMC10455559 DOI: 10.3390/life13081634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Human noroviruses are an etiological agent of acute gastroenteritis. Since multiple genotypes co-circulate every season changing their proportions, it may be desirable to develop multivalent vaccines by formulating genotype composition of seed strains to match that of dominant strains. Here, performances of the models for predicting dominant genotypes, defined as the two most prevalent genotypes, were evaluated using observed genotype frequencies in Japan and genomic sequences for GI and GII strains. In the null model, genotype proportions in the target season were predicted to be the same as those in the immediately preceding season. In the fitness model, genotype proportions were predicted taking into account the acquisition of novel P-types through recombination and genotype-specific proliferation efficiency, as well as herd immunity to VP1 assuming the duration (d) of 0-10 years. The null model performed better in GII than in GI, apparently because dominant genotypes were more stable in the former than in the latter. Performance of the fitness model was similar to that of the null model irrespective of the assumed value of d. However, performance was improved when dominant genotypes were predicted as the union of those predicted with d = 0-10, suggesting that d may vary among individuals.
Collapse
Affiliation(s)
- Yoshiyuki Suzuki
- Graduate School of Science, Nagoya City University, 1 Yamanohata, Nagoya-shi, Aichi-ken 467-8501, Japan
| |
Collapse
|
7
|
Takahashi T, Kimura R, Shirai T, Sada M, Sugai T, Murakami K, Harada K, Ito K, Matsushima Y, Mizukoshi F, Okayama K, Hayashi Y, Kondo M, Kageyama T, Suzuki Y, Ishii H, Ryo A, Katayama K, Fujita K, Kimura H. Molecular Evolutionary Analyses of the RNA-Dependent RNA Polymerase ( RdRp) Region and VP1 Gene in Human Norovirus Genotypes GII.P6-GII.6 and GII.P7-GII.6. Viruses 2023; 15:1497. [PMID: 37515184 PMCID: PMC10383674 DOI: 10.3390/v15071497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
To understand the evolution of GII.P6-GII.6 and GII.P7-GII.6 strains, the prevalent human norovirus genotypes, we analysed both the RdRp region and VP1 gene in globally collected strains using authentic bioinformatics technologies. A common ancestor of the P6- and P7-type RdRp region emerged approximately 50 years ago and a common ancestor of the P6- and P7-type VP1 gene emerged approximately 110 years ago. Subsequently, the RdRp region and VP1 gene evolved. Moreover, the evolutionary rates were significantly faster for the P6-type RdRp region and VP1 gene than for the P7-type RdRp region and VP1 genes. Large genetic divergence was observed in the P7-type RdRp region and VP1 gene compared with the P6-type RdRp region and VP1 gene. The phylodynamics of the RdRp region and VP1 gene fluctuated after the year 2000. Positive selection sites in VP1 proteins were located in the antigenicity-related protruding 2 domain, and these sites overlapped with conformational epitopes. These results suggest that the GII.6 VP1 gene and VP1 proteins evolved uniquely due to recombination between the P6- and P7-type RdRp regions in the HuNoV GII.P6-GII.6 and GII.P7-GII.6 virus strains.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
- Iwate Prefectural Research Institute for Environmental Science and Public Health, Morioka-shi, Iwate 020-0857, Japan
| | - Ryusuke Kimura
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi-shi, Gunma 371-8514, Japan
| | - Tatsuya Shirai
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Mitaka-shi, Tokyo 181-8611, Japan
| | - Mitsuru Sada
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Mitaka-shi, Tokyo 181-8611, Japan
| | - Toshiyuki Sugai
- Department of Nursing Science, Graduate School of Health Science, Hiroshima University, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Kazuhiko Harada
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
| | - Kazuto Ito
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
| | - Yuki Matsushima
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fuminori Mizukoshi
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya-shi, Tochigi 329-1196, Japan
| | - Kaori Okayama
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| | - Yuriko Hayashi
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| | - Mayumi Kondo
- Department of Clinical Engineering, Faculty of Medical Technology, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| | - Tsutomu Kageyama
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Yoshiyuki Suzuki
- Division of Biological Science, Department of Information and Basic Science, Graduate School of Natural Sciences, Nagoya City University, Nagoya-shi, Aichi 467-8501, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, School of Medicine, Kyorin University, Mitaka-shi, Tokyo 181-8611, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection Control, Graduate School of Infection Control Sciences, Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | - Kiyotaka Fujita
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Sciences, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
- Advanced Medical Science Research Center, Gunma Paz University Research Institute, Shibukawa-shi, Gunma 377-0008, Japan
- Department of Clinical Engineering, Faculty of Medical Technology, Gunma Paz University, Takasaki-shi, Gunma 370-0006, Japan
| |
Collapse
|
8
|
Li J, Zhang L, Zou W, Yang Z, Zhan J, Cheng J. Epidemiology and genetic diversity of norovirus GII genogroups among children in Hubei, China, 2017-2019. Virol Sin 2023; 38:351-362. [PMID: 37030436 PMCID: PMC10311278 DOI: 10.1016/j.virs.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/03/2023] [Indexed: 04/10/2023] Open
Abstract
Norovirus (NoV) is an important cause of viral acute gastroenteritis (AGE). To gain insights into the epidemiological characteristics and genetic diversity of NoV among children in Hubei, 1216 stool samples from children (≤ 5 years) obtained under AGE surveillance from January 2017 to December 2019 were analyzed. The results showed that NoV was responsible for 14.64% of AGE cases, with the highest detection rate in children aged 7-12 months (19.76%). Statistically significant differences were found between male and female infection rates (χ2 = 8.108, P = 0.004). Genetic analysis of RdRp and VP1 sequences showed that NoV GII genotypes were GII.4 Sydney [P31] (34.35%), GII.3 [P12] (25.95%), GII.2 [P16] (22.90%), GII.4 Sydney [P16] (12.98%), GII.17 [P17] (2.29%), GII.6 [P7] and GII.3 [P16] (each at 0.76%). GII.17 [P17] variants were divided into the Kawasaki323-like lineage and the Kawasaki308-like lineage. A unique recombination event was detected between strains of GII.4 Sydney 2012 and GII.4 Sydney 2016. Significantly, all GII.P16 sequences associated with GII.4/GII.2 obtained in Hubei were correlated with novel GII.2 [P16] variants that re-emerged in Germany in 2016. Antigenic site analysis of complete VP1 sequences from all GII.4 variants from Hubei identified notable variable residues of antibody epitopes. Genotyping under continuous AGE surveillance and observation of the antigenic sites of VP1 are important monitoring strategies for emerging NoV strains.
Collapse
Affiliation(s)
- Jing Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Lingyao Zhang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Wenjing Zou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Zhaohui Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Jianbo Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Jing Cheng
- Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
9
|
Lin SC, Bai GH, Lin PC, Chen CY, Hsu YH, Lee YC, Chen SY. Molecular and Genetics-Based Systems for Tracing the Evolution and Exploring the Mechanisms of Human Norovirus Infections. Int J Mol Sci 2023; 24:ijms24109093. [PMID: 37240438 DOI: 10.3390/ijms24109093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Human noroviruses (HuNoV) are major causes of acute gastroenteritis around the world. The high mutation rate and recombination potential of noroviruses are significant challenges in studying the genetic diversity and evolution pattern of novel strains. In this review, we describe recent advances in the development of technologies for not only the detection but also the analysis of complete genome sequences of noroviruses and the future prospects of detection methods for tracing the evolution and genetic diversity of human noroviruses. The mechanisms of HuNoV infection and the development of antiviral drugs have been hampered by failure to develop the infectious virus in a cell model. However, recent studies have demonstrated the potential of reverse genetics for the recovery and generation of infectious viral particles, suggesting the utility of this genetics-based system as an alternative for studying the mechanisms of viral infection, such as cell entry and replication.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Allergy, Asthma, and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City 10002, Taiwan
| | - Pei-Chun Lin
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chung-Yung Chen
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
- Center for Nanotechnology, Institute of Biomedical Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Yi-Hsiang Hsu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuan-Chang Lee
- Department of Infectious Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Infectious Diseases, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Shih-Yen Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
10
|
Sharif N, Ahmed SN, Sharif N, Alzahrani KJ, Alsuwat MA, Alzahrani FM, Khandaker S, Monifa NH, Okitsu S, Parvez AK, Ushijima H, Dey SK. High prevalence of norovirus GII.4 Sydney among children with acute gastroenteritis in Bangladesh, 2018-2021. J Infect Public Health 2023; 16:1015-1022. [PMID: 37178475 DOI: 10.1016/j.jiph.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Active molecular surveillance and rapid diagnosis method to track an outbreak of norovirus in Bangladesh is lacking. This study aims to determine the genotypic diversity, molecular epidemiology and evaluate a rapid diagnosis method. METHODS A total of 404 fecal specimens were collected from children aged below 60 months from January 2018 to December 2021. All samples were analyzed by reverse transcriptase polymerase chain reaction molecular sequencing of partial VP1 nucleotide. Immunochromatography kit (IC, IP Rota/Noro) was evaluated against reference test method. RESULTS We found norovirus in 6.7 % (27 of 404) fecal specimens. A wide diversity of norovirus genotype including GII.3, GII.4, GII.5, GII.6, GII.7, and GII.9 were detected. Norovirus strain GII.4 Sydney-2012 was the most predominant (74 %, 20 of 27) followed by GII.7 (7.4 %), GII.9 (7.4 %), GII.3 (3.7 %), GII.5 (3.7 %) and GII.6 (3.7 %), respectively. Co-infection of rotavirus and norovirus (19 [4.7 %] of 404) was the most prevalent. We found higher odds of prolonged health impact [OR 1.93 (95 % CI 0.87-3.12) (p = .001)] among patients with co-infection. The incidence of norovirus was significant among the children below 24 months (p = 0.001). Significant relation of temperature with the cases of norovirus was detected (p = 0.001). The IC kit provided high specificity (99.3 %) and sensitivity (100 %) for the detection of norovirus. CONCLUSIONS This study will provide an integrated insight on the genotypic diversity and rapid identification method of norovirus in Bangladesh.
