1
|
Lapajne L, Lakk M, Rudzitis CN, Vemaraju S, Lang RA, Hawlina M, Križaj D. Neuropsin, TRPV4 and intracellular calcium mediate intrinsic photosensitivity in corneal epithelial cells. Ocul Surf 2025; 36:1-9. [PMID: 39681161 PMCID: PMC11911084 DOI: 10.1016/j.jtos.2024.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE To investigate intrinsic phototransduction in the corneal epithelium and its role in intracellular and inflammatory signaling. METHODS Optical imaging in isolated corneal epithelial cells (CECs) and debrided epithelia was combined with molecular, biochemical, pharmacological assays and gene deletion studies to track UVB-induced calcium signaling and release of cytokines, chemokines and matrix remodeling enzymes. Results from wild type mouse CECs were compared to data obtained from Opn5-/- and Trpv4-/- cells. RESULTS UVB stimuli and TRPV4 activity induced epithelial release of IL-1β, IL-17, matrix metalloproteinases MMP-3/MMP-9, and thymic stromal lymphopoietin (TSLP). UVB stimuli evoked [Ca2+]i elevations in dissociated mouse CECs that were partially reduced by inhibition of TRPV4 channels, Trpv4 knockdown and replacement of control saline with Ca2+-free saline. UVB-induced Ca2+ responses were significantly suppressed by OPN5 deletion and by inhibition of phospholipase C signaling, and responses were abrogated in cells with depleted intracellular Ca2+ stores. CONCLUSIONS Mammalian CECs are intrinsically and constitutively photosensitive. UVB photons are transduced by neuropsin, phospholipase C and CICR signaling, with mouse but not human CE transduction exhibiting a UVB-sensitive TRPV4 component. TRPV4 activity and UVB transduction are linked to cell-autonomous release of proinflammatory, matrix remodeling and nociceptive interleukins and MMPS. TRPV4-induced cytokine release may contribute to the pain induced by mechanical injury of the cornea and CEC photosensing may alert and protect the visual system from ultraviolet B (UVB) radiation -induced snow blindness, injury, vision loss and cancer.
Collapse
Affiliation(s)
- Luka Lapajne
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Ophthalmology, University Medical Center, Ljubljana, Slovenia
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA
| | - Shruti Vemaraju
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Richard A Lang
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Marko Hawlina
- Department of Ophthalmology, University Medical Center, Ljubljana, Slovenia
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Hayat B, Panigrahi S, Behera SR, Mohanty PP, Alone DP. Susceptibility to pseudoexfoliation linked to intronic variant rs4926246 in CACNA1A: Evidence from an Indian population study. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195076. [PMID: 39826673 DOI: 10.1016/j.bbagrm.2025.195076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Pseudoexfoliation (PEX) is an age-related, complex systemic disorder of protein aggregopathy. It is characterized by the extracellular fibril depositions, termed PEX fibrils, initially observed in various organ tissues during pseudoexfoliation syndrome (PEXS) and with significant prominence in the eye during advanced pseudoexfoliation glaucoma (PEXG). The study explores the association between CACNA1A (calcium channel, voltage-dependent, P/Q type, alpha 1 A subunit) variants and PEX in an Indian population. The investigation involved genotyping one intronic single nucleotide polymorphism (SNP), rs4926244, and three tag SNPs using the Sanger and TaqMan genotyping approaches in a cohort of 300 controls and 300 PEX patients (including 200 PEXS and 100 PEXG cases). Findings from the present study revealed a significant association at both allelic and genotypic levels for rs4926246, whereas rs4926244 showed association only at the genotypic level with PEX. Functional assays demonstrated increased mRNA expression linked to the risk genotype of both variants and luciferase reporter assays indicated an allele-specific regulatory effect of rs4926246.While in silico analysis predicted potential transcription factor binding sites for c-Myc and Hypoxia-inducing factor-1 (HIF-1) at the rs4926246 locus, electrophoretic mobility shift assay (EMSA) validated that only the "T" variant showed the reduced binding affinity with c-Myc compared to the protective variant "C". Our study identifies rs4926246, an intronic variant strongly associated with both PEXS and PEXG, potentially influencing gene expression and protein binding, warranting further investigation into its role in PEX pathogenesis.
Collapse
Affiliation(s)
- Bushra Hayat
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Swagatika Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India
| | - Senjit Ram Behera
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | | | - Debasmita Pankaj Alone
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, P.O. Bhimpur-Padanpur, Jatni, Khurda, Odisha 752050, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Parthasarathy A, Anishkin A, Xie Y, Drachuk K, Nishijma Y, Fang J, Koukouritaki SB, Wilcox DA, Zhang DX. Phosphorylation of distal C-terminal residues promotes TRPV4 channel activation in response to arachidonic acid. J Biol Chem 2025; 301:108260. [PMID: 39909371 PMCID: PMC11903807 DOI: 10.1016/j.jbc.2025.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable channel activated by diverse physical and chemical stimuli, including mechanical stress and endogenous lipid arachidonic acid (AA) and its metabolites. Phosphorylation of TRPV4 by protein kinase A (PKA) and protein kinase C (PKC) is a predominant mechanism for channel regulation, especially in the cytoplasmic domains due to their importance in protein assembly, and channelopathies. However, studies corresponding to phosphorylation sites for these kinases remain incomplete. We investigated the role of Ser-823 residue as a potential phosphorylation site in regulating TRPV4 activity and chemical agonist-induced channel activation. Using mass spectrometry, we identified a new phosphorylation site Ser-823 residue and confirmed the previously known phosphorylation site Ser-824 in the C-terminal tail. The low level of phosphorylation at Ser-823 was stimulated by PKC and to a lesser extent by PKA in human coronary artery endothelial cells (HCAECs) and human embryonic kidney 293 (HEK 293) cells. AA-induced TRPV4 activation was enhanced in the phosphomimetic S823E but was blunted in the S823A/S824A mutants, whereas the channel activation by the synthetic agonist GSK1016790A was unaffected. Further, TRPV4 activation by AA but not GSK1016790A was blunted or abolished by PKA inhibitor alone or in combination with PKC inhibitor, respectively. Using computational modeling, we refined a previously proposed structural model for TRPV4 regulation by Ser-823 and Ser-824 phosphorylation. Together, these results provide insight into how stimuli-specific TRPV4 activation is regulated by the phosphorylation of discrete residues (e.g., Ser-823 and Ser-824) in the C-terminal domains of the TRPV4 channel.
Collapse
Affiliation(s)
- Aravind Parthasarathy
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Yangjing Xie
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kostiantyn Drachuk
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yoshinori Nishijma
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - Sevasti B Koukouritaki
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - David A Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Children's Research Institute, Children's Wisconsin, Milwaukee, Wisconsin, USA
| | - David X Zhang
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
4
|
Lee PY, Greferath U, Zhao D, Huang JY, Wang AYM, Vessey KA, Chrysostomou V, Fletcher EL, Crowston JG, Bui BV. Systemic TRPV4 inhibition worsens retinal response to acute intraocular pressure elevation in older but not younger mice. Optom Vis Sci 2025; 102:78-89. [PMID: 39882862 DOI: 10.1097/opx.0000000000002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
SIGNIFICANCE Previous evidence showed that transient receptor potential vanilloid 4 (TRPV4) inhibition was protective of retinal ganglion cell (RGC) loss after chronic intraocular pressure (IOP) elevation in young animals. However, the role of TRPV4 in mechanosensing IOP changes in the aging eye is not well understood. PURPOSE This study compared the recovery of retinal function and structure after acute IOP elevation in 3- and 12-month-old mouse eyes with and without TRPV4 inhibition. METHODS We examined retinal TRPV4 expression in 2-month-old rodent eyes using immunohistochemistry and transcript analysis of isolated macroglia and RGCs. To modulate TRPV4, mice were treated daily with either vehicle or a TRPV4 antagonist (HC-067047 10 mg/kg) delivered intraperitoneally for 7 days before and 7 days after IOP elevation (50 mmHg for 30 minutes). Retinal function and structure were assessed using dark-adapted full-field electroretinography and optical coherence tomography, respectively. RESULTS We showed that Müller cells strongly expressed TRPV4. Seven days after IOP elevation, RGC functional recovery was significantly poorer in older mice treated with TRPV4 antagonist compared with age-matched vehicle controls (-54 ± 7% vs. -24 ± 10%, p=0.046) and their younger TRPV4 antagonist-treated counterparts (-5 ± 5%, p<0.001). CONCLUSIONS This study showed that there was an age-related deficit in RGC functional recovery from IOP elevation with TRPV4 inhibition.
Collapse
Affiliation(s)
- Pei Ying Lee
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Da Zhao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jin Y Huang
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Anna Y M Wang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Vicki Chrysostomou
- Singapore Eye Research Institute, Duke-NUS Medical School, Singapore, Singapore
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
5
|
Wang R, Wei H, Shi Y, Wang C, Yu Z, Zhang Y, Lai Y, Chen J, Wang G, Tian W. Self-generating electricity system driven by aqueous humor flow and trabecular meshwork contraction motion activated BCKa for glaucoma intraocular pressure treatment. MATERIALS HORIZONS 2025; 12:434-450. [PMID: 39449290 DOI: 10.1039/d4mh01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma and the leading cause of irreversible vision loss and blindness worldwide. Intraocular pressure (IOP) is the only modifiable risk factor, and prompt treatment to lower IOP can effectively slow the rate of vision loss due to glaucoma. Trabecular meshwork (TM) cells can maintain IOP homeostasis by correcting and adjusting the resistance to aqueous humor outflow in response to sustained pressure changes. TM cells' function is reduced, and membrane ion channels are impaired in POAG. The dysfunction of Large conductance Ca2+-activated K+ (BKCa) plays a central role in the pathogenesis of POAG. In this work, we targeted MXene nanoparticles (MXene-RGD) with piezoelectric response to TM cells in a 3D model of glaucoma in vitro as well as in the rabbit Transient Ocular Hypertension (OHT) Model in vivo. MXene-RGD gives the TM electromechanical transfer properties, while the self-enhancing and self-generated electricity properties of the TM are determined by the aqueous humor flow rate and the size of the deformation of the TM. MXene-RGD is nontoxic, as illustrated by a cell toxicity study and histological examination. In a 3D in vitro model of high-pressure glaucoma, whole-cell patch-clamp confirmed that piezoelectric stimulation turns on BKCa, which reduces the volume of the cell. MXene-RGD was injected into the anterior chamber with minimal trauma, i.e., anterior chamber injection, and specifically targeted to TM cells. The OHT model in vivo confirmed the potential IOP-lowering ability of MXene-RGD. We evaluated the ion channels involved in the reduction of IOP by MXene-RGD by pre-treatment with a BKCa channel blocker (iberiotoxin, IbTX) and a voltage-gated Ca2+channel blocker (nifedipine). Quantitative qPCR analysis showed that MXene-RGD inhibited the upregulation of mRNA expression levels of the myofibroblast marker α-smooth muscle actin (α-SMA) and the inflammatory response marker interleukin-6 (IL-6) induced by IOP. Histology confirmed that MXene-RGD attenuated IOP-induced proliferation and collagen production in the TM. Taken together, we present for the first time a minimally invasive surgical approach for targeting TM cells for POAG by utilizing piezoresponse nanomaterials to target BKCa to repair or awaken the ability of TM cells to regulate IOP homeostasis on their own.
