1
|
Yang SJ, Song S, Park C, Choi J, Lee E, Kim M. Protocols for degradation assessment and stability enhancement in perovskite solar cells. Chem Commun (Camb) 2025; 61:6722-6738. [PMID: 40241647 DOI: 10.1039/d5cc01404b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Metal-halide perovskite solar cells (PeSCs) have shown extraordinary progress in power conversion efficiency, but their operational long-term stability is still far behind for successful industrialization. There are various environmental factors impacting the degradation of perovskite materials, which should be studied and understood within harsh measuring protocols. In addition, the relating degradation mechanisms under device operation must be correlated and comprehended. Here, we summarize and review various mechanisms of how perovskite degrades during measurement protocols that use combinations of illumination, ambient atmosphere, and thermal stress. We suggest effective strategies to improve long-term stability of perovskite materials based on crystallization modification, compositions, and surface engineering strategies. We believe that the proper utilization of the understanding on the degradation of perovskite crystals and methodologies that we review in this article to improve the operational stability of PeSCs may facilitate commercialization of PeSCs.
Collapse
Affiliation(s)
- Seok Joo Yang
- Department of Chemical Engineering, Gyeongsang National University, Jinju, Republic of Korea.
| | - Sungwon Song
- Semiconductor R&D at Samsung Electronics, Suwon, Republic of Korea
| | - Chanui Park
- Semiconductor R&D at Samsung Electronics, Suwon, Republic of Korea
| | - Jinhyeok Choi
- Semiconductor R&D at Samsung Electronics, Suwon, Republic of Korea
| | - Eunho Lee
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - Min Kim
- Department of Chemical Engineering, Center for Innovative Chemical Processes, Institute of Engineering, University of Seoul, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Vanalakar SA, Qureshi MH, Srivastava SB, Khan SU, Eren GO, Onal A, Kaya L, Kaleli HN, Pehlivan C, Hassnain M, Vhanalakar SA, Sahin A, Hasanreisoglu M, Nizamoglu S. Perovskite Quantum Dot-Based Photovoltaic Biointerface for Photostimulation of Neurons. IEEE Trans Biomed Eng 2025; 72:1248-1255. [PMID: 39485691 DOI: 10.1109/tbme.2024.3490180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
OBJECTIVE A promising avenue for vision restoration against retinal degeneration is the use of semiconductor-based photovoltaic biointerfaces to substitute natural photoreceptors. Instead of silicon, perovskite has emerged as an exciting material for solar energy harvesting, and its nanocrystalline forms generally offer better stability than their bulk counterparts in addition to the distinct synthesis and fabrication steps. METHODS Herein, we synthesize tetramethylammonium lead iodide (TMAPbI3) perovskite quantum dots (QDs) as a novel photoactive material for photovoltaic biointerfaces. While the TMAPbI3 quantum dots and electrolyte interface induces Faradaic photocurrent under light illumination, the heterojunction with P3HT converts the charge-transfer process to a safe capacitive photocurrent with an improved ionic responsivity of 17.4 mA/W. SIGNIFICANCE The integration of the 18-nm quantum dot thickness shows good biocompatibility with primary cultures of hippocampal neurons and the photoresponse of the biointerface triggered photostimulation of the neurons. The rise of perovskite materials can stimulate novel forms of photovoltaic retina implants.
Collapse
|
3
|
Pai N, Angmo D. Powering the Future: Opportunities and Obstacles in Lead-Halide Inorganic Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412666. [PMID: 39899617 PMCID: PMC11923914 DOI: 10.1002/advs.202412666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Indexed: 02/05/2025]
Abstract
Efficiency, stability, and cost are crucial considerations in the development of photovoltaic technology for commercialization. Perovskite solar cells (PSCs) are a promising third-generation photovoltaic technology due to their high efficiency and low-cost potential. However, the stability of organohalide perovskites remains a significant challenge. Inorganic perovskites, based on CsPbX₃ (X = Br-/I-), have garnered attention for their excellent thermal stability and optoelectronic properties comparable to those of organohalide perovskites. Nevertheless, the development of inorganic perovskites faces several hurdles, including the need for high-temperature annealing to achieve the photoactive α-phase and their susceptibility to transitioning into the nonphotoactive δ-phase under environmental stressors, particularly moisture. These challenges impede the creation of high-efficiency, high-stability devices using low-cost, scalable manufacturing processes. This review provides a comprehensive background on the fundamental structural, physical, and optoelectronic properties of inorganic lead-halide perovskites. It discusses the latest advancements in fabricating inorganic PSCs at lower temperatures and under ambient conditions. Furthermore, it highlights the progress in state-of-the-art inorganic devices, particularly those manufactured in ambient environments and at reduced temperatures, alongside simultaneous advancements in the upscaling and stability of inorganic PSCs.
Collapse
Affiliation(s)
- Narendra Pai
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| | - Dechan Angmo
- Flexible Electronics Laboratory, CSIRO Manufacturing, Clayton, VIC, 3168, Australia
| |
Collapse
|
4
|
Miah MH, Rahman MB, Nur-E-Alam M, Islam MA, Shahinuzzaman M, Rahman MR, Ullah MH, Khandaker MU. Key degradation mechanisms of perovskite solar cells and strategies for enhanced stability: issues and prospects. RSC Adv 2025; 15:628-654. [PMID: 39777157 PMCID: PMC11705851 DOI: 10.1039/d4ra07942f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Perovskite materials have garnered significant attention within a very short period of time by achieving competitive efficiency. In addition, this material demonstrated intriguing optoelectronic properties and versatile applications. Although they have confirmed amazing efficiency in solar cells at the laboratory scale, mass commercial manufacturing of perovskite solar cells (PSCs) is still a problem due to their poor longevity. Researchers have identified several intrinsic and extrinsic factors contributing to the instability of perovskite compounds and PSCs, and various approaches are being used to increase material quality and stability in order to extend the lifespan of PSCs. Despite these challenges, the potential of perovskite materials in revolutionizing solar energy remains a central point of scientific investigation and development. In this review, a comprehensive analysis is provided to discern the intrinsic and extrinsic factors contributing to the degradation of PSCs which certainly helps us to understand the underlying degradation mechanisms. In addition, we discussed some novel approaches that have already been adopted to augment the stability of the devices.
Collapse
Affiliation(s)
- Md Helal Miah
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj-8100 Bangladesh
| | - Md Bulu Rahman
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj-8100 Bangladesh
| | - Mohammad Nur-E-Alam
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN Kajang 43000 Selangor Malaysia
- School of Science, Edith Cowan University 270 Joondalup Drive Joondalup-6027 WA Australia
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Mohammad Aminul Islam
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Jalan Universiti 50603 Kuala Lumpur Malaysia
- Miyan Research Institute, International University of Business Agriculture and Technology (IUBAT) Dhaka 1230 Bangladesh
| | - M Shahinuzzaman
- Institute of Energy Research and Development, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS) 94300 Kota Samarahan Sarawak Malaysia
| | - Md Habib Ullah
- Department of Physics, American International University-Bangladesh (AIUB) 408/1, Kuratoli, Khilkhet Dhaka 1229 Bangladesh
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
- Faculty of Graduate Studies, Daffodil International University Daffodil Smart City, Birulia, Savar Dhaka-1216 Bangladesh
- Department of Physics, College of Science, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| |
Collapse
|
5
|
Kao SF, Yu MH, Chen JC, Yu HW, Yu HY, Lin BH, Ni IC, Li YP, Chueh CC. Unraveling Differences in the Effects of Ammonium/Amine-Based Additives on the Performance and Stability of Inverted Perovskite Solar Cells. SMALL METHODS 2024; 8:e2400039. [PMID: 39118555 DOI: 10.1002/smtd.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Additive engineering, with its excellent ability to passivate bulk or surface perovskite defects, has become a common strategy to improve the performance and stability of perovskite solar cells (PVSCs). Among the various additives reported so far, ammonium salts are considered an important branch. It is worth noting that although both ammonium-based additives (R-NH3 +) and amine-based additives (R-NH2) are derivatives of ammonia (NH3), the functions of the two can be easily confused due to their structural similarities. Moreover, there is no comprehensive comparative analysis of them in the literature. Here, the differences between phenethylammonium iodide (PEA+) and phenethylamine (PEA) additives are revealed experimentally and theoretically. The results clearly show that PEA outperforms PEA+ in terms of device performance and stability based on the following three factors: i) PEA's defect passivation capability is superior to that of PEA+; ii) PEA has better hydrophobicity to hinder water ingress; and iii) PEA completely improves the stability of PVSCs by enhancing thermal stability and inhibiting iodide migration in perovskite more effectively than PEA+. As a result, the power conversion efficiency (PCE) of the inverted methylammonium triiodide (MAPbI3) device using PEA increases by ≈15% to over 21%. More importantly, this device exhibits greater ability to prevent water invasion, thermal-induce degradation, and inhibit iodide ion migration, resulting in better long-term stability.
Collapse
Affiliation(s)
- Shih-Feng Kao
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ming-Hsuan Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jing-Chun Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hao-Wei Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-Yu Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - I-Chih Ni
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Pei Li
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
6
|
Li C, Chen C. Single-Crystal Perovskite for Solar Cell Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402759. [PMID: 39301993 DOI: 10.1002/smll.202402759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/21/2024] [Indexed: 09/22/2024]
Abstract
The advent of organic-inorganic hybrid metal halide perovskites has revolutionized photovoltaics, with polycrystalline thin films reaching over 26% efficiency and single-crystal perovskite solar cells (IC-PSCs) demonstrating ≈24%. However, research on single-crystal perovskites remains limited, leaving a crucial gap in optimizing solar energy conversion. Unlike polycrystalline films, which suffer from high defect densities and instability, single-crystal perovskites offer minimal defects, extended carrier lifetimes, and longer diffusion lengths, making them ideal for high-performance optoelectronics and essential for understanding perovskite material behavior. This review explores the advancements and potential of IC-PSCs, focusing on their superior efficiency, stability, and role in overcoming the limitations of polycrystalline counterparts. It covers device architecture, material composition, preparation methodologies, and recent breakthroughs, emphasizing the importance of further research to propel IC-PSCs toward commercial viability and future dominance in photovoltaic technology.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, No. 5340, Xiping Road, Beichen, Tianjin, 300401, China
| | - Cong Chen
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, No. 5340, Xiping Road, Beichen, Tianjin, 300401, China
| |
Collapse
|
7
|
Xu H, Guo Z, Chen P, Wang S. Toward durable all-inorganic perovskite solar cells: from lead-based to lead-free. Chem Commun (Camb) 2024; 60:12287-12301. [PMID: 39356171 DOI: 10.1039/d4cc04000g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Organic-inorganic metal halide perovskite solar cells (PSCs) have attracted extensive attention from the photovoltaic (PV) community due to their fast-growing power conversion efficiency from 3.8% to 26.7% in only 15 years. However, these organic-inorganic hybrid PSCs suffer from inferior long-term operational stability under thermal and light stress, due to the fragile hydrogen bonds between organic cations and inorganic slabs. This motivates the exploration of more robust all-inorganic alternatives against external stimuli, by substituting inorganic cesium (Cs) cations for volatile organic cations. Despite reinforced ionic interaction between Cs cations and metal halide frameworks, these Cs-based all-inorganic perovskites tend to undergo spontaneous phase transition from photoactive black phases to non-perovskite yellow phases at room temperature, significantly deteriorating their optoelectronic performance. Thus, tremendous efforts have been made to stabilize the black phase of CsPbI3, while the phase instability issue of the tin-based analogue of CsSnI3 has not been resolved yet. This highlight article summarizes the empirical advances in stabilizing the metastable phases of CsPbI3, aiming to provide useful guidelines to accelerate the development of phase-stable CsSnI3 for durable lead-free PV applications. Finally, the remaining challenges and future research opportunities are outlined, providing a road map to realize efficient and durable all-inorganic perovskite solar cells towards practical applications.
