1
|
Nguyen APT, Nguyen LTN, Stokke BA, Quinn CC. Roles of LRRK2 and its orthologs in protecting against neurodegeneration and neurodevelopmental defects. Front Cell Dev Biol 2025; 13:1569733. [PMID: 40371391 PMCID: PMC12076734 DOI: 10.3389/fcell.2025.1569733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
In humans, variants in the LRRK2 gene are the most prevalent risk factors for Parkinson's disease (PD). Whereas studies in model organisms have long indicated that the orthologs of the wild-type LRRK proteins protect against neurodegeneration, newer findings indicate that they also protect against neurodevelopmental defects. This normal role of the LRRK proteins can be disrupted by either gain-of-function (GOF) or loss-of-function (LOF) mutations, leading to neurodegeneration and neurodevelopmental defects. Here, we review the roles of the LRRK proteins and their orthologs in these processes, with a focus on autophagy as a common factor that may mediate both of these roles. We also highlight the potential for experiments in vertebrate and invertebrate model systems to synergistically inform our understanding of the role of LRRK proteins in protecting against neurological disorders.
Collapse
Affiliation(s)
- An Phu Tran Nguyen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | | | | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
2
|
Scott O, Saran E, Freeman SA. The spectrum of lysosomal stress and damage responses: from mechanosensing to inflammation. EMBO Rep 2025; 26:1425-1439. [PMID: 40016424 PMCID: PMC11933331 DOI: 10.1038/s44319-025-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cells and tissues turn over their aged and damaged components in order to adapt to a changing environment and maintain homeostasis. These functions rely on lysosomes, dynamic and heterogeneous organelles that play essential roles in nutrient redistribution, metabolism, signaling, gene regulation, plasma membrane repair, and immunity. Because of metabolic fluctuations and pathogenic threats, lysosomes must adapt in the short and long term to maintain functionality. In response to such challenges, lysosomes deploy a variety of mechanisms that prevent the breaching of their membrane and escape of their contents, including pathogen-associated molecules and hydrolases. While transient permeabilization of the lysosomal membrane can have acute beneficial effects, supporting inflammation and antigen cross-presentation, sustained or repeated lysosomal perforations have adverse metabolic and transcriptional consequences and can lead to cell death. This review outlines factors contributing to lysosomal stress and damage perception, as well as remedial processes aimed at addressing lysosomal disruptions. We conclude that lysosomal stress plays widespread roles in human physiology and pathology, the understanding and manipulation of which can open the door to novel therapeutic strategies.
Collapse
Affiliation(s)
- Ori Scott
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical Immunology and Allergy, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Ekambir Saran
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Onat E, Kocaman N, Hançer S, Yildirim M. Role of Dardarin and Isthmin-1 in the Protective Effect of Hydroxytyrosol Against Corn Syrup-Induced Liver Damage. Cureus 2025; 17:e76803. [PMID: 39897276 PMCID: PMC11787043 DOI: 10.7759/cureus.76803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
INTRODUCTION In this study, it was investigated whether dardarin (LRRK2) and isthmin-1 (ISM1) play a role in the protective effect of hydroxytyrosol (HT) used to prevent liver damage caused by corn syrup in rats. METHODS Rats were divided into four groups with six in each group: 1) control, 2) HT, 3) corn syrup, and 4) corn syrup + HT. Rats were given water containing 30% corn syrup for six weeks. At the same time, HT-containing liquid was given orally at 4 ml/kg/day, alone and together with corn syrup for six weeks. The weights of the rats were measured every week. LRRK2 and ISM1 molecules in liver tissue were evaluated by histopathological methods. Biochemical parameters were also examined with the enzyme-linked immunosorbent assay (ELISA) method. RESULTS It was found that weight gain was less in rats receiving HT than in those consuming corn syrup. The increase in cholesterol, triglyceride, and liver enzyme levels because of corn syrup consumption decreased with HT consumption. As a result of histopathological analysis, it was observed that the increase in LRRK2 and ISM1 levels observed in the liver tissue in the corn syrup-administered group decreased when HT was administered together with corn syrup. In addition, it was determined that the increase in sinusoidal expansion and hepatocyte necrosis observed in the liver tissue as a result of corn syrup application decreased as a result of the application of HT together with corn syrup. CONCLUSION The protective effect of HT against the damage caused by corn syrup in the liver has been demonstrated once again; however, LRRK2 and ISM1 are thought to contribute to this issue.
Collapse
Affiliation(s)
- Elif Onat
- Department of Medical Pharmacology, Fırat University, Elazığ, TUR
| | - Nevin Kocaman
- Department of Histology and Embryology, Fırat University, Elazığ, TUR
| | - Serhat Hançer
- Department of Histology and Embryology, Fırat University, Elazığ, TUR
| | - Murat Yildirim
- Department of Pediatrics, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
4
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 PMCID: PMC11698068 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
5
|
Naidoo D, de Lencastre A. Regulation of TIR-1/SARM-1 by miR-71 Protects Dopaminergic Neurons in a C. elegans Model of LRRK2-Induced Parkinson's Disease. Int J Mol Sci 2024; 25:8795. [PMID: 39201481 PMCID: PMC11354575 DOI: 10.3390/ijms25168795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by symptoms such as bradykinesia, resting tremor, and rigidity, primarily driven by the degradation of dopaminergic (DA) neurons in the substantia nigra. A significant contributor to familial autosomal dominant PD cases is mutations in the LRRK2 gene, making it a primary therapeutic target. This study explores the role of microRNAs (miRNAs) in regulating the proteomic stress responses associated with neurodegeneration in PD using C. elegans models. Our focus is on miR-71, a miRNA known to affect stress resistance and act as a pro-longevity factor in C. elegans. We investigated miR-71's function in C. elegans models of PD, where mutant LRRK2 expression correlates with dopaminergic neuronal death. Our findings reveal that miR-71 overexpression rescues motility defects and slows dopaminergic neurodegeneration in these models, suggesting its critical role in mitigating the proteotoxic effects of mutant LRRK2. Conversely, miR-71 knockout exacerbates neuronal death caused by mutant LRRK2. Additionally, our data indicate that miR-71's neuroprotective effect involves downregulating the toll receptor domain protein tir-1, implicating miR-71 repression of tir-1 as vital in the response to LRRK2-induced proteotoxicity. These insights into miR-71's role in C. elegans models of PD not only enhance our understanding of molecular mechanisms in neurodegeneration but also pave the way for potential research into human neurodegenerative diseases, leveraging the conservation of miRNAs and their targets across species.
Collapse
Affiliation(s)
- Devin Naidoo
- Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT 06473, USA
| | | |
Collapse
|
6
|
Drozd CJ, Chowdhury TA, Quinn CC. UNC-16 interacts with LRK-1 and WDFY-3 to regulate the termination of axon growth. Genetics 2024; 227:iyae053. [PMID: 38581414 PMCID: PMC11151918 DOI: 10.1093/genetics/iyae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
In humans, MAPK8IP3 (also known as JIP3) is a neurodevelopmental disorder-associated gene. In Caenorhabditis elegans, the UNC-16 ortholog of the MAPK8IP3 protein can regulate the termination of axon growth. However, its role in this process is not well understood. Here, we report that UNC-16 promotes axon termination through a process that includes the LRK-1 (LRRK-1/LRRK-2) kinase and the WDFY-3 (WDFY3/Alfy) selective autophagy protein. Genetic analysis suggests that UNC-16 promotes axon termination through an interaction between its RH1 domain and the dynein complex. Loss of unc-16 function causes accumulation of late endosomes specifically in the distal axon. Moreover, we observe synergistic interactions between loss of unc-16 function and disruptors of endolysosomal function, indicating that the endolysosomal system promotes axon termination. We also find that the axon termination defects caused by loss of UNC-16 function require the function of a genetic pathway that includes lrk-1 and wdfy-3, 2 genes that have been implicated in autophagy. These observations suggest a model where UNC-16 promotes axon termination by interacting with the endolysosomal system to regulate a pathway that includes LRK-1 and WDFY-3.
