1
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
2
|
Zhu W, Zhou Y, Guo L, Feng S. Biological function of sialic acid and sialylation in human health and disease. Cell Death Discov 2024; 10:415. [PMID: 39349440 PMCID: PMC11442784 DOI: 10.1038/s41420-024-02180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Sialic acids are predominantly found at the terminal ends of glycoproteins and glycolipids and play key roles in cellular communication and function. The process of sialylation, a form of post-translational modification, involves the covalent attachment of sialic acid to the terminal residues of oligosaccharides and glycoproteins. This modification not only provides a layer of electrostatic repulsion to cells but also serves as a receptor for various biological signaling pathways. Sialylation is involved in several pathophysiological processes. Given its multifaceted involvement in cellular functions, sialylation presents a promising avenue for therapeutic intervention. Current studies are exploring agents that target sialic acid residues on sialoglycans or the sialylation process. These efforts are particularly focused on the fields of cancer therapy, stroke treatment, antiviral strategies, and therapies for central nervous system disorders. In this review, we aimed to summarize the biological functions of sialic acid and the process of sialylation, explore their roles in various pathophysiological contexts, and discuss their potential applications in the development of novel therapeutics.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Linjuan Guo
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| | - Shenghui Feng
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Fioretto BS, Rosa I, Tani A, Andreucci E, Romano E, Sgambati E, Manetti M. Blockade of Sialylation with Decrease in Polysialic Acid Levels Counteracts Transforming Growth Factor β1-Induced Skin Fibroblast-to-Myofibroblast Transition. Cells 2024; 13:1067. [PMID: 38920695 PMCID: PMC11201575 DOI: 10.3390/cells13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their transition to myofibroblasts remains unknown. Therefore, we herein explored whether inhibition of sialylation could interfere with the process of skin fibroblast-to-myofibroblast transition induced by the master profibrotic mediator transforming growth factor β1 (TGFβ1). Adult human skin fibroblasts were pretreated with the competitive pan-sialyltransferase inhibitor 3-Fax-peracetyl-Neu5Ac (3-Fax) before stimulation with recombinant human TGFβ1, and then analyzed for polySia expression, cell viability, proliferation, migratory ability, and acquisition of myofibroblast-like morphofunctional features. Skin fibroblast stimulation with TGFβ1 resulted in overexpression of polySia, which was effectively blunted by 3-Fax pre-administration. Pretreatment with 3-Fax efficiently lessened TGFβ1-induced skin fibroblast proliferation, migration, changes in cell morphology, and phenotypic and functional differentiation into myofibroblasts, as testified by a significant reduction in FAP, ACTA2, COL1A1, COL1A2, and FN1 gene expression, and α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, as well as a reduced contractile capability. Moreover, skin fibroblasts pre-administered with 3-Fax displayed a significant decrease in Smad3-dependent canonical TGFβ1 signaling. Collectively, our in vitro findings demonstrate for the first time that aberrant sialylation with increased polySia levels has a functional role in skin fibroblast-to-myofibroblast transition and suggest that competitive sialyltransferase inhibition might offer new therapeutic opportunities against skin fibrosis.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessia Tani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (A.T.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
4
|
Lu B, Liao SM, Liang SJ, Peng LX, Li JX, Liu XH, Huang RB, Zhou GP. The Bifunctional Effects of Lactoferrin (LFcinB11) in Inhibiting Neural Cell Adhesive Molecule (NCAM) Polysialylation and the Release of Neutrophil Extracellular Traps (NETs). Int J Mol Sci 2024; 25:4641. [PMID: 38731861 PMCID: PMC11083048 DOI: 10.3390/ijms25094641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.
Collapse
Affiliation(s)
- Bo Lu
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Si-Ming Liao
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Shi-Jie Liang
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Li-Xin Peng
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Jian-Xiu Li
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Ri-Bo Huang
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
- Rocky Mount Life Sciences Institute, Rocky Mount, NC 27804, USA
| | - Guo-Ping Zhou
- National Key Laboratory of Non-Food Biomass Energy Technology, National Engineering Research Center for Non-Food Biorefinery, Institute of Biological Science and Technology, Guangxi Academy of Sciences, 98 Daling Road, Nanning 530007, China; (B.L.); (S.-M.L.); (S.-J.L.); (L.-X.P.); (J.-X.L.)
- Rocky Mount Life Sciences Institute, Rocky Mount, NC 27804, USA
| |
Collapse
|
5
|
Babulic JL, Kofsky JM, Boddington ME, Kim Y, Leblanc EV, Cook MG, Garnier CR, Emberley-Korkmaz S, Colpitts CC, Capicciotti CJ. One-Step Selective Labeling of Native Cell Surface Sialoglycans by Exogenous α2,8-Sialylation. ACS Chem Biol 2023; 18:2418-2429. [PMID: 37934063 DOI: 10.1021/acschembio.3c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Exo-enzymatic glycan labeling strategies have emerged as versatile tools for efficient and selective installation of terminal glyco-motifs onto live cell surfaces. Through employing specific enzymes and nucleotide-sugar probes, cells can be equipped with defined glyco-epitopes for modulating cell function or selective visualization and enrichment of glycoconjugates. Here, we identifyCampylobacter jejunisialyltransferase Cst-II I53S as a tool for cell surface glycan modification, expanding the exo-enzymatic labeling toolkit to include installation of α2,8-disialyl epitopes. Labeling with Cst-II was achieved with biotin- and azide-tagged CMP-Neu5Ac derivatives on a model glycoprotein and native sialylated cell surface glycans across a panel of cell lines. The introduction of modified Neu5Ac derivatives onto cells by Cst-II was also retained on the surface for 6 h. By examining the specificity of Cst-II on cell surfaces, it was revealed that the α2,8-sialyltransferase primarily labeled N-glycans, with O-glycans labeled to a lesser extent, and there was an apparent preference for α2,3-linked sialosides on cells. This approach thus broadens the scope of tools for selective exo-enzymatic labeling of native sialylated glycans and is highly amenable for the construction of cell-based arrays.
Collapse
Affiliation(s)
- Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Joshua M Kofsky
- Department of Chemistry, Queen's University, Kingston K7L 3N6, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Emmanuelle V Leblanc
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Madeleine G Cook
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Cole R Garnier
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Sophie Emberley-Korkmaz
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Chantelle J Capicciotti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
- Department of Chemistry, Queen's University, Kingston K7L 3N6, Canada
- Department of Surgery, Queen's University, Kingston K7L 3N6, Canada
| |
Collapse
|
6
|
Khan L, Derksen T, Redmond D, Storek J, Durand C, Gniadecki R, Korman B, Cohen Tervaert JW, D'Aubeterre A, Osman MS, Willis LM. The cancer-associated glycan polysialic acid is dysregulated in systemic sclerosis and is associated with fibrosis. J Autoimmun 2023; 140:103110. [PMID: 37742510 DOI: 10.1016/j.jaut.2023.103110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a rare but deadly disease characterized by autoimmunity, vasculopathy, and fibrosis. Fibrotic complications associated with SSc correlate with severe morbidity and mortality. Previous studies in SSc have identified fibroblasts as the primary drivers of fibrosis; however, the mechanism(s) promoting this are not well understood. Aberrant glycosylation, particularly polysialylation (polySia), has been described as a prominent feature of aggressive cancers. Inspired by this observation, we aimed to determine if polySia is dysregulated in various forms of SSc. METHODS All patients with SSc met the 2013 ACR/EULAR. Patients were sub-classified into limited cutaneous (lSSc, N = 5 or 46 patients for polySia quantification in the dermis or serum; respectively), diffuse cutaneous (dSSc, N = 11 or 18 patients for polySia quantification in the dermis or serum; respectively), or patients with dSSc treated with an autologous stem cell transplantation (post-ASCT, N = 4 patients for quantification in the dermis). Dermal polySia levels were measured via immunofluorescence microscopy in 10 μm dermal sections, quantified in each group (healthy volunteers (HC), lSSc, dSSc, and post-ASCT) and correlated with skin fibrosis (via the modified Rodnan skin score (mRSS)). Similarly, serum polySia was quantified in each group, and correlated with the mRSS. RESULTS Dermal polySia levels were highest in patients with dSSc (compared to HC < 0.001), and correlated with the degree of fibrosis in all of the groups (P = 0.008). Serum polySia was higher in all SSc groups (p < 0.001) and correlated with the severity of mRSS (p < 0.0001). CONCLUSION Polysia is more abundant in the skin and sera from patients with SSc and correlates with the degree of skin fibrosis. The aberrant expression of polySia highlights its potential use as a biomarker in patients with progressive forms of SSc. Dysregulated polySia levels in SSc further emphasizes the cancer-like phenotype present in SSc, which may promote fibrosis and immune dysregulation.