Collapse
Affiliation(s)
- Hongzhe Xu
- Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Zhaochen Guo
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Peng Chen
- Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Songcan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| |
Collapse
|
8
|
Zhang W, Guo X, Cui Z, Yuan H, Li Y, Li W, Li X, Fang J. Strategies for Improving Efficiency and Stability of Inverted Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311025. [PMID: 38427593 DOI: 10.1002/adma.202311025] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Perovskite solar cells (PSCs) have attracted widespread research and commercialization attention because of their high power conversion efficiency (PCE) and low fabrication cost. The long-term stability of PSCs should satisfy industrial requirements for photovoltaic devices. Inverted PSCs with a p-i-n architecture exhibit considerable advantages because of their excellent stability and competitive efficiency. The continuously broken-through PCE of inverted PSCs shows huge application potential. This review summarizes the developments and outlines the characteristics of inverted PSCs including charge transport layers (CTLs), perovskite compositions, and interfacial regulation strategies. The latest effective CTLs, interfacial modification, and stability promotion strategies especially under light, thermal, and bias conditions are emphatically analyzed. Furthermore, the applications of the inverted structure in high-efficiency and stable tandem, flexible photovoltaic devices, and modules and their main obstacles are systematically introduced. Finally, the remaining challenges faced by inverted devices are discussed, and several directions for advancing inverted PSCs are proposed according to their development status and industrialization requirements.
Collapse
Affiliation(s)
- Wenxiao Zhang
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xuemin Guo
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Zhengbo Cui
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Haobo Yuan
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Yunfei Li
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Wen Li
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Xiaodong Li
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
| | - Junfeng Fang
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200062, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
9
|
Lee YR, Chung YT, Chiang TY, Hsieh T, Su YH, Wang JK. Unraveling Halogen Role in Two-Step Solution Growth of Organic-Inorganic Hybrid Mixed-Halide Perovskites: Guidelines of Fabricating Single-Phase Perovskites with Predictable Stoichiometry. ACS OMEGA 2024; 9:26439-26449. [PMID: 38911784 PMCID: PMC11190909 DOI: 10.1021/acsomega.4c02650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
The challenge faced in optoelectronic applications of halide perovskites is their degradation. Minimizing material imperfections is critical to averting cascade degradation processes. Identifying causes of such imperfections is, however, hindered by mystified growth processes and is particularly urgent for mixed-halide perovskites because of inhomogeneity in growth and phase segregation under stresses. To unravel two-step solution growth of MAPbBr x I3-x , we monitored the evolution of Br composition and found that the construction of perovskite lattice is contributed by iodine from PbI2 substrate and Br from MABr solution with a 1:1 ratio rather than a 2:1 ratio originally thought. Kinetic analysis based on a derived three-stage model extracted activation energies of perovskite construction and anion exchange. This model is applicable to the growth of PbI2 reacting with a mixed solution of MABr and MAI. Two guidelines of fabricating single-phase MAPbBr x I3-x with predictable stoichiometry thus developed help strategizing protocols to reproducibly fabricate mixed-halide perovskite films tailored to specific optoelectronic applications.
Collapse
Affiliation(s)
- Ya-Rong Lee
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Yun-Ting Chung
- Department
of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Yu Chiang
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Ta−Li Hsieh
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Yi-Hang Su
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Juen-Kai Wang
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
- Center
for Condensed Matter Sciences, National
Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
10
|
Wang K, Ecker B, Li M, Huang J, Gao Y. CuPc Passivation of a MAPbBr 3 Single Crystal Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:19599-19606. [PMID: 37817921 PMCID: PMC10561261 DOI: 10.1021/acs.jpcc.3c04209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/10/2023] [Indexed: 10/12/2023]
Abstract
In this study, a facile passivation for methylammonium lead bromide (MAPbBr3) single crystals is reported. Stability against moisture and light remains the most critical demerit of perovskite materials, which is improved by depositing a 40 Å thick hydrophobic copper phthalocyanine (CuPc) layer on top of the cleaved perovskite surface. The water and light exposure processes were monitored with X-ray photoelectron spectroscopy with precise control of the exposure time and pressure. It is found that the CuPc top layer could protect the sample from moisture infiltration at a water exposure of 1013 L, while the nonpassivated sample started to degrade at 108 L. During the light exposure, CuPc also slowed down the light-induced degradation, which is supported by the elemental ratio change of metallic lead and bromine. These results are further confirmed by the morphological comparison via scanning electron microscopy and focused ion beam.
Collapse
Affiliation(s)
- Ke Wang
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
| | - Benjamin Ecker
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
| | - Mingze Li
- Department
of Applied Physical Sciences, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jinsong Huang
- Department
of Applied Physical Sciences, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yongli Gao
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
| |
Collapse
|
11
|
Li Y, Lohr PJ, Segapeli A, Baltram J, Werner D, Allred A, Muralidharan K, Printz AD. Influence of Halides on the Interactions of Ammonium Acids with Metal Halide Perovskites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24387-24398. [PMID: 37162743 DOI: 10.1021/acsami.3c01432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Additive engineering is a common strategy to improve the performance and stability of metal halide perovskite through the modulation of crystallization kinetics and passivation of surface defects. However, much of this work has lacked a systematic approach necessary to understand how the functionality and molecular structure of the additives influence perovskite performance and stability. This paper describes the inclusion of low concentrations of 5-aminovaleric acid (5-AVA) and its ammonium acid derivatives, 5-ammoniumvaleric acid iodide (5-AVAI) and 5-ammoniumvaleric acid chloride (5-AVACl), into the precursor inks for methylammonium lead triiodide (MAPbI3) perovskite and highlights the important role of halides in affecting the interactions of additives with perovskite and film properties. The film quality, as determined by X-ray diffraction (XRD) and photoluminescence (PL) spectrophotometry, is shown to improve with the inclusion of all additives, but an increase in annealing time from 5 to 30 min is necessary. We observe an increase in grain size and a decrease in film roughness with the incorporation of 5-AVAI and 5-AVACl with scanning electron microscopy (SEM) and atomic force microscopy (AFM). Critically, X-ray photoelectron spectroscopy (XPS) measurements and density functional theory (DFT) calculations show that 5-AVAI and 5-AVACl preferentially interact with MAPbI3 surfaces via the ammonium functional group, while 5-AVA will interact with either amino or carboxylic acid functional groups. Charge localization analysis shows the surprising result that HCl dissociates from 5-AVACl in vacuum, resulting in the decomposition of the ammonium acid to 5-AVA. We show that device repeatability is improved with the inclusion of all additives and that 5-AVACl increases the power conversion efficiency of devices from 17.61 ± 1.07 to 18.07 ± 0.42%. Finally, we show stability improvements for unencapsulated devices exposed to 50% relative humidity, with devices incorporating 5-AVAI and 5-AVACl exhibiting the greatest improvements.
Collapse
Affiliation(s)
- Yanan Li
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Patrick J Lohr
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Allison Segapeli
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Juliana Baltram
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Dorian Werner
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Alex Allred
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Krishna Muralidharan
- Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Adam D Printz
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States
- Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
12
|
Romagnoli L, D’Annibale A, Blundo E, Patra A, Polimeni A, Meggiolaro D, Andrusenko I, Marchetti D, Gemmi M, Latini A. 4,4'-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Lead Iodide C 30H 22N 2Pb 2I 6: A Highly Luminescent, Chemically and Thermally Stable One-Dimensional Hybrid Iodoplumbate. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:1818-1826. [PMID: 36873626 PMCID: PMC9979375 DOI: 10.1021/acs.chemmater.2c03798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Indexed: 06/17/2023]
Abstract
A new one-dimensional hybrid iodoplumbate, namely, 4,4'-(anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) lead iodide C30H22N2Pb2I6 (AEPyPbI), is reported here for the first time with its complete characterization. The material exhibits remarkable thermal stability (up to 300 °C), and it is unreactive under ambient conditions toward water and atmospheric oxygen, due to the quaternary nature of the nitrogen atoms present in the organic cation. The cation exhibits strong visible fluorescence under ultraviolet (UV) irradiation, and when its iodide is combined with PbI2, it forms AEPyPb2I6, an efficient light-emitting material, with a photoluminescence emission intensity comparable to that of high-quality InP epilayers. The structure determination was obtained using three-dimensional electron diffraction, and the material was extensively studied by using a wide range of techniques, such as X-ray powder diffraction, diffuse reflectance UV-visible spectroscopy, thermogravimetry-differential thermal analysis, elemental analysis, Raman and infrared spectroscopies, and photoluminescence spectroscopy. The emissive properties of the material were correlated with its electronic structure by using state-of-the-art theoretical calculations. The complex, highly conjugated electronic structure of the cation interacts strongly with that of the Pb-I network, giving rise to the peculiar optoelectronic properties of AEPyPb2I6. The material, considering its relatively easy synthesis and stability, shows promise for light-emitting and photovoltaic devices. The use of highly conjugated quaternary ammonium cations may be useful for the development of new hybrid iodoplumbates and perovskites with optoelectronic properties tailored for specific applications.