Collapse
Affiliation(s)
- Cody J Drozd
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Tamjid A Chowdhury
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Christopher C Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| |
Collapse
|
7
|
Nadiminti SSP, Dixit SB, Ratnakaran N, Deb A, Hegde S, Boyanapalli SPP, Swords S, Grant BD, Koushika SP. LRK-1/LRRK2 and AP-3 regulate trafficking of synaptic vesicle precursors through active zone protein SYD-2/Liprin-α. PLoS Genet 2024; 20:e1011253. [PMID: 38722918 PMCID: PMC11081264 DOI: 10.1371/journal.pgen.1011253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
Synaptic vesicle proteins (SVps) are transported by the motor UNC-104/KIF1A. We show that SVps travel in heterogeneous carriers in C. elegans neuronal processes, with some SVp carriers co-transporting lysosomal proteins (SV-lysosomes). LRK-1/LRRK2 and the clathrin adaptor protein complex AP-3 play a critical role in the sorting of SVps and lysosomal proteins away from each other at the SV-lysosomal intermediate trafficking compartment. Both SVp carriers lacking lysosomal proteins and SV-lysosomes are dependent on the motor UNC-104/KIF1A for their transport. In lrk-1 mutants, both SVp carriers and SV-lysosomes can travel in axons in the absence of UNC-104, suggesting that LRK-1 plays an important role to enable UNC-104 dependent transport of synaptic vesicle proteins. Additionally, LRK-1 acts upstream of the AP-3 complex and regulates its membrane localization. In the absence of the AP-3 complex, the SV-lysosomes become more dependent on the UNC-104-SYD-2/Liprin-α complex for their transport. Therefore, SYD-2 acts to link upstream trafficking events with the transport of SVps likely through its interaction with the motor UNC-104. We further show that the mistrafficking of SVps into the dendrite in lrk-1 and apb-3 mutants depends on SYD-2, likely by regulating the recruitment of the AP-1/UNC-101. SYD-2 acts in concert with AP complexes to ensure polarized trafficking & transport of SVps.
Collapse
Affiliation(s)
- Sravanthi S. P. Nadiminti
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Shirley B. Dixit
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Anushka Deb
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Sneha Hegde
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | | | - Sierra Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Drozd CJ, Chowdhury TA, Quinn CC. UNC-16 interacts with LRK-1 and WDFY-3 to regulate the termination of axon growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580526. [PMID: 38405875 PMCID: PMC10888800 DOI: 10.1101/2024.02.15.580526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
MAPK8IP3 (unc-16/JIP3) is a neurodevelopmental-disorder associated gene that can regulate the termination of axon growth. However, its role in this process is not well understood. Here, we report that UNC-16 promotes axon termination through a process that includes the LRK-1(LRRK-1/LRRK-2) kinase and the WDFY-3 (WDFY3/Alfy) selective autophagy protein. Genetic analysis suggests that UNC-16 promotes axon termination through an interaction between its RH1 domain and the dynein complex. Loss of unc-16 function causes accumulation of late endosomes specifically in the distal axon. Moreover, we observe synergistic interactions between loss of unc-16 function and disruptors of endolysosomal function, indicating that the endolysosomal system promotes axon termination. We also find that the axon termination defects caused by loss of UNC-16 function require the function of a genetic pathway that includes lrk-1 and wdfy-3, two genes that have been implicated in autophagy. These observations suggest a model where UNC-16 promotes axon termination by interacting with the endolysosomal system to regulate a pathway that includes LRK-1 and WDFY-3.
Collapse
Affiliation(s)
- Cody J. Drozd
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, WI, 53201, U.S.A
| | - Tamjid A. Chowdhury
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, WI, 53201, U.S.A
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, WI, 53201, U.S.A
| |
Collapse
|
9
|
Abe T, Kuwahara T, Suenaga S, Sakurai M, Takatori S, Iwatsubo T. Lysosomal stress drives the release of pathogenic α-synuclein from macrophage lineage cells via the LRRK2-Rab10 pathway. iScience 2024; 27:108893. [PMID: 38313055 PMCID: PMC10835446 DOI: 10.1016/j.isci.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/26/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
α-Synuclein and LRRK2 are associated with both familial and sporadic Parkinson's disease (PD), although the mechanistic link between these two proteins has remained elusive. Treating cells with lysosomotropic drugs causes the recruitment of LRRK2 and its substrate Rab10 onto overloaded lysosomes and induces extracellular release of lysosomal contents. Here we show that lysosomal overload elicits the release of insoluble α-synuclein from macrophages and microglia loaded with α-synuclein fibrils. This release occurred specifically in macrophage lineage cells, was dependent on the LRRK2-Rab10 pathway and involved exosomes. Also, the uptake of α-synuclein fibrils enhanced the LRRK2 phosphorylation of Rab10, which was accompanied by an increased recruitment of LRRK2 and Rab10 onto lysosomal surface. Our data collectively suggest that α-synuclein fibrils taken up in lysosomes activate the LRRK2-Rab10 pathway, which in turn upregulates the extracellular release of α-synuclein aggregates, leading to a vicious cycle that could enhance α-synuclein propagation in PD pathology.
Collapse
Affiliation(s)
- Tetsuro Abe
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shoichi Suenaga
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Maria Sakurai
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Besin V, Humardani FM, Yulianti T, Justyn M. Genomic profile of Parkinson's disease in Asians. Clin Chim Acta 2024; 552:117682. [PMID: 38016627 DOI: 10.1016/j.cca.2023.117682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Parkinson's Disease (PD) has witnessed an alarming rise in prevalence, highlighting the suboptimal nature of early diagnostic and therapeutic strategies. To address this issue, genetic testing has emerged as a potential avenue. In this comprehensive review, we have meticulously summarized the variants associated with PD in Asian populations. Our review reveals that these variants exert their influence on diverse biological pathways, encompassing the autophagy-lysosome pathway, cholesterol metabolism, circadian rhythm regulation, immune system response, and synaptic function. Conventionally, PD has been linked to other diseases; however, our findings shed light on a shared genetic susceptibility among these conditions, implying an underlying pathophysiological mechanism that unifies them. Moreover, it is noteworthy that these PD-associated variants can significantly impact drug responses during therapeutic interventions. This review not only provides a consolidated overview of the genetic variants associated with PD in Asian populations but also contributes novel insights into the intricate relationships between PD and other diseases by elucidating shared genetic components. These findings underscore the importance of personalized approaches in diagnosing and treating PD based on individual genetic profiles to optimize patient outcomes.
Collapse
Affiliation(s)
- Valentinus Besin
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia
| | - Farizky Martriano Humardani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Magister in Biomedical Science Program, Faculty of Medicine Universitas Brawijaya, Malang 65112, Indonesia.
| | - Trilis Yulianti
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Matthew Justyn
- Faculty of Pharmacy, Padjajaran University, Sumedang 45363, Indonesia
| |
Collapse
|
11
|
Zhu H, Tonelli F, Turk M, Prescott A, Alessi DR, Sun J. Rab29-dependent asymmetrical activation of leucine-rich repeat kinase 2. Science 2023; 382:1404-1411. [PMID: 38127736 PMCID: PMC10786121 DOI: 10.1126/science.adi9926] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Gain-of-function mutations in LRRK2, which encodes the leucine-rich repeat kinase 2 (LRRK2), are the most common genetic cause of late-onset Parkinson's disease. LRRK2 is recruited to membrane organelles and activated by Rab29, a Rab guanosine triphosphatase encoded in the PARK16 locus. We present cryo-electron microscopy structures of Rab29-LRRK2 complexes in three oligomeric states, providing key snapshots during LRRK2 recruitment and activation. Rab29 induces an unexpected tetrameric assembly of LRRK2, formed by two kinase-active central protomers and two kinase-inactive peripheral protomers. The central protomers resemble the active-like state trapped by the type I kinase inhibitor DNL201, a compound that underwent a phase 1 clinical trial. Our work reveals the structural mechanism of LRRK2 spatial regulation and provides insights into LRRK2 inhibitor design for Parkinson's disease treatment.
Collapse
Affiliation(s)
- Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Francesca Tonelli
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Martin Turk
- Cryo-EM and Tomography Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alan Prescott
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dario R. Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
12
|
Komori T, Kuwahara T. An Update on the Interplay between LRRK2, Rab GTPases and Parkinson's Disease. Biomolecules 2023; 13:1645. [PMID: 38002327 PMCID: PMC10669493 DOI: 10.3390/biom13111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, research on the pathobiology of neurodegenerative diseases has greatly evolved, revealing potential targets and mechanisms linked to their pathogenesis. Parkinson's disease (PD) is no exception, and recent studies point to the involvement of endolysosomal defects in PD. The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field. Understanding their interactions and functions is critical for unraveling their contribution to PD pathogenesis. In this review, we summarize recent studies on LRRK2 and Rab GTPases and attempt to provide more insight into the interaction of LRRK2 with each Rab and its relationship to PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Unapanta A, Shavarebi F, Porath J, Shen Y, Balen C, Nguyen A, Tseng J, Leong WS, Liu M, Lis P, Di Pietro SM, Hiniker A. Endogenous Rab38 regulates LRRK2's membrane recruitment and substrate Rab phosphorylation in melanocytes. J Biol Chem 2023; 299:105192. [PMID: 37625589 PMCID: PMC10551901 DOI: 10.1016/j.jbc.2023.105192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Point mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease and augment LRRK2's kinase activity. However, cellular pathways that endogenously enhance LRRK2 kinase function have not been identified. While overexpressed Rab29 draws LRRK2 to Golgi membranes to increase LRRK2 kinase activity, there is little evidence that endogenous Rab29 performs this function under physiological conditions. Here, we identify Rab38 as a novel physiologic regulator of LRRK2 in melanocytes. In mouse melanocytes, which express high levels of Rab38, Rab32, and Rab29, knockdown (or CRISPR knockout) of Rab38, but not Rab32 or Rab29, decreases phosphorylation of multiple LRRK2 substrates, including Rab10 and Rab12, by both endogenous LRRK2 and exogenous Parkinson's disease-mutant LRRK2. In B16-F10 mouse melanoma cells, Rab38 drives LRRK2 membrane association and overexpressed kinase-active LRRK2 shows striking pericentriolar recruitment, which is dependent on the presence of endogenous Rab38 but not Rab32 or Rab29. Consistently, knockdown or mutation of BLOC-3, the guanine nucleotide exchange factor for Rab38 and Rab32, inhibits Rab38's regulation of LRRK2. Deletion or mutation of LRRK2's Rab38-binding site in the N-terminal armadillo domain decreases LRRK2 membrane association, pericentriolar recruitment, and ability to phosphorylate Rab10. In sum, our data identify Rab38 as a physiologic regulator of LRRK2 function and lend support to a model in which LRRK2 plays a central role in Rab GTPase coordination of vesicular trafficking.