Collapse
Affiliation(s)
- Lamia Khan
- Faculty of Medicine & Dentistry, Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tahlia Derksen
- Faculty of Science, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Desiree Redmond
- Faculty of Medicine & Dentistry, Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Jan Storek
- University of Calgary, Calgary, AB, Canada
| | | | - Robert Gniadecki
- Faculty of Medicine & Dentistry, Division of Dermatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Benjamin Korman
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jan Willem Cohen Tervaert
- Faculty of Medicine & Dentistry, Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Ana D'Aubeterre
- Faculty of Science, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Mohammed S Osman
- Faculty of Medicine & Dentistry, Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Lisa M Willis
- Faculty of Science, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Faculty of Medicine & Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Nejatie A, Yee SS, Jeter A, Saragovi HU. The cancer glycocode as a family of diagnostic biomarkers, exemplified by tumor-associated gangliosides. Front Oncol 2023; 13:1261090. [PMID: 37954075 PMCID: PMC10637394 DOI: 10.3389/fonc.2023.1261090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode).A class of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs) are presented here as potential diagnostics for detecting cancer, especially at early stages, as the biological function of TMGs makes them etiological. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention. Diagnosis is critical to reducing cancer mortality but many cancers lack efficient and effective diagnostic tests, especially for early stage disease. Ideal diagnostic biomarkers are etiological, samples are preferably obtained via non-invasive methods (e.g. liquid biopsy of blood or urine), and are quantitated using assays that yield high diagnostic sensitivity and specificity for efficient diagnosis, prognosis, or predicting response to therapy. Validated biomarkers with these features are rare. While the advent of proteomics and genomics has led to the identification of a multitude of proteins and nucleic acid sequences as cancer biomarkers, relatively few have been approved for clinical use. The use of multiplex arrays and artificial intelligence-driven algorithms offer the option of combining data of known biomarkers; however, for most, the sensitivity and the specificity are below acceptable criteria, and clinical validation has proven difficult. One strategic solution to this problem is to expand the biomarker families beyond those currently exploited. One unexploited family of cancer biomarkers comprise glycoproteins, carbohydrates, and glycolipids (the Tumor Glycocode). Here, we focus on a family of glycolipid cancer biomarkers, the tumor-marker gangliosides (TMGs). We discuss the diagnostic potential of TMGs for detecting cancer, especially at early stages. We include prior studies from the literature to summarize findings for ganglioside quantification, expression, detection, and biological function and its role in various cancers. We highlight the examples of TMGs exhibiting ideal properties of cancer diagnostic biomarkers, and the application of GD2 and GD3 for diagnosis of early stage cancers with high sensitivity and specificity. We propose that a quantitative matrix of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms will expand the menu of validated cancer biomarkers as a step to resolve some of the challenges in cancer diagnosis, and yield a combination that can identify a specific cancer, in a tissue-agnostic manner especially at early stages, to enable early intervention.
Collapse
Affiliation(s)
- Ali Nejatie
- Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Samantha S. Yee
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| | | | - Horacio Uri Saragovi
- Center for Translational Research, Lady Davis Research Institute-Jewish General Hospital, Montreal, QC, Canada
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Ophthalmology and Vision Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Jastrząb P, Narejko K, Car H, Wielgat P. Cell Membrane Sialome: Sialic Acids as Therapeutic Targets and Regulators of Drug Resistance in Human Cancer Management. Cancers (Basel) 2023; 15:5103. [PMID: 37894470 PMCID: PMC10604966 DOI: 10.3390/cancers15205103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
A cellular sialome is a physiologically active and dynamically changing component of the cell membrane. Sialylation plays a crucial role in tumor progression, and alterations in cellular sialylation patterns have been described as modulators of chemotherapy effectiveness. However, the precise mechanisms through which altered sialylation contributes to drug resistance in cancer are not yet fully understood. This review focuses on the intricate interplay between sialylation and cancer treatment. It presents the role of sialic acids in modulating cell-cell interactions, the extracellular matrix (ECM), and the immunosuppressive processes within the context of cancer. The issue of drug resistance is also discussed, and the mechanisms that involve transporters, the tumor microenvironment, and metabolism are analyzed. The review explores drugs and therapeutic approaches that may induce modifications in sialylation processes with a primary focus on their impact on sialyltransferases or sialidases. Despite advancements in cellular glycobiology and glycoengineering, an interdisciplinary effort is required to decipher and comprehend the biological characteristics and consequences of altered sialylation. Additionally, understanding the modulatory role of sialoglycans in drug sensitivity is crucial to applying this knowledge in clinical practice for the benefit of cancer patients.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Karolina Narejko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15A, 15-274 Bialystok, Poland; (P.J.); (K.N.); (H.C.)
| |
Collapse
|
9
|
Tschang M, Kumar S, Young W, Schachner M, Theis T. Small Organic Compounds Mimicking the Effector Domain of Myristoylated Alanine-Rich C-Kinase Substrate Stimulate Female-Specific Neurite Outgrowth. Int J Mol Sci 2023; 24:14271. [PMID: 37762575 PMCID: PMC10532424 DOI: 10.3390/ijms241814271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a critical member of a signaling cascade that influences disease-relevant neural functions such as neural growth and plasticity. The effector domain (ED) of MARCKS interacts with the extracellular glycan polysialic acid (PSA) through the cell membrane to stimulate neurite outgrowth in cell culture. We have shown that a synthetic ED peptide improves functional recovery after spinal cord injury in female but not male mice. However, peptides themselves are unstable in therapeutic applications, so we investigated more pharmacologically relevant small organic compounds that mimic the ED peptide to maximize therapeutic potential. Using competition ELISAs, we screened small organic compound libraries to identify molecules that structurally and functionally mimic the ED peptide of MARCKS. Since we had shown sex-specific effects of MARCKS on spinal cord injury recovery, we assayed neuronal viability as well as neurite outgrowth from cultured cerebellar granule cells of female and male mice separately. We found that epigallocatechin, amiodarone, sertraline, tegaserod, and nonyloxytryptamine bind to a monoclonal antibody against the ED peptide, and compounds stimulate neurite outgrowth in cultured cerebellar granule cells of female mice only. Therefore, a search for compounds that act in males appears warranted.
Collapse
Affiliation(s)
- Monica Tschang
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08844, USA;
| | - Wise Young
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.T.); (W.Y.)
| |
Collapse
|
10
|
Fairey A, Paproski RJ, Pink D, Sosnowski DL, Vasquez C, Donnelly B, Hyndman E, Aprikian A, Kinnaird A, Beatty PH, Lewis JD. Clinical analysis of EV-Fingerprint to predict grade group 3 and above prostate cancer and avoid prostate biopsy. Cancer Med 2023; 12:15797-15808. [PMID: 37329212 PMCID: PMC10469644 DOI: 10.1002/cam4.6216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND There is an unmet clinical need for minimally invasive diagnostic tests to improve the detection of grade group (GG) ≥3 prostate cancer relative to prostate antigen-specific risk calculators. We determined the accuracy of the blood-based extracellular vesicle (EV) biomarker assay (EV Fingerprint test) at the point of a prostate biopsy decision to predict GG ≥3 from GG ≤2 and avoid unnecessary biopsies. METHODS This study analyzed 415 men referred to urology clinics and scheduled for a prostate biopsy, were recruited to the APCaRI 01 prospective cohort study. The EV machine learning analysis platform was used to generate predictive EV models from microflow data. Logistic regression was then used to analyze the combined EV models and patient clinical data and generate the patients' risk score for GG ≥3 prostate cancer. RESULTS The EV-Fingerprint test was evaluated using the area under the curve (AUC) in discrimination of GG ≥3 from GG ≤2 and benign disease on initial biopsy. EV-Fingerprint identified GG ≥3 cancer patients with high accuracy (0.81 AUC) at 95% sensitivity and 97% negative predictive value. Using a 7.85% probability cutoff, 95% of men with GG ≥3 would have been recommended a biopsy while avoiding 144 unnecessary biopsies (35%) and missing four GG ≥3 cancers (5%). Conversely, a 5% cutoff would have avoided 31 unnecessary biopsies (7%), missing no GG ≥3 cancers (0%). CONCLUSIONS EV-Fingerprint accurately predicted GG ≥3 prostate cancer and would have significantly reduced unnecessary prostate biopsies.
