1
|
Tan Z, Zhang L, Dai W, Zhu W, Wang X, Zhang T. ROS-catalytic self-amplifying benzothiophenazine-based photosensitive conjugates for photodynamic-immuno therapy. Biomaterials 2025; 322:123413. [PMID: 40383087 DOI: 10.1016/j.biomaterials.2025.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Activatable photosensitizer (aPS)-mediated photodynamic therapy (PDT) holds great potential towards precision cancer treatment, but which generally suffers from low therapeutic outcomes due to the low activation efficiency of aPS and the low phototherapeutic effect of single PDT. In this study, we present a newly aPS designing strategy based on benzothiophenazine (BP) for fabrication of the robust small-molecule photosensitizer conjugates (SMPCs). Specifically, after systematically studying the photosensitizing mechanism of BP, a fully caged pro-photosensitizing platform (BP-Cl) was established, based on which we can introduced various amine molecules to create a series of reactive oxygen species (ROS)-catalytic self-amplifying SMPCs. As a proof of concept, we synthesized a SMPC (BP-Mel) by employing the chemotherapeutic melphalan to BP-Cl. Upon triggered by endogenous ROS, BP-Mel can achieve self-amplified activation under infrared illumination to efficiently produce the active BP for type I PDT, and along with the release of melphalan to induce immunogenic cell death in breast cancer cells. BP-Mel was encapsulated with resiquimod (R848) to form the nanoagonist (BMR), where BP-Mel induces localized tumor damage and immunogenic cell death and the TLR7/8 agonist R848 potently stimulates dendritic cell maturation and enhances tumor-specific T cell responses. BMR-mediated combination therapy induces powerful tumor suppression and immunotherapeutic cascade in EMT6-tumor-bearing mice. This study presents a scalable strategy for the customization of activatable photosensitive conjugates, exemplifying precise and efficient PDT.
Collapse
Affiliation(s)
- Zongwen Tan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science and College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University Guangzhou 510631, PR China
| | - LeiLei Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science and College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University Guangzhou 510631, PR China
| | - Wei Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Weirui Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science and College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University Guangzhou 510631, PR China
| | - Xiaoying Wang
- Information Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science and College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University Guangzhou 510631, PR China.
| |
Collapse
|
2
|
Baselga M, Güemes A, Arruebo M, Yus C, Alejo T, Sebastián V, Martínez G, Arribas D, Mendoza G, Junquera C, Monleón E. Preclinical evaluation of polymer encapsulated carbon-based nano and microparticles for sentinel lymph node tattooing. Sci Rep 2024; 14:29512. [PMID: 39604460 PMCID: PMC11603039 DOI: 10.1038/s41598-024-80931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Selective sentinel lymph node biopsy (SNLB) is the standard method for detecting regional metastases in breast cancer patients. Identifying affected axillary lymph nodes before neoadjuvant treatment is crucial, as such treatment may alter drainage pathways and lymph node morphology, hindering the identification of sentinel lymph nodes. The use of carbon-based tattooing on sentinel lymph nodes (SLN) has been employed as a permanent tattooing method in clinical studies of Targeted Axillary Dissection (TAD), aiding in the SLN identification during surgery. Our study introduces a new method of lymph node tattooing based on poly lactic-co-glycolic (PLGA) particles with encapsulated carbon. This strategy substantially improves tattooing efficiency over single carbon suspensions currently used in clinical studies. We synthesized and characterized carbon-loaded PLGA micro- and nanoparticles, experimentally assessing their biological impact on porcine lymph nodes. The effect of particles' size and concentration was evaluated over time (from 1 to 16 weeks). Light and electron microscopy studies were conducted to characterize the cellular effects induced by the presence of these particles. Our findings reveal that the diverse physicochemical parameters of the particles interact differently with the lymphatic tissue, influencing their biodistribution within the lymph nodes and the intensity of the inflammatory response.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
| | - Antonio Güemes
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Department of Surgery, University of Zaragoza, Zaragoza, 50009, Spain
| | - Manuel Arruebo
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, Zaragoza, 50018, Spain
| | - Cristina Yus
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain.
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain.