Collapse
Affiliation(s)
- Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Shamsun Nahar Ahmed
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Nazmul Sharif
- Department of Mathematics, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Meshari A Alsuwat
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shamim Khandaker
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Nuzhat Haque Monifa
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, School of Medicine, Nihon University, Tokyo, Japan
| | - Anowar Khasru Parvez
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, School of Medicine, Nihon University, Tokyo, Japan
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
| |
Collapse
|
11
|
Patterns and Temporal Dynamics of Natural Recombination in Noroviruses. Viruses 2023; 15:v15020372. [PMID: 36851586 PMCID: PMC9961210 DOI: 10.3390/v15020372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Noroviruses infect a wide range of mammals and are the major cause of gastroenteritis in humans. Recombination at the junction of ORF1 encoding nonstructural proteins and ORF2 encoding major capsid protein VP1 is a well-known feature of noroviruses. Using all available complete norovirus sequences, we systematically analyzed patterns of natural recombination in the genus Norovirus both throughout the genome and across the genogroups. Recombination events between nonstructural (ORF1) and structural genomic regions (ORF2 and ORF3) were found in all analyzed genogroups of noroviruses, although recombination was most prominent between members of GII, the most common genogroup that infects humans. The half-life times of recombinant forms (clades without evidence of recombination) of human GI and GII noroviruses were 10.4 and 8.4-11.3 years, respectively. There was evidence of many recent recombination events, and most noroviruses that differed by more than 18% of nucleotide sequence were recombinant relative to each other. However, there were no distinct recombination events between viruses that differed by over 42% in ORF2/3, consistent with the absence of systematic recombination between different genogroups. The few inter-genogroup recombination events most likely occurred between ancient viruses before they diverged into contemporary genogroups. The recombination events within ORF1 or between ORF2/3 were generally rare. Thus, noroviruses routinely exchange full structural and nonstructural blocks of the genome, providing a modular evolution.
Collapse
|
12
|
Zhou N, Huang Y, Zhou L, Li M, Jin H. Molecular Evolution of RNA-Dependent RNA Polymerase Region in Norovirus Genogroup I. Viruses 2023; 15:166. [PMID: 36680206 PMCID: PMC9861054 DOI: 10.3390/v15010166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Norovirus is the leading viral agent of gastroenteritis in humans. RNA-dependent RNA polymerase (RdRp) is essential in the replication of norovirus RNA. Here, we present a comprehensive evolutionary analysis of the norovirus GI RdRp gene. Our results show that the norovirus GI RdRp gene can be divided into three groups, and that the most recent common ancestor was 1484. The overall evolutionary rate of GI RdRp is 1.821 × 10-3 substitutions/site/year. Most of the amino acids of the GI RdRp gene were under negative selection, and only a few positively selected sites were recognized. Amino acid substitutions in the GI RdRp gene accumulated slowly over time. GI.P1, GI.P3 and GI.P6 owned the higher evolutionary rates. GI.P11 and GI.P13 had the faster accumulation rate of amino acid substitutions. GI.P2, GI.P3, GI.P4, GI.P6 and GI.P13 presented a strong linear evolution. These results reveal that the norovirus GI RdRp gene evolves conservatively, and that the molecular evolutionary characteristics of each P-genotype are diverse. Sequencing in RdRp and VP1 of norovirus should be advocated in the surveillance system to explore the effect of RdRp on norovirus activity.
Collapse
Affiliation(s)
- Nan Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yue Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Lu Zhou
- Department of Acute Infectious Diseases, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Mingma Li
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Jin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
13
|
Wang J, Jin M, Zhang H, Zhu Y, Yang H, Yao X, Chen L, Meng J, Hu G, He Y, Duan Z. Norovirus GII.2[P16] strain in Shenzhen, China: a retrospective study. BMC Infect Dis 2021; 21:1122. [PMID: 34717565 PMCID: PMC8556823 DOI: 10.1186/s12879-021-06746-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/29/2021] [Indexed: 11/11/2022] Open
Abstract
Background Norovirus (NoV) is the main cause of non-bacterial acute gastroenteritis (AGE) outbreaks worldwide. From September 2015 through August 2018, 203 NoV outbreaks involving 2500 cases were reported to the Shenzhen Center for Disease Control and Prevention. Methods Faecal specimens for 203 outbreaks were collected and epidemiological data were obtained through the AGE outbreak surveillance system in Shenzhen. Genotypes were determined by sequencing analysis. To gain a better understanding of the evolutionary characteristics of NoV in Shenzhen, molecular evolution and mutations were evaluated based on time-scale evolutionary phylogeny and amino acid mutations. Results A total of nine districts reported NoV outbreaks and the reported NoV outbreaks peaked from November to March. Among the 203 NoV outbreaks, 150 were sequenced successfully. Most of these outbreaks were associated with the NoV GII.2[P16] strain (45.3%, 92/203) and occurred in school settings (91.6%, 186/203). The evolutionary rates of the RdRp region and the VP1 sequence were 2.1 × 10–3 (95% HPD interval, 1.7 × 10–3–2.5 × 10–3) substitutions/site/year and 2.7 × 10–3 (95% HPD interval, 2.4 × 10–3–3.1 × 10–3) substitutions/site/year, respectively. The common ancestors of the GII.2[P16] strain from Shenzhen and GII.4 Sydney 2012[P16] diverged from 2011 to 2012. The common ancestors of the GII.2[P16] strain from Shenzhen and previous GII.2[P16] (2010–2012) diverged from 2003 to 2004. The results of amino acid mutations showed 6 amino acid substitutions (*77E, R750K, P845Q, H1310Y, K1546Q, T1549A) were found only in GII.4 Sydney 2012[P16] and the GII.2[P16] recombinant strain. Conclusions This study illustrates the molecular epidemiological patterns in Shenzhen, China, from September 2015 to August 2018 and provides evidence that the epidemic trend of GII.2[P16] recombinant strain had weakened and the non-structural proteins of the recombinant strain might have played a more significant role than VP1. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06746-9.
Collapse
Affiliation(s)
- Jing Wang
- Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.,Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Miao Jin
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center Control and Prevention, Beijing, 102206, China
| | - Hailong Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yanan Zhu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiangjie Yao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Long Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jun Meng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guifang Hu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Zhaojun Duan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center Control and Prevention, Beijing, 102206, China
| |
Collapse
|
14
|
Dey SK, Sharif N, Billah B, Siddique TTI, Islam T, Parvez AK, Talukder AA, Phan T, Ushijima H. Molecular epidemiology and genetic diversity of norovirus infection in children with acute gastroenteritis in Bangladesh, 2014-2019. J Med Virol 2021; 93:3564-3571. [PMID: 33386771 DOI: 10.1002/jmv.26772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 01/28/2023]
Abstract
Acute gastroenteritis (AGE) is one of the most common diseases in children, and it continues to be a significant cause of morbidity and mortality worldwide. Norovirus is one of the major enteropathogens associated with both sporadic diarrhea and outbreaks of gastroenteritis. This study aims to investigate genotype diversity and molecular epidemiology of norovirus in Bangladesh. A total of 466 fecal specimens were collected from January 2014 to January 2019 from children below 5 years old with AGE in Bangladesh. All samples were analyzed by reverse transcriptase polymerase chain reaction to detect norovirus, and sequence analysis was conducted if found positive. Norovirus was detected in 5.1% (24 of 466) fecal specimens. Norovirus genotype GII.7 was predominant (62.5%, 15 of 24), followed by GII.3 (37.5%, 9 of 24). Coinfection between rotavirus and norovirus was found in 7 of 24 positive cases. Diarrhea (93.7%) and dehydration (89%) were the most common symptoms in children with AGE. About 80% of the positive cases were detected in children aged under 24 months. One seasonal peak (87.5% infection) was detected in the winter. This study suggests that norovirus continues to be one of the major etiologies of children AGE in Bangladesh. This study will provide a guideline to assess the burden of norovirus infection in Bangladesh, which will assist to combat against AGE.