Collapse
Affiliation(s)
- Alexandra Unapanta
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Farbod Shavarebi
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Jacob Porath
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Yiyi Shen
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Carson Balen
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Albert Nguyen
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Josh Tseng
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Weng Si Leong
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Michelle Liu
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, San Diego, California, USA.
| |
Collapse
|
14
|
Zhu C, Herbst S, Lewis PA. Leucine-rich repeat kinase 2 at a glance. J Cell Sci 2023; 136:jcs259724. [PMID: 37698513 PMCID: PMC10508695 DOI: 10.1242/jcs.259724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multidomain scaffolding protein with dual guanosine triphosphatase (GTPase) and kinase enzymatic activities, providing this protein with the capacity to regulate a multitude of signalling pathways and act as a key mediator of diverse cellular processes. Much of the interest in LRRK2 derives from mutations in the LRRK2 gene being the most common genetic cause of Parkinson's disease, and from the association of the LRRK2 locus with a number of other human diseases, including inflammatory bowel disease. Therefore, the LRRK2 research field has focused on the link between LRRK2 and pathology, with the aim of uncovering the underlying mechanisms and, ultimately, finding novel therapies and treatments to combat them. From the biochemical and cellular functions of LRRK2, to its relevance to distinct disease mechanisms, this Cell Science at a Glance article and the accompanying poster deliver a snapshot of our current understanding of LRRK2 function, dysfunction and links to disease.
Collapse
Affiliation(s)
- Christiane Zhu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Susanne Herbst
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
15
|
Harraz MM. Selective dopaminergic vulnerability in Parkinson's disease: new insights into the role of DAT. Front Neurosci 2023; 17:1219441. [PMID: 37694119 PMCID: PMC10483232 DOI: 10.3389/fnins.2023.1219441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and associated dopamine depletion. Several mechanisms, previously considered in isolation, have been proposed to contribute to the pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships among these mechanisms remained unclear. Our recent research bridges this gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying these concepts. I propose that autophagy modulates dopamine reuptake by selectively degrading DAT. In PD, ALP dysfunction could increase DAT density per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, potentially contributing to the progressive loss of dopaminergic neurons. This integrated understanding may provide a more comprehensive view of aspects of PD pathophysiology and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Nikpay M. Multiomics Data Analysis Identified CpG Sites That Mediate the Impact of Smoking on Cardiometabolic Traits. EPIGENOMES 2023; 7:19. [PMID: 37754271 PMCID: PMC10528714 DOI: 10.3390/epigenomes7030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Understanding the epigenome paths through which smoking contributes to cardiometabolic traits is important for downstream applications. In this study, an SNP-based analytical pipeline was used to integrate several publicly available datasets in order to identify CpG sites that mediate the impact of smoking on cardiometabolic traits and to investigate the underlying molecular mechanisms. After applying stringent statistical criteria, 11 CpG sites were detected that showed significant association (p < 5 × 10-8) with cardiometabolic traits at both the discovery and replication stages. By integrating eQTL data, I found genes behind a number of these associations. cg05228408 was hypomethylated in smokers and contributed to higher blood pressure by lowering the expression of the CLCN6 gene. cg08639339 was hypermethylated in smokers and lowered the metabolic rate by increasing the expression of RAB29; furthermore, I noted TMEM120A mediated the impact of smoking-cg17325771 on LDL, and LTBP3 mediated the smoking-cg07029024 effect on heart rate. The pathway analysis identified processes through which the identified genes impact their traits. This study provides a list of CpG sites that mediates the impact of smoking on cardiometabolic traits and a framework to investigate the underlying molecular paths using publicly available data.
Collapse
Affiliation(s)
- Majid Nikpay
- Omics and Biomedical Analysis Core Facility, Heart Institute, University of Ottawa, Ottawa, ON K1Y 4W7, Canada
| |
Collapse
|
17
|
Lona-Durazo F, Reynolds RH, Scholz SW, Ryten M, Gagliano Taliun SA. Regional genetic correlations highlight relationships between neurodegenerative disease loci and the immune system. Commun Biol 2023; 6:729. [PMID: 37454237 PMCID: PMC10349864 DOI: 10.1038/s42003-023-05113-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are devastating complex diseases resulting in physical and psychological burdens on patients and their families. There have been important efforts to understand their genetic basis leading to the identification of disease risk-associated loci involved in several molecular mechanisms, including immune-related pathways. Regional, in contrast to genome-wide, genetic correlations between pairs of immune and neurodegenerative traits have not been comprehensively explored, but could uncover additional immune-mediated risk-associated loci. Here, we systematically assess the role of the immune system in five neurodegenerative diseases by estimating regional genetic correlations between these diseases and immune-cell-derived single-cell expression quantitative trait loci (sc-eQTLs). We also investigate correlations between diseases and protein levels. We observe significant (FDR < 0.01) correlations between sc-eQTLs and neurodegenerative diseases across 151 unique genes, spanning both the innate and adaptive immune systems, across most diseases tested. With Parkinson's, for instance, RAB7L1 in CD4+ naïve T cells is positively correlated and KANSL1-AS1 is negatively correlated across all adaptive immune cell types. Follow-up colocalization highlight candidate causal risk genes. The outcomes of this study will improve our understanding of the immune component of neurodegeneration, which can warrant repurposing of existing immunotherapies to slow disease progression.
Collapse
Affiliation(s)
- Frida Lona-Durazo
- Montréal Heart Institute, Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
| | - Regina H Reynolds
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Sarah A Gagliano Taliun
- Montréal Heart Institute, Montréal, QC, Canada.
- Department of Medicine & Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
18
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
19
|
Nadiminti SSP, Dixit SB, Ratnakaran N, Hegde S, Swords S, Grant BD, Koushika SP. Active zone protein SYD-2/Liprin- α acts downstream of LRK-1/LRRK2 to regulate polarized trafficking of synaptic vesicle precursors through clathrin adaptor protein complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530068. [PMID: 36865111 PMCID: PMC9980171 DOI: 10.1101/2023.02.26.530068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Synaptic vesicle proteins (SVps) are thought to travel in heterogeneous carriers dependent on the motor UNC-104/KIF1A. In C. elegans neurons, we found that some SVps are transported along with lysosomal proteins by the motor UNC-104/KIF1A. LRK-1/LRRK2 and the clathrin adaptor protein complex AP-3 are critical for the separation of lysosomal proteins from SVp transport carriers. In lrk-1 mutants, both SVp carriers and SVp carriers containing lysosomal proteins are independent of UNC-104, suggesting that LRK-1 plays a key role in ensuring UNC-104-dependent transport of SVps. Additionally, LRK-1 likely acts upstream of the AP-3 complex and regulates the membrane localization of AP-3. The action of AP-3 is necessary for the active zone protein SYD-2/Liprin-α to facilitate the transport of SVp carriers. In the absence of the AP-3 complex, SYD-2/Liprin-α acts with UNC-104 to instead facilitate the transport of SVp carriers containing lysosomal proteins. We further show that the mistrafficking of SVps into the dendrite in lrk-1 and apb-3 mutants depends on SYD-2, likely by regulating the recruitment of the AP-1/UNC-101. We propose that SYD-2 acts in concert with both the AP-1 and AP-3 complexes to ensure polarized trafficking of SVps.