Collapse
Affiliation(s)
- Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Haiying Wei
- The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, P. R. China
| | - Yuying Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Zhenqiang Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Yijian Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Yifan Lai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Jingwei Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Guangfu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| |
Collapse
|
6
|
Pacífico DDM, Costa DVDS, Lima Barbosa ML, Rebouças CSM, Simonato SDG, Warren CA, Morais MLGDS, Leitao RFDC, Brito GADC. TRPV4 modulates inflammatory responses and apoptosis in enteric glial cells triggered by Clostridioides difficile toxins A and B. J Inflamm (Lond) 2025; 22:3. [PMID: 39810162 PMCID: PMC11731189 DOI: 10.1186/s12950-024-00425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI). Yet, the specific impact of these toxins, particularly on enteric glial cells (EGCs), still needs to be fully understood. This study examines the role of the transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable channel, in the inflammatory response and apoptosis of EGCs induced by TcdA and TcdB and evaluates TRPV4 expression in the cecum and colon of infected mice. EGCs were treated with TcdA (50ng/mL) or TcdB (1ng/mL) for 18 h, with or without the TRPV4 antagonist RN-1734 (100 µM), to assess TRPV4 gene and protein levels, inflammatory markers, and cell death. C. difficile infected mice were euthanized on day 3 post-infection for TRPV4 expression in the cecum and colon. Findings reveal that EGCs naturally express TRPV4, increasing its expression by TcdA and TcdB exposure. CDI significantly upregulates TRPV4 in the cecum and colon's submucosal and myenteric plexus regions. TRPV4 mediates TNF-α release in EGCs and is partially involved in the increase in IL-6 gene expression triggered by these toxins. Our results highlight TRPV4's role in triggering EGC apoptosis via caspase 3 activation and inhibiting the reduction of Bcl-2, an anti-apoptotic protein in EGCs caused by C. difficile toxins. These results highlight TRPV4's significant role in CDI pathogenesis and its potential as a therapeutic target to counteract the detrimental effects of C. difficile toxins on enteric glia.
Collapse
Affiliation(s)
- Dvison de Melo Pacífico
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Deiziane Viana da Silva Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, VA, USA
| | | | | | - Simone de Goes Simonato
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cirle Alcantara Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, VA, USA
| | | | | | | |
Collapse
|
7
|
Hernández-Vega AM, García-Villegas R, Rosenbaum T. Roles for TRPV4 in disease: A discussion of possible mechanisms. Cell Calcium 2024; 124:102972. [PMID: 39609180 DOI: 10.1016/j.ceca.2024.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is a ubiquitously expressed Ca2+-permeable ion channel that controls intracellular calcium ([Ca2+]i) homeostasis in various types of cells. The physiological roles for TRPV4 are tissue specific and the mechanisms behind this specificity remain mostly unclarified. It is noteworthy that mutations in the TRPV4 channel have been associated to a broad spectrum of congenital diseases, with most of these mutations mainly resulting in gain-of-function. Mutations have been identified in human patients showing a variety of phenotypes and symptoms, mostly related to skeletal and neuromuscular disorders. Since TRPV4 is so widely expressed throughout the body, it comes as no surprise that the literature is growing in evidence linking this protein to malfunction in systems other than the skeletal and neuromuscular. In this review, we summarize the expression patterns of TRPV4 in several tissues and highlight findings of recent studies that address critical structural and functional features of this channel, particularly focusing on its interactions and signaling pathways related to Ca2+ entry. Moreover, we discuss the roles of TRPV4 mutations in some diseases and pinpoint some of the mechanisms underlying pathological states where TRPV4's malfunction is prominent.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
8
|
Liu K, Xu J, Yang R, Wang F, Su Y. Ion channel Piezo1 induces ferroptosis of trabecular meshwork cells: a novel observation in the pathogenesis in primary open angle glaucoma. Am J Physiol Cell Physiol 2024; 327:C1591-C1603. [PMID: 39466179 PMCID: PMC11684867 DOI: 10.1152/ajpcell.00173.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
This study aims to elucidate the role of Piezo1, a mechanosensitive molecule, in trabecular meshwork cells (TMCs) in the context of primary open angle glaucoma (POAG), a leading cause of irreversible visual impairment. Dysfunction of the trabecular meshwork (TM) is a key factor in the elevated intraocular pressure (IOP) observed in POAG, yet the specific mechanisms leading to TM dysfunction are not fully understood. We performed cell stretching on human trabecular meshwork cells (HTMCs) and pharmacologically activated HTMCs with Yoda1 to study the role of Piezo1 in HTMCs. We focused on assessing cell viability, mitochondrial changes, lipid peroxidation, and the expression of ferroptosis-related targets such as acyl-CoA synthetase long-chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4). Cell stretching induces ferroptosis in HTMCs, and this phenomenon is reversed by Piezo1 knockdown. In addition, pharmacological activation of Piezo1 also leads to ferroptosis in HTMCs. Furthermore, inhibiting the JNK/p38 signaling pathway was found to mitigate the ferroptotic response induced by Yoda1, thereby confirming that Piezo1 induces ferroptosis in TMCs through this pathway. Notably, our experiments suggest that Yoda1 may trigger ferroptosis in the TM of mouse eyes. Our findings demonstrate that the Piezo1 pathway is a crucial mediator of ferroptosis in TMCs, providing new insights into the pathogenic mechanisms of glaucoma, particularly POAG. This study highlights the potential of targeting the Piezo1 pathway as a therapeutic approach for mitigating TM dysfunction and managing POAG.NEW & NOTEWORTHY This study is the first to show that cell stretching induces ferroptosis in trabecular meshwork cells (TMCs), dependent on Piezo1 activation. Targeting the Piezo1 pathway offers new therapeutic potential for mitigating trabecular meshwork dysfunction and managing primary open angle glaucoma (POAG). The study also reveals Piezo1 induces ferroptosis via the JNK/p38 signaling pathway.
Collapse
Affiliation(s)
- Kexin Liu
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jing Xu
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Rufei Yang
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Feng Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Ying Su
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
9
|
Rudzitis CN, Lakk M, Singh A, Redmon SN, Kirdajova D, Tseng YT, De Ieso ML, Stamer WD, Herberg S, Križaj D. TRPV4 overactivation enhances cellular contractility and drives ocular hypertension in TGFβ2 overexpressing eyes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622187. [PMID: 39574569 PMCID: PMC11580928 DOI: 10.1101/2024.11.05.622187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The risk for developing primary open-angle glaucoma (POAG) correlates with the magnitude of ocular hypertension (OHT) and the concentration of transforming growth factor-β2 (TGFβ2) in the aqueous humor. Effective treatment of POAG requires detailed understanding of interaction between pressure sensing mechanisms in the trabecular meshwork (TM) and biochemical risk factors. Here, we employed molecular, optical, electrophysiological and tonometric strategies to establish the role of TGFβ2 in transcription and functional expression of mechanosensitive channel isoforms alongside studies of TM contractility in biomimetic hydrogels, and intraocular pressure (IOP) regulation in a mouse model of TGFβ2 -induced OHT. TGFβ2 upregulated expression of TRPV4 and PIEZO1 transcripts and time-dependently augmented functional TRPV4 activation. TRPV4 activation induced TM contractility whereas pharmacological inhibition suppressed TGFβ2-induced hypercontractility and abrogated OHT in eyes overexpressing TGFβ2. Trpv4-deficient mice resisted TGFβ2-driven increases in IOP. Nocturnal OHT was not additive to TGFβ-evoked OHT. Our study establishes the fundamental role of TGFβ as a modulator of mechanosensing in nonexcitable cells, identifies TRPV4 channel as the final common mechanism for TM contractility and circadian and pathological OHT and offers insights future treatments that can lower IOP in the sizeable cohort of hypertensive glaucoma patients that resist current treatments.
Collapse
Affiliation(s)
- Christopher N. Rudzitis
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | | | | | | | - Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY
| | - David Križaj
- Department of Ophthalmology and Visual Sciences
- Department of Neurobiology, University of Utah, Salt Lake City, UT
- Department of Bioengineering, University of Utah, Salt Lake City, UT
| |
Collapse
|
10
|
Yarishkin O, Lakk M, Rudzitis CN, Searle JE, Kirdajova D, Križaj D. Resting trabecular meshwork cells experience constitutive cation influx. Vision Res 2024; 224:108487. [PMID: 39303640 PMCID: PMC11552692 DOI: 10.1016/j.visres.2024.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
A quintessential sentinel of cell health, the membrane potential in nonexcitable cells integrates biochemical and biomechanical inputs, determines the driving force for ionic currents activated by input signals and plays critical functions in cellular differentiation, signaling, and pathology. The identity and properties of ion channels that subserve the resting potential in trabecular meshwork (TM) cells is poorly understood, which impairs our understanding of intraocular pressure regulation in healthy and diseased eyes. Here, we identified a powerful cationic conductance that subserves the TM resting potential. It disappears following Na+ removal or substitution with choline or NMDG+, is insensitive to TTX, verapamil, phenamil methanesulfonate, amiloride and GsMTx4, is substituted by Li+ and Cs+, and inhibited by Gd3+ and Ruthenium Red. Constitutive cation influx is thus not mediated by voltage-operated Na+, Ca2+, epithelial Na+ (ENaC) channels, Piezo channels or Na+/H+ exchange but may involve TRP-like channels. Transcriptional analysis detected expression of many TRP genes, with the transcriptome pool dominated by TRPC1 followed by expression of TRPV1, TRPC3, TRPV4 and TRPC5. Pyr3 and Pico1,4,5 did not affect the standing current whereas SKF96365 promoted rather than suppressed, Na+ influx. SEA-0400 induced a modest hyperpolarization, indicating residual contribution from Na+/Ca2+ exchange. The resting membrane potential in human TM cells is thus maintained by a constitutive monovalent cation leak current with properties not unlike those of TRP channels. This conductance is likely to influence conventional outflow by setting the homeostatic steady-state and by regulating the magnitude of pressure-induced currents in normotensive and hypertensive eyes.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | | | - Jordan E Searle
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - Denisa Kirdajova
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, Salt Lake City, UT 84132, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
11
|
Koskimäki S, Tojkander S. TRPV4-A Multifunctional Cellular Sensor Protein with Therapeutic Potential. SENSORS (BASEL, SWITZERLAND) 2024; 24:6923. [PMID: 39517820 PMCID: PMC11548305 DOI: 10.3390/s24216923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Transient receptor potential vanilloid (TRPV) channel proteins belong to the superfamily of TRP proteins that form cationic channels in the animal cell membranes. These proteins have various subtype-specific functions, serving, for example, as sensors for pain, pressure, pH, and mechanical extracellular stimuli. The sensing of extracellular cues by TRPV4 triggers Ca2+-influx through the channel, subsequently coordinating numerous intracellular signaling cascades in a spatio-temporal manner. As TRPV channels play such a wide role in various cellular and physiological functions, loss or impaired TRPV protein activity naturally contributes to many pathophysiological processes. This review concentrates on the known functions of TRPV4 sensor proteins and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Sanna Koskimäki
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | | |
Collapse
|
12
|
Martínez-Carrasco R, Fini ME. Dynasore modulates store-operated calcium entry and mitochondrial calcium release in corneal epithelial cells. Exp Eye Res 2024; 247:110029. [PMID: 39127237 PMCID: PMC11413707 DOI: 10.1016/j.exer.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Dysregulation of calcium homeostasis can precipitate a cascade of pathological events that lead to tissue damage and cell death. Dynasore is a small molecule that inhibits endocytosis by targeting classic dynamins. In a previous study, we showed that dynasore can protect human corneal epithelial cells from damage due to tert-butyl hydroperoxide (tBHP) exposure by restoring cellular calcium (Ca2+) homeostasis. Here we report results of a follow-up study aimed at identifying the source of the damaging Ca2+. Store-operated Ca2+ entry (SOCE) is a cellular mechanism to restore intracellular calcium stores from the extracellular milieu. We found that dynasore effectively blocks SOCE in cells treated with thapsigargin (TG), a small molecule that inhibits pumping of Ca2+ into the endoplasmic reticulum (ER). Unlike dynasore however, SOCE inhibitor YM-58483 did not interfere with the cytosolic Ca2+ overload caused by tBHP exposure. We also found that dynasore effectively blocks Ca2+ release from internal sources. The inefficacy of inhibitors of ER Ca2+ channels suggested that this compartment was not the source of the Ca2+ surge caused by tBHP exposure. However, using a Ca2+-measuring organelle-entrapped protein indicator (CEPIA) reporter targeted to mitochondria, we found that dynasore can block mitochondrial Ca2+ release due to tBHP exposure. Our results suggest that dynasore exerts multiple effects on cellular Ca2+ homeostasis, with inhibition of mitochondrial Ca2+ release playing a key role in protection of corneal epithelial cells against oxidative stress due to tBHP exposure.