Collapse
Affiliation(s)
- Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | - Tarequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Tung Phan
- Division of Clinical Microbiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University, Tokyo, Japan
| |
Collapse
|
15
|
Castells M, Cristina J, Colina R. Evolutionary history and spatiotemporal dynamic of GIII norovirus: From emergence to classification in four genotypes. Transbound Emerg Dis 2021; 69:1872-1879. [PMID: 34038622 DOI: 10.1111/tbed.14168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023]
Abstract
Noroviruses belong to a genetically diverse group of viruses infecting a wide range of mammalian host species, and those detected in cattle and sheep are classified within genogroup III (GIII). The current classification of norovirus in genogroups and genotypes is based on phylogenetic clustering and average distances within and between these phylogenetic clusters; however, the classification studies have been focused mainly on human norovirus, being GIII norovirus relegated. Due to the increasing number of studies on GIII norovirus, the need of an updated and extensive classification is evident. The aim of this study was to update the classification of norovirus within GIII, to describe the emergence of a circulating recombinant strain, and to reconstruct the evolutionary history of this genogroup. Two P-types (GIII.P1-2) and four genotypes (GIII.1-4) were described. For the genogroup GIII, the evolutionary rate estimated was 2.78E-3 s/s/y (95%HPD, 1.79E-3 s/s/y-3.78E-3 s/s/y), and the tMRCA was estimated around 1500 (95%HPD, 1247-1688). Despite the long history of this genogroup, the genotypes detected at present emerged in the last 100 years. Interestingly, most of the recombinant GIII.2P[1] strains detected worldwide were originated from a single recombination event and this recombinant strain was later dispersed through the world. Finally, our results indicate that a scenario of genotypes replacement through the time is highly probable.
Collapse
Affiliation(s)
- Matías Castells
- Laboratorio de Virología Molecular, Centro Universitario Regional Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Centro Universitario Regional Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| |
Collapse
|
16
|
Fu J, Ai J, Bao C, Zhang J, Wu Q, Zhu L, Hu J, Xing Z. Evolution of the GII.3[P12] Norovirus from 2010 to 2019 in Jiangsu, China. Gut Pathog 2021; 13:34. [PMID: 34039425 PMCID: PMC8149921 DOI: 10.1186/s13099-021-00430-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives Norovirus genotype GII.3[P12] strains have been an important pathogen for sporadic gastroenteritis infection. In previous studies of GII.3[P12], the number of specimens and time span are relatively small, which is difficult to truly reflect the infection and evolution of this type of norovirus. Here we report a molecular epidemiological study of the NoVs prevalent in Jiangsu between 2010 and 2019 to investigate the evolution of the GII.3[P12] strains in China. Methods In this study 60 GII.3[P12] norovirus strains were sequenced and analyzed for evolution, recombination, and selection pressure using bioanalysis software. Results The GII.3[P12] strains were continuously detected during the study period, which showed a high constituent ratio in males, in winter and among children aged 0–11 months, respectively. A time-scaled evolutionary tree showed that both GII.P12 RdRp and GII.3 VP1 sequences were grouped into three major clusters (Cluster I–III). Most GII.3[P12] strains were mainly located in sub-cluster (SC) II of Cluster III. A SimPlot analysis identified GII.3[P12] strain to be as an ORF1-intragenic recombinant of GII.4[P12] and GII.3[P21]. The RdRp genes of the GII.3[P12] showed a higher mean substitution rate than those of all GII.P12, while the VP1 genes of the GII.3[P12] showed a lower mean substitution rate than those of all GII.3. Alignment of the GII.3 capsid sequences revealed that three HBGA binding sites of all known GII.3 strains remained conserved, while several amino acid mutations in the predicted antibody binding sites were detected. The mutation at 385 was within predicted antibody binding regions, close to host attachment factor binding sites. Positive and negative selection sites were estimated. Two common positively selected sites (sites 385 and 406) were located on the surface of the protruding domain. Moreover, an amino acid substitution (aa204) was estimated to be near the active site of the RdRp protein. Conclusions We conducted a comprehensive analysis on the epidemic and evolution of GII.3[P12] noroviruses and the results suggested that evolution was possibly driven by intergenic recombination and mutations in some key amino acid sites. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00430-8.
Collapse
Affiliation(s)
- Jianguang Fu
- Medical School and the Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, 22 Hankou Road, Gulou District, Nanjing, 210093, China.,Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Ai
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Changjun Bao
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| | - Jun Zhang
- Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Qingbin Wu
- Soochow University Affiliated Children's Hospital, Suzhou, China
| | - Liguo Zhu
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jianli Hu
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zheng Xing
- College of Veterinary Medicine, Department of Veterinary Biomedical Sciences, University of Minnesota At Twin Cities, Saint Paul, MN, 55108, USA.
| |
Collapse
|
17
|
Li X, Liu H, Rife Magalis B, Kosakovsky Pond SL, Volz EM. Molecular Evolution of Human Norovirus GII.2 Clusters. Front Microbiol 2021; 12:655567. [PMID: 33828543 PMCID: PMC8019798 DOI: 10.3389/fmicb.2021.655567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background The human norovirus GII.2 outbreak during the 2016–2017 winter season was of unprecedented scale and geographic distribution. Methods We analyzed 519 complete VP1 gene sequences of the human norovirus GII.2 genotype sampled during the 2016–2017 winter season, as well as prior (dating back to 1976) from 7 countries. Phylodynamic analyses of these sequences were performed using maximum likelihood and Bayesian statistical frameworks in order to estimate viral evolutionary and population dynamics associated with the outbreak. Results Our results revealed an increase in the genetic diversity of human norovirus GII.2 during the recent Asian outbreak and diversification was characterized by at least eight distinct clusters. Bayesian estimation of viral population dynamics revealed a highly fluctuating effective population size, increasing in frequency during the past 15 years. Conclusion Despite an increasing viral diversity, we found no evidence of an elevated evolutionary rate or significant selection pressure in human norovirus GII.2, indicating viral evolutionary adaptation was not responsible for the volatility of or spread of the virus during this time.
Collapse
Affiliation(s)
- Xingguang Li
- Department of Hospital Office, The First People's Hospital of Fangchenggang, Fangchenggang, China
| | - Haizhou Liu
- Centre for Emerging Infectious Diseases, The State Key Laboratory of Virology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, China
| | - Brittany Rife Magalis
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | - Erik M Volz
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Moeini H, Afridi SQ, Donakonda S, Knolle PA, Protzer U, Hoffmann D. Linear B-Cell Epitopes in Human Norovirus GII.4 Capsid Protein Elicit Blockade Antibodies. Vaccines (Basel) 2021; 9:52. [PMID: 33466932 PMCID: PMC7830539 DOI: 10.3390/vaccines9010052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 11/26/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of nonbacterial gastroenteritis worldwide with the GII.4 genotype accounting for over 80% of infections. The major capsid protein of GII.4 variants is evolving rapidly, resulting in new epidemic variants with altered antigenic potentials that must be considered for the development of an effective vaccine. In this study, we identify and characterize linear blockade B-cell epitopes in HuNoV GII.4. Five unique linear B-cell epitopes, namely P2A, P2B, P2C, P2D, and P2E, were predicted on the surface-exposed regions of the capsid protein. Evolving of the surface-exposed epitopes over time was found to correlate with the emergence of new GII.4 outbreak variants. Molecular dynamic simulation (MD) analysis and molecular docking revealed that amino acid substitutions in the putative epitopes P2B, P2C, and P2D could be associated with immune escape and the appearance of new GII.4 variants by affecting solvent accessibility and flexibility of the antigenic sites and histo-blood group antigens (HBAG) binding. Testing the synthetic peptides in wild-type mice, epitopes P2B (336-355), P2C (367-384), and P2D (390-400) were recognized as GII.4-specific linear blockade epitopes with the blocking rate of 68, 55 and 28%, respectively. Blocking rate was found to increase to 80% using the pooled serum of epitopes P2B and P2C. These data provide a strategy for expanding the broad blockade potential of vaccines for prevention of NoV infection.
Collapse
Affiliation(s)
- Hassan Moeini
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Q.A.); (U.P.); (D.H.)
| | - Suliman Qadir Afridi
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Q.A.); (U.P.); (D.H.)
| | - Sainitin Donakonda
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.D.); (P.A.K.)
| | - Percy A. Knolle
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.D.); (P.A.K.)
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Q.A.); (U.P.); (D.H.)
| | - Dieter Hoffmann
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Q.A.); (U.P.); (D.H.)
| |
Collapse
|
19
|
Molecular epidemiology and genetic diversity of norovirus infection in children hospitalized with acute gastroenteritis in East Java, Indonesia in 2015-2019. INFECTION GENETICS AND EVOLUTION 2021; 88:104703. [PMID: 33401005 DOI: 10.1016/j.meegid.2020.104703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Noroviruses are recognized as a leading cause of outbreaks and sporadic cases of acute gastroenteritis (AGE) among individuals of all ages worldwide, especially in children <5 years old. We investigated the epidemiology of noroviruses among hospitalized children at two hospitals in East Java, Indonesia. Stool samples were collected from 966 children with AGE during September 2015-July 2019. All samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for the amplification of both the RNA-dependent RNA polymerase (RdRp) and the capsid genes of noroviruses. The genotypes were determined by phylogenetic analyses. In 2015-2019, noroviruses were detected in 12.3% (119/966) of the samples. Children <2 years old showed a significantly higher prevalence than those ≥2 years old (P = 0.01). NoV infections were observed throughout the year, with the highest prevalence in December. Based on our genetic analyses of RdRp, GII.[P31] (43.7%, 31/71) was the most prevalent RdRp genotype, followed by GII.[P16] (36.6%, 26/71). GII.[P31] was a dominant genotype in 2016 and 2018, whereas GII.[P16] was a dominant genotype in 2015 and 2017. Among the capsid genotypes, the most predominant norovirus genotype from 2015 to 2018 was GII.4 Sydney_2012 (33.6%, 40/119). The most prevalent genotype in each year was GII.13 in 2015, GII.4 Sydney_2012 in 2016 and 2018, and GII.3 in 2017. Based on the genetic analyses of RdRp and capsid sequences, the strains were clustered into 13 RdRp/capsid genotypes; 12 of them were discordant, e.g., GII.4 Sydney[P31], GII.3[P16], and GII.13[P16]. The predominant genotype in each year was GII.13[P16] in 2015, GII.4 Sydney[P31] in 2016, GII.3[P16] in 2017, and GII.4 Sydney[P31] in 2018. Our results demonstrate high detection rates and genetic diversity of norovirus GII genotypes in pediatric AGE samples from Indonesia. These findings strengthen the importance of the continuous molecular surveillance of emerging norovirus strains.