Collapse
Affiliation(s)
- Adrian Fairey
- Kipnes Urology Centre, Kaye Edmonton ClinicEdmontonAlbertaCanada
- Nanostics Inc.EdmontonAlbertaCanada
| | - Robert J. Paproski
- Nanostics Inc.EdmontonAlbertaCanada
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| | - Desmond Pink
- Nanostics Inc.EdmontonAlbertaCanada
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| | - Deborah L. Sosnowski
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| | - Catalina Vasquez
- Nanostics Inc.EdmontonAlbertaCanada
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| | - Bryan Donnelly
- Prostate Cancer CentreUniversity of CalgaryCalgaryAlbertaCanada
| | - Eric Hyndman
- Nanostics Inc.EdmontonAlbertaCanada
- Prostate Cancer CentreUniversity of CalgaryCalgaryAlbertaCanada
| | - Armen Aprikian
- Nanostics Inc.EdmontonAlbertaCanada
- Department of SurgeryMcGill University, Montreal General HospitalMontrealQuebecCanada
| | - Adam Kinnaird
- Kipnes Urology Centre, Kaye Edmonton ClinicEdmontonAlbertaCanada
| | - Perrin H. Beatty
- Nanostics Inc.EdmontonAlbertaCanada
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| | - John D. Lewis
- Nanostics Inc.EdmontonAlbertaCanada
- Department of OncologyKatz Group Centre, University of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
11
|
Hunter C, Gao Z, Chen HM, Thompson N, Wakarchuk W, Nitz M, Withers SG, Willis LM. Attenuation of Polysialic Acid Biosynthesis in Cells by the Small Molecule Inhibitor 8-Keto-sialic acid. ACS Chem Biol 2023; 18:41-48. [PMID: 36577399 DOI: 10.1021/acschembio.2c00638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sialic acids are key mediators of cell function, particularly with regard to cellular interactions with the surrounding environment. Reagents that modulate the display of specific sialyl glycoforms at the cell surface would be useful biochemical tools and potentially allow for therapeutic intervention in numerous challenging chronic diseases. While multiple strategies are being explored for the control of cell surface sialosides, none that shows high selectivity between sialyltransferases or that targets a specific sialyl glycoform has yet to emerge. Here, we describe a strategy to block the formation of α2,8-linked sialic acid chains (oligo- and polysialic acid) through the use of 8-keto-sialic acid as a chain-terminating metabolic inhibitor that, if incorporated, cannot be elongated. 8-Keto-sialic acid is nontoxic at effective concentrations and serves to block polysialic acid synthesis in cancer cell lines and primary immune cells, with minimal effects on other sialyl glycoforms.
Collapse
Affiliation(s)
- Carmanah Hunter
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Zhizeng Gao
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Hong-Ming Chen
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Nicole Thompson
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Warren Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, M5S 3H6, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2R3, Canada
| |
Collapse
|
12
|
The Graphical Studies of the Major Molecular Interactions for Neural Cell Adhesion Molecule (NCAM) Polysialylation by Incorporating Wenxiang Diagram into NMR Spectroscopy. Int J Mol Sci 2022; 23:ijms232315128. [PMID: 36499451 PMCID: PMC9736422 DOI: 10.3390/ijms232315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Polysialylation is a process of polysialic acid (polySia) addition to neural cell adhesion molecule (NCAM), which is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. Polysialylation can be catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST). It has been proposed that two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs, are possible binding sites for the intermolecular interactions of polyST-NCAM and polyST-polySia, respectively, as well as the intramolecular interaction of PSTD-PBR. In this study, Chou's wenxiang diagrams of the PSTD and PBR are used to determine the key amino acids of these intermolecular and intramolecular interactions, and thus it may be helpful for the identification of the crucial amino acids in the polyST and for the understanding of the molecular mechanism of NCAM polysialylation by incorporating the wenxiang diagram and molecular modeling into NMR spectroscopy.
Collapse
|
13
|
Huang J, Huang J, Zhang G. Insights into the Role of Sialylation in Cancer Metastasis, Immunity, and Therapeutic Opportunity. Cancers (Basel) 2022; 14:5840. [PMID: 36497322 PMCID: PMC9737300 DOI: 10.3390/cancers14235840] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Sialylation is an enzymatic process that covalently attaches sialic acids to glycoproteins and glycolipids and terminates them by creating sialic acid-containing glycans (sialoglycans). Sialoglycans, usually located in the outmost layers of cells, play crucial biological roles, notably in tumor transformation, growth, metastasis, and immune evasion. Thus, a deeper comprehension of sialylation in cancer will help to facilitate the development of innovative cancer therapies. Cancer sialylation-related articles have consistently increased over the last four years. The primary subjects of these studies are sialylation, cancer, immunotherapy, and metastasis. Tumor cells activate endothelial cells and metastasize to distant organs in part by the interactions of abnormally sialylated integrins with selectins. Furthermore, cancer sialylation masks tumor antigenic epitopes and induces an immunosuppressive environment, allowing cancer cells to escape immune monitoring. Cytotoxic T lymphocytes develop different recognition epitopes for glycosylated and nonglycosylated peptides. Therefore, targeting tumor-derived sialoglycans is a promising approach to cancer treatments for limiting the dissemination of tumor cells, revealing immunogenic tumor antigens, and boosting anti-cancer immunity. Exploring the exact tumor sialoglycans may facilitate the identification of new glycan targets, paving the way for the development of customized cancer treatments.
Collapse
Affiliation(s)
- Jianmei Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu 610041, China
| | - Guonan Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
14
|
Xu S, Zhao M, Gu Z, Lu H, Liu Z. Photothermal Therapy of Neuroblastoma via Polysialic Acid-Targeting Nanomissiles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201671. [PMID: 36161701 DOI: 10.1002/smll.202201671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/06/2022] [Indexed: 06/16/2023]
Abstract
Exploring new targets and developing novel targeted therapies are urgently needed for neuroblastoma therapy. Polysialic acid (polySia), a linear homopolymer of sialic acid units that correlates well with tumor progression and poor prognosis, has emerged as a potential target for neuroblastoma. However, the lack of polySia-specific binding reagents has severely limited the development of polySia-targeting therapeutics for neuroblastoma. Herein, the construction of polySia-targeting nanomissiles via molecular imprinting for the photothermal therapy of neuroblastoma is reported. Oligosialic acid (oligoSia) containing 3-4 units is considered as a characteristic structure for the recognition of polySia, while oligoSia containing 4-7 units digested from polySia is employed as the template. Via boronate-affinity controllable oriented surface imprinting, oligoSia-imprinted nanoparticles (oSia-MIP) are prepared. The oSia-MIP allows for specifically recognizing polySia and targeting polySia overexpressed neuroblastoma cells in vitro and in vivo. oSia-MIP loaded with indocyanine green is prepared and experimentally demonstrated to be a potent targeted photothermal therapeutic for neuroblastoma. Equipping the core substrate with functional entities, the developed polySia targeting nanoplatform can be accommodated to various therapeutic modalities, holding great promise for neuroblastoma targeted therapy.
Collapse
Affiliation(s)
- Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Menghuan Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zikuan Gu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Haifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
15
|
Aberrant Sialylation in Cancer: Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14174248. [PMID: 36077781 PMCID: PMC9454432 DOI: 10.3390/cancers14174248] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.
Collapse
|
16
|
Rosa P, Scibetta S, Pepe G, Mangino G, Capocci L, Moons SJ, Boltje TJ, Fazi F, Petrozza V, Di Pardo A, Maglione V, Calogero A. Polysialic Acid Sustains the Hypoxia-Induced Migration and Undifferentiated State of Human Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23179563. [PMID: 36076963 PMCID: PMC9455737 DOI: 10.3390/ijms23179563] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumors. Glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4) is the most aggressive form of glioma and is characterized by extensive hypoxic areas that strongly correlate with tumor malignancy. Hypoxia promotes several processes, including stemness, migration, invasion, angiogenesis, and radio- and chemoresistance, that have direct impacts on treatment failure. Thus, there is still an increasing need to identify novel targets to limit GBM relapse. Polysialic acid (PSA) is a carbohydrate composed of a linear polymer of α2,8-linked sialic acids, primarily attached to the Neural Cell Adhesion Molecule (NCAM). It is considered an oncodevelopmental antigen that is re-expressed in various tumors. High levels of PSA-NCAM are associated with high-grade and poorly differentiated tumors. Here, we investigated the effect of PSA inhibition in GBM cells under low oxygen concentrations. Our main results highlight the way in which hypoxia stimulates polysialylation in U87-MG cells and in a GBM primary culture. By lowering PSA levels with the sialic acid analog, F-NANA, we also inhibited GBM cell migration and interfered with their differentiation influenced by the hypoxic microenvironment. Our findings suggest that PSA may represent a possible molecular target for the development of alternative pharmacological strategies to manage a devastating tumor like GBM.
Collapse
Affiliation(s)
- Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
- Correspondence:
| | - Sofia Scibetta
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, Italy
| | - Giorgio Mangino
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
| | - Luca Capocci
- IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, Italy
| | - Sam J. Moons
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, University of Rome “Sapienza”, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
- ICOT, Istituto Chirurgico Ortopedico Traumatologico, Via F. Faggiana 1668, 04100 Latina, Italy
| | - Alba Di Pardo
- IRCCS Neuromed, Via Dell’Elettronica, 86077 Pozzilli, Italy
| | | | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
- ICOT, Istituto Chirurgico Ortopedico Traumatologico, Via F. Faggiana 1668, 04100 Latina, Italy
| |
Collapse
|
17
|
Guo Y, Jia W, Yang J, Zhan X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front Endocrinol (Lausanne) 2022; 13:970489. [PMID: 36072925 PMCID: PMC9441633 DOI: 10.3389/fendo.2022.970489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Glycosylation is one of the most important post-translational modifications (PTMs) in a protein, and is the most abundant and diverse biopolymer in nature. Glycans are involved in multiple biological processes of cancer initiation and progression, including cell-cell interactions, cell-extracellular matrix interactions, tumor invasion and metastasis, tumor angiogenesis, and immune regulation. As an important biomarker, tumor-associated glycosylation changes have been extensively studied. This article reviews recent advances in glycosylation-based biomarker research, which is useful for cancer diagnosis and prognostic assessment. Truncated O-glycans, sialylation, fucosylation, and complex branched structures have been found to be the most common structural patterns in malignant tumors. In recent years, immunochemical methods, lectin recognition-based methods, mass spectrometry (MS)-related methods, and fluorescence imaging-based in situ methods have greatly promoted the discovery and application potentials of glycomic and glycoprotein biomarkers in various cancers. In particular, MS-based proteomics has significantly facilitated the comprehensive research of extracellular glycoproteins, increasing our understanding of their critical roles in regulating cellular activities. Predictive, preventive and personalized medicine (PPPM; 3P medicine) is an effective approach of early prediction, prevention and personalized treatment for different patients, and it is known as the new direction of medical development in the 21st century and represents the ultimate goal and highest stage of medical development. Glycosylation has been revealed to have new diagnostic, prognostic, and even therapeutic potentials. The purpose of glycosylation analysis and utilization of biology is to make a fundamental change in health care and medical practice, so as to lead medical research and practice into a new era of 3P medicine.