Collapse
Affiliation(s)
- Sravanthi S P Nadiminti
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Shirley B Dixit
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Sneha Hegde
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Sierra Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| |
Collapse
|
20
|
Is Glial Dysfunction the Key Pathogenesis of LRRK2-Linked Parkinson's Disease? Biomolecules 2023; 13:biom13010178. [PMID: 36671564 PMCID: PMC9856048 DOI: 10.3390/biom13010178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Leucine rich-repeat kinase 2 (LRRK2) is the most well-known etiologic gene for familial Parkinson's disease (PD). Its gene product is a large kinase with multiple functional domains that phosphorylates a subset of Rab small GTPases. However, studies of autopsy cases with LRRK2 mutations indicate a varied pathology, and the molecular functions of LRRK2 and its relationship to PD pathogenesis are largely unknown. Recently, non-autonomous neurodegeneration associated with glial cell dysfunction has attracted attention as a possible mechanism of dopaminergic neurodegeneration. Molecular studies of LRRK2 in astrocytes and microglia have also suggested that LRRK2 is involved in the regulation of lysosomal and other organelle dynamics and inflammation. In this review, we describe the proposed functions of LRRK2 in glial cells and discuss its involvement in the pathomechanisms of PD.
Collapse
|
21
|
Gu YZ, Vlasakova K, Miller G, Gatto NT, Ciaccio PJ, Kuruvilla S, Besteman EG, Smith R, Reynolds SJ, Amin RP, Glaab WE, Wollenberg G, Lebron J, Sistare FD. Early-Onset albuminuria and Associated Renal Pathology in Leucine-Rich Repeat Kinase 2 Knockout Rats. Toxicol Pathol 2023; 51:15-26. [PMID: 37078689 DOI: 10.1177/01926233231162809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Activating mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson disease (PD), prompting development of LRRK2 inhibitors as potential treatment for PD. However, kidney safety concerns have surfaced from LRRK2 knockout (KO) mice and rats and from repeat-dose studies in rodents administered LRRK2 inhibitors. To support drug development of this therapeutic target, we conducted a study of 26 weeks' duration in 2-month-old wild-type and LRRK2 KO Long-Evans Hooded rats to systematically examine the performance of urinary safety biomarkers and to characterize the nature of the morphological changes in the kidneys by light microscopy and by ultrastructural evaluation. Our data reveal the time course of early-onset albuminuria at 3 and 4 months in LRRK2 KO female and male rats, respectively. The increases in urine albumin were not accompanied by concurrent increases in serum creatinine, blood urea nitrogen, or renal safety biomarkers such as kidney injury molecule 1 or clusterin, although morphological alterations in both glomerular and tubular structure were identified by light and transmission electron microscopy at 8 months of age. Diet optimization with controlled food intake attenuated the progression of albuminuria and associated renal changes.
Collapse
Affiliation(s)
- Yi-Zhong Gu
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | - Glen Miller
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | | | | | | | - Roger Smith
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | | | | | | | - Jose Lebron
- Merck & Co., Inc., West Point, Pennsylvania, USA
| | | |
Collapse
|
22
|
Bonet-Ponce L, Cookson MR. LRRK2 recruitment, activity, and function in organelles. FEBS J 2022; 289:6871-6890. [PMID: 34196120 PMCID: PMC8744135 DOI: 10.1111/febs.16099] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 06/30/2021] [Indexed: 01/13/2023]
Abstract
Protein coding mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD), and noncoding variations around the gene increase the risk of developing sporadic PD. It is generally accepted that pathogenic LRRK2 mutations increase LRRK2 kinase activity, resulting in a toxic hyperactive protein that is inferred to lead to the PD phenotype. LRRK2 has long been linked to different membrane trafficking events, but the specific role of LRRK2 in these events has been difficult to resolve. Recently, several papers have reported the activation and translocation of LRRK2 to cellular organelles under specific conditions, which suggests that LRRK2 may influence intracellular membrane trafficking. Here, we review what is known about the role of LRRK2 at various organelle compartments.
Collapse
Affiliation(s)
| | - Mark R. Cookson
- Correspondence: Mark R. Cookson, Ph.D., Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, 35 Convent Drive, Room 1A–116, Bethesda, MD, 20892–3707, USA. Phone: 301–451–3870,
| |
Collapse
|
23
|
Vides EG, Adhikari A, Chiang CY, Lis P, Purlyte E, Limouse C, Shumate JL, Spínola-Lasso E, Dhekne HS, Alessi DR, Pfeffer SR. A feed-forward pathway drives LRRK2 kinase membrane recruitment and activation. eLife 2022; 11:e79771. [PMID: 36149401 PMCID: PMC9576273 DOI: 10.7554/elife.79771] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022] Open
Abstract
Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease, and previously we showed that activated LRRK2 phosphorylates a subset of Rab GTPases (Steger et al., 2017). Moreover, Golgi-associated Rab29 can recruit LRRK2 to the surface of the Golgi and activate it there for both auto- and Rab substrate phosphorylation. Here, we define the precise Rab29 binding region of the LRRK2 Armadillo domain between residues 360-450 and show that this domain, termed 'site #1,' can also bind additional LRRK2 substrates, Rab8A and Rab10. Moreover, we identify a distinct, N-terminal, higher-affinity interaction interface between LRRK2 phosphorylated Rab8 and Rab10 termed 'site #2' that can retain LRRK2 on membranes in cells to catalyze multiple, subsequent phosphorylation events. Kinase inhibitor washout experiments demonstrate that rapid recovery of kinase activity in cells depends on the ability of LRRK2 to associate with phosphorylated Rab proteins, and phosphorylated Rab8A stimulates LRRK2 phosphorylation of Rab10 in vitro. Reconstitution of purified LRRK2 recruitment onto planar lipid bilayers decorated with Rab10 protein demonstrates cooperative association of only active LRRK2 with phospho-Rab10-containing membrane surfaces. These experiments reveal a feed-forward pathway that provides spatial control and membrane activation of LRRK2 kinase activity.
Collapse
Affiliation(s)
- Edmundo G Vides
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Ayan Adhikari
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Claire Y Chiang
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Pawel Lis
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Elena Purlyte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Charles Limouse
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| | - Justin L Shumate
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| | - Elena Spínola-Lasso
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Departamento de Bioquímica y Biología Molecular, Universidad de Las Palmas de Gran CanariaGran CanariaSpain
| | - Herschel S Dhekne
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Dario R Alessi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of DundeeDundeeUnited Kingdom
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
24
|
Nagai-Ito Y, Xu L, Ito K, Kajihara Y, Ito G, Tomita T. The atypical Rab GTPase associated with Parkinson's disease, Rab29, is localized to membranes. J Biol Chem 2022; 298:102499. [PMID: 36116551 PMCID: PMC9574512 DOI: 10.1016/j.jbc.2022.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022] Open
Abstract
Several genetic studies have shown that the small GTPase Rab29 is involved in the pathogenesis of Parkinson's disease (PD). It has also been shown that overexpression of Rab29 increases the activity of leucine-rich repeat kinase 2 (LRRK2), a protein kinase often mutated in familial PD, although the mechanism underlying this activation remains unclear. Here we employed biochemical analyses to characterize the localization of Rab29 and found that unlike general Rab proteins, Rab29 is predominantly fractionated into the membrane fraction by ultracentrifugation. We also found that Rab29 is resistant to extraction from membranes by GDP-dissociation inhibitors (GDIs) in vitro. Furthermore, Rab29 failed to interact with GDIs, and its membrane localization was not affected by the knockout of GDIs in cells. We show that knockout of Rab geranylgeranyltransferase decreased the hydrophobicity of Rab29, suggesting that Rab29 is geranylgeranylated at its carboxyl terminus as is with typical Rab proteins. Notably, we demonstrated that membrane-bound Rab29 retains some hydrophilicity, indicating that mechanisms other than geranylgeranylation might also be involved in the membrane localization of Rab29. Taken together, these findings uncover the atypical nature of Rab29 among Rab proteins, which will provide important clues for understanding how Rab29 is involved in the molecular pathomechanism of PD.
Collapse
Affiliation(s)
- Yuki Nagai-Ito
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Lejia Xu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyohei Ito
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yotaro Kajihara
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan; Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
25
|
Peripheral Blood DNA Methylation Profiles Do Not Predict Endoscopic Post-Operative Recurrence in Crohn's Disease Patients. Int J Mol Sci 2022; 23:ijms231810467. [PMID: 36142381 PMCID: PMC9503775 DOI: 10.3390/ijms231810467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Prediction of endoscopic post-operative recurrence (POR) in Crohn’s disease (CD) patients following ileocolonic resection (ICR) using clinical risk factors alone has thus far been inadequate. While peripheral blood leukocyte (PBL) DNA methylation has shown promise as a tool for predicting recurrence in cancer, no data in CD patients exists. Therefore, this study explored the association and predictive value of PBL DNA methylation in CD patients following ICR. From a cohort of 117 CD patients undergoing ICR, epigenome-wide PBL methylation profiles from 25 carefully selected patients presenting either clear endoscopic remission (n = 12) or severe recurrence (n = 13) were assessed using the Illumina MethylationEPIC (850K) array. No statistically significant differentially methylated positions (DMPs) or regions (DMRs) associated with endoscopic POR were identified (FDR p ≤ 0.05), further evidenced by the low accuracy (0.625) following elastic net classification analysis. Nonetheless, interrogating the most significant differences in methylation suggested POR-associated hypermethylation in the MBNL1, RAB29 and LEPR genes, respectively, which are involved in intestinal fibrosis, inflammation and wound healing. Notably, we observed a higher estimated proportion of monocytes in endoscopic POR compared to remission. Altogether, we observed limited differences in the genome-wide DNA methylome among CD patients with and without endoscopic POR. We therefore conclude that PBL DNA methylation is not a feasible predictive tool in post-operative CD.
