1
|
Forester BR, Cicchino AS, Shah AA, Mudd AB, Anderson EC, Bredeson JV, Crawford AJ, Dunham JB, Ghalambor CK, Landguth EL, Murray BW, Rokhsar D, Funk WC. Population Genomics Reveals Local Adaptation Related to Temperature Variation in Two Stream Frog Species: Implications for Vulnerability to Climate Warming. Mol Ecol 2025:e17651. [PMID: 39825598 DOI: 10.1111/mec.17651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity. Here, we address the question of local adaptation to temperature and the genetic basis of thermal tolerance in two stream frogs (Ascaphus truei and A. montanus). Building on previous physiological and temperature data, we used whole-genome resequencing of tadpoles from four sites spanning temperature gradients in each species to test for signatures of local adaptation. To support these analyses, we developed the first annotated reference genome for A. truei. We then expanded the geographic scope of our analysis using targeted capture at an additional 11 sites per species. We found evidence of local adaptation to temperature based on physiological and genomic data in A. montanus and genomic data in A. truei, suggesting similar levels of sensitivity (i.e., susceptibility) among populations regardless of stream temperature. However, invariant thermal tolerances across temperatures in A. truei suggest that populations occupying warmer streams may be most sensitive. We identified high levels of evolutionary potential in both species based on genomic and physiological data. While further integration of these data is needed to comprehensively evaluate spatial variation in vulnerability, this work illustrates the value of genomics in identifying spatial patterns of climate change vulnerability.
Collapse
Affiliation(s)
- Brenna R Forester
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Amanda S Cicchino
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Alisha A Shah
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Eric C Anderson
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Jason B Dunham
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, USA
| | - Cameron K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Erin L Landguth
- School of Public and Community Health Sciences, University of Montana, Missoula, Montana, USA
| | - Brent W Murray
- Department of Ecosystem Science and Management, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Daniel Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Patel J, Botes A, Mollett J, De Maayer P. Whole genome sequencing, assembly and annotation of the Southern Ground Hornbill - Bucorvus leadbeateri. Sci Data 2025; 12:58. [PMID: 39799121 PMCID: PMC11724890 DOI: 10.1038/s41597-025-04412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
The Southern Ground Hornbill (SGH - Bucorvus leadbeateri) is one of the largest hornbill species worldwide, known for its complex social structures and breeding behaviours. This bird has been of great interest due to its declining population and disappearance from historic ranges in southern Africa. Despite being the focus of numerous conservation efforts, with research forming an integral part of these initiatives, there is still a substantial lack of knowledge regarding the molecular biology aspects of this bird species. In this study, whole genome sequencing of the SGH was achieved using Illumina short-read (NovaSeq 6000) and Pacific Biosciences long-read technologies. A hybrid de novo genome assembly followed by reference-based refinement produced a 1.16 Gb high-quality draft genome assembly of the SGH comprised of 1,672 contigs (N50 value of 40.45 Mb). The availability of this genome will aid in improving our current understanding of this bird at a genomic level and provide a pivotal foundation for comparative genomic analysis with other hornbill species.
Collapse
Affiliation(s)
- Jasmin Patel
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2017, South Africa
| | - Angela Botes
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2017, South Africa
| | - Jean Mollett
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2017, South Africa
| | - Pieter De Maayer
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2017, South Africa.
| |
Collapse
|
3
|
Fulke AB, Eranezhath S, Raut S, Jadhav HS. Recent toolset of metagenomics for taxonomical and functional annotation of marine associated viruses: A review. REGIONAL STUDIES IN MARINE SCIENCE 2024; 77:103728. [DOI: 10.1016/j.rsma.2024.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Locatelli NS, Kitchen SA, Stankiewicz KH, Osborne CC, Dellaert Z, Elder H, Kamel B, Koch HR, Fogarty ND, Baums IB. Chromosome-level genome assemblies and genetic maps reveal heterochiasmy and macrosynteny in endangered Atlantic Acropora. BMC Genomics 2024; 25:1119. [PMID: 39567907 PMCID: PMC11577847 DOI: 10.1186/s12864-024-11025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Over their evolutionary history, corals have adapted to sea level rise and increasing ocean temperatures, however, it is unclear how quickly they may respond to rapid change. Genome structure and genetic diversity contained within may highlight their adaptive potential. RESULTS We present chromosome-scale genome assemblies and linkage maps of the critically endangered Atlantic acroporids, Acropora palmata and A. cervicornis. Both assemblies and linkage maps were resolved into 14 chromosomes with their gene content and colinearity. Repeats and chromosome arrangements were largely preserved between the species. The family Acroporidae and the genus Acropora exhibited many phylogenetically significant gene family expansions. Macrosynteny decreased with phylogenetic distance. Nevertheless, scleractinians shared six of the 21 cnidarian ancestral linkage groups as well as numerous fission and fusion events compared to other distantly related cnidarians. Genetic linkage maps were constructed from one A. palmata family and 16 A. cervicornis families using a genotyping array. The consensus maps span 1,013.42 cM and 927.36 cM for A. palmata and A. cervicornis, respectively. Both species exhibited high genome-wide recombination rates (3.04 to 3.53 cM/Mb) and pronounced sex-based differences, known as heterochiasmy, with 2 to 2.5X higher recombination rates estimated in the female maps. CONCLUSIONS Together, the chromosome-scale assemblies and genetic maps we present here are the first detailed look at the genomic landscapes of the critically endangered Atlantic acroporids. These data sets revealed that adaptive capacity of Atlantic acroporids is not limited by their recombination rates. The sister species maintain macrosynteny with few genes with high sequence divergence that may act as reproductive barriers between them. In the Atlantic Acropora, hybridization between the two sister species yields an F1 hybrid with limited fertility despite the high levels of macrosynteny and gene colinearity of their genomes. Together, these resources now enable genome-wide association studies and discovery of quantitative trait loci, two tools that can aid in the conservation of these species.
Collapse
Affiliation(s)
- Nicolas S Locatelli
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sheila A Kitchen
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Kathryn H Stankiewicz
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - C Cornelia Osborne
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Zoe Dellaert
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Holland Elder
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Bishoy Kamel
- Lawrence Berkeley National Laboratory, Joint Genome Institute, Berkeley, CA, USA
| | - Hanna R Koch
- Mote Marine Laboratory, Coral Reef Restoration Program, Summerland Key, FL, USA
| | - Nicole D Fogarty
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Heerstraße 231, Oldenburg, Ammerländer, 26129, Germany.
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Am Handelshafen, Bremerhaven, Germany.
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl Von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg, 26129, Germany.
| |
Collapse
|
5
|
Marcet-Houben M, Księżopolska E, Gabaldón T. Chromosome level assemblies of Nakaseomyces (Candida) bracarensis uncover two distinct clades and define its adhesin repertoire. BMC Genomics 2024; 25:1053. [PMID: 39511470 PMCID: PMC11542307 DOI: 10.1186/s12864-024-10979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND The Nakaseomyces clade is formed by at least nine described species among which three can be pathogenic to humans, namely Nakaseomyces glabratus (Candida glabrata), the second most-common cause of candidiasis worldwide, and two rarer emerging pathogens: Nakaseomyces (Candida) nivarensis and Nakaseomyces (Candida) bracarensis. Early comparative genomics analyses identified parallel expansions of subtelomeric adhesin genes in N. glabratus and N. nivarensis/bracarensis, and suggested possible links with the emergence of the virulence potential in these species. However, as shown for N. glabratus, the proper assessment of subtelomeric genes is hindered by the use of incomplete assemblies and reliance on a single isolate. RESULTS Here we sequenced seven N. bracarensis isolates and reconstructed chromosome level assemblies of two divergent strains. We show that N. bracarensis isolates belong to two diverging clades that have slightly different genomic structures. We identified the set of encoded adhesins in the two complete assemblies, and uncovered the presence of a novel adhesin motif, found mainly in N. bracarensis. Our analysis revealed a larger adhesin content in N. bracarensis than previously reported, and similar in size to that of N. glabratus. We confirm the independent adhesin expansion in these two species, which could relate to their different levels of virulence. CONCLUSION N. bracarensis clinical isolates belong to at least two differentiated clades. We describe a novel repeat motif found in N. bracarensis adhesins, which helps in their identification. Adhesins underwent independent expansions in N. glabratus and N. bracarensis, leading to repertoires that are qualitatively different but quantitatively similar. Given that adhesins are considered virulence factors, some of the observed differences could contribute to variations in virulence capabilities between N. glabratus and N. bracarensis.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, Barcelona, 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona, 08028, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Ewa Księżopolska
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, Barcelona, 08034, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona, 08028, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, Barcelona, 08034, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona, 08028, Spain.
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
6
|
Bian C, Li RH, Ruan ZQ, Chen WT, Huang Y, Liu LY, Zhou HL, Chong CM, Mu XD, Shi Q. Chromosome-level genome assembly of the glass catfish ( Kryptopterus vitreolus) reveals molecular clues to its transparent phenotype. Zool Res 2024; 45:1027-1036. [PMID: 39147717 PMCID: PMC11491783 DOI: 10.24272/j.issn.2095-8137.2023.396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 08/17/2024] Open
Abstract
Glass catfish ( Kryptopterus vitreolus) are notable in the aquarium trade for their highly transparent body pattern. This transparency is due to the loss of most reflective iridophores and light-absorbing melanophores in the main body, although certain black and silver pigments remain in the face and head. To date, however, the molecular mechanisms underlying this transparent phenotype remain largely unknown. To explore the genetic basis of this transparency, we constructed a chromosome-level haplotypic genome assembly for the glass catfish, encompassing 32 chromosomes and 23 344 protein-coding genes, using PacBio and Hi-C sequencing technologies and standard assembly and annotation pipelines. Analysis revealed a premature stop codon in the putative albinism-related tyrp1b gene, encoding tyrosinase-related protein 1, rendering it a nonfunctional pseudogene. Notably, a synteny comparison with over 30 other fish species identified the loss of the endothelin-3 ( edn3b) gene in the glass catfish genome. To investigate the role of edn3b, we generated edn3b -/- mutant zebrafish, which exhibited a remarkable reduction in black pigments in body surface stripes compared to wild-type zebrafish. These findings indicate that edn3b loss contributes to the transparent phenotype of the glass catfish. Our high-quality chromosome-scale genome assembly and identification of key genes provide important molecular insights into the transparent phenotype of glass catfish. These findings not only enhance our understanding of the molecular mechanisms underlying transparency in glass catfish, but also offer a valuable genetic resource for further research on pigmentation in various animal species.