Collapse
Affiliation(s)
- Lorenza Romagnoli
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Andrea D’Annibale
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Elena Blundo
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Atanu Patra
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Antonio Polimeni
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Daniele Meggiolaro
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC), Via Elce di Sotto 8, Perugia 06123, Italy
| | - Iryna Andrusenko
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Danilo Marchetti
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma (PR) 43124, Italy
| | - Mauro Gemmi
- Electron
Crystallography, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Alessandro Latini
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| |
Collapse
|
13
|
Filipoiu N, Mirea AG, Derbali S, Pantis-Simut CA, Anghel DV, Manolescu A, Pintilie I, Florea M, Nemnes GA. Optoelectronic and stability properties of quasi-2D alkylammonium based perovskites. Phys Chem Chem Phys 2023; 25:3323-3331. [PMID: 36632794 DOI: 10.1039/d2cp04748a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electronic and stability properties of quasi-2D alkylammonium perovskites are investigated using density functional theory (DFT) calculations and validated experimentally on selected classes of compounds. Our analysis is focused on perovskite structures of formula (A)2(A')n-1PbnX3n+1, with large cations A = butyl-, pentyl-, hexylammonium (BA, PA, HXA), small cations A' = methylammonium, formamidinium, ethylammonium, guanidinium (MA, FA, EA, GA) and halogens X = I, Br, Cl. The role of the halogen ions is outlined for the band structure, stability and defect formation energies. Two opposing trends are found for the absorption efficiency versus stability, the latter being assessed with respect to possible degradation mechanisms. Experimental validation is performed on quasi-2D perovskites based on pentylammonium cations, namely: (PA)2PbX4 and (PA)2(MA)Pb2X7, synthesized by antisolvent-assisted vapor crystallization. Structural and optical analysis are inline with the DFT based calculations. In addition, the thermogravimetric analysis shows an enhanced stability of bromide and chloride based compounds, in agreement with the theoretical predictions.
Collapse
Affiliation(s)
- N Filipoiu
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126, Magurele, Ilfov, Romania.,University of Bucharest, Faculty of Physics, 077125, Magurele, Ilfov, Romania.
| | - Anca G Mirea
- National Institute of Materials Physics, Magurele, 077125, Ilfov, Romania.
| | - Sarah Derbali
- National Institute of Materials Physics, Magurele, 077125, Ilfov, Romania.
| | - C-A Pantis-Simut
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126, Magurele, Ilfov, Romania.,University of Bucharest, Faculty of Physics, 077125, Magurele, Ilfov, Romania. .,Research Institute of the University of Bucharest (ICUB), 90 Panduri Street, 050663, Bucharest, Romania
| | - D-V Anghel
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126, Magurele, Ilfov, Romania.,University of Bucharest, Faculty of Physics, 077125, Magurele, Ilfov, Romania. .,Research Institute of the University of Bucharest (ICUB), 90 Panduri Street, 050663, Bucharest, Romania
| | - A Manolescu
- Department of Engineering, School of Technology, Reykjavik University, Menntavegur 1, IS-102, Reykjavik, Iceland
| | - Ioana Pintilie
- National Institute of Materials Physics, Magurele, 077125, Ilfov, Romania.
| | - Mihaela Florea
- National Institute of Materials Physics, Magurele, 077125, Ilfov, Romania.
| | - G A Nemnes
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126, Magurele, Ilfov, Romania.,University of Bucharest, Faculty of Physics, 077125, Magurele, Ilfov, Romania. .,Research Institute of the University of Bucharest (ICUB), 90 Panduri Street, 050663, Bucharest, Romania
| |
Collapse
|
14
|
Romagnoli L, D’Annibale A, Blundo E, Polimeni A, Cassetta A, Chita G, Panetta R, Ciccioli A, Latini A. Synthesis, Structure, and Characterization of 4,4'-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Bismuth Iodide (C 30H 22N 2) 3Bi 4I 18, an Air, Water, and Thermally Stable 0D Hybrid Perovskite with High Photoluminescence Efficiency. CRYSTAL GROWTH & DESIGN 2022; 22:7426-7433. [PMID: 36510624 PMCID: PMC9732820 DOI: 10.1021/acs.cgd.2c01005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Indexed: 06/17/2023]
Abstract
4,4'-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) bismuth iodide (C30H22N2)3Bi4I18 (AEPyBiI) was obtained as a black powder by a very simple route by mixing an acetone solution of BiI3 and an aqueous solution of C30H22N2I2. This novel perovskite is air and water stable and displays a remarkable thermal stability up to nearly 300 °C. The highly conjugated cation C30H22N2 2+ is hydrolytically stable, being nitrogen atoms quaternarized, and this accounts for the insensitivity of the perovskite toward water and atmospheric oxygen under ambient conditions. The cation in aqueous solution is highly fluorescent under UV irradiation (emitting yellow-orange light). AEPyBiI as well is intensely luminescent, its photoluminescence emission being more than 1 order of magnitude greater than that of high-quality InP epilayers. The crystal structure of AEPyBiI was determined using synchrotron radiation single-crystal X-ray diffraction. AEPyBiI was extensively characterized using a wide range of techniques, such as X-ray powder diffraction, diffuse reflectance UV-vis spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopies, thermogravimetry-differential thermal analysis (TG-DTA), elemental analysis, electrospray ionization mass spectroscopy (ESI-MS), and photoluminescence spectroscopy. AEPyBiI displays a zero-dimensional (0D) perovskite structure in which the inorganic part is constituted by binuclear units consisting of two face-sharing BiI6 octahedra (Bi2I9 3- units). The C30H22N2 2+ cations are stacked along the a-axis direction in a complex motif. Considering its noteworthy light-emitting properties coupled with an easy synthesis and environmental stability, and its composition that does not contain toxic lead or easily oxidable Sn(II), AEPyBiI is a promising candidate for environmentally friendly light-emitting devices.
Collapse
Affiliation(s)
- Lorenza Romagnoli
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| | - Andrea D’Annibale
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| | - Elena Blundo
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| | - Antonio Polimeni
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| | - Alberto Cassetta
- Consiglio
Nazionale delle Ricerche, Istituto di Cristallografia,
Sede Secondaria di Trieste, Area Science Park − Basovizza, Strada Statale
14, km 163.5, 34149Trieste, Italy
| | - Giuseppe Chita
- Consiglio
Nazionale delle Ricerche, Istituto di Cristallografia,
Sede Secondaria di Trieste, Area Science Park − Basovizza, Strada Statale
14, km 163.5, 34149Trieste, Italy
| | - Riccardo Panetta
- Ispa
- Istituto Sperimentale Problematiche Ambientali, Via San Nicandro snc, 03042Atina, FR, Italy
| | - Andrea Ciccioli
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| | - Alessandro Latini
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro
5, 00185Roma, Italy
| |
Collapse
|
15
|
Tepliakova MM, Kuznetsov IE, Mikheeva AN, Sideltsev ME, Novikov AV, Furasova AD, Kapaev RR, Piryazev AA, Kapasharov AT, Pugacheva TA, Makarov SV, Stevenson KJ, Akkuratov AV. The Impact of Backbone Fluorination and Side-Chain Position in Thiophene-Benzothiadiazole-Based Hole-Transport Materials on the Performance and Stability of Perovskite Solar Cells. Int J Mol Sci 2022; 23:13375. [PMID: 36362163 PMCID: PMC9654869 DOI: 10.3390/ijms232113375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Perovskite solar cells (PSCs) currently reach high efficiencies, while their insufficient stability remains an obstacle to their technological commercialization. The introduction of hole-transport materials (HTMs) into the device structure is a key approach for enhancing the efficiency and stability of devices. However, currently, the influence of the HTM structure or properties on the characteristics and operational stability of PSCs remains insufficiently studied. Herein, we present four novel push-pull small molecules, H1-4, with alternating thiophene and benzothiadiazole or fluorine-loaded benzothiadiazole units, which contain branched and linear alkyl chains in the different positions of terminal thiophenes to evaluate the impact of HTM structure on PSC performance. It is demonstrated that minor changes in the structure of HTMs significantly influence their behavior in thin films. In particular, H3 organizes into highly ordered lamellar structures in thin films, which proves to be crucial in boosting the efficiency and stability of PSCs. The presented results shed light on the crucial role of the HTM structure and the morphology of films in the performance of PSCs.
Collapse
Affiliation(s)
- Marina M. Tepliakova
- Center for Energy Science and Technology (CEST), Skolkovo Institute of Science and Technology, Nobel St. 3, 143026 Moscow, Russia
| | - Ilya E. Kuznetsov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, FRC PCPMC RAS, Academician Semenov Avenue 1, 142432 Chernogolovka, Russia
| | - Aleksandra N. Mikheeva
- Center for Energy Science and Technology (CEST), Skolkovo Institute of Science and Technology, Nobel St. 3, 143026 Moscow, Russia
| | - Maxim E. Sideltsev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, FRC PCPMC RAS, Academician Semenov Avenue 1, 142432 Chernogolovka, Russia
| | - Artyom V. Novikov
- Center for Energy Science and Technology (CEST), Skolkovo Institute of Science and Technology, Nobel St. 3, 143026 Moscow, Russia
| | - Aleksandra D. Furasova
- School of Physics and Engineering, ITMO University, Kronverksky Pr. 49, 197101 St. Petersburg, Russia
| | - Roman R. Kapaev
- Center for Energy Science and Technology (CEST), Skolkovo Institute of Science and Technology, Nobel St. 3, 143026 Moscow, Russia
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - Alexey A. Piryazev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, FRC PCPMC RAS, Academician Semenov Avenue 1, 142432 Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, GSP-1, 1 Leninskiye Gory, 119991 Moscow, Russia
- Sirius University of Science and Technology, Olympic Ave, 1, 354340 Sochi, Russia
| | - Artur T. Kapasharov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, FRC PCPMC RAS, Academician Semenov Avenue 1, 142432 Chernogolovka, Russia
| | - Tatiana A. Pugacheva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, FRC PCPMC RAS, Academician Semenov Avenue 1, 142432 Chernogolovka, Russia
| | - Sergei V. Makarov
- School of Physics and Engineering, ITMO University, Kronverksky Pr. 49, 197101 St. Petersburg, Russia
- Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Qingdao 266000, China
| | - Keith J. Stevenson
- Department of Chemistry, Lomonosov Moscow State University, GSP-1, 1 Leninskiye Gory, 119991 Moscow, Russia
| | - Alexander V. Akkuratov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, FRC PCPMC RAS, Academician Semenov Avenue 1, 142432 Chernogolovka, Russia
| |
Collapse
|
16
|
Kong L, Zhang X, Zhang C, Wang L, Wang S, Cao F, Zhao D, Rogach AL, Yang X. Stability of Perovskite Light-Emitting Diodes: Existing Issues and Mitigation Strategies Related to Both Material and Device Aspects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205217. [PMID: 35921550 DOI: 10.1002/adma.202205217] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Metal halide perovskites combine excellent electronic and optical properties, such as defect tolerance and high photoluminescence efficiency, with the benefits of low-cost, large-area, solution-based processing. Composition- and dimension-tunable properties of perovskites have already been utilized in bright and efficient light-emitting diodes (LEDs). At the same time, there are still great challenges ahead to achieving operational and spectral stability of these devices. In this review, the origins of instability of perovskite materials, and reasons for their degradation in LEDs are considered. Then, strategies for improving the stability of perovskite materials are reviewed, such as compositional engineering, dimensionality control, defect passivation, suitable encapsulation matrices, and fabrication of core/shell perovskite nanocrystals. For improvement of the operational stability of perovskite LEDs, the use of inorganic charge-transport layers, optimization of charge balance, and proper thermal management are considered. The review is concluded with a detailed account of the current challenges and a perspective on the key approaches and opportunities on how to reach the goal of stable, bright, and efficient perovskite LEDs.