Collapse
Affiliation(s)
- Yuna Guo
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Wenshuang Jia
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Comprehensive Analysis of Oligo/Polysialylglycoconjugates in Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23105569. [PMID: 35628382 PMCID: PMC9147586 DOI: 10.3390/ijms23105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
In cancer cells, cell-surface sialylation is altered, including a change in oligo/polysialic acid (oligo/polySia) structures. Since they are unique and rarely expressed in normal cells, oligo/polySia structures may serve as promising novel biomarkers and targets for therapies. For the diagnosis and treatment of the disease, a precise understanding of the oligo/polySia structures in cancer cells is necessary. In this study, flow cytometric analysis and gene expression datasets were obtained from sixteen different cancer cell lines. These datasets demonstrated the ability to predict glycan structures and their sialylation status. Our results also revealed that sialylation patterns are unique to each cancer cell line. Thus, we can suggest promising combinations of antibody and cancer cell for glycan prediction. However, the precise prediction of minor glycans need to be further explored.
Collapse
|
19
|
Transgenic mouse models to study the physiological and pathophysiological roles of human Siglecs. Biochem Soc Trans 2022; 50:935-950. [PMID: 35383825 DOI: 10.1042/bst20211203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are important immunomodulatory receptors. Due to differences between human and mouse Siglecs, defining the in vivo roles for human Siglecs (hSiglecs) can be challenging. One solution is the development and use of hSiglec transgenic mice to assess the physiological roles of hSiglecs in health and disease. These transgenic mice can also serve as important models for the pre-clinical testing of immunomodulatory approaches that are based on targeting hSiglecs. Four general methods have been used to create hSiglec-expressing transgenic mice, each with associated advantages and disadvantages. To date, transgenic mouse models expressing hSiglec-2 (CD22), -3 (CD33), -7, -8, -9, -11, and -16 have been created. This review focuses on both the generation of these hSiglec transgenic mice, along with the important findings that have been made through their study. Cumulatively, hSiglec transgenic mouse models are providing a deeper understanding of the differences between human and mice orthologs/paralogs, mechanisms by which Siglecs regulate immune cell signaling, physiological roles of Siglecs in disease, and different paradigms where targeting Siglecs may be therapeutically advantageous.
Collapse
|
20
|
Lee JG, Lee S, Jeon J, Kong HG, Cho HJ, Kim JH, Kim SY, Oh MJ, Lee D, Seo N, Park KH, Yu K, An HJ, Ryu CM, Lee JS. Host tp53 mutation induces gut dysbiosis eliciting inflammation through disturbed sialic acid metabolism. MICROBIOME 2022; 10:3. [PMID: 34991725 PMCID: PMC8733924 DOI: 10.1186/s40168-021-01191-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/07/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Host tp53 mutations are frequently found during the early stages of colitis-associated colorectal cancer (CAC), but whether such mutations induce gut microbiota dysbiosis and chronic intestinal inflammation that contributes to the development of CAC, remains unknown. RESULTS We found that zebrafish tp53 mutant larvae exhibited elevated intestinal inflammation, by monitoring the NFκB activity in the mid-distal intestines of zebrafish larvae using an NFκB:EGFP transgenic reporter line in vivo as well as neutrophil infiltration into the intestine. This inflammation was due to dysbiotic gut microbiota with reduced diversity, revealed using both 16S rRNA amplicon sequencing and a germfree larva model. In this dysbiosis, Aeromonas spp. were aberrantly enriched as major pathobionts and exhibited the capacity for aggressive colonization in tp53 mutants. Importantly, the ex-germfree experiments supported the causality of the host tp53 mutation for inducing the inflammation. Transcriptome and high-performance liquid chromatography analyses of the host gastrointestinal tracts identified dysregulated sialic acid (SA) metabolism concomitant with increased host Neu5Gc levels as the key determinant of aberrant inflammation, which was reversed by the sialidase inhibitors oseltamivir and Philippin A. CONCLUSIONS These results demonstrate a crucial role for host tp53 in maintaining symbiosis and immune homeostasis via SA metabolism. Disturbed SA metabolism via a tp53 mutation may be exploited by specific elements of the gut microbiome, eliciting both dysbiosis and inflammation. Manipulating sialometabolism may therefore provide an efficacious therapeutic strategy for tp53 mutation-induced dysbiosis, inflammation, and ultimately, related cancers. Video Abstract.
Collapse
Affiliation(s)
- Jae-Geun Lee
- Disease Target Structure Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- KRIBB School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Soohyun Lee
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Juhee Jeon
- Disease Target Structure Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- Stembio. Ltd, Entrepreneur 306, Soonchunhyang-ro 22, Sinchang-myeon, Asan-si, Chungcheongnam-do, 31538, Republic of Korea
| | - Hyun Gi Kong
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-do, 54875, Republic of Korea
| | - Hyun-Ju Cho
- Disease Target Structure Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jong-Hwan Kim
- Korean Bioinformation Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Seon-Young Kim
- KRIBB School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- Korean Bioinformation Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Daum Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Kweon Yu
- Disease Target Structure Research Center, KRIBB, Daejeon, 34141, Republic of Korea
- KRIBB School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Choong-Min Ryu
- KRIBB School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
- Infectious Disease Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, Daejeon, 34141, Republic of Korea.
- KRIBB School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
21
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
22
|
Horiguchi Y, Barthelmes K, Miyahara Y, Matsumoto A. pH-responsive Adsorption and Dissociation of Sialic Acid Expressed Protein on Boronic Acid Immobilized Surface. CHEM LETT 2021. [DOI: 10.1246/cl.210229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yukichi Horiguchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kevin Barthelmes
- Kanagawa Institute of Industrial Science and Technology, Ebina, Kanagawa 243-0435, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Kanagawa Institute of Industrial Science and Technology, Ebina, Kanagawa 243-0435, Japan
| |
Collapse
|
23
|
Lehti TA, Pajunen MI, Jokilammi A, Korja M, Lilie H, Vettenranta K, Finne J. Design of a Cytotoxic Neuroblastoma-Targeting Agent Using an Enzyme Acting on Polysialic Acid Fused to a Toxin. Mol Cancer Ther 2021; 20:1996-2007. [PMID: 34315766 DOI: 10.1158/1535-7163.mct-20-1031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Polysialic acid, an abundant cell surface component of the developing nervous system, which declines rapidly postnatally to virtual absence in the majority of adult tissues, is highly expressed in some malignant tumors including neuroblastoma. We found that the binding of a noncatalytic endosialidase to polysialic acid causes internalization of the complex from the surface of neuroblastoma kSK-N-SH cells, a subline of SK-N-SH, and leads to a complete relocalization of polysialic acid to the intracellular compartment. The binding and uptake of the endosialidase is polysialic acid-dependent as it is inhibited by free excess ligand or removal of polysialic acid by active endosialidase, and does not happen if catalytic endosialidase is used in place of inactive endosialidase. A fusion protein composed of the noncatalytic endosialidase and the cytotoxic portion of diphtheria toxin was prepared to investigate whether the cellular uptake observed could be used for the specific elimination of polysialic acid-containing cells. The conjugate toxin was found to be toxic to polysialic acid-positive kSK-N-SH with an IC50 of 1.0 nmol/L. Replacing the noncatalytic endosialidase with active endosialidase decreased the activity to the level of nonconjugated toxin. Normal nonmalignant cells were selectively resistant to the toxin conjugate. The results demonstrate that noncatalytic endosialidase induces a quantitative removal and cellular uptake of polysialic acid from the cell surface which, by conjugation with diphtheria toxin fragment, can be exploited for the selective elimination of polysialic acid-containing tumor cells.