Collapse
Affiliation(s)
- Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518057, China
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern. Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China. E-mail:
| | - Rui-Han Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Zhi-Qiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
| | - Wei-Ting Chen
- School of Life Sciences, Jiaying University, Meizhou, Guangdong 514015, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
| | - Li-Yue Liu
- China Zebrafish Resource Center, National Aquatic Biological Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Science, Wuhan, Hubei 430072, China
| | - Hong-Ling Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518116, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macau 999078, China
| | - Xi-Dong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern. Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China. E-mail:
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518057, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong 518081, China
- Center for Aquatic Genomics, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan 641100, China. E-mail:
| |
Collapse
|
7
|
Benowitz KM, Allan CW, Jaworski CC, Sanderson MJ, Diaz F, Chen X, Matzkin LM. Fundamental Patterns of Structural Evolution Revealed by Chromosome-Length Genomes of Cactophilic Drosophila. Genome Biol Evol 2024; 16:evae191. [PMID: 39228294 PMCID: PMC11411373 DOI: 10.1093/gbe/evae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
A thorough understanding of adaptation and speciation requires model organisms with both a history of ecological and phenotypic study as well as a complete set of genomic resources. In particular, high-quality genome assemblies of ecological model organisms are needed to assess the evolution of genome structure and its role in adaptation and speciation. Here, we generate new genomes of cactophilic Drosophila, a crucial model clade for understanding speciation and ecological adaptation in xeric environments. We generated chromosome-level genome assemblies and complete annotations for seven populations across Drosophila mojavensis, Drosophila arizonae, and Drosophila navojoa. We use these data first to establish the most robust phylogeny for this clade to date, and to assess patterns of molecular evolution across the phylogeny, showing concordance with a priori hypotheses regarding adaptive genes in this system. We then show that structural evolution occurs at constant rate across the phylogeny, varies by chromosome, and is correlated with molecular evolution. These results advance the understanding of the D. mojavensis clade by demonstrating core evolutionary genetic patterns and integrating those patterns to generate new gene-level hypotheses regarding adaptation. Our data are presented in a new public database (cactusflybase.arizona.edu), providing one of the most in-depth resources for the analysis of inter- and intraspecific evolutionary genomic data. Furthermore, we anticipate that the patterns of structural evolution identified here will serve as a baseline for future comparative studies to identify the factors that influence the evolution of genome structure across taxa.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Fernando Diaz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Xingsen Chen
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Jackson AC, Carine MA, Chapman MA. Genomics of ecological adaptation in Canary Island Descurainia (Brassicaceae) and comparisons with other Brassicaceae. Ecol Evol 2024; 14:e70144. [PMID: 39119179 PMCID: PMC11307170 DOI: 10.1002/ece3.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Oceanic archipelagos provide striking examples of lineages that have radiated over pronounced ecological gradients. Accompanying this diversification, lineages have evolved adaptations allowing survival in extreme environments. Here, we investigate the genomic basis of ecological adaptation in Canary Island Descurainia (Brassicaceae), an island relative of Arabidopsis. The seven endemic species have diversified in situ along an elevational and ecological gradient, from low-elevation scrub to high-elevation sub-alpine desert. We first generated a reference genome for Descurainia millefolia, phylogenetic analysis of which placed it as sister to D. sophioides. Ninety-six gene families were found to be specific to D. millefolia and a further 1087 and 1469 gene families have expanded or contracted in size, respectively, along the D. millefolia branch. We then employed genome re-sequencing to sample 14 genomes across the seven species of Canary Island Descurainia and an outgroup. Phylogenomic analyses were consistent with previous reconstructions of Canary Island Descurainia in resolving low- and high-elevation clades. Using the branch-site dN/dS method, we detected positive selection for 275 genes on the branch separating the low- and high-elevation species and these positively selected genes (PSGs) were significantly enriched for functions related to reproduction and stress tolerance. Comparing PSGs to those in analyses of adaptation to elevation and/or latitude in other Brassicaceae, we found little evidence of widespread convergence and gene reuse, except for two examples, one of which was a significant overlap between Descurainia and Draba nivalis, a species restricted to high latitudes. The study of Canary Island Descurainia suggests that the transition to high-elevation environments such as that found in the high mountains of the Canary Islands involves selection on genes related to reproduction and stress tolerance but that repeated evolution across different lineages that have evolved into similar habitats is limited, indicating substantially different molecular trajectories to adaptation.
Collapse
Affiliation(s)
- Amy C. Jackson
- Biological SciencesUniversity of SouthamptonSouthamptonUK
- Algae, Fungi and Plants DivisionThe Natural History MuseumLondonUK
- Present address:
Royal Botanic Gardens, Kew, Kew GreenRichmondSurreyUK
| | - Mark A. Carine
- Algae, Fungi and Plants DivisionThe Natural History MuseumLondonUK
| | | |
Collapse
|
9
|
Agustinho DP, Fu Y, Menon VK, Metcalf GA, Treangen TJ, Sedlazeck FJ. Unveiling microbial diversity: harnessing long-read sequencing technology. Nat Methods 2024; 21:954-966. [PMID: 38689099 PMCID: PMC11955098 DOI: 10.1038/s41592-024-02262-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Long-read sequencing has recently transformed metagenomics, enhancing strain-level pathogen characterization, enabling accurate and complete metagenome-assembled genomes, and improving microbiome taxonomic classification and profiling. These advancements are not only due to improvements in sequencing accuracy, but also happening across rapidly changing analysis methods. In this Review, we explore long-read sequencing's profound impact on metagenomics, focusing on computational pipelines for genome assembly, taxonomic characterization and variant detection, to summarize recent advancements in the field and provide an overview of available analytical methods to fully leverage long reads. We provide insights into the advantages and disadvantages of long reads over short reads and their evolution from the early days of long-read sequencing to their recent impact on metagenomics and clinical diagnostics. We further point out remaining challenges for the field such as the integration of methylation signals in sub-strain analysis and the lack of benchmarks.
Collapse
Affiliation(s)
- Daniel P Agustinho
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA
| | - Yilei Fu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Vipin K Menon
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA
- Senior research project manager, Human Genetics, Genentech, South San Francisco, CA, USA
| | - Ginger A Metcalf
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
10
|
Bian C, Huang Y, Li R, Xu P, You X, Lv Y, Ruan Z, Chen J, Xu J, Shi Q. Genomics comparisons of three chromosome-level mudskipper genome assemblies reveal molecular clues for water-to-land evolution and adaptation. J Adv Res 2024; 58:93-104. [PMID: 37220853 PMCID: PMC10982859 DOI: 10.1016/j.jare.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION Mudskippers are a large group of amphibious fishes that have developed many morphological and physiological capacities to live on land. Genomics comparisons of chromosome-level genome assemblies of three representative mudskippers, Boleophthalmus pectinirostris (BP), Periophthalmus magnuspinnatus (PM) and P. modestus (PMO), may be able to provide novel insights into the water-to-land evolution and adaptation. METHODS Two chromosome-level genome assemblies for BP and PM were respectively sequenced by an integration of PacBio, Nanopore and Hi-C sequencing. A series of standard assembly and annotation pipelines were subsequently performed for both mudskippers. We also re-annotated the PMO genome, downloaded from NCBI, to obtain a redundancy-reduced annotation. Three-way comparative analyses of the three mudskipper genomes in a large scale were carried out to discover detailed genomic differences, such as different gene sizes, and potential chromosomal fission and fusion events. Comparisons of several representative gene families among the three amphibious mudskippers and some other teleosts were also performed to find some molecular clues for terrestrial adaptation. RESULTS We obtained two high-quality haplotype genome assemblies with 23 and 25 chromosomes for BP and PM respectively. We also found two specific chromosome fission events in PM. Ancestor chromosome analysis has discovered a common fusion event in mudskipper ancestor. This fusion was then retained in all the three mudskipper species. A loss of some SCPP (secretory calcium-binding phosphoprotein) genes were identified in the three mudskipper genomes, which could lead to reduction of scales for a part-time terrestrial residence. The loss of aanat1a gene, encoding an important enzyme (arylalkylamine N-acetyltransferase 1a, AANAT1a) for dopamine metabolism and melatonin biosynthesis, was confirmed in PM but not in PMO (as previously reported existence in BP), suggesting a better air vision of PM than both PMO and BP. Such a tiny variation within the genus Periophthalmus exemplifies to prove a step-by-step evolution for the mudskippers' water-to-land adaptation. CONCLUSION These high-quality mudskipper genome assemblies will become valuable genetic resources for in-depth discovery of genomic evolution for the terrestrial adaptation of amphibious fishes.
Collapse
Affiliation(s)
- Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China.
| | - Yu Huang
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Pengwei Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Applied Research Institute for Modern Fishery Industry, Guangdong Dabaihui Marine Technology Group Co. Ltd., Huizhou 516357, China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Applied Research Institute for Modern Fishery Industry, Guangdong Dabaihui Marine Technology Group Co. Ltd., Huizhou 516357, China
| | - Jieming Chen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Applied Research Institute for Modern Fishery Industry, Guangdong Dabaihui Marine Technology Group Co. Ltd., Huizhou 516357, China
| | - Junmin Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Applied Research Institute for Modern Fishery Industry, Guangdong Dabaihui Marine Technology Group Co. Ltd., Huizhou 516357, China
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen 518081, China; Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; Applied Research Institute for Modern Fishery Industry, Guangdong Dabaihui Marine Technology Group Co. Ltd., Huizhou 516357, China.
| |
Collapse
|
11
|
Carpinteyro-Ponce J, Machado CA. The Complex Landscape of Structural Divergence Between the Drosophila pseudoobscura and D. persimilis Genomes. Genome Biol Evol 2024; 16:evae047. [PMID: 38482945 PMCID: PMC10980976 DOI: 10.1093/gbe/evae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Structural genomic variants are key drivers of phenotypic evolution. They can span hundreds to millions of base pairs and can thus affect large numbers of genetic elements. Although structural variation is quite common within and between species, its characterization depends upon the quality of genome assemblies and the proportion of repetitive elements. Using new high-quality genome assemblies, we report a complex and previously hidden landscape of structural divergence between the genomes of Drosophila persimilis and D. pseudoobscura, two classic species in speciation research, and study the relationships among structural variants, transposable elements, and gene expression divergence. The new assemblies confirm the already known fixed inversion differences between these species. Consistent with previous studies showing higher levels of nucleotide divergence between fixed inversions relative to collinear regions of the genome, we also find a significant overrepresentation of INDELs inside the inversions. We find that transposable elements accumulate in regions with low levels of recombination, and spatial correlation analyses reveal a strong association between transposable elements and structural variants. We also report a strong association between differentially expressed (DE) genes and structural variants and an overrepresentation of DE genes inside the fixed chromosomal inversions that separate this species pair. Interestingly, species-specific structural variants are overrepresented in DE genes involved in neural development, spermatogenesis, and oocyte-to-embryo transition. Overall, our results highlight the association of transposable elements with structural variants and their importance in driving evolutionary divergence.
Collapse
Affiliation(s)
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
12
|
Dimens PV, Jones KL, Margulies D, Scholey V, Cusatti S, McPeak B, Hildahl TE, Saillant EAE. Genomic resources for the Yellowfin tuna Thunnus albacares. Mol Biol Rep 2024; 51:232. [PMID: 38281308 DOI: 10.1007/s11033-023-09117-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/06/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND The Yellowfin tuna (Thunnus albacares) is a large tuna exploited by major fisheries in tropical and subtropical waters of all oceans except the Mediterranean Sea. Genomic studies of population structure, adaptive variation or of the genetic basis of phenotypic traits are needed to inform fisheries management but are currently limited by the lack of a reference genome for this species. Here we report a draft genome assembly and a linkage map for use in genomic studies of T. albacares. METHODS AND RESULTS Illumina and PacBio SMRT sequencing were used in combination to generate a hybrid assembly that comprises 743,073,847 base pairs contained in 2,661 scaffolds. The assembly has a N50 of 351,587 and complete and partial BUSCO scores of 86.47% and 3.63%, respectively. Double-digest restriction associated DNA (ddRAD) was used to genotype the 2 parents and 164 of their F1 offspring resulting from a controlled breeding cross, retaining 19,469 biallelic single nucleotide polymorphism (SNP) loci. The SNP loci were used to construct a linkage map that features 24 linkage groups that represent the 24 chromosomes of yellowfin tuna. The male and female maps span 1,243.8 cM and 1,222.9 cM, respectively. The map was used to anchor the assembly in 24 super-scaffolds that contain 79% of the yellowfin tuna genome. Gene prediction identified 46,992 putative genes 20,203 of which could be annotated via gene ontology. CONCLUSIONS The draft reference will be valuable to interpret studies of genome wide variation in T. albacares and other Scombroid species.