Collapse
Affiliation(s)
- Rafael Martínez-Carrasco
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, 800 Washington St, Boston, MA, 02111, USA; Program in Genetics, Molecular & Cellular Biology, Tufts Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, USA; Program in Pharmacology & Drug Development, Tufts Graduate School of Biomedical Sciences, 136 Harrison Ave, Tufts University, Boston, MA, USA.
| |
Collapse
|
13
|
Garcia-Sanchez J, Lin D, Liu WW. Mechanosensitive ion channels in glaucoma pathophysiology. Vision Res 2024; 223:108473. [PMID: 39180975 PMCID: PMC11398070 DOI: 10.1016/j.visres.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve head, resulting in retinal ganglion cell death (RGC) in glaucoma. How mechanical stimuli are sensed and affect cellular physiology in the eye is unclear. Recent studies have shown that mechanosensitive ion channels are expressed in many ocular tissues relevant to glaucoma and may influence IOP regulation and RGC survival. Furthermore, variants in mechanosensitive ion channel genes may be associated with risk for primary open angle glaucoma. These findings suggest that mechanosensitive channels may be important mechanosensors mediating cellular responses to pressure signals in the eye. In this review, we focus on mechanosensitive ion channels from three major channel families-PIEZO, two-pore potassium and transient receptor potential channels. We review the key properties of these channels, their effects on cell function and physiology, and discuss their possible roles in glaucoma pathophysiology.
Collapse
Affiliation(s)
- Julian Garcia-Sanchez
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Danting Lin
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wendy W Liu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
14
|
Prieto-López L, Pereiro X, Vecino E. The mechanics of the retina: Müller glia role on retinal extracellular matrix and modelling. Front Med (Lausanne) 2024; 11:1393057. [PMID: 39296899 PMCID: PMC11410058 DOI: 10.3389/fmed.2024.1393057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The retina is a highly heterogeneous tissue, both cell-wise but also regarding its extracellular matrix (ECM). The stiffness of the ECM is pivotal in retinal development and maturation and has also been associated with the onset and/or progression of numerous retinal pathologies, such as glaucoma, proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), epiretinal membrane (ERM) formation or uveitis. Nonetheless, much remains unknown about the biomechanical milieu of the retina, and specifically the role that Müller glia play as principal mechanosensors and major producers of ECM constituents. So far, new approaches need to be developed to further the knowledge in the field of retinal mechanobiology for ECM-target applications to arise. In this review, we focus on the involvement of Müller glia in shaping and altering the retinal ECM under both physiological and pathological conditions and look into various biomaterial options to more accurately replicate the impact of matrix stiffness in vitro.
Collapse
Affiliation(s)
- Laura Prieto-López
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
15
|
Mohanty S, Batabyal S, Idigo C, Narcisse D, Kim S, Al-Saad H, Carlson M, Tchedre K, Dibas A. Engineered sensor actuator modulator as aqueous humor outflow actuator for gene therapy of primary open-angle glaucoma. J Transl Med 2024; 22:791. [PMID: 39198903 PMCID: PMC11350963 DOI: 10.1186/s12967-024-05581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Glaucoma, a blinding eye disease with optic neuropathy, is usually associated with elevated intraocular pressure (IOP). The currently available pharmacological and surgical treatments for glaucoma have significant limitations and side effects, which include systemic reactions to medications, patient non-compliance, eye infections, surgical device failure, and damage to the eye. Here, we present Sensor-Actuator-Modulator (SAM), an engineered double mutant version of the bacterial stretch-activated mechanosensitive channel of large conductance (MscL) that directly senses tension in the membrane lipid bilayer of cells and in response, transiently opens its large nonspecific pore to release cytoplasmic fluid. The heterologously expressed mechanosensitive SAM channel acts as a tension-activated pressure release valve in trabeculocytes. In the trabecular meshwork (TM), SAM is activated by membrane stretch caused by elevated IOP. We have identified several SAM variants that are activated at physiologically relevant pressures. Using this barogenetic technology, we have demonstrated that SAM is functional in cultured TM cells, and successfully transduced in vivo in TM cells by use of AAV2/8. Further, it is effective in enhancing aqueous humor outflow facility leading to lowering the IOP in a mouse model of ocular hypertension.
Collapse
Affiliation(s)
| | - Subrata Batabyal
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Chinenye Idigo
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Darryl Narcisse
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Sanghoon Kim
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Houssam Al-Saad
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Michael Carlson
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Kissaou Tchedre
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| | - Adnan Dibas
- Nanoscope Technologies, LLC, 1312 Brown Trail, Bedford, TX, 76022, USA
| |
Collapse
|
16
|
Yarishkin O, Lakk M, Rudzitis CN, Kirdajova D, Krizaj D. Resting human trabecular meshwork cells experience tonic cation influx. RESEARCH SQUARE 2024:rs.3.rs-4980372. [PMID: 39257996 PMCID: PMC11384028 DOI: 10.21203/rs.3.rs-4980372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The trabecular meshwork (TM) regulates intraocular pressure (IOP) by converting biochemical and biomechanical stimuli into intracellular signals. Recent electrophysiological studies demonstrated that this process is mediated by pressure sensing ion channels in the TM plasma membrane while the molecular and functional properties of channels that underpin ionic homeostasis in resting cells remain largely unknown. Here, we demonstrate that the TM resting potential is subserved by a powerful cationic conductance that disappears following Na+ removal and substitution with choline or NMDG+. Its insensitivity to TTX, verapamil, phenamil methanesulfonate and amiloride indicates it does not involve voltage-operated Na+, Ca2+ and epithelial Na+ (ENaC) channels or Na+/H+ exchange while a modest hyperpolarization induced by SEA-0440 indicates residual contribution from reversed Na+/Ca2+ exchange. Tonic cationic influx was inhibited by Gd3+ and Ruthenium Red but not GsMTx4, indicating involvement of TRP-like but not Piezo channels. Transcriptional analysis detected expression of most TRP genes, with the canonical transcriptome pool dominated by TRPC1 followed by the expression ofTRPV1, TRPC3 and TRPC5. TRPC3 antagonist Pyr3 and TRPC1,4,5 antagonist Pico1,4,5 did not affect the standing current, whereas the TRPC blocker SKF96365 promoted rather than suppressed, Na+ influx. TM cells thus maintain the resting membrane potential, control Na+ homeostasis, and balance K+ efflux through a novel constitutive monovalent cation leak current with properties not unlike those of TRP channels. Yet to be identified at the molecular level, this novel channel sets the homeostatic steady-state and controls the magnitude of pressure-induced transmembrane signals.
Collapse
|
17
|
Baumann JM, Yarishkin O, Lakk M, De Ieso ML, Rudzitis CN, Kuhn M, Tseng YT, Stamer WD, Križaj D. TRPV4 and chloride channels mediate volume sensing in trabecular meshwork cells. Am J Physiol Cell Physiol 2024; 327:C403-C414. [PMID: 38881423 PMCID: PMC11427009 DOI: 10.1152/ajpcell.00295.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.
Collapse
Affiliation(s)
- Jackson M Baumann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Michael L De Ieso
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | | | - Megan Kuhn
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Yun Ting Tseng
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - W Daniel Stamer
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
18
|
Redmon SN, Lakk M, Tseng YT, Rudzitis CN, Searle JE, Ahmed F, Unser A, Borrás T, Torrejon K, Krizaj D. TRPV4 subserves physiological and pathological elevations in intraocular pressure. RESEARCH SQUARE 2024:rs.3.rs-4714050. [PMID: 39041037 PMCID: PMC11261973 DOI: 10.21203/rs.3.rs-4714050/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Ocular hypertension (OHT) caused by mechanical stress and chronic glucocorticoid exposure reduces the hydraulic permeability of the conventional outflow pathway. It increases the risk for irreversible vision loss, yet healthy individuals experience nightly intraocular pressure (IOP) elevations without adverse lifetime effects. It is not known which pressure sensors regulate physiological vs. pathological OHT nor how they impact the permeability of the principal drainage pathway through the trabecular meshwork (TM). We report that OHT induced by the circadian rhythm, occlusion of the iridocorneal angle and glucocorticoids requires activation of TRPV4, a stretch-activated cation channel. Wild-type mice responded to nocturnal topical administration of the agonist GSK1016790A with IOP lowering, while intracameral injection of the agonist elevated diurnal IOP. Microinjection of TRPV4 antagonists HC067047 and GSK2193874 lowered IOP during the nocturnal OHT phase and in hypertensive eyes treated with steroids or injection of polystyrene microbeads. Conventional outflow-specific Trpv4 knockdown induced partial IOP lowering in mice with occluded iridocorneal angle and protected retinal neurons from pressure injury. Indicating a central role for TRPV4-dependent mechanosensing in trabecular outflow, HC067047 doubled the outflow facility in TM-populated steroid-treated 3D nanoscaffolds. Tonic TRPV4 signaling thus represents a fundamental property of TM biology as a driver of increased in vitro and in vivo outflow resistance. The TRPV4-dependence of OHT under conditions that mimic primary and secondary glaucomas could be explored as a novel target for glaucoma treatments.