Collapse
Affiliation(s)
- Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Xiaoyu Zhang
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Fan Cao
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Dewei Zhao
- College of Materials Science and Engineering, Engineering Research Center of Alternative Energy Materials & Devices (MoE), Sichuan University, Chengdu, 610065, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| |
Collapse
|
17
|
Turnley JW, Vincent KC, Pradhan AA, Panicker I, Swope R, Uible MC, Bart SC, Agrawal R. Solution Deposition for Chalcogenide Perovskites: A Low-Temperature Route to BaMS 3 Materials (M = Ti, Zr, Hf). J Am Chem Soc 2022; 144:18234-18239. [PMID: 36173442 DOI: 10.1021/jacs.2c06985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chalcogenide perovskites, including BaZrS3, have been suggested as highly stable alternatives to halide perovskites. However, the synthesis of chalcogenide perovskites has proven to be a significant challenge, often relying on excessively high temperatures and methods that are incompatible with device integration. In this study, we developed a solution-based approach to the deposition of BaZrS3. This method utilizes a combination of a soluble barium thiolate and nanoparticulate zirconium hydride. Following solution-based deposition of the precursors and subsequent sulfurization, BaZrS3 can be obtained at temperatures as low as 500 °C. Furthermore, this method was extended to other chalcogenide perovskite (BaHfS3) and perovskite-related (BaTiS3) materials.
Collapse
Affiliation(s)
- Jonathan W Turnley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kiruba Catherine Vincent
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Apurva A Pradhan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Isabel Panicker
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryan Swope
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madeleine C Uible
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Suzanne C Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rakesh Agrawal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Lao Y, Zhang Y, Yang S, Zhang Z, Yu W, Qu B, Xiao L, Chen Z. Efficient Perovskite Solar Cells with Enhanced Thermal Stability by Sulfide Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27427-27434. [PMID: 35658129 DOI: 10.1021/acsami.2c05605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The performance degradation of perovskite solar cells (PSCs) under harsh environment (e.g., heat, moisture, light) is one of the greatest challenges for their commercialization. Herein, a conjugated sulfide 2-mercaptobenzimidazole (2MBI) is applied to significantly improve the photovoltaic properties and thermal stability of PSCs. When treated with heat, 2MBI cross-links with each other on the perovskite surface to facilitate charge transportation, suppress the escape of volatile species, and guide the rearrangement of surface perovskite grains. PSCs with 2MBI modification reach a PCE as high as 21.7% and maintain high-efficiency output during and after thermodestruction at 85 °C, while the unmodified ones suffer severe degradation. Unencapsulated devices after thermodestruction achieve over 98% of initial efficiency after 40-day storage under ambient conditions.
Collapse
Affiliation(s)
- Yinan Lao
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yuqing Zhang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Shuang Yang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Zehao Zhang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Wenjin Yu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Bo Qu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Lixin Xiao
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Zhijian Chen
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
19
|
Lao Y, Yang S, Yu W, Guo H, Zou Y, Chen Z, Xiao L. Multifunctional π-Conjugated Additives for Halide Perovskite. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105307. [PMID: 35315240 PMCID: PMC9189639 DOI: 10.1002/advs.202105307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Additive is a conventional way to enhance halide perovskite active layer performance in multiaspects. Among them, π-conjugated molecules have significantly special influence on halide perovskite due to the superior electrical conductivity, rigidity property, and good planarity of π-electrons. In particular, π-conjugated additives usually have stronger interaction with halide perovskites. Therefore, they help with higher charge mobility and longer device lifetime compared with alkyl-based molecules. In this review, the detailed effect of conjugated molecules is discussed in the following parts: defect passivation, lattice orientation guidance, crystallization assistance, energy level rearrangement, and stability improvement. Meanwhile, the roles of conjugated ligands played in low-dimensional perovskite devices are summarized. This review gives an in-depth discussion about how conjugated molecules interact with halide perovskites, which may help understand the improved performance mechanism of perovskite device with π-conjugated additives. It is expected that π-conjugated organic additives for halide perovskites can provide unprecedented opportunities for the future improvement of perovskite devices.
Collapse
Affiliation(s)
- Yinan Lao
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871P. R. China
| | - Shuang Yang
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871P. R. China
| | - Wenjin Yu
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871P. R. China
| | - Haoqing Guo
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871P. R. China
| | - Yu Zou
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871P. R. China
| | - Zhijian Chen
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871P. R. China
| | - Lixin Xiao
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871P. R. China
| |
Collapse
|
20
|
Maafa IM. All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges. NANOMATERIALS 2022; 12:nano12101651. [PMID: 35630874 PMCID: PMC9147291 DOI: 10.3390/nano12101651] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023]
Abstract
Organic–inorganic metal-halide-based hybrid perovskite solar cells (SCs) have attracted a great deal of attention from researchers around the globe with their certified power conversion efficiencies (PCEs) having now increased to 25.2%. Nevertheless, organic–inorganic hybrid halide perovskite SCs suffer the serious drawback of instability with respect to moisture and heat. However, all-inorganic perovskite SCs have emerged as promising candidates to tackle the thermal instability problem. Since the introduction of all-inorganic perovskite materials to the field of perovskite photovoltaics in 2014, a plethora of research articles has been published focusing on this research topic. The PCE of all-inorganic PSCs has climbed to a record 18.4% and research is underway to enhance this. In this review, I survey the gradual progress of all-inorganic perovskites, their material design, the fabrication of high-quality perovskite films, energetics, major challenges and schemes opening new horizons toward commercialization. Furthermore, techniques to stabilize cubically phased low-bandgap inorganic perovskites are highlighted, as this is an indispensable requirement for stable and highly efficient SCs. In addition, I explain the various energy loss mechanisms at the interface and in the bulk of perovskite and charge-selective layers, and recap previously published reports on the curtailment of charge-carrier recombination losses.
Collapse
Affiliation(s)
- Ibrahim M Maafa
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
21
|
Jayanthi K, Spanopoulos I, Zibouche N, Voskanyan AA, Vasileiadou ES, Islam MS, Navrotsky A, Kanatzidis MG. Entropy Stabilization Effects and Ion Migration in 3D "Hollow" Halide Perovskites. J Am Chem Soc 2022; 144:8223-8230. [PMID: 35482958 DOI: 10.1021/jacs.2c01383] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A recently discovered new family of 3D halide perovskites with the general formula (A)1-x(en)x(Pb)1-0.7x(X)3-0.4x (A = MA, FA; X = Br, I; MA = methylammonium, FA = formamidinium, en = ethylenediammonium) is referred to as "hollow" perovskites owing to extensive Pb and X vacancies created on incorporation of en cations in the 3D network. The "hollow" motif allows fine tuning of optical, electronic, and transport properties and bestowing good environmental stability proportional to en loading. To shed light on the origin of the apparent stability of these materials, we performed detailed thermochemical studies, using room temperature solution calorimetry combined with density functional theory simulations on three different families of "hollow" perovskites namely en/FAPbI3, en/MAPbI3, and en/FAPbBr3. We found that the bromide perovskites are more energetically stable compared to iodide perovskites in the FA-based hollow compounds, as shown by the measured enthalpies of formation and the calculated formation energies. The least stable FAPbI3 gains stability on incorporation of the en cation, whereas FAPbBr3 becomes less stable with en loading. This behavior is attributed to the difference in the 3D cage size in the bromide and iodide perovskites. Configurational entropy, which arises from randomly distributed cation and anion vacancies, plays a significant role in stabilizing these "hollow" perovskite structures despite small differences in their formation enthalpies. With the increased vacancy defect population, we have also examined halide ion migration in the FA-based "hollow" perovskites and found that the migration energy barriers become smaller with the increasing en content.
Collapse
Affiliation(s)
- K Jayanthi
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Albert A Voskanyan
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - M Saiful Islam
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K..,Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
| | - Alexandra Navrotsky
- School of Molecular Sciences and Navrotsky Eyring Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Thermodynamic Study of Formamidinium Lead Iodide (CH5N2PbI3) from 5 to 357 K. ENTROPY 2022; 24:e24020145. [PMID: 35205441 PMCID: PMC8871434 DOI: 10.3390/e24020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
In the present study, the molar heat capacity of solid formamidinium lead iodide (CH5N2PbI3) was measured over the temperature range from 5 to 357 K using a precise automated adiabatic calorimeter. In the above temperature interval, three distinct phase transitions were found in ranges from 49 to 56 K, from 110 to 178 K, and from 264 to 277 K. The standard thermodynamic functions of the studied perovskite, namely the heat capacity C°p(T), enthalpy [H0(T) − H0(0)], entropy S0(T), and [G°(T) − H°(0)]/T, were calculated for the temperature range from 0 to 345 K based on the experimental data. Herein, the results are discussed and compared with those available in the literature as measured by nonclassical methods.
Collapse
|
23
|
Sanchez-Palencia P, García G, Wahnon P, Palacios P. Cation Substitution Effects on the Structural, Electronic and Sun-Light Absorption Features of All-Inorganic Halide Perovskites. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All-inorganic perovskites (such as CsPbI3) are emerging as new candidates for photovoltaic applications. Unfortunately, this class of materials present two important weaknesses in their way to commercialization: poor stability and...
Collapse
|
24
|
Capitaine A, Sciacca B. Monocrystalline Methylammonium Lead Halide Perovskite Materials for Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102588. [PMID: 34652035 DOI: 10.1002/adma.202102588] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Lead halide perovskite solar cells have been gaining more and more interest. In only a decade, huge research efforts from interdisciplinary communities enabled enormous scientific advances that rapidly led to energy conversion efficiency near that of record silicon solar cells, at an unprecedented pace. However, while for most materials the best solar cells were achieved with single crystals (SC), for perovskite the best cells have been so far achieved with polycrystalline (PC) thin films, despite the optoelectronic properties of perovskite SC are undoubtedly superior. Here, by taking as example monocrystalline methylammonium lead halide, the authors elaborate the literature from material synthesis and characterization to device fabrication and testing, to provide with plausible explanations for the relatively low efficiency, despite the superior optoelectronics performance. In particular, the authors focus on how solar cell performance is affected by anisotropy, crystal orientation, surface termination, interfaces, and device architecture. It is argued that, to unleash the full potential of monocrystalline perovskite, a holistic approach is needed in the design of next-generation device architecture. This would unquestionably lead to power conversion efficiency higher than those of PC perovskites and silicon solar cells, with tremendous impact on the swift deployment of renewable energy on a large scale.