Collapse
Affiliation(s)
- Pavel V Dimens
- School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, 39564, USA
| | | | - Daniel Margulies
- Inter-American Tropical Tuna Commission, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Vernon Scholey
- Inter-American Tropical Tuna Commission, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Susana Cusatti
- Inter-American Tropical Tuna Commission, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Brooke McPeak
- School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, 39564, USA
| | - Tami E Hildahl
- School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, 39564, USA
| | - Eric A E Saillant
- School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, 39564, USA.
| |
Collapse
|
13
|
Liu C, Bian C, Gao Q, Gao Z, Huang Y, Wang L, Shi Q, Song L. Whole genome sequencing of a novel sea anemone (Actinostola sp.) from a deep-sea hydrothermal vent. Sci Data 2024; 11:102. [PMID: 38253640 PMCID: PMC10803348 DOI: 10.1038/s41597-024-02944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Deep-sea hydrothermal vents are usually considered as extreme environments with high pressure, high temperature, scarce food, and chemical toxicity, while many local inhabitants have evolved special adaptive mechanisms for residence in this representative ecosystem. In this study, we constructed a high-quality genome assembly for a novel deep-sea anemone species (Actinostola sp.) that was resident at a depth of 2,971 m in an Edmond vent along the central Indian Ocean ridge, with a total size of 424.3 Mb and a scaffold N50 of 383 kb. The assembled genome contained 265 Mb of repetitive sequences and 20,812 protein-coding genes. Taken together, our reference genome provides a valuable genetic resource for exploring the evolution and adaptive clues of this deep-sea anemone.
Collapse
Affiliation(s)
- Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518057, China
| | - Qiang Gao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, China
| | - Zijian Gao
- Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, 518081, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, 518081, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, China.
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518057, China.
- Shenzhen Key Lab of Marine Genomics, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, 518081, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, China.
| |
Collapse
|
14
|
Bredeson JV, Mudd AB, Medina-Ruiz S, Mitros T, Smith OK, Miller KE, Lyons JB, Batra SS, Park J, Berkoff KC, Plott C, Grimwood J, Schmutz J, Aguirre-Figueroa G, Khokha MK, Lane M, Philipp I, Laslo M, Hanken J, Kerdivel G, Buisine N, Sachs LM, Buchholz DR, Kwon T, Smith-Parker H, Gridi-Papp M, Ryan MJ, Denton RD, Malone JH, Wallingford JB, Straight AF, Heald R, Hockemeyer D, Harland RM, Rokhsar DS. Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs. Nat Commun 2024; 15:579. [PMID: 38233380 PMCID: PMC10794172 DOI: 10.1038/s41467-023-43012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/27/2023] [Indexed: 01/19/2024] Open
Abstract
Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.
Collapse
Affiliation(s)
- Jessen V Bredeson
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
- DOE-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Austin B Mudd
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Sofia Medina-Ruiz
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Therese Mitros
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Owen Kabnick Smith
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Kelly E Miller
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Jessica B Lyons
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Sanjit S Batra
- Computer Science Division, University of California Berkeley, 2626 Hearst Avenue, Berkeley, CA, 94720, USA
| | - Joseph Park
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Kodiak C Berkoff
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Christopher Plott
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jeremy Schmutz
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Guadalupe Aguirre-Figueroa
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Maura Lane
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Isabelle Philipp
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Mara Laslo
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Gwenneg Kerdivel
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Buisine
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Laurent M Sachs
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Heidi Smith-Parker
- Department of Integrative Biology, Patterson Labs, 2401 Speedway, University of Texas, Austin, TX, 78712, USA
| | - Marcos Gridi-Papp
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| | - Michael J Ryan
- Department of Integrative Biology, Patterson Labs, 2401 Speedway, University of Texas, Austin, TX, 78712, USA
| | - Robert D Denton
- Department of Molecular and Cell Biology and Institute of Systems Genomics, University of Connecticut, 181 Auditorium Road, Unit 3197, Storrs, CT, 06269, USA
| | - John H Malone
- Department of Molecular and Cell Biology and Institute of Systems Genomics, University of Connecticut, 181 Auditorium Road, Unit 3197, Storrs, CT, 06269, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Chan-Zuckerberg BioHub, 499 Illinois Street, San Francisco, CA, 94158, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA.
- DOE-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Chan-Zuckerberg BioHub, 499 Illinois Street, San Francisco, CA, 94158, USA.
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 9040495, Japan.
| |
Collapse
|
15
|
Li X, Wang X, Yu X, Yang C, Lin L, Huang Y. The draft genome of the Temminck's tragopan (Tragopan temminckii) with evolutionary implications. BMC Genomics 2023; 24:751. [PMID: 38062370 PMCID: PMC10702090 DOI: 10.1186/s12864-023-09857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND High-quality genome data of birds play a significant role in the systematic study of their origin and adaptive evolution. The Temminck's tragopan (Tragopan temminckii) (Galliformes, Phasianidae), a larger pheasant, is one of the most abundant and widely distributed species of the genus Tragopan, and was defined as class II of the list of national key protected wild animals in China. The absence of a sequenced genome has restricted previous evolutionary trait studies of this taxa. RESULTS The whole genome of the Temminck's tragopan was sequenced using Illumina and PacBio platform, and then de novo assembled and annotated. The genome size was 1.06 Gb, with a contig N50 of 4.17 Mb. A total of 117.22 Mb (11.00%) repeat sequences were identified. 16,414 genes were predicted using three methods, with 16,099 (98.08%) annotated as functional genes based on five databases. In addition, comparative genome analyses were conducted across 12 Galliformes species. The results indicated that T. temminckii was the first species to branch off from the clade containing Lophura nycthemera, Phasianus colchicus, Chrysolophus pictus, Syrmaticus mikado, Perdix hodgsoniae, and Meleagris gallopavo, with a corresponding divergence time of 31.43 million years ago (MYA). Expanded gene families associated with immune response and energy metabolism were identified. Genes and pathways associated with plumage color and feather development, immune response, and energy metabolism were found in the list of positively selected genes (PSGs). CONCLUSIONS A genome draft of the Temminck's tragopan was reported, genome feature and comparative genome analysis were described, and genes and pathways related to plumage color and feather development, immune response, and energy metabolism were identified. The genomic data of the Temminck's tragopan considerably contribute to the genome evolution and phylogeny of the genus Tragopan and the whole Galliformes species underlying ecological adaptation strategies.
Collapse
Affiliation(s)
- Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoyang Wang
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - Xiaoping Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Chao Yang
- Shaanxi Institute of Zoology, Xi'an, China
| | - Liliang Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
16
|
Liu Z, Huang Y, Chen H, Liu C, Wang M, Bian C, Wang L, Song L. Chromosome-level genome assembly of the deep-sea snail Phymorhynchus buccinoides provides insights into the adaptation to the cold seep habitat. BMC Genomics 2023; 24:679. [PMID: 37950158 PMCID: PMC10638732 DOI: 10.1186/s12864-023-09760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The deep-sea snail Phymorhynchus buccinoides belongs to the genus Phymorhynchus (Neogastropoda: Raphitomidae), and it is a dominant specie in the cold seep habitat. As the environment of the cold seep is characterized by darkness, hypoxia and high concentrations of toxic substances such as hydrogen sulfide (H2S), exploration of the diverse fauna living around cold seeps will help to uncover the adaptive mechanisms to this unique habitat. In the present study, a chromosome-level genome of P. buccinoides was constructed and a series of genomic and transcriptomic analyses were conducted to explore its molecular adaptation mechanisms to the cold seep environments. RESULTS The assembled genome size of the P. buccinoides was approximately 2.1 Gb, which is larger than most of the reported snail genomes, possibly due to the high proportion of repetitive elements. About 92.0% of the assembled base pairs of contigs were anchored to 34 pseudo-chromosomes with a scaffold N50 size of 60.0 Mb. Compared with relative specie in the shallow water, the glutamate regulative and related genes were expanded in P. buccinoides, which contributes to the acclimation to hypoxia and coldness. Besides, the relatively high mRNA expression levels of the olfactory/chemosensory genes in osphradium indicate that P. buccinoides might have evolved a highly developed and sensitive olfactory organ for its orientation and predation. Moreover, the genome and transcriptome analyses demonstrate that P. buccinoides has evolved a sulfite-tolerance mechanism by performing H2S detoxification. Many genes involved in H2S detoxification were highly expressed in ctenidium and hepatopancreas, suggesting that these tissues might be critical for H2S detoxification and sulfite tolerance. CONCLUSIONS In summary, our report of this chromosome-level deep-sea snail genome provides a comprehensive genomic basis for the understanding of the adaptation strategy of P. buccinoides to the extreme environment at the deep-sea cold seeps.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuting Huang
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Minxiao Wang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
17
|
Le N, Heras J, Herrera MJ, German DP, Crummett LT. The genome of Anoplarchus purpurescens (Stichaeidae) reflects its carnivorous diet. Mol Genet Genomics 2023; 298:1419-1434. [PMID: 37690047 PMCID: PMC10657299 DOI: 10.1007/s00438-023-02067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Digestion is driven by digestive enzymes and digestive enzyme gene copy number can provide insights on the genomic underpinnings of dietary specialization. The "Adaptive Modulation Hypothesis" (AMH) proposes that digestive enzyme activity, which increases with increased gene copy number, should correlate with substrate quantity in the diet. To test the AMH and reveal some of the genetics of herbivory vs carnivory, we sequenced, assembled, and annotated the genome of Anoplarchus purpurescens, a carnivorous prickleback fish in the family Stichaeidae, and compared the gene copy number for key digestive enzymes to that of Cebidichthys violaceus, a herbivorous fish from the same family. A highly contiguous genome assembly of high quality (N50 = 10.6 Mb) was produced for A. purpurescens, using combined long-read and short-read technology, with an estimated 33,842 protein-coding genes. The digestive enzymes that we examined include pancreatic α-amylase, carboxyl ester lipase, alanyl aminopeptidase, trypsin, and chymotrypsin. Anoplarchus purpurescens had fewer copies of pancreatic α-amylase (carbohydrate digestion) than C. violaceus (1 vs. 3 copies). Moreover, A. purpurescens had one fewer copy of carboxyl ester lipase (plant lipid digestion) than C. violaceus (4 vs. 5). We observed an expansion in copy number for several protein digestion genes in A. purpurescens compared to C. violaceus, including trypsin (5 vs. 3) and total aminopeptidases (6 vs. 5). Collectively, these genomic differences coincide with measured digestive enzyme activities (phenotypes) in the two species and they support the AMH. Moreover, this genomic resource is now available to better understand fish biology and dietary specialization.
Collapse
Affiliation(s)
- Ninh Le
- Life Sciences Concentration, Soka University of America, Aliso Viejo, CA, 92656, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph Heras
- Department of Biology, California State University, San Bernardino, CA, 92407, USA
| | - Michelle J Herrera
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
| | - Lisa T Crummett
- Life Sciences Concentration, Soka University of America, Aliso Viejo, CA, 92656, USA.
| |
Collapse
|
18
|
Schelkunov MI. Mabs, a suite of tools for gene-informed genome assembly. BMC Bioinformatics 2023; 24:377. [PMID: 37794322 PMCID: PMC10548655 DOI: 10.1186/s12859-023-05499-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Despite constantly improving genome sequencing methods, error-free eukaryotic genome assembly has not yet been achieved. Among other kinds of problems of eukaryotic genome assembly are so-called "haplotypic duplications", which may manifest themselves as cases of alleles being mistakenly assembled as paralogues. Haplotypic duplications are dangerous because they create illusions of gene family expansions and, thus, may lead scientists to incorrect conclusions about genome evolution and functioning. RESULTS Here, I present Mabs, a suite of tools that serve as parameter optimizers of the popular genome assemblers Hifiasm and Flye. By optimizing the parameters of Hifiasm and Flye, Mabs tries to create genome assemblies with the genes assembled as accurately as possible. Tests on 6 eukaryotic genomes showed that in 6 out of 6 cases, Mabs created assemblies with more accurately assembled genes than those generated by Hifiasm and Flye when they were run with default parameters. When assemblies of Mabs, Hifiasm and Flye were postprocessed by a popular tool for haplotypic duplication removal, Purge_dups, genes were better assembled by Mabs in 5 out of 6 cases. CONCLUSIONS Mabs is useful for making high-quality genome assemblies. It is available at https://github.com/shelkmike/Mabs.