Collapse
|
19
|
Jing L, Liu K, Wang F, Su Y. Role of mechanically-sensitive cation channels Piezo1 and TRPV4 in trabecular meshwork cell mechanotransduction. Hum Cell 2024; 37:394-407. [PMID: 38316716 DOI: 10.1007/s13577-024-01035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Glaucoma is one of the leading causes of irreversible blindness in developed countries, and intraocular pressure (IOP) is primary and only treatable risk factor, suggesting that to a significant extent, glaucoma is a disease of IOP disorder and pathological mechanotransduction. IOP-lowering ways are limited to decreaseing aqueous humour (AH) production or increasing the uveoscleral outflow pathway. Still, therapeutic approaches have been lacking to control IOP by enhancing the trabecular meshwork (TM) pathway. Trabecular meshwork cells (TMCs) have endothelial and myofibroblast properties and are responsible for the renewal of the extracellular matrix (ECM). Mechanosensitive cation channels, including Piezo1 and TRPV4, are abundantly expressed in primary TMCs and trigger mechanostress-dependent ECM and cytoskeletal remodelling. However, prolonged mechanical stimulation severely affects cellular biosynthesis through TMC mechanotransduction, including signaling, gene expression, ECM remodelling, and cytoskeletal structural changes, involving outflow facilities and elevating IOP. As for the functional coupling relationship between Piezo1 and TRPV4 channels, inspired by VECs and osteoblasts, we hypothesized that Piezo1 may also act upstream of TRPV4 in glaucomatous TM tissue, mediating the activation of TRPV4 via Ca2+ inflow or Ca2+ binding to phospholipase A2(PLA2), and thus be involved in increasing TM outflow resistance and elevated IOP. Therefore, this review aims to help identify new potential targets for IOP stabilization in ocular hypertension and primary open-angle glaucoma by understanding the mechanical transduction mechanisms associated with the development of glaucoma and may provide ideas into novel treatments for preventing the progression of glaucoma by targeting mechanotransduction.
Collapse
Affiliation(s)
- Lingling Jing
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kexin Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
20
|
Zhang X, Wang F, Su Y. TRPV: An emerging target in glaucoma and optic nerve damage. Exp Eye Res 2024; 239:109784. [PMID: 38199261 DOI: 10.1016/j.exer.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Transient receptor potential vanilloid (TRPV) channels are members of the TRP channel superfamily, which are ion channels that sense mechanical and osmotic stimuli and participate in Ca2+ signalling across the cell membrane. TRPV channels play important roles in maintaining the normal functions of an organism, and defects or abnormalities in TRPV channel function cause a range of diseases, including cardiovascular, neurological and urological disorders. Glaucoma is a group of chronic progressive optic nerve diseases with pathological changes that can occur in the tissues of the anterior and posterior segments of the eye, including the ciliary body, trabecular meshwork, Schlemm's canal, and retina. TRPV channels are expressed in these tissues and play various roles in glaucoma. In this article, we review various aspects of the pathogenesis of glaucoma, the structure and function of TRPV channels, the relationship between TRPV channels and systemic diseases, and the relationship between TRPV channels and ocular diseases, especially glaucoma, and we suggest future research directions. This information will help to further our understanding of TRPV channels and provide new ideas and targets for the treatment of glaucoma and optic nerve damage.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
21
|
Shibasaki K. Regulation of Neural Functions by Brain Temperature and Thermo-TRP Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:199-211. [PMID: 39289283 DOI: 10.1007/978-981-97-4584-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Body temperature is an important determinant in regulating the activities of animals. In humans, a mild 0.5 °C hyperthermia can cause headaches, demonstrating that the maintenance of normal body temperature is a key for our health. In a more extreme example, accidental acute hypothermia can lead to severe shivering, loss of consciousness, or death, although the details of these mechanisms are poorly understood. We previously found that the TRPV4 ion channel is constitutively activated by normal body temperature. The activation threshold of TRPV4 is >34 °C in the brain, which enables TRPV4 to convert thermal information into cellular signaling. Here we review the data that describe how the deletion of TRPV4 evokes abnormal behavior in mice. These studies demonstrate that the maintenance of body temperature and the sensory system for detecting body temperature, such as via TRPV4, are critical components for normal cellular function. Moreover, abnormal TRPV4 activation exacerbates cell death, epilepsy, stroke, or brain edema. Notably, TRPV4 can detect mechanical stimuli and contributes to various neural functions similar to the mechanosensitive characteristics of TRPV2. In this review, I summarize the findings related to TRPV2/TRPV4 and neural functions.
Collapse
Affiliation(s)
- Koji Shibasaki
- Laboratory of Neurochemistry, Department of Nutrition Science, University of Nagasaki, Nagasaki, Japan.
| |
Collapse
|
22
|
Liu WW, Kinzy TG, Cooke Bailey JN, Xu Z, Hysi P, Wiggs JL. Mechanosensitive ion channel gene survey suggests potential roles in primary open angle glaucoma. Sci Rep 2023; 13:15871. [PMID: 37741866 PMCID: PMC10517927 DOI: 10.1038/s41598-023-43072-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023] Open
Abstract
Although glaucoma is a disease modulated by eye pressure, the mechanisms of pressure sensing in the eye are not well understood. Here, we investigated associations between mechanosensitive ion channel gene variants and primary open-angle glaucoma (POAG). Common (minor allele frequency > 5%) single nucleotide polymorphisms located within the genomic regions of 20 mechanosensitive ion channel genes in the K2P, TMEM63, PIEZO and TRP channel families were assessed using genotype data from the NEIGHBORHOOD consortium of 3853 cases and 33,480 controls. Rare (minor allele frequency < 1%) coding variants were assessed using exome array genotyping data for 2606 cases and 2606 controls. Association with POAG was analyzed using logistic regression adjusting for age and sex. Two rare PIEZO1 coding variants with protective effects were identified in the NEIGHBOR dataset: R1527H, (OR 0.17, P = 0.0018) and a variant that alters a canonical splice donor site, g.16-88737727-C-G Hg38 (OR 0.38, P = 0.02). Both variants showed similar effects in the UK Biobank and the R1527H also in the FinnGen database. Several common variants also reached study-specific thresholds for association in the NEIGHBORHOOD dataset. These results identify novel variants in several mechanosensitive channel genes that show associations with POAG, suggesting that these channels may be potential therapeutic targets.
Collapse
Affiliation(s)
- Wendy W Liu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, 2370 Watson Court, Palo Alto, CA, 94303, USA.
| | - Tyler G Kinzy
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Zihe Xu
- Department of Ophthalmology, King's College London, St. Thomas' Hospital, London, UK
| | - Pirro Hysi
- Department of Ophthalmology, King's College London, St. Thomas' Hospital, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, UK
| | - Janey L Wiggs
- Massachusetts Eye and Ear, Harvard Medical School Boston, Boston, MA, USA
| |
Collapse
|
23
|
Wang HN, Qian WJ, Zhao GL, Li F, Miao YY, Lei B, Sun XH, Wang ZF. L- and T-type Ca 2+ channels dichotomously contribute to retinal ganglion cell injury in experimental glaucoma. Neural Regen Res 2023; 18:1570-1577. [PMID: 36571364 PMCID: PMC10075096 DOI: 10.4103/1673-5374.360277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Retinal ganglion cell apoptotic death is the main pathological characteristic of glaucoma, which is the leading cause of irreversible blindness. Disruption of Ca2+ homeostasis plays an important role in glaucoma. Voltage-gated Ca2+ channel blockers have been shown to improve vision in patients with glaucoma. However, whether and how voltage-gated Ca2+ channels are involved in retinal ganglion cell apoptotic death are largely unknown. In this study, we found that total Ca2+ current densities in retinal ganglion cells were reduced in a rat model of chronic ocular hypertension experimental glaucoma, as determined by whole-cell patch-clamp electrophysiological recordings. Further analysis showed that L-type Ca2+ currents were downregulated while T-type Ca2+ currents were upregulated at the later stage of glaucoma. Western blot assay and immunofluorescence experiments confirmed that expression of the CaV1.2 subunit of L-type Ca2+ channels was reduced and expression of the CaV3.3 subunit of T-type Ca2+ channels was increased in retinas of the chronic ocular hypertension model. Soluble tumor necrosis factor-α, an important inflammatory factor, inhibited the L-type Ca2+ current of isolated retinal ganglion cells from control rats and enhanced the T-type Ca2+ current. These changes were blocked by the tumor necrosis factor-α inhibitor XPro1595, indicating that both types of Ca2+ currents may be mediated by soluble tumor necrosis factor-α. The intracellular mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and nuclear factor kappa-B signaling pathway mediate the effects of tumor necrosis factor-α. TUNEL assays revealed that mibefradil, a T-type calcium channel blocker, reduced the number of apoptotic retinal ganglion cells in the rat model of chronic ocular hypertension. These results suggest that T-type Ca2+ channels are involved in disrupted Ca2+ homeostasis and apoptosis of retinal ganglion cells in glaucoma, and application of T-type Ca2+ channel blockers, especially a specific CaV3.3 blocker, may be a potential strategy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Hong-Ning Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Jing Qian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yan-Ying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bo Lei
- Institutes of Neuroscience and Third Affiliated Hospital, Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xing-Huai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, NHC Key Laboratory of Myopia, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zhong-Feng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Wang Y, Zhang W, Xu G, Shi C, Wang X, Qu J, Wang H, Liu C. The role of TRPV4 in the regulation of retinal ganglion cells apoptosis in rat and mouse. Heliyon 2023; 9:e17583. [PMID: 37456002 PMCID: PMC10338314 DOI: 10.1016/j.heliyon.2023.e17583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Retinal ganglion cell (RGC) damages are common in glaucoma, causing atrophy of the optic papilla, visual field damage, and visual loss. Transient receptor potential vanilloid 4 (TRPV4) is significantly expressed in the eyeball and is sensitive to mechanical and osmotic pressure. However, the specific role and mechanism of TRPV4 in glaucoma and RGC progression remain unclear. TRPV4 expression was detected in RGCs under different pressure culture conditions. We also explored the pressure effect on TRPV4 expression and the role and mechanism behind the functional regulation of RGCs. Immunofluorescence staining, western blotting, and TUNEL were utilized in this study. Our results established that TRPV4 was expressed in RGCs. TRPV4 expression was decreased at 40 mmHg and 60 mmHg, and the expression of BAX at 40 mmHg, 60 mmHg. Additionally, the expression of caspase 9 protein increased at 40 mmHg with the pressure increase compared with the conventional culture group. TUNEL staining revealed that the apoptosis rate of RGCs was elevated at 40 mmHg and 60 mmHg, compared with the traditional culture group. Therefore, the expression of BAX and caspase 9 increased, along with the apoptosis rate of RGCs compared with the control group. However, after TRPV4 antagonist treatment, the expression of BAX and caspase 9 decreased, and the apoptosis rate of RGCs decreased. Thus, TRPV4 may affect the mitochondrial apoptosis pathway, such as BAX and caspase 9, leading to the apoptosis of RGCs. The antagonists of TRPV4 could provide a new idea for clinically treating acute glaucoma.