Collapse
|
20
|
Saito M, Tsukagoshi H, Ishigaki H, Aso J, Ishii H, Okayama K, Ryo A, Ishioka T, Kuroda M, Saruki N, Katayama K, Kimura H. Molecular evolution of the capsid ( VP1) region in human norovirus genogroup II genotype 3. Heliyon 2020; 6:e03835. [PMID: 32395646 PMCID: PMC7205756 DOI: 10.1016/j.heliyon.2020.e03835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/07/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Norovirus GII.3 has been suggested to be a prevalent genotype in patients with acute gastroenteritis. However, the genetic properties of the VP1 region encoding the major GII.3 antigen remain unclear. Here, we performed molecular evolutionary analyses of the GII.3 VP1 region detected in various countries. We performed time-scaled phylogenetic analyses, selective pressure analyses, phylogenetic distance analyses, and conformational epitope analyses. The time-scaled phylogenetic tree showed that an ancestor of the GII.3 VP1 region diverged from the common ancestors of the GII.6, GII.11, GII.18, and GII.19 approximately 70 years ago with relatively low divergence. The evolutionary rate of the GII.3 VP1 region was rapid (4.82 × 10−3 substitutions/site/year). Furthermore, one positive site and many negative selection sites were observed in the capsid protein. These results suggest that the GII.3 VP1 region rapidly evolved with antigenic variations.
Collapse
Affiliation(s)
- Mariko Saito
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Hirotaka Ishigaki
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Jumpei Aso
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
- Kyorin University Hospital, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Haruyuki Ishii
- Kyorin University Hospital, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | - Kaori Okayama
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Taisei Ishioka
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nobuhiro Saruki
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School of Health Sciences, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
- Department of Microbiology, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama-shi, Kanagawa 236-0004, Japan
- Corresponding author.
| |
Collapse
|
21
|
Ozaki K, Matsushima Y, Nagasawa K, Aso J, Saraya T, Yoshihara K, Murakami K, Motoya T, Ryo A, Kuroda M, Katayama K, Kimura H. Molecular Evolution of the Protease Region in Norovirus Genogroup II. Front Microbiol 2020; 10:2991. [PMID: 31993031 PMCID: PMC6971112 DOI: 10.3389/fmicb.2019.02991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/10/2019] [Indexed: 11/13/2022] Open
Abstract
Noroviruses are a major cause of viral epidemic gastroenteritis in humans worldwide. The protease (Pro) encoded in open reading frame 1 (ORF1) is an essential enzyme for proteolysis of the viral polyprotein. Although there are some reports regarding the evolutionary analysis of norovirus GII-encoding genes, there are few reports focused on the Pro region. We analyzed the molecular evolution of the Pro region of norovirus GII using bioinformatics approaches. A time-scaled phylogenetic tree of the Pro region constructed using a Bayesian Markov chain Monte Carlo method indicated that the common ancestor of GII diverged from GIV around 1680 CE [95% highest posterior density (HPD), 1607-1749]. The GII Pro region emerged around 1752 CE (95%HPD, 1707-1794), forming three further lineages. The evolutionary rate of GII Pro region was estimated at more than 10-3 substitutions/site/year. The distribution of the phylogenetic distances of each genotype differed, and showed genetic diversity. Mapping of the negative selection and substitution sites of the Pro structure showed that the substitution sites in the Pro protein were mostly produced under neutral selection in positions structurally adjacent to the active sites for proteolysis, whereas negative selection was observed in residues distant from the active sites. The phylodynamics of GII.P4, GII.P7, GII.P16, GII.P21, and GII.P31 indicated that their effective population sizes increased during the period from 2005 to 2016 and the increase in population size was almost consistent with the collection year of these genotypes. These results suggest that the Pro region of the norovirus GII evolved rapidly, but under no positive selection, with a high genetic divergence, similar to that of the RNA-dependent RNA polymerase (RdRp) region and the VP1 region of noroviruses.
Collapse
Affiliation(s)
- Keita Ozaki
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Niitaka Co., Ltd., Osaka, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | | | - Jumpei Aso
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Keisuke Yoshihara
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Graduate School of Infection Control Sciences, Kitasato Institute for Life Sciences, Kitasato University, Minato, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
22
|
Fu J, Bao C, Huo X, Hu J, Shi C, Lin Q, Zhang J, Ai J, Xing Z. Increasing Recombinant Strains Emerged in Norovirus Outbreaks in Jiangsu, China: 2015-2018. Sci Rep 2019; 9:20012. [PMID: 31882797 PMCID: PMC6934623 DOI: 10.1038/s41598-019-56544-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/02/2019] [Indexed: 11/19/2022] Open
Abstract
From January 2015 to December 2018, 213 norovirus outbreaks with 3,951 patients were reported in Jiangsu, China. Based on viral RdRp and VP1 genes, eight genotypes, GII.2[P16] (144, 67.6%), GII.3[P12] (21, 9.9%), GII.6[P7] (5, 2.3%), GII.14[P7] (4, 1.9%), GII.4 Sydney[P31] (3, 1.4%), GII.1[P33] (1, 0.5%), GII.2[P2] (3, 1.4%), and GII.17[P17] (16, 7.5%) were identified throughout the study period. These genotypes were further regrouped as GII.R (Recombinant) and GII.Non-R (Non-recombinant) strains. In this report we showed that GII.R strains were responsible for at least 178 (83.6%) of 213 norovirus-positive outbreaks with a peak in 2017 and 2018. Most norovirus outbreaks occurred in primary schools and 94 of 109 (86.2%) outbreaks in primary schools were caused by GII.R, while GII.Non-R and GII.NT (not typed) strains accounted for 6 (5.5%) and 9 (8.3%) norovirus outbreaks, respectively. The SimPlot analysis showed recombination breakpoints near the ORF1/2 junction for all six recombinant strains. The recombination breakpoints were detected at positions varying from nucleotides 5009 to 5111, localized in the ORF1 region for four strains (GII.2[P16], GII.3[P12], GII.6[P7], and GII.14[P7]) and in the ORF2 region for the other (GII.4 Sydney[P31] and GII.1[P33]). We identified four clusters, Cluster I through IV, in the GII.P7 RdRp gene by phylogenetic analysis and the GII.14[P7] variants reported here belonged to Cluster IV in the RdRp tree. The HBGA binding site of all known GII.14 strains remained conserved with several point mutations found in the predicted conformational epitopes. In conclusion, gastroenteritis outbreaks caused by noroviruses increased rapidly in the last years and these viruses were classified into eight genotypes. Emerging recombinant noroviral strains have become a major concern and challenge to public health.
Collapse
Affiliation(s)
- Jianguang Fu
- Medical School and the Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, China.,Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Changjun Bao
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xiang Huo
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jianli Hu
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Chao Shi
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Qin Lin
- Changzhou Center for Disease Control and Prevention, Changzhou, China
| | - Jun Zhang
- Yangzhou Center for Disease Control and Prevention, Yangzhou, China
| | - Jing Ai
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| | - Zheng Xing
- Medical School and the Jiangsu Provincial Key Laboratory of Medicine, Nanjing University, Nanjing, China. .,College of Veterinary Medicine, Department of Veterinary Biomedical Sciences, University of Minnesota at Twin Cities, Saint Paul, Minnesota, 55108, USA.
| |
Collapse
|
23
|
Zhou N, Zhou L, Wang B. Molecular Evolution of Classic Human Astrovirus, as Revealed by the Analysis of the Capsid Protein Gene. Viruses 2019; 11:v11080707. [PMID: 31374999 PMCID: PMC6722597 DOI: 10.3390/v11080707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/17/2023] Open
Abstract
Classic human astroviruses (HAstV) are major global viral agents for gastroenteritis, but the molecular characteristics of classic HAstVs are not well understood. Here, we presented the molecular evolution of all classic HAstV serotypes by the analysis of the capsid protein sequences. Our results show that classic HAstVs can be divided into four groups with the most recent common ancestor (TMRCA) of 749. The overall evolutionary rate of classic HAstVs on the capsid gene was 4.509 × 10−4 substitutions/site/year, and most of the serotypes present a clock-like evolution with an amino acid accumulation of mutations over time. The mean effective population size of classic HAstVs is in a downward trend, and some positive and more than 500 negative selection sites were determined. Taken together, these results reveal that classic HAstVs evolve at the intra-serotype level with high genetic heterogeneity and are driven by strong purifying selection. Long-term surveillance of classic HAstVs are needed to enrich the genomic data for further analysis.