Collapse
Affiliation(s)
- Timo A Lehti
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Maria I Pajunen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anne Jokilammi
- Institute of Biomedicine, Cancer Laboratories and Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
| | - Miikka Korja
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kim Vettenranta
- University of Helsinki and Hospital for Children and Adolescents, Helsinki University Central Hospital, Helsinki, Finland
| | - Jukka Finne
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Tampakis A, Weixler B, Rast S, Tampaki EC, Cremonesi E, Kancherla V, Tosti N, Kettelhack C, Ng CKY, Delko T, Soysal SD, von Holzen U, Felekouras E, Nikiteas N, Bolli M, Tornillo L, Terracciano L, Eppenberger-Castori S, Spagnoli GC, Piscuoglio S, von Flüe M, Däster S, Droeser RA. Nestin and CD34 expression in colorectal cancer predicts improved overall survival. Acta Oncol 2021; 60:727-734. [PMID: 33734917 DOI: 10.1080/0284186x.2021.1891280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nestin, a class VI intermediate filament protein of the cytoskeleton, and CD34, a transmembrane phosphoglycoprotein, are markers of progenitor cells. This study aimed to evaluate their expression and clinical significance in colorectal cancer. METHODS A clinically annotated tissue microarray, including 599 patients with colorectal cancer, was analyzed by immunohistochemistry. Furthermore, nestin and CD34 correlations with HIF-1a and a panel of cytokines and chemokines were assessed using quantitative reverse transcription PCR and The Cancer Genome Atlas dataset. RESULTS Expression of nestin and CD34 was observed only in the tumor stroma. Patients displaying high expression of nestin and CD34 demonstrated higher rates of T1 and T2 tumors (p = .020), lower vascular invasion (p < .001) and improved 5-year overall survival (65%; 95% CI = 55-73 vs 45%; 95% CI = 37-53) after adjusting for clinicopathological characteristics (HR: 0.67; 95% CI = 0.46-0.96). A moderate to strong correlation (r = 0.37-0.78, p < .03) of nestin and CD34 was demonstrated for the following markers; HIF-1α, CD4, CD8, FOXP3, IRF1, GATA3, CCL2, CCL3, CXCL12 and CCL21. CONCLUSIONS Combined expression of nestin and CD34 expression is associated with better overall survival possibly by modulating a favorable immune response.
Collapse
Affiliation(s)
- Athanasios Tampakis
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Benjamin Weixler
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
- Department of Surgery, Charité University Hospital, Campus Benjamin Franklin, Berlin, Germany
| | - Silvan Rast
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Ekaterini-Christina Tampaki
- National Organization for the Provision of Healthcare Services, Department of Planning and Monitoring of Medicines Dispencing, Medicines Division, Athens, Greece
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | | | | | - Nadia Tosti
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Christoph Kettelhack
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Charlotte K. Y. Ng
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Tarik Delko
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Savas D. Soysal
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Urs von Holzen
- Indiana University School of Medicine South Bend, Goshen Center for Cancer Care, Goshen, IN, USA
- Harper Cancer Research Institute, South Bend, IN, USA
- School of Medicine, University of Basel, Basel, Switzerland
| | - Evangelos Felekouras
- 1st Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Nikolaos Nikiteas
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Martin Bolli
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Luigi Tornillo
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Visceral Surgery Research Laboratory, Clarunis, Basel, Switzerland
| | - Markus von Flüe
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
- Department of Biomedicine, Visceral Surgery Research Laboratory, Clarunis, Basel, Switzerland
| | - Silvio Däster
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Raoul A. Droeser
- Clarunis, University Centre for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
25
|
Guo X, Elkashef SM, Patel A, Ribeiro Morais G, Shnyder SD, Loadman PM, Patterson LH, Falconer RA. An assay for quantitative analysis of polysialic acid expression in cancer cells. Carbohydr Polym 2021; 259:117741. [PMID: 33674001 DOI: 10.1016/j.carbpol.2021.117741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Polysialic acid (polySia) is a linear polysaccharide comprised of N-acetylneuraminic acid residues and its over-expression in cancer cells has been correlated with poor clinical prognosis. An assay has been developed for quantitative analysis of cellular polySia expression. This was achieved by extracting and purifying released polySia from glycoproteins by mild acid hydrolysis and optimised organic extraction. The polySia was further hydrolysed into Sia monomers, followed by fluorescent labelling and quantitative analysis. The assay was qualified utilising endoneuraminidase-NF to remove polySia from the surface of C6-ST8SiaII cancer cells (EC50 = 2.13 ng/mL). The result was comparable to that obtained in a polySia-specific cellular ELISA assay. Furthermore, the assay proved suitable for evaluation of changes in polySia expression following treatment with a small molecule inhibitor of polysialylation. Given the importance of polySia in multiple disease states, notably cancer, this is a potentially vital tool with applications in the fields of drug discovery and glycobiology.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Sara M Elkashef
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Anjana Patel
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Steven D Shnyder
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Paul M Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Laurence H Patterson
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, United Kingdom.
| |
Collapse
|
26
|
Li Z, Lang Y, Liu L, Bunyatov MI, Sarmiento AI, de Groot RJ, Boons GJ. Synthetic O-acetylated sialosides facilitate functional receptor identification for human respiratory viruses. Nat Chem 2021; 13:496-503. [PMID: 33753916 DOI: 10.1038/s41557-021-00655-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
The transmission of viruses from animal reservoirs to humans poses major threats to public health. Preparedness for future zoonotic outbreaks requires a fundamental understanding of how viruses of animal origin have adapted to binding to a cell surface component and/or receptor of the new host. Here we report on the specificities of human and animal viruses that engage with O-acetylated sialic acid, which include betacoronaviruses, toroviruses and influenza C and D viruses. Key to these studies was the development of a chemoenzymatic methodology that can provide almost any sialate-acetylation pattern. A collection of O-acetylated sialoglycans was printed as a microarray for the determination of receptor specificity. These studies showed host-specific patterns of receptor recognition and revealed that three distinct human respiratory viruses uniquely bind 9-O-acetylated α2,8-linked disialoside. Immunofluorescence and cell entry studies support that such a glycotope as part of a ganglioside is a functional receptor for human coronaviruses.
Collapse
Affiliation(s)
- Zeshi Li
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Yifei Lang
- Virology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mehman I Bunyatov
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Angelic Isaza Sarmiento
- Virology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Raoul J de Groot
- Virology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands. .,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA. .,Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands. .,Chemistry Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
27
|
Matsumoto A, Osawa S, Arai T, Maejima Y, Otsuka H, Miyahara Y. Potentiometric Determination of Circulating Glycoproteins by Boronic Acid End-Functionalized Poly(ethylene glycol)-Modified Electrode. Bioconjug Chem 2021; 32:239-244. [PMID: 33480676 DOI: 10.1021/acs.bioconjchem.0c00657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite tremendous complexity in glycan structure, sialic acid (SA) provides an analytically accessible index for glycosylation, owing to its uniquely anionic nature and glycan-chain terminal occupation. Taking advantage of boronic acid (BA) based SA-recognition chemistry, we here demonstrate a label-free, no enzymatic, potentiometric determination of fetuin, a blood-circulating glycoprotein implicated in physiological and various pathological states. A phenylboronic acid (PBA) ω-end-functionalized poly(ethylene glycol) (PEG) with an α-tethering unit bearing pendent alkyne groups was "grafted-to" a gold electrode modified with 11-azide-undecathiol by a copper-catalyzed azide-alkyne cycloaddition reaction. Using the electrode, fetuin was potentiometrically detectable with a μM-order-sensitivity that is comparable to what is found in blood-collected specimen. Our finding may have implications for developing a remarkably economic hemodiagnostic technology with ease of downsizing and mass production.
Collapse
Affiliation(s)
- Akira Matsumoto
- Institute of Biomaterials and Engineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyada-ku, Tokyo 101-0062, Japan.,Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Shigehito Osawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takahiro Arai
- Institute of Biomaterials and Engineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyada-ku, Tokyo 101-0062, Japan
| | - Yukie Maejima
- Department of Chemical Science and Technology, Graduate School of Science, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hidenori Otsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemical Science and Technology, Graduate School of Science, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Water Frontier Science & Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Engineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyada-ku, Tokyo 101-0062, Japan
| |
Collapse
|
28
|
Pini N, Huo Z, Kym U, Holland-Cunz S, Gros SJ. AQP1-Driven Migration Is Independent of Other Known Adverse Factors but Requires a Hypoxic Undifferentiated Cell Profile in Neuroblastoma. CHILDREN-BASEL 2021; 8:children8010048. [PMID: 33467498 PMCID: PMC7829990 DOI: 10.3390/children8010048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Neuroblastoma is a biologically very heterogeneous tumor with its clinical manifestation ranging from spontaneous regression to highly aggressive metastatic disease. Several adverse factors have been linked to oncogenesis, tumor progression and metastases of neuroblastoma including NMYC amplification, the neural adhesion molecule NCAM, as well as CXCR4 as a promoter of metastases. In this study, we investigate to what extent the expression of AQP1 in neuroblastoma correlates with changing cellular factors such as the hypoxic status, differentiation, expression of known adverse factors such as NMYC and NCAM, and CXCR4-related metastatic spread. Our results show that while AQP1 expression leads to an increased migratory behavior of neuroblastoma cells under hypoxic conditions, we find that hypoxia is associated with a reduction of NMYC in the same cells. A similar effect can be observed when using the tetracycline driven mechanism of SH-EP/Tet cells. When NMYC is not expressed, the expression of AQP1 is increased together with an increased expression of HIF-1α and HIF-2α. We furthermore show that when growing cells in different cell densities, they express AQP1, HIF-1α, HIF-2α, NMYC and NCAM to different degrees. AQP1 expression correlates with a hypoxic profile of these cells with increased HIF-1α and HIF-2α expression, as well as with NMYC and NCAM expression in two out of three neuroblastoma cell lines. When investigating cell properties of the cells that actually migrate, we find that the increased APQ1 expression in the migrated cells correlates with an increased NMYC and NCAM expression again in two out of three cell lines. Expression of the tumor cell homing marker CXCR4 varies between different tumor areas and between cell lines. While some migrated tumor cells highly express CXCR4, cells of other origin do not. In the initial phase of migration, we determined a dominant role of AQP1 expression of migrating cells in the scratch assay.