Collapse
Affiliation(s)
- Yi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, 271000, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Guozheng Xu
- Department of Physiology and Neurobiology, Functional Laboratory, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Changwei Shi
- Department of Physiology and Neurobiology, Functional Laboratory, Shandong First Medical University, Jinan, Shandong, 250117, China
| | - Xiang Wang
- School of Clinical Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Jianfeng Qu
- Medical Engineering and Technology Research Center, Shandong First Medical University, Taian, Shandong, 271000, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Functional Laboratory, Shandong First Medical University, Jinan, Shandong, 250117, China
| |
Collapse
|
25
|
Beardslee LA, Halman JR, Unser AM, Xie Y, Danias J, Bergkvist M, Sharfstein ST, Torrejon KY. Recreating the Trabecular Outflow Tissue on Implantable, Micropatterned, Ultrathin, Porous Polycaprolactone Scaffolds. Bioengineering (Basel) 2023; 10:679. [PMID: 37370610 PMCID: PMC10294786 DOI: 10.3390/bioengineering10060679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Glaucoma, where increased intraocular pressure (IOP) leads to damage to the optic nerve and loss of sight, is amongst the foremost causes of irreversible blindness worldwide. In primary open angle glaucoma, the increased IOP is a result of the malfunctioning human trabecular meshwork (HTM) cells' inability to properly regulate the outflow of aqueous humor from the eye. A potential future treatment for glaucoma is to replace damaged HTM cells with a tissue-engineered substitute, thus restoring proper fluid outflow. Polycaprolactone (PCL) is a versatile, biodegradable, and implantable material that is widely used for cell culture and tissue engineering. In this work, PCL scaffolds were lithographically fabricated using a sacrificial process to produce submicron-thick scaffolds with openings of specific sizes and shapes (e.g., grid, hexagonal pattern). The HTM cell growth on gelatin-coated PCL scaffolds was assessed by scanning electron microscopy, tetrazolium metabolic activity assay, and cytoskeletal organization of F-actin. Expression of HTM-specific markers and ECM deposition were assessed by immunocytochemistry and qPCR analysis. Gelatin-coated, micropatterned, ultrathin, porous PCL scaffolds with a grid pattern supported proper HTM cell growth, cytoskeleton organization, HTM-marker expression, and ECM deposition, demonstrating the feasibility of using these PCL scaffolds to tissue-engineer implantable, healthy ocular outflow tissue.
Collapse
Affiliation(s)
- Luke A. Beardslee
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Justin R. Halman
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Andrea M. Unser
- Department of Ophthalmology, SUNY Downstate Health Sciences University, 450 Clackson Avenue, Brooklyn, NY 11203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - John Danias
- Department of Ophthalmology, SUNY Downstate Health Sciences University, 450 Clackson Avenue, Brooklyn, NY 11203, USA
| | - Magnus Bergkvist
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Susan T. Sharfstein
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
| | - Karen Y. Torrejon
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA
- Glauconix Biosciences Inc., 251 Fuller Road, Albany, NY 12203, USA
| |
Collapse
|
26
|
Sharif NA. Recently Approved Drugs for Lowering and Controlling Intraocular Pressure to Reduce Vision Loss in Ocular Hypertensive and Glaucoma Patients. Pharmaceuticals (Basel) 2023; 16:791. [PMID: 37375739 DOI: 10.3390/ph16060791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Serious vision loss occurs in patients affected by chronically raised intraocular pressure (IOP), a characteristic of many forms of glaucoma where damage to the optic nerve components causes progressive degeneration of retinal and brain neurons involved in visual perception. While many risk factors abound and have been validated for this glaucomatous optic neuropathy (GON), the major one is ocular hypertension (OHT), which results from the accumulation of excess aqueous humor (AQH) fluid in the anterior chamber of the eye. Millions around the world suffer from this asymptomatic and progressive degenerative eye disease. Since clinical evidence has revealed a strong correlation between the reduction in elevated IOP/OHT and GON progression, many drugs, devices, and surgical techniques have been developed to lower and control IOP. The constant quest for new pharmaceuticals and other modalities with superior therapeutic indices has recently yielded health authority-approved novel drugs with unique pharmacological signatures and mechanism(s) of action and AQH drainage microdevices for effectively and durably treating OHT. A unique nitric oxide-donating conjugate of latanoprost, an FP-receptor prostaglandin (PG; latanoprostene bunod), new rho kinase inhibitors (ripasudil; netarsudil), a novel non-PG EP2-receptor-selective agonist (omidenepag isopropyl), and a form of FP-receptor PG in a slow-release intracameral implant (Durysta) represent the additions to the pharmaceutical toolchest to mitigate the ravages of OHT. Despite these advances, early diagnosis of OHT and glaucoma still lags behind and would benefit from further concerted effort and attention.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore 169856, Singapore
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX 76107, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
- Imperial College of Science and Technology, St. Mary's Campus, London SW7 2BX, UK
- Institute of Ophthalmology, University College London, London WC1E 6BT, UK
| |
Collapse
|
27
|
TRPV4 channels promote vascular permeability in retinal vascular disease. Exp Eye Res 2023; 228:109405. [PMID: 36773739 DOI: 10.1016/j.exer.2023.109405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
This study aimed to determine the role of transient receptor potential vanilloid 4 (TRPV4), a calcium (Ca2+)-permeable cation channel, in the pathophysiology of retinal vascular disease. The retinal vein occlusion (RVO) murine model was created by irradiating retinal veins using lasers. TRPV4 expression and localization were evaluated in RVO mice retinas. In addition, we examined the effects of TRPV4 antagonists (RQ-00317310, HC-067047, GSK2193874, and GSK2798745) on retinal edema, blood flow, and ischemic areas in RVO mice. Furthermore, changes in the retinal expression of tumor necrosis factor (TNF)-α and aquaporin4 (AQP4) by RQ-00317310 were analyzed using Western blot. We also assessed the barrier integrity of epithelial cell monolayers using trans-endothelial electrical resistance (TEER) in Human Retinal Microvascular Endothelial Cells (HRMECs). The expression of TRPV4 was significantly increased and co-localized with glutamine synthetase (GS), a Müller glial marker, in the ganglion cell layer (GCL) of the RVO mice. Moreover, RQ-00317310 administration ameliorated the development of retinal edema and ischemia in RVO mice. In addition, the up regulation of TNF-α and down-regulation of AQP4 were lessened by the treatment with RQ-00317310. Treatment with GSK1016790A, a TRPV4 agonist, increased vascular permeability, while RQ-00317310 treatment decreased vascular endothelial growth factor (VEGF)- or TRPV4-induced retinal vascular hyperpermeability in HRMECs. These findings suggest that TRPV4 plays a role in the development of retinal edema and ischemia. Thus, TRPV4 could be a new therapeutic target against the pathological symptoms of retinal vascular diseases.
Collapse
|
28
|
Irnaten M, O’Brien CJ. Calcium-Signalling in Human Glaucoma Lamina Cribrosa Myofibroblasts. Int J Mol Sci 2023; 24:ijms24021287. [PMID: 36674805 PMCID: PMC9862249 DOI: 10.3390/ijms24021287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
Glaucoma is one of the most common causes of treatable visual impairment in the developed world, affecting approximately 64 million people worldwide, some of whom will be bilaterally blind from irreversible optic nerve damage. The optic nerve head is a key site of damage in glaucoma where there is fibrosis of the connective tissue in the lamina cribrosa (LC) extracellular matrix. As a ubiquitous second messenger, calcium (Ca2+) can interact with various cellular proteins to regulate multiple physiological processes and contribute to a wide range of diseases, including cancer, fibrosis, and glaucoma. Our research has shown evidence of oxidative stress, mitochondrial dysfunction, an elevated expression of Ca2+ entry channels, Ca2+-dependent pumps and exchangers, and an abnormal rise in cytosolic Ca2+ in human glaucomatous LC fibroblast cells. We have evidence that this increase is dependent on Ca2+ entry channels located in the plasma membrane, and its release is from internal stores in the endoplasmic reticulum (ER), as well as from the mitochondria. Here, we summarize some of the molecular Ca2+-dependent mechanisms related to this abnormal Ca2+-signalling in human glaucoma LC cells, with a view toward identifying potential therapeutic targets for ongoing optic neuropathy.
Collapse
|
29
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
30
|
Hulme L, Hochstetler A, Schwerk C, Schroten H, Ishikawa H, Tung CY, Perrin B, Blazer-Yost B. Characterization of TRPV4-mediated signaling pathways in an optimized human choroid plexus epithelial cell line. Am J Physiol Cell Physiol 2022; 323:C1823-C1842. [PMID: 35938676 PMCID: PMC9744646 DOI: 10.1152/ajpcell.00193.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
The objectives of these studies were twofold: 1) to characterize the human choroid plexus papilloma (HIBCPP) cell line as a model of the blood-cerebrospinal fluid barrier (BCSFB) via morphology, tightness, and polarization of transporters in choroid plexus epithelia (CPe), and 2) to utilize Ussing-style electrophysiology to elucidate signaling pathways associated with the activation of the transient receptor potential vanilloid 4 (TRPV4) channel involved in cerebrospinal fluid (CSF) secretion. RT-PCR was implemented to determine gene expression of cell fate markers, junctional complex proteins, and transporters of interest. Scanning electron microscopy and confocal three-dimensional renderings of cultures grown on permeable supports were utilized to delineate the morphology of the brush border, junctional complexes, and polarization of key transporters. Electrophysiology was used to understand and explore TRPV4-mediated signaling in the HIBCPP cell line, considering both short-circuit current (Isc) and conductance responses. HIBCPP cells grown under optimized culture conditions exhibited minimal multilayering, developed an intermediate resistance monolayer, retained differentiation properties, and expressed, and correctly localized, junctional proteins and native transporters. We found that activation of TRPV4 resulted in a robust, multiphasic change in electrogenic ion flux and increase in conductance accompanied by substantial fluid secretion. This response appears to be modulated by a number of different effectors, implicating phospholipase C (PLC), protein kinase C (PKC), and phosphoinositide 3-kinase (PI3K) in TRPV4-mediated ion flux. The HIBCPP cell line is a representative model of the human BCSFB, which can be utilized for studies of transporter function, intracellular signaling, and regulation of CSF production.