Collapse
|
26
|
Wang L, Wang H, Yi S, Zhang S, Ho MS. A
LRRK2
/
dLRRK
‐mediated lysosomal pathway that contributes to glial cell death and
DA
neuron survival. Traffic 2022; 23:506-520. [DOI: 10.1111/tra.12866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Linfang Wang
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Honglei Wang
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Shuanglong Yi
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Shiping Zhang
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Margaret S. Ho
- School of Life Science and Technology ShanghaiTech University Shanghai China
| |
Collapse
|
27
|
Lu Y, He P, Zhang Y, Ren Y, Zhang L. The emerging roles of retromer and sorting nexins in the life cycle of viruses. Virol Sin 2022; 37:321-330. [PMID: 35513271 PMCID: PMC9057928 DOI: 10.1016/j.virs.2022.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Retromer and sorting nexins (SNXs) transport cargoes from endosomes to the trans-Golgi network or plasma membrane. Recent studies have unveiled the emerging roles for retromer and SNXs in the life cycle of viruses, including members of Coronaviridae, Flaviviridae and Retroviridae. Key components of retromer/SNXs, such as Vps35, Vps26, SNX5 and SNX27, can affect multiple steps of the viral life cycle, including facilitating the entry of viruses into cells, participating in viral replication, and promoting the assembly of virions. Here we present a comprehensive updated review on the interplay between retromer/SNXs and virus, which will shed mechanistic insights into controlling virus infection.
Collapse
Affiliation(s)
- Yue Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China; Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ping He
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yuxuan Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yongwen Ren
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China; Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250013, China; Department of Pathogen Biology, School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
28
|
Kluss JH, Bonet-Ponce L, Lewis PA, Cookson MR. Directing LRRK2 to membranes of the endolysosomal pathway triggers RAB phosphorylation and JIP4 recruitment. Neurobiol Dis 2022; 170:105769. [PMID: 35580815 DOI: 10.1016/j.nbd.2022.105769] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Coding mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene, which are associated with dominantly inherited Parkinson's disease (PD), lead to an increased activity of the encoded LRRK2 protein kinase. As such, kinase inhibitors are being considered as therapeutic agents for PD. It is therefore of interest to understand the mechanism(s) by which LRRK2 is activated during cellular signaling. Lysosomal membrane damage represents one way of activating LRRK2 and leads to phosphorylation of downstream RAB substrates and recruitment of the motor adaptor protein JIP4. However, it is unclear whether the activation of LRRK2 would be seen at other membranes of the endolysosomal system, where LRRK2 has also shown to be localized, or whether these signaling events can be induced without membrane damage. Here, we use a rapamycin-dependent oligomerization system to direct LRRK2 to various endomembranes including the Golgi apparatus, lysosomes, the plasma membrane, recycling, early, and late endosomes. Irrespective of membrane location, the recruitment of LRRK2 to membranes results in local accumulation of phosphorylated RAB10, RAB12, and JIP4. We also show that endogenous RAB29, previously nominated as an activator of LRRK2 based on overexpression, is not required for activation of LRRK2 at the Golgi nor lysosome. We therefore conclude that LRRK2 signaling to RAB10, RAB12, and JIP4 can be activated once LRRK2 is accumulated at any cellular organelle along the endolysosomal pathway.
Collapse
Affiliation(s)
- Jillian H Kluss
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707, USA; School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Luis Bonet-Ponce
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707, USA
| | - Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK; Royal Veterinary College, Royal College Street, London, UK; UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3707, USA.
| |
Collapse
|
29
|
Rab GTPases in Parkinson's disease: a primer. Essays Biochem 2021; 65:961-974. [PMID: 34414419 PMCID: PMC8709891 DOI: 10.1042/ebc20210016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
Parkinson's disease is a prominent and debilitating movement disorder characterized by the death of vulnerable neurons which share a set of structural and physiological properties. Over the recent years, increasing evidence indicates that Rab GTPases can directly as well as indirectly contribute to the cellular alterations leading to PD. Rab GTPases are master regulators of intracellular membrane trafficking events, and alterations in certain membrane trafficking steps can be particularly disruptive to vulnerable neurons. Here, we describe current knowledge on the direct links between altered Rab protein function and PD pathomechanisms.
Collapse
|
30
|
Sun J, Deng L, Zhu H, Liu M, Lyu R, Lai Q, Zhang Y. Meta-analysis on the association between rs11868035, rs823144, rs3851179 and Parkinson's disease. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Wen MH, Xie X, Huang PS, Yang K, Chen TY. Crossroads between membrane trafficking machinery and copper homeostasis in the nerve system. Open Biol 2021; 11:210128. [PMID: 34847776 PMCID: PMC8633785 DOI: 10.1098/rsob.210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Imbalanced copper homeostasis and perturbation of membrane trafficking are two common symptoms that have been associated with the pathogenesis of neurodegenerative and neurodevelopmental diseases. Accumulating evidence from biophysical, cellular and in vivo studies suggest that membrane trafficking orchestrates both copper homeostasis and neural functions-however, a systematic review of how copper homeostasis and membrane trafficking interplays in neurons remains lacking. Here, we summarize current knowledge of the general trafficking itineraries for copper transporters and highlight several critical membrane trafficking regulators in maintaining copper homeostasis. We discuss how membrane trafficking regulators may alter copper transporter distribution in different membrane compartments to regulate intracellular copper homeostasis. Using Parkinson's disease and MEDNIK as examples, we further elaborate how misregulated trafficking regulators may interplay parallelly or synergistically with copper dyshomeostasis in devastating pathogenesis in neurodegenerative diseases. Finally, we explore multiple unsolved questions and highlight the existing challenges to understand how copper homeostasis is modulated through membrane trafficking.
Collapse
Affiliation(s)
- Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Xihong Xie
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Karen Yang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
32
|
Khan SS, Sobu Y, Dhekne HS, Tonelli F, Berndsen K, Alessi DR, Pfeffer SR. Pathogenic LRRK2 control of primary cilia and Hedgehog signaling in neurons and astrocytes of mouse brain. eLife 2021; 10:67900. [PMID: 34658337 PMCID: PMC8550758 DOI: 10.7554/elife.67900] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Activating LRRK2 mutations cause Parkinson’s disease, and pathogenic LRRK2 kinase interferes with ciliogenesis. Previously, we showed that cholinergic interneurons of the dorsal striatum lose their cilia in R1441C LRRK2 mutant mice (Dhekne et al., 2018). Here, we show that cilia loss is seen as early as 10 weeks of age in these mice and also in two other mouse strains carrying the most common human G2019S LRRK2 mutation. Loss of the PPM1H phosphatase that is specific for LRRK2-phosphorylated Rab GTPases yields the same cilia loss phenotype seen in mice expressing pathogenic LRRK2 kinase, strongly supporting a connection between Rab GTPase phosphorylation and cilia loss. Moreover, astrocytes throughout the striatum show a ciliation defect in all LRRK2 and PPM1H mutant models examined. Hedgehog signaling requires cilia, and loss of cilia in LRRK2 mutant rodents correlates with dysregulation of Hedgehog signaling as monitored by in situ hybridization of Gli1 and Gdnf transcripts. Dopaminergic neurons of the substantia nigra secrete a Hedgehog signal that is sensed in the striatum to trigger neuroprotection; our data support a model in which LRRK2 and PPM1H mutant mice show altered responses to critical Hedgehog signals in the nigrostriatal pathway.