Collapse
|
19
|
Wang Z, Peng C, Wu W, Yan C, Lv Y, Li JT. Developmental regulation of conserved non-coding element evolution provides insights into limb loss in squamates. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2399-2414. [PMID: 37256419 DOI: 10.1007/s11427-023-2362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
Limb loss shows recurrent phenotypic evolution across squamate lineages. Here, based on three de novo-assembled genomes of limbless lizards from different lineages, we showed that divergence of conserved non-coding elements (CNEs) played an important role in limb development. These CNEs were associated with genes required for limb initiation and outgrowth, and with regulatory signals in the early stage of limb development. Importantly, we identified the extensive existence of insertions and deletions (InDels) in the CNEs, with the numbers ranging from 111 to 756. Most of these CNEs with InDels were lineage-specific in the limbless squamates. Nearby genes of these InDel CNEs were important to early limb formation, such as Tbx4, Fgf10, and Gli3. Based on functional experiments, we found that nucleotide mutations and InDels both affected the regulatory function of the CNEs. Our study provides molecular evidence underlying limb loss in squamate reptiles from a developmental perspective and sheds light on the importance of regulatory element InDels in phenotypic evolution.
Collapse
Affiliation(s)
- Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & h Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw, 05282, Myanmar.
| |
Collapse
|
20
|
Peng C, Wu DD, Ren JL, Peng ZL, Ma Z, Wu W, Lv Y, Wang Z, Deng C, Jiang K, Parkinson CL, Qi Y, Zhang ZY, Li JT. Large-scale snake genome analyses provide insights into vertebrate development. Cell 2023; 186:2959-2976.e22. [PMID: 37339633 DOI: 10.1016/j.cell.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Snakes are a remarkable squamate lineage with unique morphological adaptations, especially those related to the evolution of vertebrate skeletons, organs, and sensory systems. To clarify the genetic underpinnings of snake phenotypes, we assembled and analyzed 14 de novo genomes from 12 snake families. We also investigated the genetic basis of the morphological characteristics of snakes using functional experiments. We identified genes, regulatory elements, and structural variations that have potentially contributed to the evolution of limb loss, an elongated body plan, asymmetrical lungs, sensory systems, and digestive adaptations in snakes. We identified some of the genes and regulatory elements that might have shaped the evolution of vision, the skeletal system and diet in blind snakes, and thermoreception in infrared-sensitive snakes. Our study provides insights into the evolution and development of snakes and vertebrates.
Collapse
Affiliation(s)
- Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Zhong-Liang Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifei Ma
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; College of Life Science, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cao Deng
- Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu 610000, China
| | - Ke Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | | | - Yin Qi
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Zhi-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610040, China; University of Chinese Academy of Sciences, Beijing 100049, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar.
| |
Collapse
|
21
|
Liu S, Zheng J, Li F, Chi M, Cheng S, Jiang W, Liu Y, Gu Z, Zhao J. Chromosome-scale assembly and quantitative trait locus mapping for major economic traits of the Culter alburnus genome using Illumina and PacBio sequencing with Hi-C mapping information. Front Genet 2023; 14:1072506. [PMID: 37303957 PMCID: PMC10248148 DOI: 10.3389/fgene.2023.1072506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Topmouth culter (Culter alburnus) is an economically important freshwater fish with high nutritional value. However, its potential genetic advantages have not been fully exploited. Therefore, we aimed to determine the genome sequence of C. alburnus and examine quantitative trait loci (QTLs) related to major economic traits. The results showed that 24 pseudochromosomes were anchored by 914.74 Mb of the C. alburnus genome sequence. De novo sequencing identified 31,279 protein-coding genes with an average length of 8507 bp and average coding sequ ence of 1115 bp. In addition, a high-density genetic linkage map consisting of 24 linkage groups was constructed based on 353,532 high-quality single nucleotide polymorphisms and 4,710 bin markers. A total of 28 QTLs corresponding to 11 genes, 26 QTLs corresponding to 11 genes, and 12 QTLs corresponding to 5 genes were identified for sex, intermuscular spine number and body weight traits, respectively. In this study, we assembled an accurate and nearly complete genome of C. alburnus by combining Illumina, PacBio, and high-throughput Chromosome conformation capture (Hi-C) technologies. In addition, we identified QTLs that explained variances in intermuscular spine number, body weight, and sex differences in C. alburnus. These genetic markers or candidate genes associated with growth traits provide a basis for marker-assisted selection in C. alburnus.
Collapse
Affiliation(s)
- Shili Liu
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianbo Zheng
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Fei Li
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Meili Chi
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Shun Cheng
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Wenping Jiang
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yinuo Liu
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Zhimin Gu
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Jinliang Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
22
|
Zhu W, Liao X. LCAT: an isoform-sensitive error correction for transcriptome sequencing long reads. Front Genet 2023; 14:1166975. [PMID: 37292144 PMCID: PMC10245045 DOI: 10.3389/fgene.2023.1166975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
As the carrier of genetic information, RNA carries the information from genes to proteins. Transcriptome sequencing technology is an important way to obtain transcriptome sequences, and it is also the basis for transcriptome research. With the development of third-generation sequencing, long reads can cover full-length transcripts and reflect the composition of different isoforms. However, the high error rate of third-generation sequencing affects the accuracy of long reads and downstream analysis. The current error correction methods seldom consider the existence of different isoforms in RNA, which makes the diversity of isoforms a serious loss. Here, we introduce LCAT (long-read error correction algorithm for transcriptome sequencing data), a wrapper algorithm of MECAT, to reduce the loss of isoform diversity while keeping MECAT's error correction performance. The experimental results show that LCAT can not only improve the quality of transcriptome sequencing long reads but also retain the diversity of isoforms.
Collapse
Affiliation(s)
- Wufei Zhu
- Department of Endocrinology, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Xingyu Liao
- Computer, Electrical and Mathematical Sciences, and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
23
|
Mixão V, Nunez-Rodriguez JC, Del Olmo V, Ksiezopolska E, Saus E, Boekhout T, Gacser A, Gabaldón T. Evolution of loss of heterozygosity patterns in hybrid genomes of Candida yeast pathogens. BMC Biol 2023; 21:105. [PMID: 37170256 PMCID: PMC10173528 DOI: 10.1186/s12915-023-01608-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Hybrids are chimeric organisms with highly plastic heterozygous genomes that may confer unique traits enabling the adaptation to new environments. However, most evolutionary theory frameworks predict that the high levels of genetic heterozygosity present in hybrids from divergent parents are likely to result in numerous deleterious epistatic interactions. Under this scenario, selection is expected to favor recombination events resulting in loss of heterozygosity (LOH) affecting genes involved in such negative interactions. Nevertheless, it is so far unknown whether this phenomenon actually drives genomic evolution in natural populations of hybrids. To determine the balance between selection and drift in the evolution of LOH patterns in natural yeast hybrids, we analyzed the genomic sequences from fifty-five hybrid strains of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis, which derived from at least six distinct natural hybridization events. RESULTS We found that, although LOH patterns in independent hybrid clades share some level of convergence that would not be expected from random occurrence, there is an apparent lack of strong functional selection. Moreover, while mitosis is associated with a limited number of inter-homeologous chromosome recombinations in these genomes, induced DNA breaks seem to increase the LOH rate. We also found that LOH does not accumulate linearly with time in these hybrids. Furthermore, some C. orthopsilosis hybrids present LOH patterns compatible with footprints of meiotic recombination. These meiotic-like patterns are at odds with a lack of evidence of sexual recombination and with our inability to experimentally induce sporulation in these hybrids. CONCLUSIONS Our results suggest that genetic drift is the prevailing force shaping LOH patterns in these hybrid genomes. Moreover, the observed LOH patterns suggest that these are likely not the result of continuous accumulation of sporadic events-as expected by mitotic repair of rare chromosomal breaks-but rather of acute episodes involving many LOH events in a short period of time.
Collapse
Affiliation(s)
- Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Present address: Genomics and Bioinformatics Unit, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
| | - Juan Carlos Nunez-Rodriguez
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Valentina Del Olmo
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ester Saus
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Attila Gacser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Jordi Girona, 29, 08034, Barcelona, Spain.
- Mechanisms of Disease Program, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
24
|
Zhang Y, Zhang Q, Yang X, Gu X, Chen J, Shi T. 6mA DNA Methylation on Genes in Plants Is Associated with Gene Complexity, Expression and Duplication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1949. [PMID: 37653866 PMCID: PMC10221889 DOI: 10.3390/plants12101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
N6-methyladenine (6mA) DNA methylation has emerged as an important epigenetic modification in eukaryotes. Nevertheless, the evolution of the 6mA methylation of homologous genes after species and after gene duplications remains unclear in plants. To understand the evolution of 6mA methylation, we detected the genome-wide 6mA methylation patterns of four lotus plants (Nelumbo nucifera) from different geographic origins by nanopore sequencing and compared them to patterns in Arabidopsis and rice. Within lotus, the genomic distributions of 6mA sites are different from the widely studied 5mC methylation sites. Consistently, in lotus, Arabidopsis and rice, 6mA sites are enriched around transcriptional start sites, positively correlated with gene expression levels, and preferentially retained in highly and broadly expressed orthologs with longer gene lengths and more exons. Among different duplicate genes, 6mA methylation is significantly more enriched and conserved in whole-genome duplicates than in local duplicates. Overall, our study reveals the convergent patterns of 6mA methylation evolution based on both lineage and duplicate gene divergence, which underpin their potential role in gene regulatory evolution in plants.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
- Hubei Ecology Polytechnic College, Wuhan 430200, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
25
|
Gong Y, Li Y, Liu X, Ma Y, Jiang L. A review of the pangenome: how it affects our understanding of genomic variation, selection and breeding in domestic animals? J Anim Sci Biotechnol 2023; 14:73. [PMID: 37143156 PMCID: PMC10161434 DOI: 10.1186/s40104-023-00860-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/01/2023] [Indexed: 05/06/2023] Open
Abstract
As large-scale genomic studies have progressed, it has been revealed that a single reference genome pattern cannot represent genetic diversity at the species level. While domestic animals tend to have complex routes of origin and migration, suggesting a possible omission of some population-specific sequences in the current reference genome. Conversely, the pangenome is a collection of all DNA sequences of a species that contains sequences shared by all individuals (core genome) and is also able to display sequence information unique to each individual (variable genome). The progress of pangenome research in humans, plants and domestic animals has proved that the missing genetic components and the identification of large structural variants (SVs) can be explored through pangenomic studies. Many individual specific sequences have been shown to be related to biological adaptability, phenotype and important economic traits. The maturity of technologies and methods such as third-generation sequencing, Telomere-to-telomere genomes, graphic genomes, and reference-free assembly will further promote the development of pangenome. In the future, pangenome combined with long-read data and multi-omics will help to resolve large SVs and their relationship with the main economic traits of interest in domesticated animals, providing better insights into animal domestication, evolution and breeding. In this review, we mainly discuss how pangenome analysis reveals genetic variations in domestic animals (sheep, cattle, pigs, chickens) and their impacts on phenotypes and how this can contribute to the understanding of species diversity. Additionally, we also go through potential issues and the future perspectives of pangenome research in livestock and poultry.