Collapse
Affiliation(s)
- Louise Hulme
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Alexandra Hochstetler
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Department of Neurosurgery, Laboratory of Clinical Regenerative Medicine, University of Tsukuba, Ibaraki, Japan
| | - Chun-Yu Tung
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Benjamin Perrin
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Bonnie Blazer-Yost
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
31
|
Asaoka R, Obana A, Murata H, Fujino Y, Omoto T, Aoki S, Muto S, Takayanagi Y, Inoue T, Tanito M. The Association Between Age and Systemic Variables and the Longitudinal Trend of Intraocular Pressure in a Large-Scale Health Examination Cohort. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 36301531 PMCID: PMC9624273 DOI: 10.1167/iovs.63.11.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The detailed effects of age and systemic factors on intraocular pressure (IOP) have not been fully understood because of the lack of a large-scale longitudinal investigation. This study aimed to investigate the effect of various systemic factors on the longitudinal change of IOP. Methods There were a total of 20,909 eyes of 10,471 subjects from a health checkup cohort that were followed up for systemic factors: (i) age at baseline, (ii) sex, (iii) time series body mass index (BMI), (iv) time series smoking habits, (v) time series systolic and diastolic blood pressures (SBP and DBP), and (vi) time series 19 blood examinations (all of the time series data was acquired at each annual visit), along with IOP annually for at least 8 years. Then the longitudinal effect of the systemic factors on the change of IOP was investigated. Results IOP significantly decreased by −0.084 mm Hg/year. BMI, SBP, DBP, smoking habits, total triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and glycosylated hemoglobin A1c were not significantly associated with the change of IOP. Higher values of age, aspartate aminotransferase, hemoglobin, platelet, and calcium were suggested to be significantly associated with the decrease of IOP, whereas higher alanine aminotransferase, guanosine triphosphate, white blood cell count, red blood cell count, and female gender were significantly associated with the increase of IOP. Conclusions Age, aspartate aminotransferase, hemoglobin, platelet, calcium, alanine aminotransferase, guanosine triphosphate, white blood cell count, red blood cell count, and gender were the systemic variables significantly associated with the change of IOP.
Collapse
Affiliation(s)
- Ryo Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Seirei Christopher University, Shizuoka, Hamamatsu, Japan
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
- Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka Japan
- The Graduate School for the Creation of New Photonics Industries, Shizuoka Japan
| | - Akira Obana
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Hamamatsu BioPhotonics Innovation Chair, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Murata
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
- Department of Ophthalmology, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yuri Fujino
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Takashi Omoto
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Shuichiro Aoki
- Department of Ophthalmology, Sapporo City General Hospital, Sapporo, Japan
| | - Shigetaka Muto
- Seirei Center for Health Promotion and Preventive Medicine, Shizuoka, Hamamatsu, Japan
| | - Yuji Takayanagi
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Tatsuya Inoue
- Department of Ophthalmology and Micro-Technology, Yokohama City University, Kanagawa, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| |
Collapse
|
32
|
Lapajne L, Rudzitis CN, Cullimore B, Ryskamp D, Lakk M, Redmon SN, Yarishkin O, Krizaj D. TRPV4: Cell type-specific activation, regulation and function in the vertebrate eye. CURRENT TOPICS IN MEMBRANES 2022; 89:189-219. [PMID: 36210149 PMCID: PMC9879314 DOI: 10.1016/bs.ctm.2022.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The architecture of the vertebrate eye is optimized for efficient delivery and transduction of photons and processing of signaling cascades downstream from phototransduction. The cornea, lens, retina, vasculature, ciliary body, ciliary muscle, iris and sclera have specialized functions in ocular protection, transparency, accommodation, fluid regulation, metabolism and inflammatory signaling, which are required to enable function of the retina-light sensitive tissue in the posterior eye that transmits visual signals to relay centers in the midbrain. This process can be profoundly impacted by non-visual stimuli such as mechanical (tension, compression, shear), thermal, nociceptive, immune and chemical stimuli, which target these eye regions to induce pain and precipitate vision loss in glaucoma, diabetic retinopathy, retinal dystrophies, retinal detachment, cataract, corneal dysfunction, ocular trauma and dry eye disease. TRPV4, a polymodal nonselective cation channel, integrate non-visual inputs with homeostatic and signaling functions of the eye. The TRPV4 gene is expressed in most if not all ocular tissues, which vary widely with respect to the mechanisms of TRPV4 channel activation, modulation, oligomerization, and participation in protein- and lipid interactions. Under- and overactivation of TRPV4 may affect intraocular pressure, maintenance of blood-retina barriers, lens accommodation, neuronal function and neuroinflammation. Because TRPV4 dysregulation precipitates many pathologies across the anterior and posterior eye, the channel could be targeted to mitigate vision loss.
Collapse
Affiliation(s)
- Luka Lapajne
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States; Department of Ophthalmology, University Medical Centre, University of Ljubljana, Ljubljana, Slovenia
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Brenan Cullimore
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Daniel Ryskamp
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Sarah N Redmon
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - David Krizaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States; Department of Neurobiology, University of Utah, Salt Lake City, UT, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
33
|
Shim MS, Liton PB. The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up. Prog Retin Eye Res 2022; 90:101064. [PMID: 35370083 PMCID: PMC9464695 DOI: 10.1016/j.preteyeres.2022.101064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
During the last few years, the autophagy lysosomal system is emerging as a central cellular pathway with roles in survival, acting as a housekeeper and stress response mechanism. Studies by our and other labs suggest that autophagy might play an essential role in maintaining aqueous humor outflow homeostasis, and that malfunction of autophagy in outflow pathway cells might predispose to ocular hypertension and glaucoma pathogenesis. In this review, we will collect the current knowledge and discuss the molecular mechanisms by which autophagy does or might regulate normal outflow pathway tissue function, and its response to different types of stressors (oxidative stress and mechanical stress). We will also discuss novel roles of autophagy and lysosomal enzymes in modulation of TGFβ signaling and ECM remodeling, and the link between dysregulated autophagy and cellular senescence. We will examine what we have learnt, using pre-clinical animal models about how dysregulated autophagy can contribute to disease and apply that to the current status of autophagy in human glaucoma. Finally, we will consider and discuss the challenges and the potential of autophagy as a therapeutic target for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA
| | - Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA.
| |
Collapse
|
34
|
Chen S, Wang W, Cao Q, Wu S, Wang N, Ji L, Zhu W. Cationic Mechanosensitive Channels Mediate Trabecular Meshwork Responses to Cyclic Mechanical Stretch. Front Pharmacol 2022; 13:881286. [PMID: 35928263 PMCID: PMC9343793 DOI: 10.3389/fphar.2022.881286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The trabecular meshwork (TM) is responsible for intraocular pressure (IOP) homeostasis in the eye. The tissue senses IOP fluctuations and dynamically adapts to the mechanical changes to either increase or decrease aqueous humor outflow. Cationic mechanosensitive channels (CMCs) have been reported to play critical roles in mediating the TM responses to mechanical forces. However, how CMCs influence TM cellular function affect aqueous humor drainage is still elusive. In this study, human TM (HTM) cells were collected from a Chinese donor and subjected to cyclically equiaxial stretching with an amplitude of 20% at 1 Hz GsMTx4, a non-selective inhibitor for CMCs, was added to investigate the proteomic changes induced by CMCs in response to mechanical stretch of HTM. Gene ontology enrichment analysis demonstrated that inhibition of CMCs significantly influenced several biochemical pathways, including store-operated calcium channel activity, microtubule cytoskeleton polarity, toll-like receptor signaling pathway, and neuron cell fate specification. Through heatmap analysis, we grouped 148 differentially expressed proteins (DEPs) into 21 clusters and focused on four specific patterns associated with Ca2+ homeostasis, autophagy, cell cycle, and cell fate. Our results indicated that they might be the critical downstream signals of CMCs adapting to mechanical forces and mediating AH outflow.
Collapse
Affiliation(s)
- Susu Chen
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Wenyan Wang
- Department of Clinical Pharmacy, The Second Hospital of Traditional Chinese Medicine of Huangdao District, Qingdao, China
| | - Qilong Cao
- Qingdao Haier Biotech Co.,Ltd., Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Lixia Ji
- School of Pharmacy, Qingdao University, Qingdao, China
- *Correspondence: Wei Zhu, ; Lixia Ji,
| | - Wei Zhu
- School of Pharmacy, Qingdao University, Qingdao, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing, China
- *Correspondence: Wei Zhu, ; Lixia Ji,
| |
Collapse
|
35
|
Beeken J, Mertens M, Stas N, Kessels S, Aerts L, Janssen B, Mussen F, Pinto S, Vennekens R, Rigo JM, Nguyen L, Brône B, Alpizar YA. Acute inhibition of transient receptor potential vanilloid-type 4 cation channel halts cytoskeletal dynamism in microglia. Glia 2022; 70:2157-2168. [PMID: 35809029 DOI: 10.1002/glia.24243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/04/2023]
Abstract
Microglia, the resident macrophages of the central nervous system, are highly motile cells that support brain development, provision neuronal signaling, and protect brain cells against damage. Proper microglial functioning requires constant cell movement and morphological changes. Interestingly, the transient receptor potential vanilloid 4 (TRPV4) channel, a calcium-permeable channel, is involved in hypoosmotic morphological changes of retinal microglia and regulates temperature-dependent movement of microglial cells both in vitro and in vivo. Despite the broad functions of TRPV4 and the recent findings stating a role for TRPV4 in microglial movement, little is known about how TRPV4 modulates cytoskeletal remodeling to promote changes of microglial motility. Here we show that acute inhibition of TRPV4, but not its constitutive absence in the Trpv4 KO cells, affects the morphology and motility of microglia in vitro. Using high-end confocal imaging techniques, we show a decrease in actin-rich filopodia and tubulin dynamics upon acute inhibition of TRPV4 in vitro. Furthermore, using acute brain slices we demonstrate that Trpv4 knockout microglia display lower ramification complexity, slower process extension speed and consequently smaller surveyed area. We conclude that TRPV4 inhibition triggers a shift in cytoskeleton remodeling of microglia influencing their migration and morphology.
Collapse
Affiliation(s)
- Jolien Beeken
- UHasselt, BIOMED, Diepenbeek, Belgium.,Université de Liège, GIGA-Stem-Cells, Liège, Belgium
| | | | | | | | | | | | | | - Silvia Pinto
- Laboratory of Ion Channel Research, VIB-KU Leuven, Leuven, Belgium
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, VIB-KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
36
|
Chen Y, Su Y, Wang F. The Piezo1 ion channel in glaucoma: a new perspective on mechanical stress. Hum Cell 2022; 35:1307-1322. [PMID: 35767143 DOI: 10.1007/s13577-022-00738-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Glaucomatous optic nerve damage caused by pathological intraocular pressure elevation is irreversible, and its course is often difficult to control. This group of eye diseases is closely related to biomechanics, and the correlation between glaucoma pathogenesis and mechanical stimulation has been studied in recent decades. The nonselective cation channel Piezo1, the most important known mechanical stress sensor, is a transmembrane protein widely expressed in various cell types. Piezo1 has been detected throughout the eye, and the close relationship between Piezo1 and glaucoma is being confirmed. Pathological changes in glaucoma occur in both the anterior and posterior segments of the eye, and it is of great interest for researchers to determine whether Piezo1 plays a role in these changes and how it functions. The elucidation of the mechanisms of Piezo1 action in nonocular tissues and the reported roles of similar mechanically activated ion channels in glaucoma will provide an appropriate basis for further investigation. From a new perspective, this review provides a detailed description of the current progress in elucidating the role of Piezo1 in glaucoma, including relevant questions and assumptions, the remaining challenging research directions and mechanism-related therapeutic potential.