Collapse
Affiliation(s)
- Anna Capitaine
- Aix Marseille Univ, CNRS, CINaM, Marseille, 13288, France
| | | |
Collapse
|
25
|
Luongo A, Brunetti B, Vecchio Ciprioti S, Ciccioli A, Latini A. Thermodynamic and Kinetic Aspects of Formamidinium Lead Iodide Thermal Decomposition. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:21851-21861. [PMID: 34676017 PMCID: PMC8521522 DOI: 10.1021/acs.jpcc.1c06729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Indexed: 05/30/2023]
Abstract
We report the results of a multi-technique study on the thermodynamics and kinetics of formamidinium lead iodide (FAPI) thermal decomposition. Thermodynamics was investigated by means of Knudsen effusion techniques. Kinetics was studied either by temperature-controlled powder X-ray diffraction or by two isoconversional treatments of differential scanning calorimetry data. FAPI appears to be much more thermally stable compared to methylammonium lead iodide, as predictable from the lower acidity of the formamidinium cation compared to methylammonium. The chemical processes responsible for its thermal degradation appear to be quite complex as highlighted by the composition of the gaseous phase evolved during the process. The apparent activation energy values of the decomposition obtained from X-ray diffraction (XRD) (112 ± 9 kJ/mol) and differential scanning calorimetry (DSC) measurements (205 ± 20 and 410 ± 20 kJ/mol, respectively, for the first and second decomposition steps identified by the deconvolution procedure) reflect the different steps of the process observed by the two techniques. The thermodynamic properties of the more important decomposition channels and the enthalpy of formation of FAPI were estimated by combining the results of Knudsen effusion measurements.
Collapse
Affiliation(s)
- Alessio Luongo
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Bruno Brunetti
- Consiglio
Nazionale delle Ricerche - Istituto per lo Studio dei Materiali Nanostrutturati,
c/o Dipartimento di Chimica, Sapienza Università
di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Stefano Vecchio Ciprioti
- Dipartimento
S.B.A.I., Sapienza Università di
Roma, Via del Castro
Laurenziano 7, Roma 00161, Italy
| | - Andrea Ciccioli
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| | - Alessandro Latini
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, Roma 00185, Italy
| |
Collapse
|
26
|
Investigation of Opto-Electronic Properties and Stability of Mixed-Cation Mixed-Halide Perovskite Materials with Machine-Learning Implementation. ENERGIES 2021. [DOI: 10.3390/en14175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The feasibility of mixed-cation mixed-halogen perovskites of formula AxA’1−xPbXyX’zX”3−y−z is analyzed from the perspective of structural stability, opto-electronic properties and possible degradation mechanisms. Using density functional theory (DFT) calculations aided by machine-learning (ML) methods, the structurally stable compositions are further evaluated for the highest absorption and optimal stability. Here, the role of the halogen mixtures is demonstrated in tuning the contrasting trends of optical absorption and stability. Similarly, binary organic cation mixtures are found to significantly influence the degradation, while they have a lesser, but still visible effect on the opto-electronic properties. The combined framework of high-throughput calculations and ML techniques such as the linear regression methods, random forests and artificial neural networks offers the necessary grounds for an efficient exploration of multi-dimensional compositional spaces.
Collapse
|
27
|
Blundo E, Polimeni A, Meggiolaro D, D’Annibale A, Romagnoli L, Felici M, Latini A. Brightly Luminescent and Moisture Tolerant Phenyl Viologen Lead Iodide Perovskites for Light Emission Applications. J Phys Chem Lett 2021; 12:5456-5462. [PMID: 34081469 PMCID: PMC8280716 DOI: 10.1021/acs.jpclett.1c01271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Lead halide perovskites are outstanding materials for optoelectronics, but they typically feature low stability against external agents. To overcome this drawback, LHPs based on quaternary ammonium cations, such as phenyl viologen lead iodide (PhVPI), were found to be promising candidates, being water-resistant and thermally stable. In this Letter, the optoelectronic properties of the PhVPI are investigated by a combined experimental-theoretical approach. Although the as-prepared material is photoluminescence-inactive, a short thermal (5 min @ 290 °C) or laser annealing turns PhVPI into a highly luminescent material, in the 600-1000 nm range. The PhVPI PL emission was characterized at different annealing conditions, and the structural evolution following thermal treatments was investigated by means of X-ray diffraction, Raman, and NMR spectroscopies. Besides this, the electronic structure and emission properties were investigated by density functional theory simulations. The intense optical emission and high stability make PhVPI an intriguing material for applications related to light-emitting devices.
Collapse
Affiliation(s)
- Elena Blundo
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Antonio Polimeni
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Daniele Meggiolaro
- Computational
Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta”
(CNR-SCITEC) Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Andrea D’Annibale
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Lorenza Romagnoli
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Marco Felici
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Alessandro Latini
- Dipartimento
di Chimica, Sapienza Università di
Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
28
|
Schwenzer JA, Hellmann T, Nejand BA, Hu H, Abzieher T, Schackmar F, Hossain IM, Fassl P, Mayer T, Jaegermann W, Lemmer U, Paetzold UW. Thermal Stability and Cation Composition of Hybrid Organic-Inorganic Perovskites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15292-15304. [PMID: 33764733 DOI: 10.1021/acsami.1c01547] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the great challenges of hybrid organic-inorganic perovskite photovoltaics is the material's stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.
Collapse
Affiliation(s)
- Jonas A Schwenzer
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
| | - Tim Hellmann
- Technical University of Darmstadt, Surface Science Laboratory, Department of Materials and Earth Sciences, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany
| | - Bahram Abdollahi Nejand
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hang Hu
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tobias Abzieher
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
| | - Fabian Schackmar
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- InnovationLab, Speyererstrasse 4, 69115 Heidelberg, Germany
| | - Ihteaz M Hossain
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Paul Fassl
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thomas Mayer
- Technical University of Darmstadt, Surface Science Laboratory, Department of Materials and Earth Sciences, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany
| | - Wolfram Jaegermann
- Technical University of Darmstadt, Surface Science Laboratory, Department of Materials and Earth Sciences, Otto-Berndt-Strasse 3, 64287 Darmstadt, Germany
| | - Uli Lemmer
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- InnovationLab, Speyererstrasse 4, 69115 Heidelberg, Germany
| | - Ulrich W Paetzold
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
29
|
Udalova NN, Tutantsev AS, Fateev SA, Zharenova EA, Belich NA, Nemygina EM, Ryabova AV, Goodilin EA, Tarasov AB. Crystallization Features of MAPbI3 Hybrid Perovskite during the Reaction of PbI2 with Reactive Polyiodide Melts. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621020200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Effects of Crystal Morphology on the Hot-Carrier Dynamics in Mixed-Cation Hybrid Lead Halide Perovskites. ENERGIES 2021. [DOI: 10.3390/en14030708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrafast pump-probe spectroscopies have proved to be an important tool for the investigation of charge carriers dynamics in perovskite materials providing crucial information on the dynamics of the excited carriers, and fundamental in the development of new devices with tailored photovoltaic properties. Fast transient absorbance spectroscopy on mixed-cation hybrid lead halide perovskite samples was used to investigate how the dimensions and the morphology of the perovskite crystals embedded in the capping (large crystals) and mesoporous (small crystals) layers affect the hot-carrier dynamics in the first hundreds of femtoseconds as a function of the excitation energy. The comparative study between samples with perovskite deposited on substrates with and without the mesoporous layer has shown how the small crystals preserve the temperature of the carriers for a longer period after the excitation than the large crystals. This study showed how the high sensitivity of the time-resolved spectroscopies in discriminating the transient response due to the different morphology of the crystals embedded in the layers of the same sample can be applied in the general characterization of materials to be used in solar cell devices and large area modules, providing further and valuable information for the optimization and enhancement of stability and efficiency in the power conversion of new perovskite-based devices.
Collapse
|
31
|
Spectacular Enhancement of the Thermal and Photochemical Stability of MAPbI3 Perovskite Films Using Functionalized Tetraazaadamantane as a Molecular Modifier. ENERGIES 2021. [DOI: 10.3390/en14030669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Perovskite solar cells represent a highly promising third-generation photovoltaic technology. However, their practical implementation is hindered by low device operational stability, mostly related to facile degradation of the absorber materials under exposure to light and elevated temperatures. Improving the intrinsic stability of complex lead halides is a big scientific challenge, which might be addressed using various “molecular modifiers”. These modifiers are usually represented by some additives undergoing strong interactions with the perovskite absorber material, resulting in enhanced solar cell efficiency and/or operational stability. Herein, we present a derivative of 1,4,6,10-tetraazaadamantane, NAdCl, as a promising molecular modifier for lead halide perovskites. NAdCl spectacularly improved both the thermal and photochemical stability of methylammonium lead iodide (MAPbI3) films and, most importantly, prevented the formation of metallic lead Pb0 as a photolysis product. NAdCl improves the electronic quality of perovskite films by healing the traps for charge carriers. Furthermore, it strongly interacts with the perovskite framework and most likely stabilizes undercoordinated Pb2+ ions, which are responsible for Pb0 formation under light exposure. The obtained results feature 1,4,6,10-tetraazaadamantane derivatives as highly promising molecular modifiers that might help to improve the operational lifetime of perovskite solar cells and facilitate the practical implementation of this photovoltaic technology.
Collapse
|
32
|
Park YR, Eom S, Kim HH, Choi WK, Kang Y. Self-defect-passivation by Br-enrichment in FA-doped Cs 1-xFA xPbBr 3 quantum dots: towards high-performance quantum dot light-emitting diodes. Sci Rep 2020; 10:14758. [PMID: 32901051 PMCID: PMC7479606 DOI: 10.1038/s41598-020-71666-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/21/2020] [Indexed: 11/09/2022] Open
Abstract
Halide vacancy defect is one of the major origins of non-radiative recombination in the lead halide perovskite light emitting devices (LEDs). Hence the defect passivation is highly demanded for the high-performance perovskite LEDs. Here, we demonstrated that FA doping led to the enrichment of Br in Cs1−xFAxPbBr3 QDs. Due to the defect passivation by the enriched Br, the trap density in Cs1−xFAxPbBr3 significantly decreased after FA doping, and which improved the optical properties of Cs1−xFAxPbBr3 QDs and their QD-LEDs. PLQY of Cs1–xFAxPbBr3 QDs increased from 76.8% (x = 0) to 85.1% (x = 0.04), and Lmax and CEmax of Cs1–xFAxPbBr3 QD-LEDs were improved from Lmax = 2880 cd m−2 and CEmax = 1.98 cd A−1 (x = 0) to Lmax = 5200 cd m−2 and CEmax = 3.87 cd A−1 (x = 0.04). Cs1–xFAxPbBr3 QD-LED device structure was optimized by using PVK as a HTL and ZnO modified with b-PEI as an ETL. The energy band diagram of Cs1–xFAxPbBr3 QD-LEDs deduced by UPS analyses.