Collapse
Affiliation(s)
- Nicola Pini
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (N.P.); (Z.H.); (U.K.); (S.H.-C.)
| | - Zihe Huo
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (N.P.); (Z.H.); (U.K.); (S.H.-C.)
| | - Urs Kym
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (N.P.); (Z.H.); (U.K.); (S.H.-C.)
| | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (N.P.); (Z.H.); (U.K.); (S.H.-C.)
| | - Stephanie J. Gros
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4031 Basel, Switzerland; (N.P.); (Z.H.); (U.K.); (S.H.-C.)
- Department of Clinical Research, University of Basel, 4031 Basel, Switzerland
- Correspondence:
| |
Collapse
|
29
|
Bartish M, Del Rincón SV, Rudd CE, Saragovi HU. Aiming for the Sweet Spot: Glyco-Immune Checkpoints and γδ T Cells in Targeted Immunotherapy. Front Immunol 2020; 11:564499. [PMID: 33133075 PMCID: PMC7550643 DOI: 10.3389/fimmu.2020.564499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022] Open
Abstract
Though a healthy immune system is capable of recognizing and eliminating emergent cancerous cells, an established tumor is adept at escaping immune surveillance. Altered and tumor-specific expression of immunosuppressive cell surface carbohydrates, also termed the “tumor glycocode,” is a prominent mechanism by which tumors can escape anti-tumor immunity. Given their persistent and homogeneous expression, tumor-associated glycans are promising targets to be exploited as biomarkers and therapeutic targets. However, the exploitation of these glycans has been a challenge due to their low immunogenicity, immunosuppressive properties, and the inefficient presentation of glycolipids in a conventional major histocompatibility complex (MHC)-restricted manner. Despite this, a subset of T-cells expressing the gamma and delta chains of the T-cell receptor (γδ T cells) exist with a capacity for MHC-unrestricted antigen recognition and potent inherent anti-tumor properties. In this review, we discuss the role of tumor-associated glycans in anti-tumor immunity, with an emphasis on the potential of γδ T cells to target the tumor glycocode. Understanding the many facets of this interaction holds the potential to unlock new ways to use both tumor-associated glycans and γδ T cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Margarita Bartish
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Christopher E Rudd
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Département de Médecine, Université de Montréal, Montreal, QC, Canada
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada.,Pharmacology and Therapeutics, and Ophthalmology and Vision Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Balijepalli AS, Grinstaff MW. Poly-Amido-Saccharides (PASs): Functional Synthetic Carbohydrate Polymers Inspired by Nature. Acc Chem Res 2020; 53:2167-2179. [PMID: 32892620 DOI: 10.1021/acs.accounts.0c00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carbohydrates are ubiquitous in nature, playing vital roles in all organisms ranging from metabolism to intercellular signaling. Polysaccharides, repeating units of small molecule carbohydrates, are hydrophilic, densely functionalized, stereoregular, and rigid macromolecules, and these characteristics are simultaneously advantageous in biomedical applications while presenting major hurdles for synthetic methodology and development of structure property relationships. While naturally obtained polysaccharides are widely utilized in the biochemical and medical literature, their poor physicochemical definition and the potential for contaminated samples hinders the clinical translation of this work. To address the need for new methods to synthesize carbohydrate polymers, we reported a novel class of biomaterials (Poly-Amido-Saccharides; PAS) in 2012. PASs share many properties with natural polysaccharides, such as hydrophilicity, dense hydroxyl functionality, stereoregularity, and a rigid backbone. PASs are connected by an α-1,2-amide linkage, instead of an ether linkage, that confers resistance to enzymatic and hydrolytic degradation and leads to a unique helical conformation. Importantly, our synthetic methodology affords control over molecular weight distribution resulting in pure, well-defined polymers. This Account provides an overview of the development of PAS, from the factors that initially motivated our research to current efforts to translate functional PAS to biomedical applications. We detail the synthesis of glucose- and galactose-based PAS and their biophysical properties including conformation analysis, lectin interactions, cell internalization, and water solubility. Additionally, we describe postpolymerization modification strategies to afford PASs that act as protein stabilizers. We also highlight our recent efforts toward a mechanistic understanding of monomer synthesis via [2 + 2] cycloaddition reactions in order to develop novel monomers with different stereochemistry and amine or alkyl functionality, thereby accessing functional carbohydrate polymers. Throughout our work, we apply computational and theoretical analysis to explain how properties at the monomer level (e.g., stereochemistry, functionality) significantly impact polymer properties, helical conformation, and bioactivities. Collectively, the results from the theoretical, synthetic, and applied aspects of this research advance us toward our goal of utilizing PASs in key biomedical applications as alternatives to natural polysaccharides. The importance of carbohydrates in nature and the versatility of their functions continue to inspire our investigation of new monomers, polymers, and copolymers, leveraging the advantageous properties of PAS to develop potential therapies.
Collapse
Affiliation(s)
- Anant S. Balijepalli
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University, 72 East Concord Street, Boston, Massachusetts 02118, United States
| |
Collapse
|
31
|
A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands. Nat Commun 2020; 11:5091. [PMID: 33037195 PMCID: PMC7547722 DOI: 10.1038/s41467-020-18907-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are immunomodulatory receptors that are regulated by their glycan ligands. The connections between Siglecs and human disease motivate improved methods to detect Siglec ligands. Here, we describe a new versatile set of Siglec-Fc proteins for glycan ligand detection. Enhanced sensitivity and selectivity are enabled through multimerization and avoiding Fc receptors, respectively. Using these Siglec-Fc proteins, Siglec ligands are systematically profiled on healthy and cancerous cells and tissues, revealing many unique patterns. Additional features enable the production of small, homogenous Siglec fragments and development of a quantitative ligand-binding mass spectrometry assay. Using this assay, the ligand specificities of several Siglecs are clarified. For CD33 (Siglec-3), we demonstrate that it recognizes both α2-3 and α2-6 sialosides in solution and on cells, which has implications for its link to Alzheimer’s disease susceptibility. These soluble Siglecs reveal the abundance of their glycan ligands on host cells as self-associated molecular patterns. Sialic acid-binding immunoglobulin-type lectins (Siglecs) are a family of immunomodulatory receptors expressed on cells of the hematopoietic lineage. Here the authors demonstrate an approach for the identification of the glycan ligands of Siglecs, which is also applicable to other families of glycan-binding proteins.
Collapse
|
32
|
Osawa S, Matsumoto A, Maejima Y, Suzuki T, Miyahara Y, Otsuka H. Direct Observation of Cell Surface Sialylation by Atomic Force Microscopy Employing Boronic Acid-Sialic Acid Reversible Interaction. Anal Chem 2020; 92:11714-11720. [PMID: 32867495 DOI: 10.1021/acs.analchem.0c01705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tracing cell surface sialylation dynamics at a scale of the glycolipoprotein microdomain (lipid rafts) formations remains an intriguing challenge of cellular biology. Here, we demonstrate that this goal is accessible, taking advantage of a boronic acid (BA)-based reversible molecular recognition chemistry. A BA-end-functionalized poly(ethylene glycol) was decorated onto an atomic force microscopy (AFM) cantilever, which provided a dynamic and sialic acid (SA)-specific imaging mode. Using this technique, we were able to heat map the SA expression levels not only on protein-decorated substrates but also directly on the cell surfaces, with a submicrometer scale resolution that may be relevant to that of the lipid rafts formation. The SA specificity and the binding reversibility of the probe were confirmed from its pH-dependent characteristics and an inhibition assay using free state SA. This finding may provide a noninvasive means for assessing a variety of SA-involved glycosylation dynamics spanning from physiology to pathology.