Collapse
Affiliation(s)
- Yidan Chen
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China
| | - Ying Su
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Yiman Road, Harbin, 150007, China.
| | - Feng Wang
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China.
| |
Collapse
|
37
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
38
|
Jo AO, Lakk M, Rudzitis CN, Križaj D. TRPV4 and TRPC1 channels mediate the response to tensile strain in mouse Müller cells. Cell Calcium 2022; 104:102588. [PMID: 35398674 PMCID: PMC9119919 DOI: 10.1016/j.ceca.2022.102588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
Abstract
Müller glia, a pillar of metabolic, volume regulatory and immune/inflammatory signaling in the mammalian retina, are among the earliest responders to mechanical stressors in the eye. Ocular trauma, edema, detachment and glaucoma evoke early inflammatory activation of Müller cells yet the identity of their mechanotransducers and signaling mechanisms downstream remains unknown. Here, we investigate expression of genes that encode putative stretch-activated calcium channels (SACs) in mouse Müller cells and study their responses to dynamical tensile loading in cells loaded with a calcium indicator dye. Transcript levels in purified glia were Trpc1>Piezo1>Trpv2>Trpv4>>Trpv1>Trpa1. Cyclic radial deformation of matrix-coated substrates produced dose-dependent increases in [Ca2+]i that were suppressed by the TRPV4 channel antagonist HC-067047 and by ablation of the Trpv4 gene. Stretch-evoked calcium responses were also reduced by knockdown and pharmacological inhibition of TRPC1 channels whereas the TRPV2 inhibitor tranilast had no effect. These data demonstrate that Müller cells are intrinsically mechanosensitive, with the response to tensile loading mediated through synergistic activation of TRPV4 and TRPC1 channels. Coupling between mechanical stress and Müller Ca2+ homeostasis has treatment implications, since many neuronal injury paradigms in the retina involve calcium dysregulation associated with inflammatory and immune signaling.
Collapse
Affiliation(s)
- Andrew O Jo
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132; Interdepartmental Program in Neuroscience
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132; Interdepartmental Program in Neuroscience; Department of Neurobiology, University of Utah, Salt Lake City, UT 84112; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112.
| |
Collapse
|
39
|
Statins Inhibit the Gliosis of MIO-M1, a Müller Glial Cell Line Induced by TRPV4 Activation. Int J Mol Sci 2022; 23:ijms23095190. [PMID: 35563594 PMCID: PMC9100994 DOI: 10.3390/ijms23095190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
We characterized Müller cell gliosis induced by the activation of transient receptor potential vanilloid-type 4 (TRPV4) and assessed whether statins could modulate the gliosis. The human Müller cell line, MIO-M1, was used to analyze the gliosis caused by glaucomatous stimulation. To induce Müller gliosis in MIO-M1 cells, GSK101 was used to activate TRPV4, and Müller gliosis was evaluated by analyzing vimentin, nestin, and glial fibrillary acidic protein (GFAP) expression. The expression level of TNF-α was determined by ELISA. To evaluate the GSK101 activation of the NF-κB pathway, p65 phosphorylation was measured by Western blotting, and the nuclear translocation of p65 and IκBα phosphorylation were assessed by immunostaining. To assess the effect of statins on MIO-M1 gliosis, cells were pretreated for 24 h with statins before GSK101 treatment. Vimentin, nestin, and GFAP expression were upregulated by GSK101, while statins effectively inhibited them. The expression of TNF-α was increased by GSK101. The phosphorylation and nuclear translocation of p65 and IκBα phosphorylation, which occurs prior to p65 activation, were induced. Statins suppressed the GSK101-mediated phosphorylation of IκBα and p65 translocation. Statins can mitigate gliosis in the human Müller cell line. Because TRPV4 activation in Müller cells reflects glaucoma pathophysiology, statins may have the potential to prevent RGC death.
Collapse
|
40
|
Combined drug triads for synergic neuroprotection in retinal degeneration. Biomed Pharmacother 2022; 149:112911. [DOI: 10.1016/j.biopha.2022.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
|
41
|
Yarishkin O, Phuong TTT, Vazquez-Chona F, Bertrand J, van Battenburg-Sherwood J, Redmon SN, Rudzitis CN, Lakk M, Baumann JM, Freichel M, Hwang EM, Overby D, Križaj D. Emergent Temporal Signaling in Human Trabecular Meshwork Cells: Role of TRPV4-TRPM4 Interactions. Front Immunol 2022; 13:805076. [PMID: 35432302 PMCID: PMC9008486 DOI: 10.3389/fimmu.2022.805076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Trabecular meshwork (TM) cells are phagocytic cells that employ mechanotransduction to actively regulate intraocular pressure. Similar to macrophages, they express scavenger receptors and participate in antigen presentation within the immunosuppressive milieu of the anterior eye. Changes in pressure deform and compress the TM, altering their control of aqueous humor outflow but it is not known whether transducer activation shapes temporal signaling. The present study combines electrophysiology, histochemistry and functional imaging with gene silencing and heterologous expression to gain insight into Ca2+ signaling downstream from TRPV4 (Transient Receptor Potential Vanilloid 4), a stretch-activated polymodal cation channel. Human TM cells respond to the TRPV4 agonist GSK1016790A with fluctuations in intracellular Ca2+ concentration ([Ca2+]i) and an increase in [Na+]i. [Ca2+]i oscillations coincided with monovalent cation current that was suppressed by BAPTA, Ruthenium Red and the TRPM4 (Transient Receptor Potential Melastatin 4) channel inhibitor 9-phenanthrol. TM cells expressed TRPM4 mRNA, protein at the expected 130-150 kDa and showed punctate TRPM4 immunoreactivity at the membrane surface. Genetic silencing of TRPM4 antagonized TRPV4-evoked oscillatory signaling whereas TRPV4 and TRPM4 co-expression in HEK-293 cells reconstituted the oscillations. Membrane potential recordings suggested that TRPM4-dependent oscillations require release of Ca2+ from internal stores. 9-phenanthrol did not affect the outflow facility in mouse eyes and eyes from animals lacking TRPM4 had normal intraocular pressure. Collectively, our results show that TRPV4 activity initiates dynamic calcium signaling in TM cells by stimulating TRPM4 channels and intracellular Ca2+ release. It is possible that TRPV4-TRPM4 interactions downstream from the tensile and compressive impact of intraocular pressure contribute to homeostatic regulation and pathological remodeling within the conventional outflow pathway.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Felix Vazquez-Chona
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Jacques Bertrand
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Sarah N Redmon
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Christopher N Rudzitis
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, United States
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Jackson M Baumann
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Eun-Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Darryl Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, United States.,Department of Bioengineering, University of Utah, Salt Lake City, United States.,Department of Neurobiology, University of Utah, Salt Lake City, United States
| |
Collapse
|
42
|
Ma L, Liu X, Liu Q, Jin S, Chang H, Liu H. The Roles of Transient Receptor Potential Ion Channels in Pathologies of Glaucoma. Front Physiol 2022; 13:806786. [PMID: 35185615 PMCID: PMC8850928 DOI: 10.3389/fphys.2022.806786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Transient receptor ion potential (TRP) channels are a cluster of non-selective cation channels present on cell membranes. They are important mediators of sensory signals to regulate cellular functions and signaling pathways. Alterations and dysfunction of these channels could disrupt physiological processes, thus leading to a broad array of disorders, such as cardiovascular, renal and nervous system diseases. These effects position them as potential targets for drug design and treatment. Because TRP channels can mediate processes such as mechanical conduction, osmotic pressure, and oxidative stress, they have been studied in the context of glaucoma. Glaucoma is an irreversible blinding eye disease caused by an intermittent or sustained increase in intraocular pressure (IOP), which results in the apoptosis of retinal ganglion cells (RGCs), optic nerve atrophy and eventually visual field defects. An increasing number of studies have documented that various TRP subfamilies are abundantly expressed in ocular structures, including the cornea, lens, ciliary body (CB), trabecular meshwork (TM) and retina. In alignment with these findings, there is also mounting evidence supporting the potential role of the TRP family in glaucoma progression. Therefore, it is of great interest and clinical significance to gain an increased understanding of these channels, which in turn could shed more light on the identification of new therapeutic targets for glaucoma. Moreover, this role is not understood completely to date, and whether the activation of TRP channels contributes to glaucoma, or instead aggravates progression, needs to be explored. In this manuscript, we aim to provide a comprehensive overview of recent research on TRP channels in glaucoma and to suggest novel targets for future therapeutic interventions in glaucoma.
Collapse
Affiliation(s)
- Lin Ma
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sen Jin
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haixia Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Haixia Liu,
| |
Collapse
|
43
|
Sundberg CA, Lakk M, Paul S, Figueroa KP, Scoles DR, Pulst SM, Križaj D. The RNA-binding protein and stress granule component ATAXIN-2 is expressed in mouse and human tissues associated with glaucoma pathogenesis. J Comp Neurol 2022; 530:537-552. [PMID: 34350994 PMCID: PMC8716417 DOI: 10.1002/cne.25228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023]
Abstract
Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.
Collapse
Affiliation(s)
- Chad A. Sundberg
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
44
|
Delamere NA, Shahidullah M. Ion Transport Regulation by TRPV4 and TRPV1 in Lens and Ciliary Epithelium. Front Physiol 2022; 12:834916. [PMID: 35173627 PMCID: PMC8841554 DOI: 10.3389/fphys.2021.834916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
Aside from a monolayer of epithelium at the anterior surface, the lens is formed by tightly compressed multilayers of fiber cells, most of which are highly differentiated and have a limited capacity for ion transport. Only the anterior monolayer of epithelial cells has high Na, K-ATPase activity. Because the cells are extensively coupled, the lens resembles a syncytium and sodium-potassium homeostasis of the entire structure is largely dependent on ion transport by the epithelium. Here we describe recent studies that suggest TRPV4 and TRPV1 ion channels activate signaling pathways that play an important role in matching epithelial ion transport activity with needs of the lens cell mass. A TRPV4 feedback loop senses swelling in the fiber mass and increases Na, K-ATPase activity to compensate. TRPV4 channel activation in the epithelium triggers opening of connexin hemichannels, allowing the release of ATP that stimulates purinergic receptors in the epithelium and results in the activation of Src family tyrosine kinases (SFKs) and SFK-dependent increase of Na, K-ATPase activity. A separate TRPV1 feedback loop senses shrinkage in the fiber mass and increases NKCC1 activity to compensate. TRPV1 activation causes calcium-dependent activation of a signaling cascade in the lens epithelium that involves PI3 kinase, ERK, Akt and WNK. TRPV4 and TRPV1 channels are also evident in the ciliary body where Na, K-ATPase is localized on one side of a bilayer in which two different cell types, non-pigmented and pigmented ciliary epithelium, function in a coordinated manner to secrete aqueous humor. TRPV4 and TRPV1 may have a role in maintenance of cell volume homeostasis as ions and water move through the bilayer.
Collapse
|
45
|
Nguyen TN, Siddiqui G, Veldhuis NA, Poole DP. Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling. Front Immunol 2022; 12:828115. [PMID: 35126384 PMCID: PMC8811046 DOI: 10.3389/fimmu.2021.828115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective mechanosensitive ion channel expressed by various macrophage populations. Recent reports have characterized the role of TRPV4 in shaping the activity and phenotype of macrophages to influence the innate immune response to pathogen exposure and inflammation. TRPV4 has been studied extensively in the context of inflammation and inflammatory pain. Although TRPV4 activity has been generally described as pro-inflammatory, emerging evidence suggests a more complex role where this channel may also contribute to anti-inflammatory activities. However, detailed understanding of how TRPV4 may influence the initiation, maintenance, and resolution of inflammatory disease remains limited. This review highlights recent insights into the cellular processes through which TRPV4 contributes to pathological conditions and immune processes, with a focus on macrophage biology. The potential use of high-throughput and omics methods as an unbiased approach for studying the functional outcomes of TRPV4 activation is also discussed.