Collapse
Affiliation(s)
- Young Ran Park
- Institute of Nano Science and Technology (INST), Hanyang University, Seongdong-gu, Seoul, 04763, South Korea
| | - Sangwon Eom
- Department of Chemistry, Hanyang University, Seongdong-gu, Seoul, 04763, South Korea
| | - Hong Hee Kim
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, South Korea.,Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul, 03722, South Korea
| | - Won Kook Choi
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul, 02792, South Korea
| | - Youngjong Kang
- Institute of Nano Science and Technology (INST), Hanyang University, Seongdong-gu, Seoul, 04763, South Korea. .,Department of Chemistry, Hanyang University, Seongdong-gu, Seoul, 04763, South Korea. .,Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
33
|
Kumar A, Bansode U, Ogale S, Rahman A. Understanding the thermal degradation mechanism of perovskite solar cells via dielectric and noise measurements. NANOTECHNOLOGY 2020; 31:365403. [PMID: 32470953 DOI: 10.1088/1361-6528/ab97d4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Long term stability is a major obstacle to the success of perovskite solar cell (PSC) photovoltaic technology. PSC performance deteriorates significantly in the presence of humidity, oxygen and exposure to UV light and heat. Here the change in charge transport properties of PSC with temperature and the associated significant drop in device performance at high temperature have been investigated. The latter is shown to be primarily due to an increase in charge carrier recombination, which impacts the open-circuit voltage. To understand the pathway of temperature-induced degradation, low-frequency 1/f noise characteristics, and the capacitance-frequency, as well as capacitance-voltage characteristics have been investigated under various conditions. The results show that at high operating temperature accumulation of ions and charge carriers at the interface increase the surface recombination. Aging experiments at different temperatures show high stability of PSCs up to temperature <70 °C, but a drastic, irreversible degradation occurs at higher temperature (≥80 °C). Low-frequency 1/f noise study revealed that the magnitude of normalized noise in degraded perovskite solar cells is four orders of magnitude higher than the pristine device. This study shows the power of low-frequency noise measurement technique as a highly sensitive non-invasive tool to study the degradation mechanism of PSCs.
Collapse
Affiliation(s)
- Ankit Kumar
- Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research (IISER)-Pune, Pune, Maharashtra 411008 India
| | | | | | | |
Collapse
|
34
|
McGovern L, Futscher MH, Muscarella LA, Ehrler B. Understanding the Stability of MAPbBr 3 versus MAPbI 3: Suppression of Methylammonium Migration and Reduction of Halide Migration. J Phys Chem Lett 2020; 11:7127-7132. [PMID: 32787314 PMCID: PMC7476026 DOI: 10.1021/acs.jpclett.0c01822] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/07/2020] [Indexed: 05/31/2023]
Abstract
Solar cells based on metal halide perovskites often show excellent efficiency but poor stability. This degradation of perovskite devices has been associated with the migration of mobile ions. MAPbBr3 perovskite materials are significantly more stable under ambient conditions than MAPbI3 perovskite materials. In this work, we use transient ion drift to quantify the key characteristics of ion migration in MAPbBr3 perovskite solar cells. We then proceed to compare them with those of MAPbI3 perovskite solar cells. We find that in MAPbBr3, bromide migration is the main process at play and that contrary to the case of MAPbI3, there is no evidence for methylammonium migration. Quantitatively, we find a reduced activation energy, a reduced diffusion coefficient, and a reduced concentration for halide ions in MAPbBr3 compared to MAPbI3. Understanding this difference in mobile ion migration is a crucial step in understanding the enhanced stability of MAPbBr3 versus MAPbI3.
Collapse
|
35
|
Xie Z, Li X, Li R, Lu S, Zheng W, Tu D, Feng Y, Chen X. In situ confined growth of ultrasmall perovskite quantum dots in metal-organic frameworks and their quantum confinement effect. NANOSCALE 2020; 12:17113-17120. [PMID: 32785402 DOI: 10.1039/d0nr04741d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The metal halide perovskite quantum dots (APbX3 PeQDs; A = Cs or CH3NH3; X = Cl, Br or I) have emerged as a new type of promising optoelectronic material for light-emitting and photovoltaic applications because of their excellent optical properties. However, the precise control over the size and photoluminescence (PL) emission of APbX3 PeQDs remains a great challenge, which has been one of the main obstacles to the applications of PeQDs. Herein, we report a unique strategy for in situ confined growth of MAPbBr3 (MA = CH3NH3) PeQDs by using porous metal-organic framework (MOF) UiO-66 as a matrix. By introducing Pb(Ac)2 and MABr precursors into the pores of UiO-66 via a stepwise approach, ultrasmall MAPbBr3 PeQDs were in situ grown in the matrix with the size tuned from 6.4 to 3.3 nm by changing the concentration of the Pb(Ac)2 precursor. Accordingly, the PL emission wavelength of the resulting MAPbBr3 PeQDs was blue-shifted from 521 to 486 nm with the size reduction, owing to the strong quantum confinement effect of the PeQDs. Due to the surface passivation effect endowed by the UiO-66 matrix, the ultrasmall MAPbBr3 PeQDs also displayed a high PL quantum yield (PLQY) of 43.3% and a long PL lifetime of 100.3 ns. This study proposes a new strategy to prepare ultrasmall PeQDs and effectively control their sizes and PL emissions, which may open up new avenues for the development of high-performance luminescent PeQDs for diverse applications.
Collapse
Affiliation(s)
- Ziren Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjun Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Shan Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhui Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China and University of Chinese Academy of Sciences, Beijing 100049, China and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
36
|
Rehermann C, Merdasa A, Suchan K, Schröder V, Mathies F, Unger EL. Origin of Ionic Inhomogeneity in MAPb(I xBr 1-x) 3 Perovskite Thin Films Revealed by In-Situ Spectroscopy during Spin Coating and Annealing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30343-30352. [PMID: 32510922 DOI: 10.1021/acsami.0c05894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Irradiation-induced phase segregation in mixed methylammonium halide perovskite samples such as methylammonium lead bromide-iodide, MAPb(IxBr1-x)3, is being studied intensively because it limits the efficiency of wide band gap perovskite solar cells. It has been postulated that this phenomenon depends on the intrinsic ionic (in)homogeneity in samples already induced during film formation. A deeper understanding of the MAPb(IxBr1-x)3 formation processes and the influence of the halide ratio, solvents, and the perovskite precursor composition as well as the influence of processing parameters during deposition, e.g., spin coating and annealing parameters, is still lacking. Here, we use a fiber optic-based optical in-situ setup to study the formation processes of the MAPb(IxBr1-x)3 series on a subsecond time scale during spin coating and thermal annealing. In-situ UV-vis measurements during spin coating reveal the influence of different halide ratios, x, in the precursor solution on the preferential crystallization of the phase. Pure bromide samples directly form a perovskite phase, samples with high iodide content form a solvate intermediate phase, and samples with a mixed stoichiometry between 0.1 ≤ x ≤ 0.6 form both. This leads to a heterogeneous formation process via two competing reaction pathways, that leads to a heterogeneous mixture of phases, during spin coating and rationalizes the compositional heterogeneity of mixed bromide-iodide samples even after annealing.
Collapse
Affiliation(s)
- Carolin Rehermann
- Young Investigator Group Hybrid Materials Formation and Scaling, HySPRINT Innovation Lab, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Kekuléstraße 5, 12489 Berlin, Germany
| | - Aboma Merdasa
- Young Investigator Group Hybrid Materials Formation and Scaling, HySPRINT Innovation Lab, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Kekuléstraße 5, 12489 Berlin, Germany
- Department of Physics, Lund University, Sölvegatan 14, 22362 Lund, Sweden
| | - Klara Suchan
- Chemical Physics and NanoLund, Lund University, PO Box 118, 22100 Lund, Sweden
| | - Vincent Schröder
- Institut für Physik, Institut für Chemie, IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Florian Mathies
- Young Investigator Group Hybrid Materials Formation and Scaling, HySPRINT Innovation Lab, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Kekuléstraße 5, 12489 Berlin, Germany
| | - Eva L Unger
- Young Investigator Group Hybrid Materials Formation and Scaling, HySPRINT Innovation Lab, Helmholtz-Zentrum Berlin für Materialen und Energie GmbH, Kekuléstraße 5, 12489 Berlin, Germany
- Chemical Physics and NanoLund, Lund University, PO Box 118, 22100 Lund, Sweden
| |
Collapse
|
37
|
Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Aynehband S, Mohammadi M, Thorwarth K, Hany R, Nüesch FA, Rossell MD, Pauer R, Nunzi JM, Simchi A. Solution Processing and Self-Organization of PbS Quantum Dots Passivated with Formamidinium Lead Iodide (FAPbI 3). ACS OMEGA 2020; 5:15746-15754. [PMID: 32637850 PMCID: PMC7331203 DOI: 10.1021/acsomega.0c02319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 05/02/2023]
Abstract
Solution-processed lead sulfide quantum dots (PbS QDs) are very attractive as NIR-active semiconductors for the fabrication of cost-efficient optoelectronic devices. To control the thin film carrier transport, as well as stability, surface passivation is of crucial importance. Here, we present the successful surface passivation of PbS QDs by the formamidinium lead iodide (FAPbI3) ligand. An effective procedure for the fabrication of FAPbI3-passivated PbS QDs through a binary-phase ligand exchange protocol in hexane and n-methylformamide is demonstrated. It is shown that this solution-processed ligand exchange drastically changes the photoluminescence intensity, exciton recombination dynamics, and carrier lifetime of the nanocrystals. The solution casting of the ligand-exchanged nanocrystals into thin films results in the periodic ordering of QDs in a square superlattice with close contacts. Planar graphene/QD photodetectors fabricated with PbS QDs passivated with FAPbI3 show substantially increased thermal stability as compared to similar devices using PbS QDs passivated with commonly used methylammonium lead iodide.