Collapse
Affiliation(s)
- Nan Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Lu Zhou
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China.
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Statistics, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
24
|
Motoya T, Umezawa M, Saito A, Goto K, Doi I, Fukaya S, Nagata N, Ikeda Y, Okayama K, Aso J, Matsushima Y, Ishioka T, Ryo A, Sasaki N, Katayama K, Kimura H. Variation of human norovirus GII genotypes detected in Ibaraki, Japan, during 2012-2018. Gut Pathog 2019; 11:26. [PMID: 31143245 PMCID: PMC6533662 DOI: 10.1186/s13099-019-0303-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background Human norovirus (HuNoV) is the major cause of viral acute gastroenteritis for all age groups in various countries. HuNoV GII in particular accounted for the majority of norovirus outbreaks, among which GII.4 caused repeated outbreaks for a long time. Besides GII.4, other norovirus genotypes, GII.2, GII.6, and GII.17, have also been prevalent in various contexts in recent years, but few detailed epidemiological studies of them have been performed and are poorly understood. We thus conducted an epidemiological analysis of HuNoV GII in Ibaraki Prefecture, Japan, by performing surveillance in the six seasons from September 2012 to August 2018. Results HuNoV GI occurred almost sporadically for all genotypes; however, each genotype of GII exhibited its typical epidemiological characteristics. Although the number of outbreaks of GII.4 decreased season by season, it reemerged in 2017/2018 season. The timing of the epidemic peak in terms of number of cases for GII.17 differed from that for the other genotypes. The patients age with GII.2 and GII.6 were younger and outbreak of GII.17 occurred frequently as food poisoning. Namely, the primarily infected outbreak group differed for each genotype of HuNoV GII. Moreover, the viral load of patients differed according to the genotype. Conclusions Various HuNoV genotypes including GII.2, GII.4, GII.6, and GII.17 were shown to be associated with various types of outbreak sites (at childcare and educational facilities, involving cases of food poisoning, and at elderly nursing homes) in this study. These genotypes emerged in recent years, and their prevalence patterns differed from each other. Moreover, differences in outbreak sites and viral load of patients among the genotypes were identified.
Collapse
Affiliation(s)
- Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan.,2Faculty of Veterinary Medicine, Kitasato University, Aomori, Japan
| | | | - Aoi Saito
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Keiko Goto
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Ikuko Doi
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Setsuko Fukaya
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Noriko Nagata
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Yoshiaki Ikeda
- Ibaraki Prefectural Institute of Public Health, Ibaraki, Japan
| | - Kaori Okayama
- Gunma Paz University Graduate School of Health Science, Gunma, 370-0006 Japan
| | - Jumpei Aso
- Gunma Paz University Graduate School of Health Science, Gunma, 370-0006 Japan.,4Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Yuki Matsushima
- Kawasaki City Institute for Public Health, Kawasaki, Kanagawa Japan
| | | | - Akihide Ryo
- 7Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Nobuya Sasaki
- 2Faculty of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kazuhiko Katayama
- 8Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Hirokazu Kimura
- Gunma Paz University Graduate School of Health Science, Gunma, 370-0006 Japan.,7Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.,9Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
25
|
Gonzales-Gustavson E, Rusiñol M, Medema G, Calvo M, Girones R. Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. WATER RESEARCH 2019; 153:91-99. [PMID: 30703677 DOI: 10.1016/j.watres.2018.12.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/22/2018] [Accepted: 12/31/2018] [Indexed: 05/21/2023]
Abstract
Wastewater is an important resource in water-scarce regions of the world, and its use in agriculture requires the guarantee of acceptable public health risks. The use of fecal indicator bacteria to evaluate safety does not represent viruses, the main potential health hazards. Viral pathogens could complement the use of fecal indicator bacteria in the evaluation of water quality. In this study, we characterized the concentration and removal of human adenovirus (HAdV) and norovirus genogroup II (NoV GII), highly abundant and important viral pathogens found in wastewater, in two wastewater treatment plants (WWTPs) that use different tertiary treatments (constructed wetland vs conventional UV, chlorination and Actiflo® treatments) for a year in Catalonia. The main objective of this study was to develop a Quantitative Microbial Risk Assessment for viral gastroenteritis caused by norovirus GII and adenovirus, associated with the ingestion of lettuce irrigated with tertiary effluents from these WWTPs. The results show that the disease burden of NoV GII and HAdV for the consumption of lettuce irrigated with tertiary effluent from either WWTP was higher than the WHO recommendation of 10-6 DALYs for both viruses. The WWTP with constructed wetland showed a higher viral reduction on average (3.9 and 2.8 logs for NoV GII and HAdV, respectively) than conventional treatment (1.9 and 2.5 logs) but a higher variability than the conventional WWTP. Sensitivity analysis demonstrated that the input parameters used to estimate the viral reduction by treatment and viral concentrations accounted for much of the model output variability. The estimated reductions required to reach the WHO recommended levels in tertiary effluent are influenced by the characteristics of the treatments developed in the WWTPs, and additional average reductions are necessary (in WWTP with a constructed wetland: A total of 6.7 and 5.1 logs for NoV GII and HAdV, respectively; and in the more conventional treatment: 7 and 5.6 logs). This recommendation would be achieved with an average quantification of 0.5 genome copies per 100 mL in reclaimed water for both viruses. The results suggest that the analyzed reclaimed water would require additional treatments to achieve acceptable risk in the irrigation of vegetables with reclaimed water.
Collapse
Affiliation(s)
- Eloy Gonzales-Gustavson
- Laboratory of Virus Contaminants of Water and Food, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain; Tropical and Highlands Veterinary Research Institute, School of Veterinary Medicine, San Marcos University, Carretera Central s/n, El Mantaro, Peru.
| | - Marta Rusiñol
- Laboratory of Virus Contaminants of Water and Food, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Gertjan Medema
- KWR Watercycle Research Institute, P.O. Box 1072, 3430, BB Nieuwegein, the Netherlands; The Netherlands and Delft University of Technology, the Netherlands.
| | - Miquel Calvo
- Section of Statistics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Rosina Girones
- Laboratory of Virus Contaminants of Water and Food, Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
26
|
Genome characterization and temporal evolution analysis of a non-epidemic norovirus variant GII.8. INFECTION GENETICS AND EVOLUTION 2019; 70:15-23. [PMID: 30776488 DOI: 10.1016/j.meegid.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 01/28/2023]
Abstract
Noroviruses are the primary cause of non-bacterial acute gastroenteritis worldwide, and GII.8 belongs to a non-epidemic genotype with a limited understanding currently. In this study, we assembled the first GII.8 norovirus genome from China and clarified the temporal evolutionary process of this non-epidemic variant. Using the "4+1+1" application strategy with newly designed primer sets, the genome of one GII.8 strain GZ2017-L601 from China was firstly sequenced that comprised 7476 nucleotides. The homology of the new genome and the previous only GII.8 genome reached 93.8% identity at the nucleotide level, but only 10, 6, 7 amino acid mutations occurred in three ORFs. When compared the new strain with other GII reference strains, p22 and P2 were calculated as the variable encoding regions, and NTPase, VPg, 3CL, RdRp and S were shown as the conserved ones. We then reconstructed the evolutionary process of the GII.8 genotype using other available sequences in GenBank. Based on the partial N/C region, all GII.8 strains could be subdivided chronologically into four clusters, which spans 1967-1994, 1997-2005, 2003-2009, and 2007-2017, respectively. Moreover, differences of capsid P proteins between GII.8 strains and the epidemic GII.4 strain VA387 were also compared. There existed 147/310 distinct amino acid sites in the alignment, including two insertion and three deletion mutations. Distribution of antigen epitopes of two GII.8 variants was comparable, but the numbers of antigenic sites of GII.8 strains were less than that of VA387. In summary, the first GII.8 genome from China was assembled and extensively characterized, and a time-order evolutionary process of this genotype was identified with a static pattern of antigenic variations.
Collapse
|
27
|
Gao X, Wang Z, Wang Y, Liu Z, Guan X, Ma Y, Zhou H, Jiang Y, Cui W, Wang L, Xu Y. Surveillance of norovirus contamination in commercial fresh/frozen berries from Heilongjiang Province, China, using a TaqMan real-time RT-PCR assay. Food Microbiol 2019; 82:119-126. [PMID: 31027765 DOI: 10.1016/j.fm.2019.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/05/2018] [Accepted: 01/26/2019] [Indexed: 12/31/2022]
Abstract
Norovirus (NoV), a major food-borne virus, causes non-bacterial acute gastroenteritis in humans. Berries are generally harvested from low-growing bushes by hand and are minimally processed before being sold to consumers. Therefore, the consumption of berries has been linked to numerous food-borne gastroenteritis outbreaks caused by NoV in many countries. We performed a survey of NoV contamination in commercial fresh/frozen berry fruits collected from 2016 to 2017 in the Heilongjiang Province, the main berry-producing area in China, using a TaqMan-based real-time reverse transcription-PCR assay. Among 900 frozen and 900 fresh domestic retail berry samples, the prevalence of NoV was 9% (81/900) and 12.11% (109/900), including 35.80% (29/81) and 29.36% (32/109) of genotype GI alone, 54.32% (44/81) and 60.55% (66/109) of GII alone, and 9.88% (8/81) and 10.09% (11/109) of both GI and GII, respectively. No NoV was detected among the 677 frozen berry samples for export. Thus, the occurrence of NoV contamination was significantly higher in domestic berries than in exported berries and higher in fresh berries than in frozen berries. This study highlights the need for further risk surveillance for NoV contamination in berries produced in the Heilongjiang Province and recommends region-extended monitoring of retail berries for NoV.