Collapse
Affiliation(s)
- Thanh-Nhan Nguyen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Nicholas A. Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| | - Daniel P. Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| |
Collapse
|
46
|
Li Q, Cheng Y, Zhang S, Sun X, Wu J. TRPV4-induced Müller cell gliosis and TNF-α elevation-mediated retinal ganglion cell apoptosis in glaucomatous rats via JAK2/STAT3/NF-κB pathway. J Neuroinflammation 2021; 18:271. [PMID: 34789280 PMCID: PMC8596927 DOI: 10.1186/s12974-021-02315-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/01/2021] [Indexed: 01/22/2023] Open
Abstract
Background Glaucoma, the leading cause of irreversible blindness worldwide, is a type of retinal disease characterized by the selective death of retinal ganglion cells (RGCs). However, the pathogenesis of glaucoma has not been fully elucidated. Transient receptor potential vanilloid 4 (TRPV4) is a pressure-sensitive and calcium-permeable cation channel. TRPV4 is widely distributed in the retina and its sustained activation leads to RGC death; indicating that TRPV4 may be a possible target for glaucoma treatment. Here, we investigated the effects of TRPV4 on RGC apoptosis in a rat model of chronic ocular hypertension (COH), then examined the mechanism underlying these effects. Methods The COH model was established by injection of micro-magnetic beads into the anterior chamber of adult male rats. The expression levels of TRPV4, glial fibrillary acidic protein, and inflammatory factors were assessed by immunohistochemistry and immunoblotting. RGC apoptosis and visual dysfunction were evaluated by TUNEL assay and photopic negative response. Functional expression of TRPV4 was examined by electrophysiology and calcium imaging. Real-time polymerase chain reaction and immunoblotting were employed to investigate the molecular mechanism underlying the effects of TRPV4 on tumor necrosis factor-α (TNF-α) release. Results We found that TRPV4 played an essential role in glaucoma, such that high levels of TRPV4 expression were associated with elevated intraocular pressure. Furthermore, TRPV4 activation was involved in glaucoma-induced RGC apoptosis and RGC-related reductions in visual function. Mechanistic investigation demonstrated that TRPV4 activation led to enhanced Müller cell gliosis and TNF-α release via the JAK2/STAT3/NF-kB pathway, while TRPV4 inhibition could reverse these effects. Finally, TRPV4 activation could lead to elevated expression of TNF receptor 1 in RGCs, while inhibition of TNF-α could reduce TRPV4-mediated RGC apoptosis. Conclusions TRPV4 activation induces Müller cell gliosis and TNF-α elevation via the JAK2/STAT3/NF-κB pathway, which may exacerbate RGC apoptosis in glaucoma; these results suggest that TRPV4 can serve as a therapeutic target in glaucoma treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02315-8.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, National Health Commission, #83 Fenyang Road, 200031, Shanghai, China
| | - Yun Cheng
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, National Health Commission, #83 Fenyang Road, 200031, Shanghai, China
| | - Shenghai Zhang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, National Health Commission, #83 Fenyang Road, 200031, Shanghai, China
| | - Xinghuai Sun
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China. .,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, National Health Commission, #83 Fenyang Road, 200031, Shanghai, China.
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China. .,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, National Health Commission, #83 Fenyang Road, 200031, Shanghai, China.
| |
Collapse
|
47
|
Lakk M, Hoffmann GF, Gorusupudi A, Enyong E, Lin A, Bernstein PS, Toft-Bertelsen T, MacAulay N, Elliott MH, Križaj D. Membrane cholesterol regulates TRPV4 function, cytoskeletal expression, and the cellular response to tension. J Lipid Res 2021; 62:100145. [PMID: 34710431 PMCID: PMC8633027 DOI: 10.1016/j.jlr.2021.100145] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the association of cholesterol with debilitating pressure-related diseases such as glaucoma, heart disease, and diabetes, its role in mechanotransduction is not well understood. We investigated the relationship between mechanical strain, free membrane cholesterol, actin cytoskeleton, and the stretch-activated transient receptor potential vanilloid isoform 4 (TRPV4) channel in human trabecular meshwork (TM) cells. Physiological levels of cyclic stretch resulted in time-dependent decreases in membrane cholesterol/phosphatidylcholine ratio and upregulation of stress fibers. Depleting free membrane cholesterol with m-β-cyclodextrin (MβCD) augmented TRPV4 activation by the agonist GSK1016790A, swelling and strain, with the effects reversed by cholesterol supplementation. MβCD increased membrane expression of TRPV4, caveolin-1, and flotillin. TRPV4 did not colocalize or interact with caveolae or lipid rafts, apart from a truncated ∼75 kDa variant partially precipitated by a caveolin-1 antibody. MβCD induced currents in TRPV4-expressing Xenopus laevis oocytes. Thus, membrane cholesterol regulates trabecular transduction of mechanical information, with TRPV4 channels mainly located outside the cholesterol-enriched membrane domains. Moreover, the biomechanical milieu itself shapes the lipid content of TM membranes. Diet, cholesterol metabolism, and mechanical stress might modulate the conventional outflow pathway and intraocular pressure in glaucoma and diabetes in part by modulating TM mechanosensing.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Grace F Hoffmann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric Enyong
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amy Lin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul S Bernstein
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Michael H Elliott
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
48
|
Uchida T, Shimizu S, Yamagishi R, Tokuoka SM, Kita Y, Sakata R, Honjo M, Aihara M. TRPV4 is activated by mechanical stimulation to induce prostaglandins release in trabecular meshwork, lowering intraocular pressure. PLoS One 2021; 16:e0258911. [PMID: 34673834 PMCID: PMC8530296 DOI: 10.1371/journal.pone.0258911] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Trabecular meshwork constitutes the conventional outflow pathway and controls intraocular pressure by regulating aqueous outflow. Mechanical stimulation has been studied as one of the triggers to regulate aqueous outflow in trabecular meshwork, but it is not well understood. We investigated that how transient receptor potential cation channel subfamily V member 4 (TRPV4) functions in human trabecular meshwork cells (HTMC) and affects intraocular pressure (IOP). HTMC were treated with TRPV4 siRNA, followed by incubation for 24 hours. We confirmed the suppression of TRPV4 mRNA expression and the reduction of Ca2+ influx by the TRPV4 agonist GSK1016790A in TRPV4 siRNA-treated HTMC. TRPV4 siRNA-treated HTMC exhibited a significant reduction in Ca2+ influx and production of arachidonic acid and prostaglandin (PG) E2 induced by mechanical stretch, and direct activation of TRPV4 by GSK1016790A increased production of arachidonic acid, PGE2, and PGD2 and inhibited gel contraction. Furthermore, TRPV4-deficient mice had higher IOP than wild-type mice, and GSK1016790A administration lowered IOP. These results suggest that TRPV4 mediates the cellular response induced by trabecular meshwork stretch, leading to IOP reduction through the production of prostaglandins and inhibition of cell contraction. Targeting TRPV4 may have therapeutic benefits that lead to lowering IOP in glaucoma patients.
Collapse
Affiliation(s)
- Takatoshi Uchida
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Senju Laboratory of Ocular Science, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| | - Shota Shimizu
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Senju Laboratory of Ocular Science, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Suzumi M. Tokuoka
- Department of Lipidomics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kita
- Department of Lipidomics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Life Science Core Facility, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Rei Sakata
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
49
|
Lamont HC, Masood I, Grover LM, El Haj AJ, Hill LJ. Fundamental Biomaterial Considerations in the Development of a 3D Model Representative of Primary Open Angle Glaucoma. Bioengineering (Basel) 2021; 8:bioengineering8110147. [PMID: 34821713 PMCID: PMC8615171 DOI: 10.3390/bioengineering8110147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is a leading cause of irreversible blindness globally, with primary open angle glaucoma (POAG) being the most common subset. Raised intraocular pressure is an important risk factor for POAG and is caused by a reduction in aqueous humour (AqH) outflow due to dysfunctional cellular and matrix dynamics in the eye’s main drainage site, the trabecular meshwork (TM) and Schlemm’s canal (SC). The TM/SC are highly specialised tissues that regulate AqH outflow; however, their exact mechanisms of AqH outflow control are still not fully understood. Emulating physiologically relevant 3D TM/S in vitro models poses challenges to accurately mimic the complex biophysical and biochemical cues that take place in healthy and glaucomatous TM/SC in vivo. With development of such models still in its infancy, there is a clear need for more well-defined approaches that will accurately contrast the two central regions that become dysfunctional in POAG; the juxtacanalicular tissue (JCT) region of the TM and inner wall endothelia of the Schlemm’s canal (eSC). This review will discuss the unique biological and biomechanical characteristics that are thought to influence AqH outflow and POAG progression. Further consideration into fundamental biomaterial attributes for the formation of a biomimetic POAG/AqH outflow model will also be explored for future success in pre-clinical drug discovery and disease translation.
Collapse
Affiliation(s)
- Hannah C. Lamont
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (H.C.L.); (I.M.)
- School of Chemical Engineering, Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (L.M.G.); (A.J.E.H.)
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (H.C.L.); (I.M.)
| | - Liam M. Grover
- School of Chemical Engineering, Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (L.M.G.); (A.J.E.H.)
| | - Alicia J. El Haj
- School of Chemical Engineering, Healthcare Technologies Institute, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (L.M.G.); (A.J.E.H.)
| | - Lisa J. Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (H.C.L.); (I.M.)
- Correspondence:
| |
Collapse
|
50
|
Toft-Bertelsen TL, MacAulay N. TRPing on Cell Swelling - TRPV4 Senses It. Front Immunol 2021; 12:730982. [PMID: 34616399 PMCID: PMC8488219 DOI: 10.3389/fimmu.2021.730982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
The transient receptor potential vanilloid 4 channel (TRPV4) is a non-selective cation channel that is widely expressed and activated by a range of stimuli. Amongst these stimuli, changes in cell volume feature as a prominent regulator of TRPV4 activity with cell swelling leading to channel activation. In experimental settings based on abrupt introduction of large osmotic gradients, TRPV4 activation requires co-expression of an aquaporin (AQP) to facilitate such cell swelling. However, TRPV4 readily responds to cell volume increase irrespectively of the molecular mechanism underlying the cell swelling and can, as such, be considered a sensor of increased cell volume. In this review, we will discuss the proposed events underlying the molecular coupling from cell swelling to channel activation and present the evidence of direct versus indirect swelling-activation of TRPV4. With this summary of the current knowledge of TRPV4 and its ability to sense cell volume changes, we hope to stimulate further experimental efforts in this area of research to clarify TRPV4’s role in physiology and pathophysiology.
Collapse
Affiliation(s)
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|