Collapse
Affiliation(s)
- Shigehito Osawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.,Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Yukie Maejima
- Department of Chemical Science and Technology, Graduate School of Science, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Toshihiro Suzuki
- General Medical Education and Research Center, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8606, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hidenori Otsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemical Science and Technology, Graduate School of Science, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.,Water Frontier Science & Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science, 1-3 kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
33
|
Guo X, Malcolm JR, Ali MM, Ribeiro Morais G, Shnyder SD, Loadman PM, Patterson LH, Falconer RA. An efficient assay for identification and quantitative evaluation of potential polysialyltransferase inhibitors. Analyst 2020; 145:4512-4521. [PMID: 32412559 DOI: 10.1039/d0an00721h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The polysialyltransferases (polySTs) catalyse the polymerisation of polysialic acid, which plays an important role in tumour metastasis. While assays are available to assess polyST enzyme activity, there is no methodology available specifically optimised for identification and quantitative evaluation of potential polyST inhibitors. The development of an HPLC-fluorescence-based enzyme assay described within includes a comprehensive investigation of assay conditions, including evaluation of metal ion composition, enzyme, substrate and acceptor concentrations, temperature, pH, and tolerance to DMSO, followed by validation using known polyST inhibitors. Thorough analysis of each of the assay components provided a set of optimised conditions. Under these optimised conditions, the experimentally observed Ki value for CMP, a competitive polyST inhibitor, was strongly correlated with the predicted Ki value, based on the classical Cheng-Prusoff equation [average fold error (AFE) = 1.043]. These results indicate that this assay can provide medium-throughput analysis for enzyme inhibitors with high accuracy, through determining the corresponding IC50 values with substrate concentration at the KM, without the need to perform extensive kinetic studies for each compound. In conclusion, an in vitro cell-free assay for accurate assessment of polyST inhibition is described. The utility of the assay for routine identification of potential polyST inhibitors is demonstrated, allowing quantitative measurement of inhibition to be achieved, and exemplified through assessment of full competitive inhibition. Given the considerable and growing interest in the polySTs as important anti-metastatic targets in cancer drug discovery, this is a vital tool to enable preclinical identification and evaluation of novel polyST inhibitors.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Muthukumaran S, Sulochana KN, Umashankar V. Structure based design of inhibitory peptides targeting ornithine decarboxylase dimeric interface and in vitro validation in human retinoblastoma Y79 cells. J Biomol Struct Dyn 2020; 39:5261-5275. [PMID: 32597331 DOI: 10.1080/07391102.2020.1785331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Polyamine synthesis in human cells is initiated by catalytic action of Ornithine decarboxylase (ODC) on Ornithine. Elevated levels of polyamines are manifested proliferating cancer cells and are found to promote tumour cell adhesion. Di-flouro methyl orninthine is a known inhibitor of ODC, however its usage is limited due its low affinity quick clearance and incompetent cellular uptake, thus posing a need for potential inhibitors. Currently, peptides are substituting drugs, as these are highly selective, specific and potent. Hence, in this study, the interacting interfaces of native homodimeric form of ODC and its heterodimer with Antizyme were probed to design inhibitory peptides targeting ODC. The designed peptides were validated for structural fitness by extensive molecular dynamics simulations and Circular dichroism studies. Finally, these peptides were validated in Y79 retinoblastoma cells for impact on ODC activity, cytotoxicity cell cycle and cell adhesion. On collective analysis, Peptide3 (Pep 3) and Peptide4 (Pep 4) were found to be potentially targeting ODC, as these peptides showed significant decrease in intracellular polyamine levels, cell adhesion and cell cycle perturbation in Y79 cells. Thus, Pep 3 and Pep 4 shall be favourably considered as therapeutic agents for targeting ODC mediated proliferation in retinoblastoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sivashanmugam Muthukumaran
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - K N Sulochana
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Vetrivel Umashankar
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.,National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Govt. of India), Belagavi, India
| |
Collapse
|
35
|
Saggam A, Tillu G, Dixit S, Chavan-Gautam P, Borse S, Joshi K, Patwardhan B. Withania somnifera (L.) Dunal: A potential therapeutic adjuvant in cancer. JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112759. [PMID: 32173425 DOI: 10.1016/j.jep.2020.112759] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/05/2020] [Accepted: 03/08/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal (WS) is one of the moststudied Rasayana botanicals used in Ayurveda practice for its immunomodulatory, anti-aging, adaptogenic, and rejuvenating effects. The botanical is being used for various clinical indications, including cancer. Several studies exploring molecular mechanisms of WS suggest its possible role in improving clinical outcomes in cancer management. Therefore, research on WS may offer new insights in rational development of therapeutic adjuvants for cancer. AIM OF THIS REVIEW The review aims at providing a detailed analysis of in silico, in vitro, in vivo, and clinical studies related to WS and cancer. It suggests possible role of WS in regulating molecular mechanisms associated with carcinogenesis. The review discusses potential of WS in cancer management in terms of cancer prevention, anti-cancer activity, and enhancing efficacy of cancer therapeutics. MATERIAL AND METHODS The present narrative review offers a critical analysis of published literature on WS studies in cancer. The reported studies were analysed in the context of pathophysiology of cancer, commonly referred as 'cancer hallmarks'. The review attempts to bridge Ayurveda knowledge with biological insights into molecular mechanisms of cancer. RESULTS Critical analysisof the published literature suggests an anti-cancer potential of WS with a key role in cancer prevention. The possible mechanisms for these effects are associated with the modulation of apoptotic, proliferative, and metastatic markers in cancer. WS can attenuate inflammatory responses and enzymes involved in invasion and metastatic progression of cancer.The properties of WS are likely to be mediated through withanolides, which may activate tumor suppressor proteins to restrict proliferation of cancer cells. Withanolides also regulate the genomic instability, and energy metabolism of cancer cells. The reported studies indicate the need for deeper understanding of molecular mechanisms of WS in inhibiting angiogenesis and promoting immunosurveillance. Additionally, WS can augment efficacy and safety of cancer therapeutics. CONCLUSION The experimentally-supported evidence of immunomodulatory, anti-cancer, adaptogenic, and regenerative attributes of WS suggest its therapeutic adjuvant potential in cancer management. The adjuvant properties of withanolides can modulate multidrug resistance and reverse chemotherapy-induced myelosuppression. These mechanisms need to be further explored in systematically designed translational and clinical studies that will pave the way for integration of WS as a therapeutic adjuvant in cancer management.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
36
|
Glycation Leads to Increased Polysialylation and Promotes the Metastatic Potential of Neuroblastoma Cells. Cells 2020; 9:cells9040868. [PMID: 32252464 PMCID: PMC7226752 DOI: 10.3390/cells9040868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is the second most frequent extracranial tumor, affecting young children worldwide. One hallmark of tumors such as neuroblastomas, is the expression of polysialic acid, which interferes with adhesion and may promote invasion and metastasis. Since tumor cells use glycolysis for energy production, they thereby produce as side product methylglyoxal (MGO), which reacts with proteins to advanced glycation end products in a mechanism called glycation. Here we analyzed the expression of (poly) sialic acid and adhesion of Kelly neuroblastoma cells after glycation with MGO. We found that both sialylation and polysialylation is increased after glycation. Furthermore, glycated Kelly neuroblastoma cells had a much higher potential for migration and invasion compared with non-glycated cells.
Collapse
|
37
|
van de Wall S, Santegoets KC, van Houtum EJ, Büll C, Adema GJ. Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment. Trends Immunol 2020; 41:274-285. [DOI: 10.1016/j.it.2020.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
|
38
|
Sure independence screening in the presence of missing data. Stat Pap (Berl) 2019. [DOI: 10.1007/s00362-019-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Ghaderi F, Ahmadvand S, Ramezani A, Montazer M, Ghaderi A. Production and characterization of monoclonal antibody against a triple negative breast cancer cell line. Biochem Biophys Res Commun 2018; 505:181-186. [PMID: 30243716 DOI: 10.1016/j.bbrc.2018.09.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 01/16/2023]
Abstract
Breast cancer is the most prevalent malignancy among women around the world such that more than 1,400,000 new cases are being diagnosed each year. Despite immense studies over many years on diagnosis and treatment of breast cancer, about 30% of treated patients will relapse and require subsequent therapy. By development of hybridoma technology, murine monoclonal antibodies (MAbs) against several human tumor-associated antigens have been produced and characterized in many laboratories. The purpose of these studies is to generate effective monoclonal antibodies that could be useful in tumor diagnosis and therapy. In this study, splenic lymphocytes of immunized BALB/c mouse with a new established breast cancer cell line (Pari-ICR cell line, established in Shiraz Institute for Cancer Research) were fused with the mouse myeloma cell line SP2/0 in the presence of polyethylene glycol. We generated a panel of monoclonal antibodies against the newly established cell line. The hybrid cultures were screened by flow cytometry. Hybridomas that produced antibody to surface antigens of immunizing cell line but not to Human Gingival Fibroblasts, adipose stem cells, and leucocytes isolated from peripheral blood were selected and cloned by limiting dilution method. The 1E3 clone (IgG2a type) that displayed clonal stability was further analyzed for specificity by flow cytometry. MAb 1E3 showed weak to strong reactivity to other cell lines compared with Pari-ICR cell line. Antigen identification was performed by a workflow consisting of immunoaffinity purification, SDS-PAGE, Western blotting, and mass spectrometry analysis. The target of 1E3 mAb was identified as NCAM1. In conclusion, using the antibody-based strategy we identified NCAM1 as a potential therapeutic target and biomarker for breast cancer.