Collapse
Affiliation(s)
- Samaneh Aynehband
- Department
of Materials Science and Engineering, Sharif
University of Technology, 14588 Tehran, Iran
- Laboratory
for Functional Polymers, Empa, Swiss Federal
Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Chemistry, Department of Physics, Engineering Physics and Astronomy, Queens University, Kingston, Ontario K7L
3N6, Canada
| | - Maryam Mohammadi
- Department
of Materials Science and Engineering, Sharif
University of Technology, 14588 Tehran, Iran
| | - Kerstin Thorwarth
- Surface
Science and Coating Technologies, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roland Hany
- Laboratory
for Functional Polymers, Empa, Swiss Federal
Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Frank Alain Nüesch
- Laboratory
for Functional Polymers, Empa, Swiss Federal
Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Materials Science and Engineering, EPFL,
Ecole Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Marta D. Rossell
- Electron
Microscopy Center, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Robin Pauer
- Electron
Microscopy Center, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Jean-Michel Nunzi
- Department
of Chemistry, Department of Physics, Engineering Physics and Astronomy, Queens University, Kingston, Ontario K7L
3N6, Canada
| | - Abdolreza Simchi
- Department
of Materials Science and Engineering, Sharif
University of Technology, 14588 Tehran, Iran
- Institute
for Nanoscience and Nanotechnology, Sharif
University of Technology, 14588 Tehran, Iran
| |
Collapse
|
39
|
Jo YR, Tersoff J, Kim MW, Kim J, Kim BJ. Reversible Decomposition of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods. ACS CENTRAL SCIENCE 2020; 6:959-968. [PMID: 32607443 PMCID: PMC7318082 DOI: 10.1021/acscentsci.0c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Perovskite solar cells offer remarkable performance, but further advances will require deeper understanding and control of the materials and processing. Here, we fabricate the first single crystal nanorods of intermediate phase (MAI-PbI2-DMSO), allowing us to directly observe the phase evolution while annealing in situ in a high-vacuum transmission electron microscope, which lets up separate thermal effects from other environmental conditions such as oxygen and moisture. We attain the first full determination of the crystal structures and orientations of the intermediate phase, evolving perovskite, precipitating PbI2, and e-beam induced PbI2 during phase conversion and decomposition. Surprisingly, the perovskite decomposition to PbI2 is reversible upon cooling, critical for long-term device endurance due to the formation of MAI-rich MAPbI3 and PbI2 upon heating. Quantitative measurements with a thermodynamic model suggest the decomposition is entropically driven. The single crystal MAPbI3 nanorods obtained via thermal cycling exhibit excellent mobility and trap density, with full reversibility up to 100 °C (above the maximum temperature for solar cell operation) under high vacuum, offering unique potential for high-performance flexible solar cells.
Collapse
Affiliation(s)
- Yong-Ryun Jo
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Jerry Tersoff
- IBM
T. J. Watson Research Center, Yorktown
Heights, New York 10598, United States
| | - Min-Woo Kim
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Junghwan Kim
- Photo-electronic
Hybrids Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Korea
| | - Bong-Joong Kim
- School
of Materials Science and Engineering, Gwangju
Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|
40
|
Zhang S, Han G. Intrinsic and environmental stability issues of perovskite photovoltaics. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2516-1083/ab70d9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Xu AF, Liu N, Xie F, Song T, Ma Y, Zhang P, Bai Y, Li Y, Chen Q, Xu G. Promoting Thermodynamic and Kinetic Stabilities of FA-based Perovskite by an in Situ Bilayer Structure. NANO LETTERS 2020; 20:3864-3871. [PMID: 32353241 DOI: 10.1021/acs.nanolett.0c00988] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The commonly employed formamidinium (FA)-containing perovskite solar cells (PSCs) exhibit a severe phase instability problem, thereby limiting their commercial applications. Here, both phase stability and energy efficiency of FA-based PSCs were improved by treating the perovskite surface with pyrrolidinium hydroiodide (PyI) salts, resulting in a 1D perovskite structure (PyPbI3), stacked on the original 3D perovskite. By employing in situ XRD measurements, we revealed that the temperature-dependent phase transition activation barrier was enhanced after forming the 1D/3D structure, resulting in a prolonged transition time by 30-40-fold. From the first-principle calculations, we found the thermodynamic energy difference between two phases reduced from -0.16 to -0.04 eV after the stacking of 1D PyPbI3, offering additional lifetime improvement. Moreover, the champion 1D/3D bilayer PSC exhibits a boosted power conversion efficiency of 19.62%, versus 18.21% of the control. Such 1D/3D bilayer structure may be employed in PSCs to enhance their phase stability and photovoltaic performance.
Collapse
Affiliation(s)
- Alex Fan Xu
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Na Liu
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fanlong Xie
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tinglu Song
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yue Ma
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pengxiang Zhang
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Bai
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yujing Li
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Chen
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gu Xu
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
42
|
Zhizhchenko AY, Tonkaev P, Gets D, Larin A, Zuev D, Starikov S, Pustovalov EV, Zakharenko AM, Kulinich SA, Juodkazis S, Kuchmizhak AA, Makarov SV. Light-Emitting Nanophotonic Designs Enabled by Ultrafast Laser Processing of Halide Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000410. [PMID: 32309903 DOI: 10.1002/smll.202000410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Nanophotonics based on resonant nanostructures and metasurfaces made of halide perovskites have become a prospective direction for efficient light manipulation at the subwavelength scale in advanced photonic designs. One of the main challenges in this field is the lack of large-scale low-cost technique for subwavelength perovskite structures fabrication preserving highly efficient luminescence. Here, unique properties of halide perovskites addressed to their extremely low thermal conductivity (lower than that of silica glass) and high defect tolerance to apply projection femtosecond laser lithography for nanofabrication with precise spatial control in all three dimensions preserving the material luminescence efficiency are employed. Namely, with CH3 NH3 PbI3 perovskite highly ordered nanoholes and nanostripes of width as small as 250 nm, metasurfaces with periods less than 400 nm, and nanowire lasers as thin as 500 nm, corresponding to the state-of-the-art in multistage expensive lithographical methods are created. Remarkable performance of the developed approach allows to demonstrate a number of advanced optical applications, including morphology-controlled photoluminescence yield, structural coloring, optical- information encryption, and lasing.
Collapse
Affiliation(s)
- Alexey Y Zhizhchenko
- Institute of Automation and Control Processes (IACP), Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690091, Russia
| | | | - Dmitry Gets
- ITMO University, St. Petersburg, 197101, Russia
| | - Artem Larin
- ITMO University, St. Petersburg, 197101, Russia
| | - Dmitry Zuev
- ITMO University, St. Petersburg, 197101, Russia
| | - Sergey Starikov
- Ruhr-Universität Bochum, Bochum, 44701, Germany
- Joint Institute for High Temperatures of RAS, Moscow, 125412, Russia
| | | | | | - Sergei A Kulinich
- Far Eastern Federal University, Vladivostok, 690041, Russia
- Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | | | - Aleksandr A Kuchmizhak
- Institute of Automation and Control Processes (IACP), Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690091, Russia
| | | |
Collapse
|
43
|
Franssen WMJ, van Heumen CMM, Kentgens APM. Structural Investigations of MA 1-xDMA xPbI 3 Mixed-Cation Perovskites. Inorg Chem 2020; 59:3730-3739. [PMID: 32118409 PMCID: PMC7252946 DOI: 10.1021/acs.inorgchem.9b03380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, a number of variations to the hybrid perovskite structure have been suggested in order to improve on the properties of methylammonium lead iodide, the archetypical hybrid halide perovskite material. In particular, with respect to the chemical stability of the material, steps should be taken. We performed an in-depth analysis of the structure of MAPbI3 upon incorporation of dimethylammonium (DMA) in order to probe the integrity of the perovskite lattice in relation to changes in the organic cation. This material, with formula MA1-xDMAxPbI3, adopts a 3D perovskite structure for 0 < x < 0.2, while a nonperovskite yellow phase is formed for 0.72 < x < 1. In the perovskite phase, the methylammonium and dimethylammonium ions are distributed randomly throughout the lattice. For 0.05 < x < 0.2, the phase-transition temperature of the material is lowered when compared to that of pure MAPbI3 (x = 0). The material, although disordered, has apparent cubic symmetry at room temperature. This leads to a small increase in the band gap of the material of about 20 meV. Using 14N NMR relaxation experiments, the reorientation times of the MA and DMA cations in MA0.8DMA0.2PbI3 were established to be 1.6 and 2.6 ps, respectively, indicating that both ions are very mobile in this material, on par with the MA ions in MAPbI3. All of the produced MA1-xDMAxPbI3 materials were richer in DMA than the precursor solution from which they were crystallized, indicating that DMA incorporation is energetically favorable and suggesting a higher thermodynamic stability of these materials when compared to that of pure MAPbI3.
Collapse
Affiliation(s)
- Wouter M J Franssen
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Cathy M M van Heumen
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Arno P M Kentgens
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
44
|
Svanström S, Jacobsson TJ, Boschloo G, Johansson EMJ, Rensmo H, Cappel UB. Degradation Mechanism of Silver Metal Deposited on Lead Halide Perovskites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7212-7221. [PMID: 31958007 DOI: 10.1021/acsami.9b20315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead halide perovskite solar cells have significantly increased in both efficiency and stability over the last decade. An important aspect of their long-term stability is the reaction between the perovskite and other materials in the solar cell. This includes the contact materials and their degradation if they can potentially come into contact through, e.g., pinholes or material diffusion and migration. Here, we explore the interactions of silver contacts with lead halide perovskites of different compositions by using a model system where thermally evaporated silver was deposited directly on the surface of the perovskites. Using X-ray photoelectron spectroscopy with support from scanning electron microscopy, X-ray diffraction, and UV-visible absorption spectroscopy, we studied the film formation and degradation of silver on perovskites with different compositions. The deposited silver does not form a continuous silver film but instead tends to form particles on a bare perovskite surface. These particles are initially metallic in character but degrade into AgI and AgBr over time. The degradation and migration appear unaffected by the replacement of methylammonium with cesium but are significantly slowed down by the complete replacement of iodide with bromide. The direct contact between silver and the perovskite also significantly accelerates the degradation of the perovskite, with a significant loss of organic cations and the possible formation of PbO, and, at the same time, changed the surface morphology of the iodide-rich perovskite interface. Our results further indicate that an important degradation pathway occurred through gas-phase perovskite degradation products. This highlights the importance of control over the interface materials and the use of completely hermetical barrier layers for the long-term stability and therefore the commercial viability of silver electrodes.