Collapse
Affiliation(s)
- Ying Gong
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yefang Li
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xuexue Liu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, 37 allées Jules Guesde, Toulouse, 31000, France
| | - Yuehui Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Lin Jiang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| |
Collapse
|
26
|
Marlétaz F, de la Calle-Mustienes E, Acemel RD, Paliou C, Naranjo S, Martínez-García PM, Cases I, Sleight VA, Hirschberger C, Marcet-Houben M, Navon D, Andrescavage A, Skvortsova K, Duckett PE, González-Rajal Á, Bogdanovic O, Gibcus JH, Yang L, Gallardo-Fuentes L, Sospedra I, Lopez-Rios J, Darbellay F, Visel A, Dekker J, Shubin N, Gabaldón T, Nakamura T, Tena JJ, Lupiáñez DG, Rokhsar DS, Gómez-Skarmeta JL. The little skate genome and the evolutionary emergence of wing-like fins. Nature 2023; 616:495-503. [PMID: 37046085 PMCID: PMC10115646 DOI: 10.1038/s41586-023-05868-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/21/2023] [Indexed: 04/14/2023]
Abstract
Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.
Collapse
Affiliation(s)
- Ferdinand Marlétaz
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
| | - Elisa de la Calle-Mustienes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
- Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Victoria A Sleight
- Department of Zoology, University of Cambridge, Cambridge, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Dina Navon
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Ali Andrescavage
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA
| | - Ksenia Skvortsova
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Edward Duckett
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Álvaro González-Rajal
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Johan H Gibcus
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Liyan Yang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Ismael Sospedra
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Neil Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, USA.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain.
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide/Junta de Andalucía, Seville, Spain
| |
Collapse
|
27
|
Li X, Wang X, Yang C, Lin L, Yuan H, Lei F, Huang Y. A de novo assembled genome of the Tibetan Partridge (Perdix hodgsoniae) and its high-altitude adaptation. Integr Zool 2023; 18:225-236. [PMID: 36049502 DOI: 10.1111/1749-4877.12673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Tibetan Partridge (Perdix hodgsoniae) is an endemic species distributed in high-altitude areas of 3600-5600 m on the Qinghai-Tibet Plateau. To explore how the species is adapted to the high elevation environment, we assembled a draft genome based on both the Illumina and PacBio sequencing platforms with its population genetics and genomics analysis. In total, 134.74 Gb short reads and 30.81 Gb long reads raw data were generated. The 1.05-Gb assembled genome had a contig N50 of 4.56 Mb, with 91.94% complete BUSCOs. The 17 457 genes were annotated, and 11.35% of the genome was composed of repeat sequences. The phylogenetic tree showed that P. hodgsoniae was located at the basal position of the clade, including Golden Pheasant (Chrysolophus pictus), Common Pheasant (Phasianus colchicus), and Mikado Pheasant (Syrmaticus mikado). We found that 1014, 2595, and 2732 of the 6641 one-to-one orthologous genes were under positive selection in P. hodgsoniae, detected using PAML, BUSTED, and aBSREL programs, respectively, of which 965 genes were common under positive selection with 3 different programs. Several positively selected genes and immunity pathways relevant to high-altitude adaptation were detected. Gene family evolution showed that 99 gene families experienced significant expansion events, while 6 gene families were under contraction. The total number of olfactory receptor genes was relatively low in P. hodgsoniae. Genomic data provide an important resource for a further study on the evolutionary history of P. hodgsoniae, which provides a new insight into its high-altitude adaptation mechanisms.
Collapse
Affiliation(s)
- Xuejuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoyang Wang
- School of Biological and Environmental Engeering, Xi'an University, Xi'an, China
| | - Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- Shaanxi Institute of Zoology, Xi'an, China
| | - Liliang Lin
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fumin Lei
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, the Chinese Academy of Sciences, Beijing, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
28
|
Li J, He K, Zhang Q, Wu X, Li Z, Pan X, Wang Y, Li C, Zhang M. Draft Genome and Biological Characteristics of Fusarium solani and Fusarium oxysporum Causing Black Rot in Gastrodia elata. Int J Mol Sci 2023; 24:ijms24054545. [PMID: 36901977 PMCID: PMC10003674 DOI: 10.3390/ijms24054545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Gastrodia elata is a valuable traditional Chinese medicinal plant. However, G. elata crops are affected by major diseases, such as brown rot. Previous studies have shown that brown rot is caused by Fusarium oxysporum and F. solani. To further understand the disease, we studied the biological and genome characteristics of these pathogenic fungi. Here, we found that the optimum growth temperature and pH of F. oxysporum (strain QK8) and F. solani (strain SX13) were 28 °C and pH 7, and 30 °C and pH 9, respectively. An indoor virulence test showed that oxime tebuconazole, tebuconazole, and tetramycin had significant bacteriostatic effects on the two Fusarium species. The genomes of QK8 and SX13 were assembled, and it was found that there was a certain gap in the size of the two fungi. The size of strain QK8 was 51,204,719 bp and that of strain SX13 was 55,171,989 bp. Afterwards, through phylogenetic analysis, it was found that strain QK8 was closely related to F. oxysporum, while strain SX13 was closely related to F. solani. Compared with the published whole-genome data for these two Fusarium strains, the genome information obtained here is more complete; the assembly and splicing reach the chromosome level. The biological characteristics and genomic information we provide here lay the foundation for further research on G. elata brown rot.
Collapse
Affiliation(s)
- Jinshao Li
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Ke He
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Qian Zhang
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xiaoyi Wu
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Zhong Li
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xuejun Pan
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yong Wang
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Cheng Li
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (C.L.); (M.Z.)
| | - Manman Zhang
- Key Laboratory of Agricultural Microbiology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (C.L.); (M.Z.)
| |
Collapse
|
29
|
Li J, Cullis C. Comparative analysis of 84 chloroplast genomes of Tylosema esculentum reveals two distinct cytotypes. FRONTIERS IN PLANT SCIENCE 2023; 13:1025408. [PMID: 36798803 PMCID: PMC9927231 DOI: 10.3389/fpls.2022.1025408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Tylosema esculentum (marama bean) is an important orphan legume from southern Africa that has long been considered to have the potential to be domesticated as a crop. The chloroplast genomes of 84 marama samples collected from various geographical locations in Namibia and Pretoria were compared in this study. The cp genomes were analyzed for diversity, including SNPs, indels, structural alterations, and heteroplasmy. The marama cp genomes ranged in length from 161,537 bp to 161,580 bp and contained the same sets of genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The genes rpoC2 and rpoB, and the intergenic spacers trnT-trnL and ndhG-ndhI were found to be more diverse than other regions of the marama plastome. 15 haplotypes were found to be divided into two groups, differing at 122 loci and at a 230 bp inversion. One type appears to have greater variability within the major genome present, and variations amongst individuals with this type of chloroplast genome seems to be distributed within specific geographic regions but with very limited sampling for some regions. However, deep sequencing has identified that within most of the individuals, both types of chloroplast genomes are present, albeit one is generally at a very low frequency. The inheritance of this complex of chloroplast genomes appears to be fairly constant, providing a conundrum of how the two genomes co-exist and are propagated through generations. The possible consequences for adaptation to the harsh environment in which T. esculentum survives are considered. The results pave the way for marama variety identification, as well as for understanding the origin and evolution of the bean.
Collapse
|
30
|
The Chromosome-Scale Genomes of Exserohilum rostratum and Bipolaris zeicola Pathogenic Fungi Causing Rice Spikelet Rot Disease. J Fungi (Basel) 2023; 9:jof9020177. [PMID: 36836292 PMCID: PMC9961003 DOI: 10.3390/jof9020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Rice spikelet rot disease occurs mainly in the late stages of rice growth. Pathogenicity and biological characteristics of the pathogenic fungus and the infestation site have been the primary focus of research on the disease. To learn more about the disease, we performed whole-genome sequencing of Exserohilum rostratum and Bipolaris zeicola for predicting potentially pathogenic genes. The fungus B. zeicola was only recently identified in rice.We obtained 16 and 15 scaffolds down to the chromosome level for E. rostratum LWI and B. zeicola LWII, respectively. The length of LWI strain was approximately 34.05 Mb, and the G + C content of the whole genome was 50.56%. The length of the LWII strain was approximately 32.21 Mb, and the G + C content of the whole genome was 50.66%. After the prediction and annotation of E. rostratum LWI and B. zeicola LWII, we predicted that the LWI strain and LWII strain contain 8 and 13 potential pathogenic genes, respectively, which may be related to rice infection. These results improve our understanding of the genomes of E. rostratum and B. zeicola and update the genomic databases of these two species. It benefits subsequent studies on the mechanisms of E. rostratum and B. zeicola interactions with rice and helps to develop efficient control measures against rice spikelet rot disease.
Collapse
|
31
|
Yepes-Blandón JA, Bian C, Benítez-Galeano MJ, Aristizabal-Regino JL, Estrada-Posada AL, Mir D, Vásquez-Machado G, Atencio-García VJ, Shi Q, Rodríguez-Osorio N. Draft genome assembly for the colombian freshwater bocachico fish, Prochilodus magdalenae. Front Genet 2023; 13:989788. [PMID: 36744175 PMCID: PMC9893009 DOI: 10.3389/fgene.2022.989788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023] Open
Abstract
We report the first draft genome assembly for Prochilodus magdalenae, the leading representative species of the Prochilodontidae family in Colombia. This 1.2-Gb assembly, with a GC content of 42.0% and a repetitive content of around 31.0%, is in the range of previously reported characid species genomes. Annotation identified 34,725 nuclear genes, and BUSCO completeness value was 94.9%. Gene ontology and primary metabolic pathway annotations indicate similar gene profiles for P. magdalenae and the closest species with annotated genomes: blind cave fish (Astyanax mexicanus) and red piranha (Pygocentrus nattereri). A comparative analysis showed similar genome traits to other characid species. The fully sequenced and annotated mitochondrial genome reproduces the taxonomic classification of P. magdalenae and confirms the low mitochondrial genetic divergence inside the Prochilodus genus. Phylogenomic analysis, using nuclear single-copy orthologous genes, also confirmed the evolutionary position of the species. This genome assembly provides a high-resolution genetic resource for sustainable P. magdalenae management in Colombia and, as the first genome assembly for the Prochilodontidae family, will contribute to fish genomics throughout South America.
Collapse
Affiliation(s)
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong, China
| | - María José Benítez-Galeano
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | | | | | - Daiana Mir
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | | | | | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, Guangdong, China
| | - Nélida Rodríguez-Osorio
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| |
Collapse
|
32
|
Hao Y, Li Y, Ping X, Yang Q, Mao Z, Zhao J, Lu X, Xie B, Yang Y, Ling J. The Genome of Fusarium oxysporum f. sp. phaseoli Provides Insight into the Evolution of Genomes and Effectors of Fusarium oxysporum Species. Int J Mol Sci 2023; 24:ijms24020963. [PMID: 36674475 PMCID: PMC9861946 DOI: 10.3390/ijms24020963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Fusarium oxysporum f. sp. phaseoli, the causal agent of cowpea fusarium wilt, is a serious threat to cowpea production in China. In this study, a sample of cowpea fusarium wilt was identified as Fusarium oxysporum f. sp. phaseoli using the methods of morphological characters and molecular detection. We further reported the first genome assembly for Fusarium oxysporum f. sp. phaseoli, with 53.7 Mb genome sequence comprising 14,694 genes. Comparative genomic analysis among five Fusarium oxysporum genomes showed that four accessory chromosomes in the five Fusarium oxysporum display similar characteristics, with low sequence similarity (55.35%, vs. overall average of 81.76%), low gene density (2.18 genes/10 kb vs. 3.02 genes/Mb) and highly transposable element density (TEs) (15.01/100 kb vs. 4.89/100 kb), indicating that variable accessory chromosomes are the main source of Fusarium oxysporum evolution. We identified a total of 100 Fusarium oxysporum f. sp. phaseoli-specific effectors in the genome and found 13 specific effector genes located in large insertion or deletion regions, suggesting that insertion or deletion events can cause the emergence of species-specific effectors in Fusarium oxysporum. Our genome assembly of Fusarium oxysporum f. sp. phaseoli provides a valuable resource for the study of cowpea fusarium wilt, and the comparative genomic study of Fusarium oxysporum could contribute to the knowledge of genome and effector-associated pathogenicity evolution in Fusarium oxysporum study.