Collapse
Affiliation(s)
- Shahzad S Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| | - Yuriko Sobu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| | - Herschel S Dhekne
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Francesca Tonelli
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Kerryn Berndsen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States.,MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, United States
| |
Collapse
|
33
|
Lee CY, Menozzi E, Chau KY, Schapira AHV. Glucocerebrosidase 1 and leucine-rich repeat kinase 2 in Parkinson disease and interplay between the two genes. J Neurochem 2021; 159:826-839. [PMID: 34618942 DOI: 10.1111/jnc.15524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/24/2023]
Abstract
The glucocerebrosidase 1 gene (GBA1), bi-allelic variants of which cause Gaucher disease (GD), encodes the lysosomal enzyme glucocerebrosidase (GCase) and is a risk factor for Parkinson Disease (PD). GBA1 variants are linked to a reduction in GCase activity in the brain. Variants in Leucine-Rich Repeat Kinase 2 (LRRK2), such as the gain-of-kinase-function variant G2019S, cause the most common familial form of PD. In patients without GBA1 and LRRK2 mutations, GCase and LRRK2 activity are also altered, suggesting that these two genes are implicated in all forms of PD and that they may play a broader role in PD pathogenesis. In this review, we review the proposed roles of GBA1 and LRRK2 in PD, focussing on the endolysosomal pathway. In particular, we highlight the discovery of Ras-related in brain (Rab) guanosine triphosphatases (GTPases) as LRRK2 kinase substrates and explore the links between increased LRRK2 activity and Rab protein function, lysosomal dysfunction, alpha-synuclein accumulation and GCase activity. We also discuss the discovery of RAB10 as a potential mediator of LRRK2 and GBA1 interaction in PD. Finally, we discuss the therapeutic implications of these findings, including current approaches and future perspectives related to novel drugs targeting LRRK2 and GBA1.
Collapse
Affiliation(s)
- Chiao-Yin Lee
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Kai-Yin Chau
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
34
|
Chandler R, Cogo S, Lewis P, Kevei E. Modelling the functional genomics of Parkinson's disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep 2021; 41:BSR20203672. [PMID: 34397087 PMCID: PMC8415217 DOI: 10.1042/bsr20203672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, Parkinson's disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes.
Collapse
Affiliation(s)
| | - Susanna Cogo
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
- Department of Biology, University of Padova, Padova, Via Ugo Bassi 58/B, 35121, Italy
| | - Patrick A. Lewis
- Royal Veterinary College, University of London, London, NW1 0TU, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, U.K
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
| |
Collapse
|
35
|
Feofanova EV, Lim E, Chen H, Lee M, Liu CT, Cupples LA, Boerwinkle E. Exome sequence association study of levels and longitudinal change of cardiovascular risk factor phenotypes in European Americans and African Americans from the Atherosclerosis Risk in Communities Study. Genet Epidemiol 2021; 45:651-663. [PMID: 34167169 PMCID: PMC9047057 DOI: 10.1002/gepi.22390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is responsible for 31% of all deaths worldwide. Among CVD risk factors are age, race, increased systolic blood pressure (BP), and dyslipidemia. Both BP and blood lipids levels change with age, with a dose-dependent relationship between the cumulative exposure to hyperlipidemia and the risk of CVD. We performed an exome sequence association study using longitudinal data with up to 7805 European Americans (EAs) and 3171 African Americans (AAs) from the Atherosclerosis Risk in Communities (ARIC) study. We assessed associations of common (minor allele frequency > 5%) nonsynonymous and splice-site variants and gene-based sets of rare variants with levels and with longitudinal change of seven CVD risk factor phenotypes (BP traits: systolic BP, diastolic BP, pulse pressure; lipids traits: triglycerides, total cholesterol, high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C]). Furthermore, we investigated the relationship of the identified variants and genes with select CVD endpoints. We identified two novel genes: DCLK3 associated with the change of HDL-C levels in AAs and RAB7L1 associated with the change of LDL-C levels in EAs. RAB7L1 is further associated with an increased risk of heart failure in ARIC EAs. Investigation of the contribution of genetic factors to the longitudinal change of CVD risk factor phenotypes promotes our understanding of the etiology of CVD outcomes, stressing the importance of incorporating the longitudinal structure of the cohort data in future analyses.
Collapse
Affiliation(s)
- Elena V. Feofanova
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - MinJae Lee
- Division of Biostatistics, Department of Population & Data Sciences, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
36
|
Two Methods to Analyze LRRK2 Functions Under Lysosomal Stress: The Measurements of Cathepsin Release and Lysosomal Enlargement. Methods Mol Biol 2021. [PMID: 34043193 DOI: 10.1007/978-1-0716-1495-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a causative gene product of autosomal-dominant Parkinson's disease and has been shown to play a role in lysosomal regulation. We have previously shown that endogenous LRRK2 recruited its substrates Rab8a and Rab10 onto overloaded lysosomes depending on their phosphorylation, which functioned in the suppression of lysosomal enlargement as well as the promotion of the exocytic release of lysosomal cathepsins. In this chapter, we introduce two methods to analyze cellular functions of LRRK2 upon exposure to lysosomal overload stress in RAW264.7 cells.
Collapse
|
37
|
Abe T, Kuwahara T. Targeting of Lysosomal Pathway Genes for Parkinson's Disease Modification: Insights From Cellular and Animal Models. Front Neurol 2021; 12:681369. [PMID: 34194386 PMCID: PMC8236816 DOI: 10.3389/fneur.2021.681369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Previous genetic studies on hereditary Parkinson's disease (PD) have identified a set of pathogenic gene mutations that have strong impacts on the pathogenicity of PD. In addition, genome-wide association studies (GWAS) targeted to sporadic PD have nominated an increasing number of genetic variants that influence PD susceptibility. Although the clinical and pathological characteristics in hereditary PD are not identical to those in sporadic PD, α-synuclein, and LRRK2 are definitely associated with both types of PD, with LRRK2 mutations being the most frequent cause of autosomal-dominant PD. On the other hand, a significant portion of risk genes identified from GWAS have been associated with lysosomal functions, pointing to a critical role of lysosomes in PD pathogenesis. Experimental studies have suggested that the maintenance or upregulation of lysosomal activity may protect against neuronal dysfunction or degeneration. Here we focus on the roles of representative PD gene products that are implicated in lysosomal pathway, namely LRRK2, VPS35, ATP13A2, and glucocerebrosidase, and provide an overview of their disease-associated functions as well as their cooperative actions in the pathogenesis of PD, based on the evidence from cellular and animal models. We also discuss future perspectives of targeting lysosomal activation as a possible strategy to treat neurodegeneration.
Collapse
Affiliation(s)
- Tetsuro Abe
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Beilina A, Bonet-Ponce L, Kumaran R, Kordich JJ, Ishida M, Mamais A, Kaganovich A, Saez-Atienzar S, Gershlick DC, Roosen DA, Pellegrini L, Malkov V, Fell MJ, Harvey K, Bonifacino JS, Moore DJ, Cookson MR. The Parkinson's Disease Protein LRRK2 Interacts with the GARP Complex to Promote Retrograde Transport to the trans-Golgi Network. Cell Rep 2021; 31:107614. [PMID: 32375042 PMCID: PMC7315779 DOI: 10.1016/j.celrep.2020.107614] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). However, the precise function of LRRK2 remains unclear. We report an interaction between LRRK2 and VPS52, a subunit of the Golgi-associated retrograde protein (GARP) complex that identifies a function of LRRK2 in regulating membrane fusion at the trans-Golgi network (TGN). At the TGN, LRRK2 further interacts with the Golgi SNAREs VAMP4 and Syntaxin-6 and acts as a scaffolding platform that stabilizes the GARP-SNAREs complex formation. Therefore, LRRK2 influences both retrograde and post-Golgi trafficking pathways in a manner dependent on its GTP binding and kinase activity. This action is exaggerated by mutations associated with Parkinson's disease and can be blocked by kinase inhibitors. Disruption of GARP sensitizes dopamine neurons to mutant LRRK2 toxicity in C. elegans, showing that these pathways are interlinked in vivo and suggesting a link in PD.