Collapse
Affiliation(s)
- Xuwen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ziwei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yixin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhongmei Liu
- Technology Center, Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin, China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yingying Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, China.
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, China.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The purpose of the review is to provide an update on control measures for norovirus (NoV), which is the most commonly implicated pathogen in acute gastroenteritis and outbreaks, causing major disruption in nurseries, schools, hospitals and care homes. RECENT FINDINGS Important developments include the discovery that virus particles, previously considered to be the infectious unit, also occur in clusters, which appear to be more virulent than individual virus particles; a working culture system using human stem-cell derived enteroids; promising results from early phase clinical trials of candidate NoV vaccines, which appear to be safe and immunogenic; chronic NoV affects patients with primary and secondary immune deficiencies. Although several treatments have been used none are supported by well designed clinical trials; infection control procedures are effective if properly implemented. SUMMARY NoV remains an important cause of morbidity and mortality. Although there are exciting developments on the vaccine front, the mainstay of control remains good hand hygiene, adherence to infection control procedures and limiting contamination of food, water and the wider environment. Once vaccines are available there will be important decisions to be made about how best to implement them.
Collapse
|
29
|
Ozaki K, Matsushima Y, Nagasawa K, Motoya T, Ryo A, Kuroda M, Katayama K, Kimura H. Molecular Evolutionary Analyses of the RNA-Dependent RNA Polymerase Region in Norovirus Genogroup II. Front Microbiol 2018; 9:3070. [PMID: 30619155 PMCID: PMC6305289 DOI: 10.3389/fmicb.2018.03070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Noroviruses are the leading cause of viral gastroenteritis in humans across the world. RNA-dependent RNA polymerase (RdRp) plays a critical role in the replication of the viral genome. Although there have been some reports on a limited number of genotypes with respect to the norovirus evolution of the RdRp region, no comprehensive molecular evolution examination of the norovirus GII genotype has yet been undertaken. Therefore, we conducted an evolutionary analysis of the 25 genotypes of the norovirus GII RdRp region (full-length), collected globally using different bioinformatics technologies. The time-scaled phylogenetic tree, generated using the Bayesian Markov Chain Monte Carlo (MCMC) method, indicated that the common ancestor of GII diverged from GIV around 1443 CE [95% highest posterior density (HPD), 1336–1542]. The GII RdRp region emerged around 1731 CE (95% HPD, 1703–1757), forming three lineages. The evolutionary rate of the RdRp region of the norovirus GII strains was estimated at over 10−3 substitutions/site/year. The evolutionary rates were significantly distinct in each genotype. The composition of the phylogenetic distances differed among the strains for each genotype. Furthermore, we mapped the negative selection sites on the RdRp protein and many of these were predicted in the GII.P4 RdRp proteins. The phylodynamics of GII.P4, GII.P12, GII.P16, and GII.Pe showed that their effective population sizes increased during the period from 2003 to 2014. Our results cumulatively suggest that the RdRp region of the norovirus GII rapidly and uniquely evolved with a high divergence similar to that of the norovirus VP1 gene.
Collapse
Affiliation(s)
- Keita Ozaki
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan.,Niitaka Co., Ltd., Osaka, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Koo Nagasawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Hirokazu Kimura
- Graduate School of Health Sciences, Gunma Paz University, Takasaki, Japan.,Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
30
|
Bae G, Kim J, Kim H, Seok JH, Lee DB, Kim KH, Chung MS. Inactivation of norovirus surrogates by kimchi fermentation in the presence of black raspberry. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Han J, Wu X, Chen L, Fu Y, Xu D, Zhang P, Ji L. Emergence of norovirus GII.P16-GII.2 strains in patients with acute gastroenteritis in Huzhou, China, 2016-2017. BMC Infect Dis 2018; 18:342. [PMID: 30041612 PMCID: PMC6056945 DOI: 10.1186/s12879-018-3259-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/17/2018] [Indexed: 11/17/2022] Open
Abstract
Background In late 2016, an uncommon recombinant NoV genotype called GII.P16-GII.2 caused a sharp increase in outbreaks of acute gastroenteritis in different countries of Asia and Europe, including China. However, we did not observe a drastic increase in sporadic norovirus cases in the winter of 2016 in Huzhou. Therefore, we investigate the prevalence and genetic diversity of NoVs in the sporadic acute gastroenteritis (AGE) cases from January 2016 to December 2017 in Huzhou City, Zhejiang, China. Methods From January 2016 to December 2017, a total of 1001 specimens collected from patients with AGE were screened for NoV by real-time RT-PCR. Partial sequences of the RNA-dependent RNA polymerase (RdRp) and capsid gene of the positive samples were amplified by RT-PCR and sequenced. Genotypes of NoV were confirmed by online NoV typing tool and phylogenetic analysis. Complete VP1 sequences of GII.P16-GII.2 strains detected in this study were further obtained and subjected into sequence analysis. Results In total, 204 (20.4%) specimens were identified as NoV-positive. GII genogroup accounted for most of the NoV-infected cases (98.0%, 200/204). NoV infection was found in all age groups tested (< 5, 5–15, 16–20, 21–30, 31–40, 41–50, 51–60, and >60 years), with the 5–15 year age group having the highest detection rate (17/49, 34.7%). Higher activity of NoV infection could be seen in winter-spring season. The predominant NoV genotypes have changed from GII.Pe-GII.4 Sydney2012 and GII.P17-GII.17 in 2016 to GII.P16-GII.2, GII.Pe-GII.4 Sydney2012 and GII.P17-GII.17 in 2017. Phylogenetic analyses revealed that 2016–2017 GII.P16-GII.2 strains were most closely related to Japan 2010–2012 cluster in VP1 region and no common mutations were found in the amino acids of the HBGA-binding sites and the predicted epitopes. Conclusions We report the emergence of GII.P16-GII.2 strains and characterize the molecular epidemiological patterns NoV infection between January 2016 and December 2017 in Huzhou. The predominant genotypes of NoV during our study period are diverse. VP1 amino acid sequences of 2016–2017 GII.P16-GII.2 strains remain static after one year of circulation. Electronic supplementary material The online version of this article (10.1186/s12879-018-3259-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiankang Han
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Xiaofang Wu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Yun Fu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Deshun Xu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
32
|
Steyer A, Konte T, Sagadin M, Kolenc M, Škoberne A, Germ J, Dovč-Drnovšek T, Arnol M, Poljšak-Prijatelj M. Intrahost Norovirus Evolution in Chronic Infection Over 5 Years of Shedding in a Kidney Transplant Recipient. Front Microbiol 2018; 9:371. [PMID: 29552005 PMCID: PMC5840165 DOI: 10.3389/fmicb.2018.00371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/16/2018] [Indexed: 11/13/2022] Open
Abstract
Noroviruses are the leading cause of acute gastroenteritis, and they can affect humans of all age groups. In immunocompromised patients, norovirus infections can develop into chronic diarrhea or show prolonged asymptomatic virus shedding. Chronic norovirus infections are frequently reported for solid organ transplant recipients, with rapid intrahost norovirus evolution seen. In this report, we describe a case of chronic norovirus infection in an immunocompromised patient who was followed up for over 5 years. The purpose of the study was to specify the norovirus evolution in a chronically infected immunocompromised host and identify possible selection sites in norovirus capsid protein. During the follow-up period, 25 sequential stool samples were collected and nine of them were selected to generate amplicons covering viral RNA-dependent RNA polymerase (RdRp) and viral capsid protein (VP1) genes. Amplicons were sequenced using next-generation sequencing. Single nucleotide polymorphisms were defined, which demonstrated a nearly 3-fold greater mutation rate in the VP1 genome region compared to the RdRp genome region (7.9 vs. 2.8 variable sites/100 nucleotides, respectively). This indicates that mutations in the virus genome were not accumulated randomly, but are rather the result of mutant selection during the infection cycle. Using ShoRAH software we were able to reconstruct haplotypes occurring in each of the nine selected samples. The deduced amino-acid haplotype sequences were aligned and the positions were analyzed for selective pressure using the Datamonkey program. Only 12 out of 25 positive selection sites were within the commonly described epitopes A, B, C, and D of the VP1 protein. New positive selection sites were determined that have not been described before and might reflect adaptation of the norovirus toward optimal histo-blood-group antigen binding, or modification of the norovirus antigenic properties. These data provide new insights into norovirus evolutionary dynamics and indicate new putative epitope “hot-spots” of modified and optimized norovirus–host interactions.