Collapse
Affiliation(s)
- Yali Hao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030810, China
| | - Yan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingxing Ping
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qihong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofei Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Y.); (J.L.)
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.Y.); (J.L.)
| |
Collapse
|
33
|
Moreyra NN, Almeida FC, Allan C, Frankel N, Matzkin LM, Hasson E. Phylogenomics provides insights into the evolution of cactophily and host plant shifts in Drosophila. Mol Phylogenet Evol 2023; 178:107653. [PMID: 36404461 DOI: 10.1016/j.ympev.2022.107653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Cactophilic species of the Drosophila buzzatii cluster (repleta group) comprise an excellent model group to investigate genomic changes underlying adaptation to extreme climate conditions and host plants. In particular, these species form a tractable system to study the transition from chemically simpler breeding sites (like prickly pears of the genus Opuntia) to chemically more complex hosts (columnar cacti). Here, we report four highly contiguous genome assemblies of three species of the buzzatii cluster. Based on this genomic data and inferred phylogenetic relationships, we identified candidate taxonomically restricted genes (TRGs) likely involved in the evolution of cactophily and cactus host specialization. Functional enrichment analyses of TRGs within the buzzatii cluster identified genes involved in detoxification, water preservation, immune system response, anatomical structure development, and morphogenesis. In contrast, processes that regulate responses to stress, as well as the metabolism of nitrogen compounds, transport, and secretion were found in the set of species that are columnar cacti dwellers. These findings are in line with the hypothesis that those genomic changes brought about key mechanisms underlying the adaptation of the buzzatii cluster species to arid regions in South America.
Collapse
Affiliation(s)
- Nicolás Nahuel Moreyra
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| | - Francisca Cunha Almeida
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| | - Carson Allan
- Department of Entomology, University of Arizona, Tucson, AZ 85719, USA.
| | - Nicolás Frankel
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| | | | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
34
|
Linscott TM, González-González A, Hirano T, Parent CE. De novo genome assembly and genome skims reveal LTRs dominate the genome of a limestone endemic Mountainsnail (Oreohelix idahoensis). BMC Genomics 2022; 23:796. [PMID: 36460988 PMCID: PMC9719178 DOI: 10.1186/s12864-022-09000-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Calcareous outcrops, rocky areas composed of calcium carbonate (CaCO3), often host a diverse, specialized, and threatened biomineralizing fauna. Despite the repeated evolution of physiological and morphological adaptations to colonize these mineral rich substrates, there is a lack of genomic resources for calcareous rock endemic species. This has hampered our ability to understand the genomic mechanisms underlying calcareous rock specialization and manage these threatened species. RESULTS Here, we present a new draft genome assembly of the threatened limestone endemic land snail Oreohelix idahoensis and genome skim data for two other Oreohelix species. The O. idahoensis genome assembly (scaffold N50: 404.19 kb; 86.6% BUSCO genes) is the largest (~ 5.4 Gb) and most repetitive mollusc genome assembled to date (85.74% assembly size). The repetitive landscape was unusually dominated by an expansion of long terminal repeat (LTR) transposable elements (57.73% assembly size) which have shaped the evolution genome size, gene composition through retrotransposition of host genes, and ectopic recombination. Genome skims revealed repeat content is more than 2-3 fold higher in limestone endemic O. idahoensis compared to non-calcareous Oreohelix species. Gene family size analysis revealed stress and biomineralization genes have expanded significantly in the O. idahoensis genome. CONCLUSIONS Hundreds of threatened land snail species are endemic to calcareous rock regions but there are very few genomic resources available to guide their conservation or determine the genomic architecture underlying CaCO3 resource specialization. Our study provides one of the first high quality draft genomes of a calcareous rock endemic land snail which will serve as a foundation for the conservation genomics of this threatened species and for other groups. The high proportion and activity of LTRs in the O. idahoensis genome is unprecedented in molluscan genomics and sheds new light how transposable element content can vary across molluscs. The genomic resources reported here will enable further studies of the genomic mechanisms underlying calcareous rock specialization and the evolution of transposable element content across molluscs.
Collapse
Affiliation(s)
- T. Mason Linscott
- grid.266456.50000 0001 2284 9900Department of Biological Sciences, University of Idaho, Moscow, ID USA ,grid.266456.50000 0001 2284 9900Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID USA
| | - Andrea González-González
- grid.15276.370000 0004 1936 8091Department of Biology, University of Florida, Gainesville, Florida USA
| | - Takahiro Hirano
- grid.69566.3a0000 0001 2248 6943Center for Northeast Asian Studies, Tohoku University, Sendai, Miyagi Japan
| | - Christine E. Parent
- grid.266456.50000 0001 2284 9900Department of Biological Sciences, University of Idaho, Moscow, ID USA ,grid.266456.50000 0001 2284 9900Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID USA
| |
Collapse
|
35
|
Xu MM, Gu LH, Lv WY, Duan SC, Li LW, Du Y, Lu LZ, Zeng T, Hou ZC, Ma ZS, Chen W, Adeola AC, Han JL, Xu TS, Dong Y, Zhang YP, Peng MS. Chromosome-level genome assembly of the Muscovy duck provides insight into fatty liver susceptibility. Genomics 2022; 114:110518. [PMID: 36347326 DOI: 10.1016/j.ygeno.2022.110518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
The Muscovy duck (Cairina moschata) is an economically important poultry species, which is susceptible to fatty liver. Thus, the Muscovy duck may serve as an excellent candidate animal model of non-alcoholic fatty liver disease. However, the mechanisms underlying fatty liver development in this species are poorly understood. In this study, we report a chromosome-level genome assembly of the Muscovy duck, with a contig N50 of 11.8 Mb and scaffold N50 of 83.16 Mb. The susceptibility of Muscovy duck to fatty liver was mainly attributed to weak lipid catabolism capabilities (fatty acid β-oxidation and lipolysis). Furthermore, conserved noncoding elements (CNEs) showing accelerated evolution contributed to fatty liver formation by down-regulating the expression of genes involved in hepatic lipid catabolism. We propose that the susceptibility of Muscovy duck to fatty liver is an evolutionary by-product. In conclusion, this study revealed the potential mechanisms underlying the susceptibility of Muscovy duck to fatty liver.
Collapse
Affiliation(s)
- Ming-Min Xu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Li-Hong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Wan-Yue Lv
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | | | - Lian-Wei Li
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuan Du
- Nowbio Biotechnology Company, Kunming 650201, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhanshan Sam Ma
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Tie-Shan Xu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
36
|
Characterization of the complete mitochondrial genome of Miamiensis avidus causing flatfish scuticociliatosis. Genetica 2022; 150:407-420. [PMID: 36269500 DOI: 10.1007/s10709-022-00167-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022]
Abstract
Miamiensis avidus is a parasitic pathogen that causes the disease scuticociliatosis in teleost fish species. It is a ciliate and a free-living marine protozoan belonging to the order Philasterida, subclass Scuticociliatida, class Oligohymenophorea, and phylum Ciliophora. The complete mt-genome of M. avidus was linear and 38,695 bp in length with 47 genes, including 40 protein-coding genes, two ribosomal RNA (rRNA) genes, and five transfer RNA (tRNA) genes. Of these, 20 genes typically belong to the clusters of orthologous groups, playing roles in energy production and conversion, translation, ribosomal structure and biogenesis, and defense mechanisms. This is the first report of sequencing and characterization of the mt-genome of M. avidus, which was observed to be linear and possessing the typical ciliate mitochondrial genome organization and phylogenetic relationships. Remarkable differences were observed between M. avidus and other ciliates in the mitochondrially encoded rRNAs, extensive gene loss in ribosomal genes and tRNAs, terminal repeat sequences, and stop codon usage. A comparative and phylogenetic analysis of M. avidus and Uronema marinum of the order Hymenostomatida, which is most closely related to the order Philasterida, signified the promise of the mitogenome data of M. avidus as a valuable genetic marker in species detection and taxonomic research. The present study has potential applications in epidemiological studies and host-parasite interaction investigations facilitating disease control.
Collapse
|
37
|
Qi X, Wang H, Chen S, Feng J, Chen H, Qin Z, Blilou I, Deng Y. The genome of single-petal jasmine ( Jasminum sambac) provides insights into heat stress tolerance and aroma compound biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1045194. [PMID: 36340389 PMCID: PMC9627619 DOI: 10.3389/fpls.2022.1045194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Jasmine [Jasminum sambac (L.) Aiton] is a commercially important cultivated plant species known for its fragrant flowers used in the perfume industry, medicine and cosmetics. In the present study, we obtained a draft genome for the J. sambac cultivar 'Danbanmoli' (JSDB, a single-petal phenotype). We showed that the final genome of J. sambac was 520.80 Mb in size (contig N50 = 145.43 kb; scaffold N50 = 145.53 kb) and comprised 35,363 genes. Our analyses revealed that the J. sambac genome has undergone only an ancient whole-genome duplication (WGD) event. We estimated that the lineage that has given rise to J. sambac diverged from the lineage leading to Osmanthus fragrans and Olea europaea approximately 31.1 million years ago (Mya). On the basis of a combination of genomic and transcriptomic analyses, we identified 92 transcription factors (TFs) and 206 genes related to heat stress response. Base on a combination of genomic, transcriptomic and metabolomic analyses, a range of aroma compounds and genes involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways were identified. In the newly assembled J. sambac genome, we identified a total of 122 MYB, 122 bHLH and 69 WRKY genes. Our assembled J. sambac JSDB genome provides fundamental knowledge to study the molecular mechanism of heat stress tolerance, and improve jasmine flowers and dissect its fragrance.
Collapse
Affiliation(s)
- Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huadi Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ziyi Qin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ikram Blilou
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
38
|
Genetic Diversity and Population Structure of Fusarium oxysporum f. sp. conglutinans Race 1 in Northern China Samples. J Fungi (Basel) 2022; 8:jof8101089. [PMID: 36294654 PMCID: PMC9604595 DOI: 10.3390/jof8101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Fusarium oxysporum f. sp. conglutinans (FOC), the causal agent of cabbage fusarium wilt, is a serious threat to cabbage production in northern China, and most Chinese FOC isolates were identified as FOC race 1 (FOC1). To better understand the genetic diversity of FOC1 in northern China, we collected FOC isolates from five provinces in northern China and identified them as FOC1 through pathogenicity and race test. To evaluate the genome-level diversity of FOC1, we performed a genome assembly for a FOC1 isolate (FoYQ-1) collected from Yanqing, Beijing, where cabbage fusarium wilt was first reported in China. Using resequencing data of FOC1 isolates, we conducted a genome-wide SNP (single nucleotide polymorphism) analysis to investigate the genetic diversity and population structure of FOC1 isolates in northern China. Our study indicated that Chinese FOC1 can be grouped into four populations and revealed that the genetic diversity of FOC1 were closely associated with geographical locations. Our study further suggests that genetic differentiation occurred when FOC1 spread to the northwest provinces from Beijing Province in China. The FOC1 genetic diversity based on whole-genome SNPs could deepen our understanding of FOC1 variation and provide clues for the control of cabbage fusarium wilt in China.