Collapse
Affiliation(s)
- Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Luis Bonet-Ponce
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ravindran Kumaran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Jennifer J Kordich
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Morié Ishida
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adamantios Mamais
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sara Saez-Atienzar
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Dorien A Roosen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Laura Pellegrini
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Vlad Malkov
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
39
|
Boecker CA, Goldsmith J, Dou D, Cajka GG, Holzbaur ELF. Increased LRRK2 kinase activity alters neuronal autophagy by disrupting the axonal transport of autophagosomes. Curr Biol 2021; 31:2140-2154.e6. [PMID: 33765413 PMCID: PMC8154747 DOI: 10.1016/j.cub.2021.02.061] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/14/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Parkinson's disease-causing mutations in the leucine-rich repeat kinase 2 (LRRK2) gene hyperactivate LRRK2 kinase activity and cause increased phosphorylation of Rab GTPases, important regulators of intracellular trafficking. We found that the most common LRRK2 mutation, LRRK2-G2019S, dramatically reduces the processivity of autophagosome transport in neurons in a kinase-dependent manner. This effect was consistent across an overexpression model, neurons from a G2019S knockin mouse, and human induced pluripotent stem cell (iPSC)-derived neurons gene edited to express the G2019S mutation, and the effect was reversed by genetic or pharmacological inhibition of LRRK2. Furthermore, LRRK2 hyperactivation induced by overexpression of Rab29, a known activator of LRRK2 kinase, disrupted autophagosome transport to a similar extent. Mechanistically, we found that hyperactive LRRK2 recruits the motor adaptor JNK-interacting protein 4 (JIP4) to the autophagosomal membrane, inducing abnormal activation of kinesin that we propose leads to an unproductive tug of war between anterograde and retrograde motors. Disruption of autophagosome transport correlated with a significant defect in autophagosome acidification, suggesting that the observed transport deficit impairs effective degradation of autophagosomal cargo in neurons. Our results robustly link increased LRRK2 kinase activity to defects in autophagosome transport and maturation, further implicating defective autophagy in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- C Alexander Boecker
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliet Goldsmith
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory G Cajka
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Koss DJ, Campesan S, Giorgini F, Outeiro TF. Dysfunction of RAB39B-Mediated Vesicular Trafficking in Lewy Body Diseases. Mov Disord 2021; 36:1744-1758. [PMID: 33939203 DOI: 10.1002/mds.28605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Intracellular vesicular trafficking is essential for neuronal development, function, and homeostasis and serves to process, direct, and sort proteins, lipids, and other cargo throughout the cell. This intricate system of membrane trafficking between different compartments is tightly orchestrated by Ras analog in brain (RAB) GTPases and their effectors. Of the 66 members of the RAB family in humans, many have been implicated in neurodegenerative diseases and impairment of their functions contributes to cellular stress, protein aggregation, and death. Critically, RAB39B loss-of-function mutations are known to be associated with X-linked intellectual disability and with rare early-onset Parkinson's disease. Moreover, recent studies have highlighted altered RAB39B expression in idiopathic cases of several Lewy body diseases (LBDs). This review contextualizes the role of RAB proteins in LBDs and highlights the consequences of RAB39B impairment in terms of endosomal trafficking, neurite outgrowth, synaptic maturation, autophagy, as well as alpha-synuclein homeostasis. Additionally, the potential for therapeutic intervention is examined via a discussion of the recent progress towards the development of specific RAB modulators. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Scientific employee with a honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
41
|
Oguchi ME, Homma Y, Fukuda M. The N-terminal Leu-Pro-Gln sequence of Rab34 is required for ciliogenesis in hTERT-RPE1 cells. Small GTPases 2021; 13:77-83. [PMID: 33860735 DOI: 10.1080/21541248.2021.1894910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We have previously shown that Rab34 is an important regulator of ciliogenesis and that its unique long N-terminal region (amino acids 1-49) is essential for ciliogenesis in certain cultured mammalian cells. In the present study, we performed an in-depth deletion analysis of the N-terminal region of Rab34 together with Ala-based site-directed mutagenesis to identify the essential amino acids that are required for serum-starvation-induced ciliogenesis in hTERT-RPE1 cells. The results showed that a Rab34 mutant lacking an N-terminal 18 amino acids and a Rab34 mutant carrying an LPQ-to-AAA mutation (amino acids 16-18) failed to rescue a Rab34-KO phenotype (i.e., defect in ciliogenesis). Our findings suggest that the LPQ sequence of Rab34 is crucial for ciliogenesis in hTERT-RPE1 cells.Abbreviations: AA, amino acid(s); ac-Tub, acetylated tubulin; bsr, blasticidin S-resistant gene; HRP, horseradish peroxidase; hTERT-RPE1, human telomerase reverse transcriptase retinal pigment epithelium 1; KO, knockout; NS, not significant; PBS, phosphate-buffered saline; puro, puromycin-resistant gene.
Collapse
Affiliation(s)
- Mai E Oguchi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
42
|
Mazza MC, Nguyen V, Beilina A, Karakoleva E, Coyle M, Ding J, Bishop C, Cookson MR. Combined Knockout of Lrrk2 and Rab29 Does Not Result in Behavioral Abnormalities in vivo. JOURNAL OF PARKINSONS DISEASE 2021; 11:569-584. [PMID: 33523017 DOI: 10.3233/jpd-202172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Coding mutations in the LRRK2 gene, encoding for a large protein kinase, have been shown to cause familial Parkinson's disease (PD). The immediate biological consequence of LRRK2 mutations is to increase kinase activity, suggesting that inhibition of this enzyme might be useful therapeutically to slow disease progression. Genome-wide association studies have identified the chromosomal loci around LRRK2 and one of its proposed substrates, RAB29, as contributors towards the lifetime risk of sporadic PD. OBJECTIVE Considering the evidence for interactions between LRRK2 and RAB29 on the genetic and protein levels, we set out to determine whether there are any consequences on brain function with aging after deletion of both genes. METHODS We generated a double knockout mouse model and performed a battery of motor and non-motor behavioral tests. We then investigated postmortem assays to determine the presence of PD-like pathology, including nigral dopamine cell count, astrogliosis, microgliosis, and striatal monoamine content. RESULTS Behaviorally, we noted only that 18-24-month Rab29-/- and double (Lrrk2-/-/Rab29-/-) knockout mice had diminished locomotor behavior in open field compared to wildtype mice. However, no genotype differences were seen in the outcomes that represented PD-like pathology. CONCLUSION These results suggest that depletion of both LRRK2 and RAB29 is tolerated, at least in mice, and support that this pathway might be able to be safely targeted for therapeutics in humans.
Collapse
Affiliation(s)
- Melissa Conti Mazza
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Victoria Nguyen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Howard University, Washington, DC, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ema Karakoleva
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Michael Coyle
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
De Miranda BR, Castro SL, Rocha EM, Bodle CR, Johnson KE, Greenamyre JT. The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson's disease. Neurobiol Dis 2021; 153:105312. [PMID: 33636387 DOI: 10.1016/j.nbd.2021.105312] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Gene-environment interaction is implicated in the majority of idiopathic Parkinson's disease (PD) risk, and some of the most widespread environmental contaminants are selectively toxic to dopaminergic neurons. Pesticides have long been connected to PD incidence, however, it has become increasingly apparent that other industrial byproducts likely influence neurodegeneration. For example, organic solvents, which are used in chemical, machining, and dry-cleaning industries, are of growing concern, as decades of solvent use and their effluence into the environment has contaminated much of the world's groundwater and soil. Like some pesticides, certain organic solvents, such as the chlorinated halocarbon trichloroethylene (TCE), are mitochondrial toxicants, which are collectively implicated in the pathogenesis of dopaminergic neurodegeneration. Recently, we hypothesized a possible gene-environment interaction may occur between environmental mitochondrial toxicants and the protein kinase LRRK2, mutations of which are the most common genetic cause of familial and sporadic PD. In addition, emerging data suggests that elevated wildtype LRRK2 kinase activity also contributes to the pathogenesis of idiopathic PD. To this end, we investigated whether chronic, systemic TCE exposure (200 mg/kg) in aged rats produced wildtype LRRK2 activation and caused nigrostriatal dopaminergic dysfunction. Interestingly, we found that TCE not only induced LRRK2 kinase activity in the brain, but produced a significant dopaminergic lesion in the nigrostriatal tract, elevated oxidative stress, and caused endolysosomal dysfunction and α-synuclein accumulation. Together, these data suggest that TCE-induced LRRK2 kinase activity contributed to the selective toxicity of dopaminergic neurons. We conclude that gene-environment interactions between certain industrial contaminants and LRRK2 likely influence PD risk.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher R Bodle
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Katrina E Johnson
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
44
|
Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 2021; 288:36-55. [PMID: 32542850 PMCID: PMC7818423 DOI: 10.1111/febs.15453] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions. Since the discovery of Rabs, they have been regarded as one of the central hubs for membrane trafficking, and numerous biochemical and genetic studies have revealed the mechanisms of Rab functions in recent years. The results of these studies have included the identification and characterization of novel GEFs, GAPs, and effectors, as well as post-translational modifications, for example, phosphorylation, of Rabs. Rab functions beyond the simple effector-recruiting model are also emerging. Furthermore, the recently developed CRISPR/Cas technology has enabled acceleration of knockout analyses in both animals and cultured cells and revealed previously unknown physiological roles of many Rabs. In this review article, we provide the most up-to-date and comprehensive lists of GEFs, GAPs, effectors, and knockout phenotypes of mammalian Rabs and discuss recent findings in regard to their regulation and functions.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
45
|
Kuwahara T. The Functional Assessment of LRRK2 in Caenorhabditis elegans Mechanosensory Neurons. Methods Mol Biol 2021; 2322:175-184. [PMID: 34043203 DOI: 10.1007/978-1-0716-1495-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a powerful model organism to systematically analyze the functions of genes of interest in vivo. Especially, C. elegans nervous system is suitable for morphological and functional analyses of neuronal genes due to its optical transparency of the body and the well-established anatomy including neural connections. The C. elegans ortholog of Parkinson's disease-associated gene LRRK2, named lrk-1, has been shown to play a role in the regulation of axonal morphology in a subset of neurons. Here I describe the detailed methodologies for the assessment of LRK-1/LRRK2 function as well as the analysis of genetic interaction involving lrk-1/LRRK2 by performing live imaging of C. elegans mechanosenrory neurons.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
46
|
Fellgett A, Middleton CA, Munns J, Ugbode C, Jaciuch D, Wilson LG, Chawla S, Elliott CJ. Multiple Pathways of LRRK2-G2019S/Rab10 Interaction in Dopaminergic Neurons. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1805-1820. [PMID: 34250948 PMCID: PMC8609683 DOI: 10.3233/jpd-202421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Inherited mutations in the LRRK2 protein are common causes of Parkinson's disease, but the mechanisms by which increased kinase activity of mutant LRRK2 leads to pathological events remain to be determined. In vitro assays (heterologous cell culture, phospho-protein mass spectrometry) suggest that several Rab proteins might be directly phosphorylated by LRRK2-G2019S. An in vivo screen of Rab expression in dopaminergic neurons in young adult Drosophila demonstrated a strong genetic interaction between LRRK2-G2019S and Rab10. OBJECTIVE To determine if Rab10 is necessary for LRRK2-induced pathophysiological responses in the neurons that control movement, vision, circadian activity, and memory. These four systems were chosen because they are modulated by dopaminergic neurons in both humans and flies. METHODS LRRK2-G2019S was expressed in Drosophila dopaminergic neurons and the effects of Rab10 depletion on Proboscis Extension, retinal neurophysiology, circadian activity pattern ('sleep'), and courtship memory determined in aged flies. RESULTS Rab10 loss-of-function rescued LRRK2-G2019S induced bradykinesia and retinal signaling deficits. Rab10 knock-down, however, did not rescue the marked sleep phenotype which results from dopaminergic LRRK2-G2019S. Courtship memory is not affected by LRRK2, but is markedly improved by Rab10 depletion. Anatomically, both LRRK2-G2019S and Rab10 are seen in the cytoplasm and at the synaptic endings of dopaminergic neurons. CONCLUSION We conclude that, in Drosophila dopaminergic neurons, Rab10 is involved in some, but not all, LRRK2-induced behavioral deficits. Therefore, variations in Rab expression may contribute to susceptibility of different dopaminergic nuclei to neurodegeneration seen in people with Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Jack Munns
- Department of Biology, University of York, York, UK
| | - Chris Ugbode
- Department of Biology, University of York, York, UK
| | | | - Laurence G. Wilson
- Department of Physics, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| | - Christopher J.H. Elliott
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, Department of Biology, University of York, UK
| |
Collapse
|
47
|
Kalogeropulou AF, Freemantle JB, Lis P, Vides EG, Polinski NK, Alessi DR. Endogenous Rab29 does not impact basal or stimulated LRRK2 pathway activity. Biochem J 2020; 477:4397-4423. [PMID: 33135724 PMCID: PMC7702304 DOI: 10.1042/bcj20200458] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Mutations that enhance LRRK2 protein kinase activity cause inherited Parkinson's disease. LRRK2 phosphorylates a group of Rab GTPase proteins, including Rab10 and Rab12, within the effector-binding switch-II motif. Previous work has indicated that the PARK16 locus, which harbors the gene encoding for Rab29, is involved in Parkinson's, and that Rab29 operates in a common pathway with LRRK2. Co-expression of Rab29 and LRRK2 stimulates LRRK2 activity by recruiting LRRK2 to the surface of the trans Golgi network. Here, we report that knock-out of Rab29 does not influence endogenous LRRK2 activity, based on the assessment of Rab10 and Rab12 phosphorylation, in wild-type LRRK2, LRRK2[R1441C] or VPS35[D620N] knock-in mouse tissues and primary cell lines, including brain extracts and embryonic fibroblasts. We find that in brain extracts, Rab12 phosphorylation is more robustly impacted by LRRK2 inhibitors and pathogenic mutations than Rab10 phosphorylation. Transgenic overexpression of Rab29 in a mouse model was also insufficient to stimulate basal LRRK2 activity. We observed that stimulation of Rab10 and Rab12 phosphorylation induced by agents that stress the endolysosomal system (nigericin, monensin, chloroquine and LLOMe) is suppressed by LRRK2 inhibitors but not blocked in Rab29 deficient cells. From the agents tested, nigericin induced the greatest increase in Rab10 and Rab12 phosphorylation (5 to 9-fold). Our findings indicate that basal, pathogenic, as well as nigericin and monensin stimulated LRRK2 pathway activity is not controlled by Rab29. Further work is required to establish how LRRK2 activity is regulated, and whether other Rab proteins can control LRRK2 by targeting it to diverse membranes.
Collapse
Affiliation(s)
- Alexia F. Kalogeropulou
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Jordana B. Freemantle
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Edmundo G. Vides
- Department of Biochemistry, Stanford University School of Medicine, Stanford 94305-5307, U.S.A
| | - Nicole K. Polinski
- Michael J Fox Foundation for Parkinson's Research, Grand Central Station, PO Box 4777, New York, NY 10163, U.S.A
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
48
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
49
|
Erb ML, Moore DJ. LRRK2 and the Endolysosomal System in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 10:1271-1291. [PMID: 33044192 PMCID: PMC7677880 DOI: 10.3233/jpd-202138] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant familial Parkinson’s disease (PD), with pathogenic mutations enhancing LRRK2 kinase activity. There is a growing body of evidence indicating that LRRK2 contributes to neuronal damage and pathology both in familial and sporadic PD, making it of particular interest for understanding the molecular pathways that underlie PD. Although LRRK2 has been extensively studied to date, our understanding of the seemingly diverse functions of LRRK2 throughout the cell remains incomplete. In this review, we discuss the functions of LRRK2 within the endolysosomal pathway. Endocytosis, vesicle trafficking pathways, and lysosomal degradation are commonly disrupted in many neurodegenerative diseases, including PD. Additionally, many PD-linked gene products function in these intersecting pathways, suggesting an important role for the endolysosomal system in maintaining protein homeostasis and neuronal health in PD. LRRK2 activity can regulate synaptic vesicle endocytosis, lysosomal function, Golgi network maintenance and sorting, vesicular trafficking and autophagy, with alterations in LRRK2 kinase activity serving to disrupt or regulate these pathways depending on the distinct cell type or model system. LRRK2 is critically regulated by at least two proteins in the endolysosomal pathway, Rab29 and VPS35, which may serve as master regulators of LRRK2 kinase activity. Investigating the function and regulation of LRRK2 in the endolysosomal pathway in diverse PD models, especially in vivo models, will provide critical insight into the cellular and molecular pathophysiological mechanisms driving PD and whether LRRK2 represents a viable drug target for disease-modification in familial and sporadic PD.
Collapse
Affiliation(s)
- Madalynn L Erb
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
50
|
Kuwahara T, Funakawa K, Komori T, Sakurai M, Yoshii G, Eguchi T, Fukuda M, Iwatsubo T. Roles of lysosomotropic agents on LRRK2 activation and Rab10 phosphorylation. Neurobiol Dis 2020; 145:105081. [PMID: 32919031 DOI: 10.1016/j.nbd.2020.105081] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2), the major causative gene product of autosomal-dominant Parkinson's disease, is a protein kinase that phosphorylates a subset of Rab GTPases. Since pathogenic LRRK2 mutations increase its ability to phosphorylate Rab GTPases, elucidating the mechanisms of how Rab phosphorylation is regulated by LRRK2 is of great importance. We have previously reported that chloroquine-induced lysosomal stress facilitates LRRK2 phosphorylation of Rab10 to maintain lysosomal homeostasis. Here we reveal that Rab10 phosphorylation by LRRK2 is potently stimulated by treatment of cells with a set of lysosome stressors and clinically used lysosomotropic drugs. These agents commonly promoted the formation of LRRK2-coated enlarged lysosomes and extracellular release of lysosomal enzyme cathepsin B, the latter being dependent on LRRK2 kinase activity. In contrast to the increase in Rab10 phosphorylation, treatment with lysosomotropic drugs did not increase the enzymatic activity of LRRK2, as monitored by its autophosphorylation at Ser1292 residue, but rather enhanced the molecular proximity between LRRK2 and its substrate Rab GTPases on the cytosolic surface of lysosomes. Lysosomotropic drug-induced upregulation of Rab10 phosphorylation was likely a downstream event of Rab29 (Rab7L1)-mediated enzymatic activation of LRRK2. These results suggest a regulated process of Rab10 phosphorylation by LRRK2 that is associated with lysosomal overload stress, and provide insights into the novel strategies to halt the aberrant upregulation of LRRK2 kinase activity.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Kai Funakawa
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tadayuki Komori
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maria Sakurai
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gen Yoshii
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoya Eguchi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|