Collapse
Affiliation(s)
- Andrej Steyer
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Tilen Konte
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Sagadin
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kolenc
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Škoberne
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Julija Germ
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | | | - Miha Arnol
- Department of Nephrology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mateja Poljšak-Prijatelj
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
33
|
Detailed genetic analyses of the HN gene in human respirovirus 3 detected in children with acute respiratory illness in the Iwate Prefecture, Japan. INFECTION GENETICS AND EVOLUTION 2018; 59:155-162. [PMID: 29408530 DOI: 10.1016/j.meegid.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
We performed detailed genetic analyses of the partial hemagglutinin-neuraminidase (HN) gene in 34 human respirovirus 3 (HRV3) strains from children with acute respiratory illness during 2013-2015 in Iwate Prefecture, Japan. In addition, we performed analyses of the evolutionary timescale of the gene using the Bayesian Markov chain Monte Carlo (MCMC) method. Furthermore, we analyzed pairwise distances and performed selective pressure analyses followed by linear B-cell epitope mapping and N-glycosylation and phylodynamic analyses. A phylogenetic tree showed that the strains diversified at around 1939, and the rate of molecular evolution was 7.6 × 10-4 substitutions/site/year. Although the pairwise distances were relatively short (0.03 ± 0.018 [mean ± standard deviation, SD]), two positive selection sites (Cys544Trp and Leu555Ser) and no amino acid substitutions were found in the active/catalytic sites. Six epitopes were estimated in this study, and three mouse monoclonal antibody binding sites (amino acid positions 278, 281, and 461) overlapped with two epitopes belonging to subcluster C3 strains. Bayesian skyline plot analyses indicated that subcluster C3 strains have been increasing from 2004, whereas subcluster C1 strains have declined from 2004. Based on these results, Iwate strains were divided into two subclusters and each subcluster evolved independently. Moreover, our results suggested that some predicted linear epitopes (epitopes 3 and 5) are candidates for an HRV3 vaccine motif. To better understand the details of the molecular evolution of HRV, further studies are needed.
Collapse
|
34
|
Nagasawa K, Matsushima Y, Motoya T, Mizukoshi F, Ueki Y, Sakon N, Murakami K, Shimizu T, Okabe N, Nagata N, Shirabe K, Shinomiya H, Suzuki W, Kuroda M, Sekizuka T, Suzuki Y, Ryo A, Fujita K, Oishi K, Katayama K, Kimura H. Genetic Analysis of Human Norovirus Strains in Japan in 2016-2017. Front Microbiol 2018; 9:1. [PMID: 29403456 PMCID: PMC5778136 DOI: 10.3389/fmicb.2018.00001] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/03/2018] [Indexed: 11/18/2022] Open
Abstract
In the 2016/2017 winter season in Japan, HuNoV GII.P16-GII.2 strains (2016 strains) emerged and caused large outbreaks of acute gastroenteritis. To better understand the outbreaks, we examined the molecular evolution of the VP1 gene and RdRp region in 2016 strains from patients by studying their time-scale evolutionary phylogeny, positive/negative selection, conformational epitopes, and phylodynamics. The time-scale phylogeny suggested that the common ancestors of the 2016 strains VP1 gene and RdRp region diverged in 2006 and 1999, respectively, and that the 2016 strain was the progeny of a pre-2016 GII.2. The evolutionary rates of the VP1 gene and RdRp region were around 10-3 substitutions/site/year. Amino acid substitutions (position 341) in an epitope in the P2 domain of 2016 strains were not found in pre-2016 GII.2 strains. Bayesian skyline plot analyses showed that the effective population size of the VP1 gene in GII.2 strains was almost constant for those 50 years, although the number of patients with NoV GII.2 increased in 2016. The 2016 strain may be involved in future outbreaks in Japan and elsewhere.
Collapse
Affiliation(s)
- Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan.,Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Takumi Motoya
- Division of Virology, Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Fuminori Mizukoshi
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental Science, Utsunomiya, Japan
| | - Yo Ueki
- Division of Virology, Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, Sendai, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Tomomi Shimizu
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Nobuhiko Okabe
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Noriko Nagata
- Division of Virology, Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Komei Shirabe
- Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi, Japan
| | - Hiroto Shinomiya
- Department of Microbiology, Ehime Prefectural Institute of Public Health and Environmental Science, Matsuyama, Japan
| | - Wataru Suzuki
- Eiken Chemical Co., Ltd., Biochemical Research Laboratory I Department-I, Shimotsuga, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Yoshiyuki Suzuki
- Division of Biological Science, Department of Information and Basic Science, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kiyotaka Fujita
- School of Medical Technology, Faculty of Health Science, Gunma Paz University, Takasaki, Japan
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Kitasato University, Minato, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan.,Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan.,School of Medical Technology, Faculty of Health Science, Gunma Paz University, Takasaki, Japan
| |
Collapse
|
35
|
Fu JG, Shi C, Xu C, Lin Q, Zhang J, Yi QH, Zhang J, Bao CJ, Huo X, Zhu YF, Ai J, Xing Z. Outbreaks of acute gastroenteritis associated with a re-emerging GII.P16-GII.2 norovirus in the spring of 2017 in Jiangsu, China. PLoS One 2017; 12:e0186090. [PMID: 29284004 PMCID: PMC5746213 DOI: 10.1371/journal.pone.0186090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
A total of 64 acute gastroenteritis outbreaks with 2,953 patients starting in December of 2016 and occurring mostly in the late spring of 2017 were reported in Jiangsu, China. A recombinant GII.P16-GII.2 norovirus variant was associated with 47 outbreaks (73.4%) for the gastroenteritis epidemic, predominantly occurring in February and March of 2017. Sequence analysis of the RNA-dependent RNA polymerase (RdRp) and capsid protein of the viral isolates from these outbreaks confirmed that this GII.P16-GII.2 strain was the GII.P16-GII.2 variant with the intergenotypic recombination, identified in Taiwan, Hong Kong, and other cities in China in 2016. This GII.P16-GII.2 recombinant variant appeared to a re-emerging strain, firstly identified in 2011-2012 from Japan and USA but might be independently originated from other GII.P16-GII.2 variants for sporadic and outbreaks of gastroenteritis in Japan and China before 2016. Further identification of unique amino acid mutations in both VP1 and RdRp of NoV strain as shown in this report may provide insight in explaining its structural and antigenic changes, potentially critical for the variant recombinant to gain its predominance in causing regional and worldwide epidemics.
Collapse
Affiliation(s)
- Jian-Guang Fu
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- Key Lab of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Chao Shi
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Cheng Xu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Lin
- Changzhou Center for Disease Control and Prevention, Changzhou, China
| | - Jun Zhang
- Yangzhou Center for Disease Control and Prevention, Yangzhou, China
| | - Qian-Hua Yi
- Taizhou Center for Disease Control and Prevention, Taizhou, China
| | - Jun Zhang
- Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Chang-Jun Bao
- Key Lab of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xiang Huo
- Key Lab of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Ye-Fei Zhu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Ai
- Key Lab of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zheng Xing
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| |
Collapse
|
36
|
Motoya T, Nagasawa K, Matsushima Y, Nagata N, Ryo A, Sekizuka T, Yamashita A, Kuroda M, Morita Y, Suzuki Y, Sasaki N, Katayama K, Kimura H. Molecular Evolution of the VP1 Gene in Human Norovirus GII.4 Variants in 1974-2015. Front Microbiol 2017; 8:2399. [PMID: 29259596 PMCID: PMC5723339 DOI: 10.3389/fmicb.2017.02399] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Human norovirus (HuNoV) is a leading cause of viral gastroenteritis worldwide, of which GII.4 is the most predominant genotype. Unlike other genotypes, GII.4 has created various variants that escaped from previously acquired immunity of the host and caused repeated epidemics. However, the molecular evolutionary differences among all GII.4 variants, including recently discovered strains, have not been elucidated. Thus, we conducted a series of bioinformatic analyses using numerous, globally collected, full-length GII.4 major capsid (VP1) gene sequences (466 strains) to compare the evolutionary patterns among GII.4 variants. The time-scaled phylogenetic tree constructed using the Bayesian Markov chain Monte Carlo (MCMC) method showed that the common ancestor of the GII.4 VP1 gene diverged from GII.20 in 1840. The GII.4 genotype emerged in 1932, and then formed seven clusters including 14 known variants after 1980. The evolutionary rate of GII.4 strains was estimated to be 7.68 × 10−3 substitutions/site/year. The evolutionary rates probably differed among variants as well as domains [protruding 1 (P1), shell, and P2 domains]. The Osaka 2007 variant strains probably contained more nucleotide substitutions than any other variant. Few conformational epitopes were located in the shell and P1 domains, although most were contained in the P2 domain, which, as previously established, is associated with attachment to host factors and antigenicity. We found that positive selection sites for the whole GII.4 genotype existed in the shell and P1 domains, while Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants were under positive selection in the P2 domain. Amino acid substitutions overlapped with putative epitopes or were located around the epitopes in the P2 domain. The effective population sizes of the present strains increased stepwise for Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants. These results suggest that HuNoV GII.4 rapidly evolved in a few decades, created various variants, and altered its evolutionary rate and antigenicity.