Collapse
|
39
|
Marcet-Houben M, Alvarado M, Ksiezopolska E, Saus E, de Groot PWJ, Gabaldón T. Chromosome-level assemblies from diverse clades reveal limited structural and gene content variation in the genome of Candida glabrata. BMC Biol 2022; 20:226. [PMID: 36209154 PMCID: PMC9548116 DOI: 10.1186/s12915-022-01412-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Candida glabrata is an opportunistic yeast pathogen thought to have a large genetic and phenotypic diversity and a highly plastic genome. However, the lack of chromosome-level genome assemblies representing this diversity limits our ability to accurately establish how chromosomal structure and gene content vary across strains. Results Here, we expanded publicly available assemblies by using long-read sequencing technologies in twelve diverse strains, obtaining a final set of twenty-one chromosome-level genomes spanning the known C. glabrata diversity. Using comparative approaches, we inferred variation in chromosome structure and determined the pan-genome, including an analysis of the adhesin gene repertoire. Our analysis uncovered four new adhesin orthogroups and inferred a rich ancestral adhesion repertoire, which was subsequently shaped through a still ongoing process of gene loss, gene duplication, and gene conversion. Conclusions C. glabrata has a largely stable pan-genome except for a highly variable subset of genes encoding cell wall-associated functions. Adhesin repertoire was established for each strain and showed variability among clades. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01412-1.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - María Alvarado
- Regional Center for Biomedical Research, University of Castilla-La Mancha, E-02008, Albacete, Spain
| | - Ewa Ksiezopolska
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Piet W J de Groot
- Regional Center for Biomedical Research, University of Castilla-La Mancha, E-02008, Albacete, Spain.,Castilla-La Mancha Science & Technology Park, E-02006, Albacete, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain. .,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. .,Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain.
| |
Collapse
|
40
|
Jenner BN, Henry PM. Pathotypes of Fusarium oxysporum f. sp. fragariae express discrete repertoires of accessory genes and induce distinct host transcriptional responses during root infection. Environ Microbiol 2022; 24:4570-4586. [PMID: 35706142 PMCID: PMC9796522 DOI: 10.1111/1462-2920.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 06/11/2022] [Indexed: 01/01/2023]
Abstract
Convergent evolution of phytopathogenicity is poorly described, especially among multiple strains of a single microbial species. We investigated this phenomenon with genetically diverse isolates of Fusarium oxysporum f. sp. fragariae (Fof) that cause one of two syndromes: chlorosis and wilting (the 'yellows-fragariae' pathotype), or only wilting (the 'wilt-fragariae' pathotype). We challenged strawberry (Fragaria × ananassa) plants to root infection by five fungal isolates: three yellows-fragariae, one wilt-fragariae and one that is not pathogenic to strawberry. All Fof isolates had chromosome-level assemblies; three were newly generated. The two pathotypes triggered distinct host responses, especially among phytohormone-associated genes; yellows-fragariae isolates strongly induced jasmonic acid-associated genes, whereas the wilt-fragariae isolate primarily induced ethylene biosynthesis and signalling. The differentially expressed genes on fungal accessory chromosomes were almost entirely distinct between pathotypes. We identified an ~150 kbp 'pathogenicity island' that was horizontally transferred between wilt-fragariae strains. This predicted pathogenicity island was enriched with differentially expressed genes whose predicted functions were related to plant infection, and only one of these genes was also upregulated in planta by yellows-fragariae isolates. These results support the conclusion that wilt- and yellows-fragariae cause physiologically distinct syndromes by the expression of discrete repertoires of genes on accessory chromosomes.
Collapse
Affiliation(s)
- Bradley N. Jenner
- Department of Plant PathologyUniversity of California at DavisDavisCaliforniaUSA
| | - Peter M. Henry
- United States Department of Agriculture, Agricultural Research ServiceSalinasCaliforniaUSA
| |
Collapse
|
41
|
Whiteford S, van’t Hof AE, Krishna R, Marubbi T, Widdison S, Saccheri IJ, Guest M, Morrison NI, Darby AC. Recovering individual haplotypes and a contiguous genome assembly from pooled long-read sequencing of the diamondback moth (Lepidoptera: Plutellidae). G3 (BETHESDA, MD.) 2022; 12:jkac210. [PMID: 35980174 PMCID: PMC9526047 DOI: 10.1093/g3journal/jkac210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The assembly of divergent haplotypes using noisy long-read data presents a challenge to the reconstruction of haploid genome assemblies, due to overlapping distributions of technical sequencing error, intralocus genetic variation, and interlocus similarity within these data. Here, we present a comparative analysis of assembly algorithms representing overlap-layout-consensus, repeat graph, and de Bruijn graph methods. We examine how postprocessing strategies attempting to reduce redundant heterozygosity interact with the choice of initial assembly algorithm and ultimately produce a series of chromosome-level assemblies for an agricultural pest, the diamondback moth, Plutella xylostella (L.). We compare evaluation methods and show that BUSCO analyses may overestimate haplotig removal processing in long-read draft genomes, in comparison to a k-mer method. We discuss the trade-offs inherent in assembly algorithm and curation choices and suggest that "best practice" is research question dependent. We demonstrate a link between allelic divergence and allele-derived contig redundancy in final genome assemblies and document the patterns of coding and noncoding diversity between redundant sequences. We also document a link between an excess of nonsynonymous polymorphism and haplotigs that are unresolved by assembly or postassembly algorithms. Finally, we discuss how this phenomenon may have relevance for the usage of noisy long-read genome assemblies in comparative genomics.
Collapse
Affiliation(s)
- Samuel Whiteford
- Corresponding author: Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Arjen E van’t Hof
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Ritesh Krishna
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- IBM Research UK, STFC Daresbury Laboratory, Warrington WA4 4AD, UK
| | | | - Stephanie Widdison
- General Bioinformatics, Jealott's Hill International Research Centre, Bracknell RG42 6EY, UK
| | - Ilik J Saccheri
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Marcus Guest
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | | | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
42
|
Mu X, Liu Y, Liu C, Zhao C, Li R, You X, Yang Y, Wang X, Hu Y, Shi Q, Bian C. Identification of candidate sex-specific genomic regions in male and female Asian arowana genomes. Gigascience 2022; 11:giac085. [PMID: 36106701 PMCID: PMC9475665 DOI: 10.1093/gigascience/giac085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/25/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Asian arowana, Scleropages formosus, is one of the most expensive aquarium fish species worldwide. Its sex, however, cannot be distinguished clearly at any development stage, which impedes captive breeding and species protection for this endangered aquarium fish. RESULTS To discover molecular clues to the sex of Asian arowana, we sequenced 26.5 Gb of PacBio HiFi reads and 179.2 Gb of Hi-C reads for 1 male fish and also sequenced 106.5 Gb of Illumina reads, 36.0 Gb of PacBio Sequel reads, and 80.7 Gb of Hi-C reads for 1 female individual. The final male and female genome assemblies were approximately 756.8 Mb and 781.5 Mb in length and contained 25,262 and 25,328 protein-coding genes, respectively. We also resequenced the genomes of 15 male and 15 female individuals with approximately 722.1 Gb of Illumina reads. A genome-wide association study identified several potentially divergent regions between male and female individuals. In these regions, cd48 and cfap52 could be candidate genes for sex determination of Asian arowana. We also found some structural variations in few chromosomes between male and female individuals. CONCLUSION We provided an improved reference genome assembly of female arowana and generated the first sequenced genome of 1 male individual. These valuable genetic resources and resequencing data may improve global aquarium fish research.
Collapse
Affiliation(s)
- Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yi Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chao Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chenxi Zhao
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yexin Yang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xuejie Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yinchang Hu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Yan C, Zhang ZY, Lv Y, Wang Z, Jiang K, Li JT. Genome of Laudakia sacra Provides New Insights into High-Altitude Adaptation of Ectotherms. Int J Mol Sci 2022; 23:ijms231710081. [PMID: 36077479 PMCID: PMC9456099 DOI: 10.3390/ijms231710081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Anan’s rock agama (Laudakia sacra) is a lizard species endemic to the harsh high-altitude environment of the Qinghai–Tibet Plateau, a region characterized by low oxygen tension and high ultraviolet (UV) radiation. To better understand the genetic mechanisms underlying highland adaptation of ectotherms, we assembled a 1.80-Gb L. sacra genome, which contained 284 contigs with an N50 of 20.19 Mb and a BUSCO score of 93.54%. Comparative genomic analysis indicated that mutations in certain genes, including HIF1A, TIE2, and NFAT family members and genes in the respiratory chain, may be common adaptations to hypoxia among high-altitude animals. Compared with lowland reptiles, MLIP showed a convergent mutation in L. sacra and the Tibetan hot-spring snake (Thermophis baileyi), which may affect their hypoxia adaptation. In L. sacra, several genes related to cardiovascular remodeling, erythropoiesis, oxidative phosphorylation, and DNA repair may also be tailored for adaptation to UV radiation and hypoxia. Of note, ERCC6 and MSH2, two genes associated with adaptation to UV radiation in T. baileyi, exhibited L. sacra-specific mutations that may affect peptide function. Thus, this study provides new insights into the potential mechanisms underpinning high-altitude adaptation in ectotherms and reveals certain genetic generalities for animals’ survival on the plateau.
Collapse
Affiliation(s)
- Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhi-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence: (Z.-Y.Z.); (J.-T.L.)
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Zeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ke Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Mangkang Biodiversity and Ecological Station, Tibet Ecological Safety Monitor Network, Changdu 854500, China
- Correspondence: (Z.-Y.Z.); (J.-T.L.)
| |
Collapse
|
44
|
Zhang ZY, Lv Y, Wu W, Yan C, Tang CY, Peng C, Li JT. The structural and functional divergence of a neglected three-finger toxin subfamily in lethal elapids. Cell Rep 2022; 40:111079. [PMID: 35830808 DOI: 10.1016/j.celrep.2022.111079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Bungarus multicinctus is a widely distributed and medically important elapid snake that produces lethal neurotoxic venom. To study and enhance existing antivenom, we explore the complete repertoire of its toxin genes based on de novo chromosome-level assembly and multi-tissue transcriptome data. Comparative genomic analyses suggest that the three-finger toxin family (3FTX) may evolve through the neofunctionalization of flanking LY6E. A long-neglected 3FTX subfamily (i.e., MKA-3FTX) is also investigated. Only one MKA-3FTX gene, which evolves a different protein conformation, is under positive selection and actively transcribed in the venom gland, functioning as a major toxin effector together with MKT-3FTX subfamily homologs. Furthermore, this lethal snake may acquire self-resistance to its β-bungarotoxin via amino acid replacements on fast-evolving KCNA2. This study provides valuable resources for further evolutionary and structure-function studies of snake toxins, which are fundamental for the development of effective antivenoms and drug candidates.