Collapse
Affiliation(s)
- Farzaneh Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Simin Ahmadvand
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Montazer
- Fellow of Molecular Pathology and Cytogenetics, Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
40
|
Volkers G, Lizak C, Niesser J, Rosell FI, Preidl J, Gnanapragassam VS, Horstkorte R, Rademann J, Strynadka NCJ. Structural Basis for Binding of Fluorescent CMP-Neu5Ac Mimetics to Enzymes of the Human ST8Sia Family. ACS Chem Biol 2018; 13:2320-2328. [PMID: 30015474 DOI: 10.1021/acschembio.8b00478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polysialyltransferases synthesize polysialic acid on cell surface-expressed glycoconjugates, which is crucial for developing processes and signaling pathways in eukaryotes. Recent advances in cancer research have rendered polysialyltransferases important drug targets because polysialic acid contributes to cancer cell progression, metastasis, and treatment of resistant tumors. To aid the development of high-throughput screening assays for polysialyltransferase inhibitors, we demonstrate that a previously developed class of fluorescent CMP-sialic acid mimetics for sialyltransferases has nanomolar affinities for oligo- and polysialyltransferases and can be used for the rapid screening of new polysialyltransferase inhibitors. We demonstrate that these CMP-Neu5Ac mimetics inhibit polysialylation in vitro and perform cell culture experiments, where we observe reduced polysialylation of NCAM. Furthermore, we describe the structural basis of CMP-Neu5Ac mimetics binding to the human oligosialyltransferase ST8SiaIII and extrapolate why their affinity is high for human polysialyltransferases. Our results show that this novel class of compounds is a promising tool for the development of potent and selective drugs against polysialyltransferase activity.
Collapse
Affiliation(s)
- Gesa Volkers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christian Lizak
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jürgen Niesser
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Frederico I. Rosell
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Johannes Preidl
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Vinayaga S. Gnanapragassam
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystraße 1, D-06114 Halle (Saale), Germany
| | - Ruediger Horstkorte
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystraße 1, D-06114 Halle (Saale), Germany
| | - Jörg Rademann
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
41
|
Rodrigues E, Macauley MS. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers (Basel) 2018; 10:cancers10060207. [PMID: 29912148 PMCID: PMC6025361 DOI: 10.3390/cancers10060207] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Cell surface glycosylation is dynamic and often changes in response to cellular differentiation under physiological or pathophysiological conditions. Altered glycosylation on cancers cells is gaining attention due its wide-spread occurrence across a variety of cancer types and recent studies that have documented functional roles for aberrant glycosylation in driving cancer progression at various stages. One change in glycosylation that can correlate with cancer stage and disease prognosis is hypersialylation. Increased levels of sialic acid are pervasive in cancer and a growing body of evidence demonstrates how hypersialylation is advantageous to cancer cells, particularly from the perspective of modulating immune cell responses. Sialic acid-binding receptors, such as Siglecs and Selectins, are well-positioned to be exploited by cancer hypersialylation. Evidence is also mounting that Siglecs modulate key immune cell types in the tumor microenvironment, particularly those responsible for maintaining the appropriate inflammatory environment. From these studies have come new and innovative ways to block the effects of hypersialylation by directly reducing sialic acid on cancer cells or blocking interactions between sialic acid and Siglecs or Selectins. Here we review recent works examining how cancer cells become hypersialylated, how hypersialylation benefits cancer cells and tumors, and proposed therapies to abrogate hypersialylation of cancer.
Collapse
Affiliation(s)
- Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
42
|
Basheer HA, Pakanavicius E, Cooper PA, Shnyder SD, Martin L, Hunter KD, Vinader V, Afarinkia K. Hypoxia modulates CCR7 expression in head and neck cancers. Oral Oncol 2018; 80:64-73. [PMID: 29706190 DOI: 10.1016/j.oraloncology.2018.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/05/2018] [Accepted: 03/23/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The chemokine receptor CCR7 is expressed on lymphocytes and dendritic cells and is responsible for trafficking of these cells in and out of secondary lymphoid organs. It has recently been shown that CCR7 expression is elevated in a number of cancers, including head and neck cancers, and that its expression correlates to lymph node (LN) metastasis. However, little is known about the factors that can induce CCR7 expression in head and neck cancers. METHOD We compared the protein expression and functional responses of CCR7 under normoxia and hypoxia in head and neck cancer cell lines OSC-19, FaDu, SCC-4, A-253 and Detroit-562 cultured as monolayers, spheroids, and grown in vivo as xenografts in balb/c mice. In addition, we analysed the correlation between hypoxia marker HIF-1α and CCR7 expression in a tissue microarray comprising 80 clinical samples with various stages and grades of malignant tumour and normal tissue. RESULTS Under hypoxia, the expression of CCR7 is elevated in both in vitro and in vivo models. Furthermore, in malignant tissue, a correlation is observed between hypoxia marker HIF-1α and CCR7 across all clinical stages. This correlation is also strong in early histological grade of tumours. CONCLUSION Hypoxia plays a role in the regulation of the expression of CCR7 and it may contribute to the development of a metastatic phenotype in head and neck cancers through this axis.
Collapse
Affiliation(s)
- Haneen A Basheer
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom; Faculty of Pharmacy, Zarqa University, PO Box 132222, Zarqa 13132, Jordan
| | - Edvinas Pakanavicius
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Patricia A Cooper
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Steven D Shnyder
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Lisette Martin
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Keith D Hunter
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Victoria Vinader
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Kamyar Afarinkia
- The Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
43
|
Xu F, Wang X, Wu N, He S, Yi W, Xiang S, Zhang P, Xie X, Ying C. Bisphenol A induces proliferative effects on both breast cancer cells and vascular endothelial cells through a shared GPER-dependent pathway in hypoxia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1609-1620. [PMID: 28964603 DOI: 10.1016/j.envpol.2017.09.069] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Based on the breast cancer cells and the vascular endothelial cells are both estrogen-sensitive, we proposed a close reciprocity existed between them in the tumor microenvironment, via shared molecular mechanism affected by environmental endocrine disruptors (EDCs). In this study, bisphenol A (BPA), via triggering G-protein estrogen receptor (GPER), stimulated cell proliferation and migration of bovine vascular endothelial cells (BVECs) and breast cancer cells (SkBr-3 and MDA-MB-231) and enhanced tumor growth in vivo. Moreover, the expression of both hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) were up-regulated in a GPER-dependent manner by BPA treatment under hypoxic condition, and the activated GPER induced the HIF-1α expression by competitively binding to caveolin-1 (Cav-1) and facilitating the release of heat shock protein 90 (HSP90). These findings show that in a hypoxic microenvironment, BPA promotes HIF-1α and VEGF expressions through a shared GPER/Cav-1/HSP90 signaling cascade. Our observations provide a probable hypothesis that the effects of BPA on tumor development are copromoting relevant biological responses in both vascular endothelial and breast cancer cells.
Collapse
MESH Headings
- Animals
- Benzhydryl Compounds/toxicity
- Cattle
- Caveolin 1/biosynthesis
- Cell Culture Techniques
- Cell Hypoxia/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Culture Media, Serum-Free
- Endocrine Disruptors/toxicity
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- HSP90 Heat-Shock Proteins/biosynthesis
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/metabolism
- Mice, SCID
- Phenols/toxicity
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Up-Regulation
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
- Fangyi Xu
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Xiaoning Wang
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Nannan Wu
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Shuiqing He
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Weijie Yi
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Siyun Xiang
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Piwei Zhang
- Department of Clinical Nutrition, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao Xie
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Chenjiang Ying
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China.
| |
Collapse
|
44
|
Matsumoto A, Stephenson-Brown AJ, Khan T, Miyazawa T, Cabral H, Kataoka K, Miyahara Y. Heterocyclic boronic acids display sialic acid selective binding in a hypoxic tumor relevant acidic environment. Chem Sci 2017; 8:6165-6170. [PMID: 28989647 PMCID: PMC5627601 DOI: 10.1039/c7sc01905j] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
A group of heterocyclic boronic acids demonstrating unusually high affinity and selectivity for sialic acids are described, with strong interactions under the weakly acidic pH conditions associated with a hypoxic tumoral microenvironment.
Boronic acids are well known for their ability to reversibly interact with the diol groups found in sugars and glycoproteins. However, they are generally indiscriminate in their binding. Herein we describe the discovery of a group of heterocyclic boronic acids demonstrating unusually high affinity and selectivity for sialic acids (SAs or N-acetylneuraminic acid), which are sugar residues that are intimately linked with tumor growth and cancer progression. Remarkably, these interactions strengthen under the weakly acidic pH conditions associated with a hypoxic tumoral microenvironment. In vitro competitive binding assays uncovered a significantly higher ability of 5-boronopicolinic acid, one of the derivatives identified in this work as a strong SA-binder, to interact with cell surface SA in comparison to a gold-standard structure, 3-propionamidophenylboronic acid, which has proven to be an efficient SA-binder in numerous reports. This structure also proved to be suitable for further chemical conjugation with a well-preserved SA-binding capability. These findings suggest an attractive alternative to other ongoing boronic acid based chemistry techniques aiming to achieve tumor-specific chemotherapies and diagnoses.
Collapse
Affiliation(s)
- A Matsumoto
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda-ku , Tokyo 101-0062 , Japan .
| | - A J Stephenson-Brown
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham , B15 2TT , UK
| | - T Khan
- Department of Bioengineering , Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - T Miyazawa
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda-ku , Tokyo 101-0062 , Japan .
| | - H Cabral
- Department of Bioengineering , Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - K Kataoka
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham , B15 2TT , UK.,Department of Materials Engineering , Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Y Miyahara
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda-ku , Tokyo 101-0062 , Japan .
| |
Collapse
|