Collapse
Affiliation(s)
- Sebastian Svanström
- Department of Physics and Astronomy , Uppsala University , Box 516, SE-75121 Uppsala , Sweden
| | - T Jesper Jacobsson
- Department of Chemistry , Uppsala University , Box 538, 75121 Uppsala , Sweden
| | - Gerrit Boschloo
- Department of Chemistry , Uppsala University , Box 538, 75121 Uppsala , Sweden
| | - Erik M J Johansson
- Department of Chemistry , Uppsala University , Box 538, 75121 Uppsala , Sweden
| | - Håkan Rensmo
- Department of Physics and Astronomy , Uppsala University , Box 516, SE-75121 Uppsala , Sweden
| | - Ute B Cappel
- Division of Applied Physical Chemistry, Department of Chemistry , KTH-Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| |
Collapse
|
45
|
Kaniyankandy S, Vazhappilly T. Synthesis and electronic structure study on CsPbBr3 nanoplatelets: Thickness manipulation using surface ligands. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Akbulatov AF, Frolova LA, Dremova NN, Zhidkov I, Martynenko VM, Tsarev SA, Luchkin SY, Kurmaev EZ, Aldoshin SM, Stevenson KJ, Troshin PA. Light or Heat: What Is Killing Lead Halide Perovskites under Solar Cell Operation Conditions? J Phys Chem Lett 2020; 11:333-339. [PMID: 31838849 DOI: 10.1021/acs.jpclett.9b03308] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the first systematic assessment of intrinsic photothermal stability of a large panel of complex lead halides APbX3 incorporating different univalent cations (A = CH3NH3+, [NH2CHNH2]+, Cs+) and halogen anions (X = Br, I) using a series of analytical techniques such as UV-vis and X-ray photoelectron spectroscopy, X-ray diffraction, EDX analysis, atomic force and scanning electron microscopy, ESR spectroscopy, and mass spectrometry. We show that heat stress and light soaking induce a severe degradation of perovskite films even in the absence of oxygen and moisture. The stability of complex lead halides increases in the order MAPbBr3 < MAPbI3 < FAPbI3 < FAPbBr3 < CsPbI3 < CsPbBr3, thus featuring all-inorganic perovskites as the most promising absorbers for stable perovskite solar cells. An important correlation was found between the stability of the complex lead halides and the volatility of univalent cation halides incorporated in their structure. The established relationship provides useful guidelines for designing new complex metal halides with immensely improved stability.
Collapse
Affiliation(s)
- Azat F Akbulatov
- The Institute for Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS) , Semenov Prospect 1 , Chernogolovka 142432 , Russia
| | - Lyubov A Frolova
- The Institute for Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS) , Semenov Prospect 1 , Chernogolovka 142432 , Russia
- Center for Energy Science and Technology , Skolkovo Institute of Science and Technology , Nobel Street 3 , Moscow 143026 , Russia
| | - Nadezhda N Dremova
- The Institute for Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS) , Semenov Prospect 1 , Chernogolovka 142432 , Russia
| | - Ivan Zhidkov
- Institute of Physics and Technology , Ural Federal University , Mira 19 Street , Yekaterinburg 620002 , Russia
| | - Vyacheslav M Martynenko
- The Institute for Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS) , Semenov Prospect 1 , Chernogolovka 142432 , Russia
| | - Sergey A Tsarev
- Center for Energy Science and Technology , Skolkovo Institute of Science and Technology , Nobel Street 3 , Moscow 143026 , Russia
| | - Sergey Yu Luchkin
- Center for Energy Science and Technology , Skolkovo Institute of Science and Technology , Nobel Street 3 , Moscow 143026 , Russia
| | - Ernst Z Kurmaev
- Institute of Physics and Technology , Ural Federal University , Mira 19 Street , Yekaterinburg 620002 , Russia
- M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences , South Kovalevskoi 18 Street , Yekaterinburg 620990 , Russia
| | - Sergey M Aldoshin
- The Institute for Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS) , Semenov Prospect 1 , Chernogolovka 142432 , Russia
| | - Keith J Stevenson
- Center for Energy Science and Technology , Skolkovo Institute of Science and Technology , Nobel Street 3 , Moscow 143026 , Russia
| | - Pavel A Troshin
- The Institute for Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS) , Semenov Prospect 1 , Chernogolovka 142432 , Russia
- Center for Energy Science and Technology , Skolkovo Institute of Science and Technology , Nobel Street 3 , Moscow 143026 , Russia
| |
Collapse
|
47
|
Abstract
Organic–inorganic hybrid perovskite is a leading successor for the next generation of (opto)electronics.
Collapse
Affiliation(s)
- Joohoon Kang
- School of Advanced Materials Science and Engineering
- Sungkyunkwan University (SKKU)
- Suwon 16419
- Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering
- Yonsei University
- Seoul 03722
- Republic of Korea
| |
Collapse
|
48
|
Forgacs D, Wojciechowski K, Malinkiewicz O. Perovskite Photovoltaics: From Laboratory to Industry. SPRINGER SERIES IN OPTICAL SCIENCES 2020. [DOI: 10.1007/978-3-030-22864-4_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
49
|
Latini A, Quaranta S, Menchini F, Lisi N, Di Girolamo D, Tarquini O, Colapietro M, Barba L, Demitri N, Cassetta A. A novel water-resistant and thermally stable black lead halide perovskite, phenyl viologen lead iodide C 22H 18N 2(PbI 3) 2. Dalton Trans 2020; 49:2616-2627. [PMID: 32039432 DOI: 10.1039/c9dt04148f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel black organoammonium iodoplumbate semiconductor, namely phenyl viologen lead iodide C22H18N2(PbI3)2 (PhVPI), was successfully synthesized and characterized. This material showed physical and chemical properties suitable for photovoltaic applications. Indeed, low direct allowed band gap energy (Eg = 1.32 eV) and high thermal stability (up to at least 300 °C) compared to methylammonium lead iodide CH3NH3PbI3 (MAPI, Eg = 1.5 eV) render PhVPI potentially attractive for solar cell fabrication. The compound was extensively characterized by means of X-ray diffraction (performed on both powder and single crystals), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), UV-photoelectron spectroscopy (UPS), FT-IR spectroscopy, TG-DTA, and CHNS analysis. Reactivity towards water was monitored through X-ray powder diffraction carried out after prolonged immersion of the material in water at room temperature. Unlike its methyl ammonium counterpart, PhVPI proved to be unaffected by water exposure. The lack of reactivity towards water is to be attributed to the quaternary nature of the nitrogen atoms of the phenyl viologen units that prevents the formation of acid-base equilibria when in contact with water. On the other hand, PhVPI's thermal stability was evaluated by temperature-controlled powder XRD measurements following an hour-long isothermal treatment at 250 and 300 °C. In both cases no signs of decomposition could be detected. However, the compound melted incongruently at 332 °C producing, upon cooling, a mostly amorphous material. PhVPI was found to be slightly soluble in DMF (∼5 mM) and highly soluble in DMSO. Nevertheless, its solubility in DMF can be dramatically increased by adding an equimolar amount of DMSO. Therefore, phenyl viologen lead iodide can be amenable for the fabrication of solar devices by spin coating as actually done for MAPI-based cells. The crystal structure, determined by means of single crystal X-ray diffraction using synchrotron radiation, turned out to be triclinic and consequently differs from the prototypal perovskite structure. In fact, it comprises infinite double chains of corner-sharing PbI6 octahedra along the a-axis direction with phenyl viologen cations positioned between the columns. Finally, the present determination of PhVPI's electronic band structure achieved through UPS and UV-Vis DRS is instrumental in using the material for solar cells.
Collapse
Affiliation(s)
- Alessandro Latini
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| | - Simone Quaranta
- Dipartimento di Ingegneria dell'Informazione, Elettronica e Telecomunicazioni, Sapienza Università di Roma, Via Eudossiana, 18, 00184 Roma, Italy
| | - Francesca Menchini
- ENEA - Energy Technologies Department, Via Anguillarese, 301, 00123 Roma, Italy
| | - Nicola Lisi
- ENEA - Energy Technologies Department, Via Anguillarese, 301, 00123 Roma, Italy
| | - Diego Di Girolamo
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| | - Ombretta Tarquini
- Consiglio Nazionale delle Ricerche - Istituto di Cristallografia, Via Salaria km 29, 300, 00015 Monterotondo Scalo, Roma, Italy
| | - Marcello Colapietro
- Consiglio Nazionale delle Ricerche - Istituto di Cristallografia, Via Salaria km 29, 300, 00015 Monterotondo Scalo, Roma, Italy
| | - Luisa Barba
- Consiglio Nazionale delle Ricerche - Istituto di Cristallografia, Sede Secondaria di Trieste, Area Science Park - Basovizza, Strada Statale 14, km 163.5, 34149 Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, Area Science Park - Basovizza, Strada Statale 14, km 163.5, 34149 Trieste, Italy
| | - Alberto Cassetta
- Consiglio Nazionale delle Ricerche - Istituto di Cristallografia, Sede Secondaria di Trieste, Area Science Park - Basovizza, Strada Statale 14, km 163.5, 34149 Trieste, Italy
| |
Collapse
|
50
|
Angmo D, Peng X, Seeber A, Zuo C, Gao M, Hou Q, Yuan J, Zhang Q, Cheng YB, Vak D. Controlling Homogenous Spherulitic Crystallization for High-Efficiency Planar Perovskite Solar Cells Fabricated under Ambient High-Humidity Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904422. [PMID: 31651094 DOI: 10.1002/smll.201904422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
The influence of precursor solution properties, fabrication environment, and antisolvent properties on the microstructural evolution of perovskite films is reported. First, the impact of fabrication environment on the morphology of methyl ammonium lead iodide (MAPbI3 ) perovskite films with various Lewis-base additives is reported. Second, the influence of antisolvent properties on perovskite film microstructure is investigated using antisolvents ranging from nonpolar heptane to highly polar water. This study shows an ambient environment that accelerates crystal growth at the expense of nucleation and introduces anisotropies in crystal morphology. The use of antisolvents enhances nucleation but also influences ambient moisture interaction with the precursor solution, resulting in different crystal morphology (shape, size, dispersity) in different antisolvents. Crystal morphology, in turn, dictates film quality. A homogenous spherulitic crystallization results in pinhole-free films with similar microstructure irrespective of processing environment. This study further demonstrates propyl acetate, an environmentally benign antisolvent, which can induce spherulitic crystallization under ambient environment (52% relative humidity, 25 °C). With this, planar perovskite solar cells with ≈17.78% stabilized power conversion efficiency are achieved. Finally, a simple precipitation test and in situ crystallization imaging under an optical microscope that can enable a facile a priori screening of antisolvents is shown.
Collapse
Affiliation(s)
- Dechan Angmo
- CSIRO, Manufacturing, Clayton, VIC, 3168, Australia
| | - Xiaojin Peng
- CSIRO, Manufacturing, Clayton, VIC, 3168, Australia
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
- Glass and Technology Research Institute of Shahe, Shahe, 054100, Hebei, P. R. China
| | - Aaron Seeber
- CSIRO, Manufacturing, Clayton, VIC, 3168, Australia
| | | | - Mei Gao
- CSIRO, Manufacturing, Clayton, VIC, 3168, Australia
| | - Qicheng Hou
- Department of Chemical Engineering, Monash University, Victoria, 3800, Australia
| | - Jian Yuan
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
- Glass and Technology Research Institute of Shahe, Shahe, 054100, Hebei, P. R. China
| | - Qi Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, Hubei, P. R. China
- Glass and Technology Research Institute of Shahe, Shahe, 054100, Hebei, P. R. China
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Yi-Bing Cheng
- Department of Chemical Engineering, Monash University, Victoria, 3800, Australia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Doojin Vak
- CSIRO, Manufacturing, Clayton, VIC, 3168, Australia
| |
Collapse
|