Collapse
Affiliation(s)
- Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan.,Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Noriko Nagata
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yukio Morita
- Department of Food and Nutrition, Tokyo Kasei University, Itabashi-ku, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan.,Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Takasaki, Japan
| |
Collapse
|
37
|
Mizukoshi F, Nagasawa K, Doan YH, Haga K, Yoshizumi S, Ueki Y, Shinohara M, Ishikawa M, Sakon N, Shigemoto N, Okamoto-Nakagawa R, Ochi A, Murakami K, Ryo A, Suzuki Y, Katayama K, Kimura H. Molecular Evolution of the RNA-Dependent RNA Polymerase and Capsid Genes of Human Norovirus Genotype GII.2 in Japan during 2004-2015. Front Microbiol 2017; 8:705. [PMID: 28487679 PMCID: PMC5403926 DOI: 10.3389/fmicb.2017.00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) and capsid (VP1) genes of 51 GII.2 human norovirus (HuNoV) strains collected during the period of 2004-2015 in Japan were analyzed. Full-length analyses of the genes were performed using next-generation sequencing. Based on the gene sequences, we constructed the time-scale evolutionary trees by Bayesian Markov chain Monte Carlo methods. Time-scale phylogenies showed that the RdRp and VP1 genes evolved uniquely and independently. Four genotypes of GII.2 (major types: GII.P2-GII.2 and GII.P16-GII.2) were detected. A common ancestor of the GII.2 VP1 gene existed until about 1956. The evolutionary rates of the genes were high (over 10-3 substitutions/site/year). Moreover, the VP1 gene evolution may depend on the RdRp gene. Based on these results, we hypothesized that transfer of the RdRp gene accelerated the VP1 gene evolution of HuNoV genotype GII.2. Consequently, recombination between ORF1 (polymerase) and ORF2 (capsid) might promote changes of GII.2 antigenicity.
Collapse
Affiliation(s)
- Fuminori Mizukoshi
- Department of Microbiology, Tochigi Prefectural Institute of Public Health and Environmental ScienceUtsunomiya-shi, Japan
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious DiseasesMusashimurayama-shi, Japan
| | - Yen H Doan
- Department of Virology II, National Institute of Infectious DiseasesMusashimurayama-shi, Japan
| | - Kei Haga
- Laboratory of Viral infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato UniversityMinato-ku, Japan
| | - Shima Yoshizumi
- Department of Infectious Diseases, Hokkaido Institute of Public HealthSapporo-shi, Japan
| | - Yo Ueki
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and EnvironmentSendai-shi, Japan
| | | | - Mariko Ishikawa
- Division of Virology, Kawasaki City Institute for Public HealthKawasaki-shi, Japan
| | - Naomi Sakon
- Department of Microbiology, Osaka Prefectural Institute of Public HealthOsaka-shi, Japan
| | - Naoki Shigemoto
- Hiroshima Prefectural Technology Research Institute Public Health and Environment CenterHiroshima-shi, Japan
| | - Reiko Okamoto-Nakagawa
- Department of Health Science, Yamaguchi Prefectural Institute of Public Health and EnvironmentYamaguchi-shi, Japan
| | - Akie Ochi
- Department of Microbiology, Ehime Prefectural Institute of Public Health and Environmental ScienceMatsuyama-shi, Japan
| | - Koichi Murakami
- Infectious Disease Surveillance Center, National Institute of Infectious DiseasesMusashimurayama-shi, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of MedicineYokohama-shi, Japan
| | - Yoshiyuki Suzuki
- Division of Biological Science, Nagoya City UniversityNagoya-shi, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral infection I, Kitasato Institute for Life Sciences Graduate School of Infection Control Sciences, Kitasato UniversityMinato-ku, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious DiseasesMusashimurayama-shi, Japan.,Department of Microbiology, Yokohama City University Graduate School of MedicineYokohama-shi, Japan
| |
Collapse
|
38
|
Kimura H, Nagasawa K, Kimura R, Tsukagoshi H, Matsushima Y, Fujita K, Hirano E, Ishiwada N, Misaki T, Oishi K, Kuroda M, Ryo A. Molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B. INFECTION GENETICS AND EVOLUTION 2017; 52:1-9. [PMID: 28414106 DOI: 10.1016/j.meegid.2017.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 11/19/2022]
Abstract
In this study, we examined the molecular evolution of the fusion protein (F) gene in human respiratory syncytial virus subgroup B (HRSV-B). First, we performed time-scale evolution analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. Next, we performed genetic distance, linear B-cell epitope prediction, N-glycosylation, positive/negative selection site, and Bayesian skyline plot analyses. We also constructed a structural model of the F protein and mapped the amino acid substitutions and the predicted B-cell epitopes. The MCMC-constructed phylogenetic tree indicated that the HRSV F gene diverged from the bovine respiratory syncytial virus gene approximately 580years ago and had a relatively low evolutionary rate (7.14×10-4substitutions/site/year). Furthermore, a common ancestor of HRSV-A and -B diverged approximately 290years ago, while HRSV-B diverged into three clusters for approximately 60years. The genetic similarity of the present strains was very high. Although a maximum of 11 amino acid substitutions were observed in the structural model of the F protein, only one strain possessed an amino acid substitution located within the palivizumab epitope. Four epitopes were predicted, although these did not correspond to the neutralization sites of the F protein including the palivizumab epitope. In addition, five N-glycosylation sites of the present HRSV-B strains were inferred. No positive selection sites were identified; however, many sites were found to be under negative selection. The effective population size of the gene has remained almost constant. On the basis of these results, it can be concluded that the HRSV-B F gene is highly conserved, as is the F protein of HRSV-A. Moreover, our prediction of B-cell epitopes does not show that the palivizumab reaction site may be recognized as an epitope during naturally occurring infections.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan; Department of Microbiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanagawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Ryusuke Kimura
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 37-1 Nakaoruimachi, Takasaki-shi, Gunma 370-0033, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Yuki Matsushima
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Kiyotaka Fujita
- School of Medical Technology, Faculty of Health Science, Gumma Paz College, 1-7-1 Tonyamachi, Takasaki-shi, Gunma 370-0006, Japan
| | - Eiko Hirano
- Fukui Prefectural Institute of Public Health and Environmental Science, 39-4 Harame-cho, Fukui-shi, Fukui 910-8851, Japan
| | - Naruhiko Ishiwada
- Division of Infection Control and Prevention, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Takako Misaki
- Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanagawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| |
Collapse
|
39
|
Tsutsui R, Tsukagoshi H, Nagasawa K, Takahashi M, Matsushima Y, Ryo A, Kuroda M, Takami H, Kimura H. Genetic analyses of the fusion protein genes in human parainfluenza virus types 1 and 3 among patients with acute respiratory infections in Eastern Japan from 2011 to 2015. J Med Microbiol 2017; 66:160-168. [PMID: 28266286 DOI: 10.1099/jmm.0.000431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To genetically explore the fusion protein gene (F) in human parainfluenza virus type 1 (HPIV1) and type 3 (HPIV3) strains, we analysed them in patients with acute respiratory infections in Eastern Japan from 2011 to 2015. METHODOLOGY We constructed phylogenetic trees based on the HPIV and HPIV3 F gene using the maximum likelihood method and conducted P-distance and selective pressure analyses. We also predicted the linear epitopes of the protein in the prototype strains. Furthermore, we mapped the amino acid substitutions of the proteins. RESULTS Nineteen strains of HPIV1 and 53 strains of HPIV3 were detected among the clinical acute respiratory infection cases. The phylogenetic trees indicated that the HPIV1 and HPIV3 strains were classified into clusters II and III and cluster C, respectively. The P-distance values of the HPIV1 and HPIV3 F genes were <0.03. Two positive selection sites were inferred in the HPIV1 (aa 8 and aa 10), and one positive selection site was inferred in the HPIV3 (aa 108), but over 10 negative selection sites were inferred. Four epitopes were predicted for the HPIV1 prototype strains, while five epitopes were predicted for the HPIV3 prototype strain. A positive selection site (aa 108) or the HPIV3 F protein was involved in the predicted epitope. Additionally, we found that an amino acid substitution (R73K) in the LC76627 HPIV3 strain presumably may affect the resistance to neutralization by antibodies. CONCLUSION The F gene of HPIV1 and HPIV3 was relatively well conserved in the eastern part of Japan during the investigation period.
Collapse
Affiliation(s)
- Rika Tsutsui
- Department of Pathologic Analysis, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1, Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan.,Aomori Prefecture Public Health and Environment Center, 1-1-1, Higashitsukurimichi, Aomori-shi, Aomori 030-8566, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki-machi, Maebashi-shi, Gunma 371-0052, Japan
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Masaki Takahashi
- Research Institute for Environmental Sciences and Public Health of Iwate Prefecture, 1-11-16, Kitaiioka, Morioka-shi, Iwate 020-0857, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, 3-25-13, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Akihide Ryo
- Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hideki Takami
- Department of Pathologic Analysis, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, 66-1, Hon-cho, Hirosaki-shi, Aomori 036-8564, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.,Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan
| |
Collapse
|
40
|
Complete Genome Sequence of a Recombinant GII.P16-GII.4 Norovirus Detected in Kawasaki City, Japan, in 2016. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01099-16. [PMID: 27795262 PMCID: PMC5054331 DOI: 10.1128/genomea.01099-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A recombinant norovirus, GII.P16-GII.4_Sydney2012, was first detected from nine patients with gastroenteritis in Kawasaki City, Japan, in 2016. The viral genome showed nucleotide sequence identities of 95.1% and 97.2% to the closest strains in the regions of 5′ terminus to ORF1 and ORF2 to 3′ terminus, respectively.
Collapse
|