Collapse
Affiliation(s)
- Zhi-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Yunyun Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; College of Life Science, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chen-Yang Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Changjun Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; University of Chinese Academy of Sciences, Beijing 101408, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
45
|
The role of zinc in the adaptive evolution of polar phytoplankton. Nat Ecol Evol 2022; 6:965-978. [PMID: 35654896 DOI: 10.1038/s41559-022-01750-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/28/2022] [Indexed: 12/20/2022]
Abstract
Zinc is an essential trace metal for oceanic primary producers with the highest concentrations in polar oceans. However, its role in the biological functioning and adaptive evolution of polar phytoplankton remains enigmatic. Here, we have applied a combination of evolutionary genomics, quantitative proteomics, co-expression analyses and cellular physiology to suggest that model polar phytoplankton species have a higher demand for zinc because of elevated cellular levels of zinc-binding proteins. We propose that adaptive expansion of regulatory zinc-finger protein families, co-expanded and co-expressed zinc-binding proteins families involved in photosynthesis and growth in these microalgal species and their natural communities were identified to be responsible for the higher zinc demand. The expression of their encoding genes in eukaryotic phytoplankton metatranscriptomes from pole-to-pole was identified to correlate not only with dissolved zinc concentrations in the upper ocean but also with temperature, suggesting that environmental conditions of polar oceans are responsible for an increased demand of zinc. These results suggest that zinc plays an important role in supporting photosynthetic growth in eukaryotic polar phytoplankton and that this has been critical for algal colonization of low-temperature polar oceans.
Collapse
|
46
|
Yoshida Y, Shaikhutdinov N, Kozlova O, Itoh M, Tagami M, Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, Noma S, Cherkasov A, Gazizova G, Nasibullina A, Deviatiiarov R, Shagimardanova E, Ryabova A, Yamaguchi K, Bino T, Shigenobu S, Tokumoto S, Miyata Y, Cornette R, Yamada TG, Funahashi A, Tomita M, Gusev O, Kikawada T. High quality genome assembly of the anhydrobiotic midge provides insights on a single chromosome-based emergence of extreme desiccation tolerance. NAR Genom Bioinform 2022; 4:lqac029. [PMID: 35387384 PMCID: PMC8982440 DOI: 10.1093/nargab/lqac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Non-biting midges (Chironomidae) are known to inhabit a wide range of environments, and certain species can tolerate extreme conditions, where the rest of insects cannot survive. In particular, the sleeping chironomid Polypedilum vanderplanki is known for the remarkable ability of its larvae to withstand almost complete desiccation by entering a state called anhydrobiosis. Chromosome numbers in chironomids are higher than in other dipterans and this extra genomic resource might facilitate rapid adaptation to novel environments. We used improved sequencing strategies to assemble a chromosome-level genome sequence for P. vanderplanki for deep comparative analysis of genomic location of genes associated with desiccation tolerance. Using whole genome-based cross-species and intra-species analysis, we provide evidence for the unique functional specialization of Chromosome 4 through extensive acquisition of novel genes. In contrast to other insect genomes, in the sleeping chironomid a uniquely high degree of subfunctionalization in paralogous anhydrobiosis genes occurs in this chromosome, as well as pseudogenization in a highly duplicated gene family. Our findings suggest that the Chromosome 4 in Polypedilum is a site of high genetic turnover, allowing it to act as a 'sandbox' for evolutionary experiments, thus facilitating the rapid adaptation of midges to harsh environments.
Collapse
Affiliation(s)
- Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0035, Japan
- Graduate School of Media and Governance, Systems Biology Program, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Nurislam Shaikhutdinov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 21205, Russian Federation
| | - Olga Kozlova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
| | - Masayoshi Itoh
- Preventive Medicine & Diagnosis Innovation Program (PMI), RIKEN, Wako, Saitama 351-0198, Japan
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Michihira Tagami
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuyoshi Murata
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | | | - Miki Kojima-Ishiyama
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Shohei Noma
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Alexander Cherkasov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
| | - Aigul Nasibullina
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
| | - Alina Ryabova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Takahiro Bino
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Shoko Tokumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yugo Miyata
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan
| | - Richard Cornette
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan
| | - Takahiro G Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0035, Japan
- Graduate School of Media and Governance, Systems Biology Program, Keio University, Fujisawa, Kanagawa 252-0882, Japan
- Faculty of Environment and Information studies, Keio University, Fujisawa, Kanagawa 252-0882, Japan
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420012, Russian Federation
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan
- Department of Regulatory Transcriptomics for Medical Genetic Diagnostics, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Takahiro Kikawada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
47
|
Li H, Matsuda H, Tsuboyama A, Munakata R, Sugiyama A, Yazaki K. Inventory of ATP-binding cassette proteins in Lithospermum erythrorhizon as a model plant producing divergent secondary metabolites. DNA Res 2022; 29:6596041. [PMID: 35640979 PMCID: PMC9195045 DOI: 10.1093/dnares/dsac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) proteins are the largest membrane transporter family in plants. In addition to transporting organic substances, these proteins function as ion channels and molecular switches. The development of multiple genes encoding ABC proteins has been associated with their various biological roles. Plants utilize many secondary metabolites to adapt to environmental stresses and to communicate with other organisms, with many ABC proteins thought to be involved in metabolite transport. Lithospermum erythrorhizon is regarded as a model plant for studying secondary metabolism, as cells in culture yielded high concentrations of meroterpenes and phenylpropanoids. Analysis of the genome and transcriptomes of L. erythrorhizon showed expression of genes encoding 118 ABC proteins, similar to other plant species. The number of expressed proteins in the half-size ABCA and full-size ABCB subfamilies was ca. 50% lower in L. erythrorhizon than in Arabidopsis, whereas there was no significant difference in the numbers of other expressed ABC proteins. Because many ABCG proteins are involved in the export of organic substances, members of this subfamily may play important roles in the transport of secondary metabolites that are secreted into apoplasts.
Collapse
Affiliation(s)
- Hao Li
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Hinako Matsuda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Ai Tsuboyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Ryosuke Munakata
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Kazufumi Yazaki
- To whom correspondence should be addressed. Tel. +81 774 38 3617.
| |
Collapse
|
48
|
Benowitz KM, Allan CW, Degain BA, Li X, Fabrick JA, Tabashnik BE, Carrière Y, Matzkin LM. Novel genetic basis of resistance to Bt toxin Cry1Ac in Helicoverpa zea. Genetics 2022; 221:iyac037. [PMID: 35234875 PMCID: PMC9071530 DOI: 10.1093/genetics/iyac037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 11/14/2022] Open
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bacillus thuringiensis toxins can improve resistance monitoring, resistance management, and the design of new insecticides. Here, we investigated the genetic basis of resistance to Bacillus thuringiensis toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species, which has 31 chromosomes containing 375 Mb and 15,482 predicted proteins. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250-kb quantitative trait locus on chromosome 13 that was strongly associated with resistance in a strain of Helicoverpa zea that had been selected for resistance in the field and lab. The mutation in this quantitative trait locus contributed to but was not sufficient for resistance, which implies alleles in more than one gene contributed to resistance. This quantitative trait locus contains no genes with a previously reported role in resistance or susceptibility to Bacillus thuringiensis toxins. However, in resistant insects, this quantitative trait locus has a premature stop codon in a kinesin gene, which is a primary candidate as a mutation contributing to resistance. We found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, Austin Peay State University, Clarksville, TN 37040, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Benjamin A Degain
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Jeffrey A Fabrick
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
49
|
Theelen B, Mixão V, Ianiri G, Goh JPZ, Dijksterhuis J, Heitman J, Dawson TL, Gabaldón T, Boekhout T. Multiple Hybridization Events Punctuate the Evolutionary Trajectory of Malassezia furfur. mBio 2022; 13:e0385321. [PMID: 35404119 PMCID: PMC9040865 DOI: 10.1128/mbio.03853-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Malassezia species are important fungal skin commensals and are part of the normal microbiota of humans and other animals. However, under certain circumstances these fungi can also display a pathogenic behavior. For example, Malassezia furfur is a common commensal of human skin and yet is often responsible for skin disorders but also systemic infections. Comparative genomics analysis of M. furfur revealed that some isolates have a hybrid origin, similar to several other recently described hybrid fungal pathogens. Because hybrid species exhibit genomic plasticity that can impact phenotypes, we sought to elucidate the genomic evolution and phenotypic characteristics of M. furfur hybrids in comparison to their parental lineages. To this end, we performed a comparative genomics analysis between hybrid strains and their presumptive parental lineages and assessed phenotypic characteristics. Our results provide evidence that at least two distinct hybridization events occurred between the same parental lineages and that the parental strains may have originally been hybrids themselves. Analysis of the mating-type locus reveals that M. furfur has a pseudobipolar mating system and provides evidence that after sexual liaisons of mating compatible cells, hybridization involved cell-cell fusion leading to a diploid/aneuploid state. This study provides new insights into the evolutionary trajectory of M. furfur and contributes with valuable genomic resources for future pathogenicity studies. IMPORTANCEMalassezia furfur is a common commensal member of human/animal microbiota that is also associated with several pathogenic states. Recent studies report involvement of Malassezia species in Crohn's disease, a type of inflammatory bowel disease, pancreatic cancer progression, and exacerbation of cystic fibrosis. A recent genomics analysis of M. furfur revealed the existence of hybrid isolates and identified their putative parental lineages. In this study, we explored the genomic and phenotypic features of these hybrids in comparison to their putative parental lineages. Our results revealed the existence of a pseudobipolar mating system in this species and showed evidence for the occurrence of multiple hybridization events in the evolutionary trajectory of M. furfur. These findings significantly advance our understanding of the evolution of this commensal microbe and are relevant for future studies exploring the role of hybridization in the adaptation to new niches or environments, including the emergence of pathogenicity.
Collapse
Affiliation(s)
- Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine, Barcelona, Spain
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Joleen Pei Zhen Goh
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research, Singapore
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas L. Dawson
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research, Singapore
- Center for Cell Death, Injury and Regeneration, Departments of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Yan C, Zhang N, Wang Q, Fu Y, Zhao H, Wang J, Wu G, Wang F, Li X, Liao H. Full-length transcriptome sequencing reveals the molecular mechanism of potato seedlings responding to low-temperature. BMC PLANT BIOLOGY 2022; 22:125. [PMID: 35300606 PMCID: PMC8932150 DOI: 10.1186/s12870-022-03461-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is one of the world's most important crops, the cultivated potato is frost-sensitive, and low-temperature severely influences potato production. However, the mechanism by which potato responds to low-temperature stress is unclear. In this research, we apply a combination of second-generation sequencing and third-generation sequencing technologies to sequence full-length transcriptomes in low-temperature-sensitive cultivars to identify the important genes and main pathways related to low-temperature resistance. RESULTS In this study, we obtained 41,016 high-quality transcripts, which included 15,189 putative new transcripts. Amongst them, we identified 11,665 open reading frames, 6085 simple sequence repeats out of the potato dataset. We used public available genomic contigs to analyze the gene features, simple sequence repeat, and alternative splicing event of 24,658 non-redundant transcript sequences, predicted the coding sequence and identified the alternative polyadenylation. We performed cluster analysis, GO, and KEGG functional analysis of 4518 genes that were differentially expressed between the different low-temperature treatments. We examined 36 transcription factor families and identified 542 transcription factors in the differentially expressed genes, and 64 transcription factors were found in the AP2 transcription factor family which was the most. We measured the malondialdehyde, soluble sugar, and proline contents and the expression genes changed associated with low temperature resistance in the low-temperature treated leaves. We also tentatively speculate that StLPIN10369.5 and StCDPK16 may play a central coordinating role in the response of potatoes to low temperature stress. CONCLUSIONS Overall, this study provided the first large-scale full-length transcriptome sequencing of potato and will facilitate structure-function genetic and comparative genomics studies of this important crop.
Collapse
Affiliation(s)
- Chongchong Yan
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| | - Nan Zhang
- Anhui Vocational College of City Management, Hefei, 231635, Anhui, China
| | - Qianqian Wang
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Yuying Fu
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Hongyuan Zhao
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Jiajia Wang
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Gang Wu
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Feng Wang
- Jieshou County Agricultural Technology Promotion Center, Jieshou, 236500, Anhui, China
| | - Xueyan Li
- Funan County Agricultural Technology Promotion Center, Funan, 236300, Anhui, China
| | - Huajun Liao
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|