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, Zaragoza, 50018, Spain.
| | - Teresa Alejo
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, Zaragoza, 50018, Spain
| | - Víctor Sebastián
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, Zaragoza, 50018, Spain
- Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de 13 Salud Carlos III, Madrid, 28029, Spain
| | - Gema Martínez
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, Zaragoza, 50018, Spain
- Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de 13 Salud Carlos III, Madrid, 28029, Spain
| | - Dolores Arribas
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Department of Surgery, University of Zaragoza, Zaragoza, 50009, Spain
| | - Gracia Mendoza
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
| | - Concepción Junquera
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, Zaragoza, 50009, Spain
| | - Eva Monleón
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, Zaragoza, 50009, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, University of Zaragoza, Zaragoza, 50009, Spain
| |
Collapse
|
3
|
Schreiner J, Brettner FEB, Gier S, Vogel-Kindgen S, Windbergs M. Unlocking the potential of microfold cells for enhanced permeation of nanocarriers in oral drug delivery. Eur J Pharm Biopharm 2024; 202:114408. [PMID: 39004319 DOI: 10.1016/j.ejpb.2024.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The therapeutic effects of orally administered nanocarriers depend on their ability to effectively permeate the intestinal mucosa, which is one of the major challenges in oral drug delivery. Microfold cells are specialized enterocytes in the intestinal epithelium known for their high transcytosis abilities. This study aimed to compare and evaluate two targeting approaches using surface modifications of polymer-based nanocarriers, whereas one generally addresses enterocytes, and one is directed explicitly to microfold cells via targeting the sialyl LewisA motif on their surface. We characterized the resulting carriers in terms of size and charge, supplemented by scanning electron microscopy to confirm their structural properties. For predictive biological testing and to assess the intended targeting effect, we implemented two human intestinal in vitro models containing microfold-like cells. Both models were thoroughly characterized prior to permeation studies with the different nanocarriers. Our results demonstrated improved transport for both targeted formulations compared to undecorated carriers in the in vitro models. Notably, there was an enhanced uptake in the presence of microfold-like cells, particularly for the nanocarriers directed by the anti-sialyl LewisA antibody. These findings highlight the potential of microfold cell targeting to improve oral administration of drugs and emphasize the importance of using suitable and well-characterized in vitro models for testing novel drug delivery strategies.
Collapse
Affiliation(s)
- Jonas Schreiner
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Felix E B Brettner
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Stefanie Gier
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Herpoldt K, López CL, Sappington I, Pham MN, Srinivasan S, Netland J, Montgomery KS, Roy D, Prossnitz AN, Ellis D, Wargacki AJ, Pepper M, Convertine AJ, Stayton PS, King NP. Macromolecular Cargo Encapsulation via In Vitro Assembly of Two-Component Protein Nanoparticles. Adv Healthc Mater 2024; 13:e2303910. [PMID: 38180445 PMCID: PMC11468305 DOI: 10.1002/adhm.202303910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Self-assembling protein nanoparticles are a promising class of materials for targeted drug delivery. Here, the use of a computationally designed, two-component, icosahedral protein nanoparticle is reported to encapsulate multiple macromolecular cargoes via simple and controlled self-assembly in vitro. Single-stranded RNA molecules between 200 and 2500 nucleotides in length are encapsulated and protected from enzymatic degradation for up to a month with length-dependent decay rates. Immunogenicity studies of nanoparticles packaging synthetic polymers carrying a small-molecule TLR7/8 agonist show that co-delivery of antigen and adjuvant results in a more than 20-fold increase in humoral immune responses while minimizing systemic cytokine secretion associated with free adjuvant. Coupled with the precise control over nanoparticle structure offered by computational design, robust and versatile encapsulation via in vitro assembly opens the door to a new generation of cargo-loaded protein nanoparticles that can combine the therapeutic effects of multiple drug classes.
Collapse
Affiliation(s)
- Karla‐Luise Herpoldt
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
- Present address:
2seventy BioSeattleWA98102USA
| | - Ciana L. López
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Isaac Sappington
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Minh N. Pham
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Selvi Srinivasan
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Jason Netland
- Department of ImmunologyUniversity of WashingtonSeattleWA98195USA
| | | | - Debashish Roy
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | | | - Daniel Ellis
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Adam J. Wargacki
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| | - Marion Pepper
- Department of ImmunologyUniversity of WashingtonSeattleWA98195USA
| | - Anthony J. Convertine
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
- Present address:
Department of Material Science and EngineeringMissouri University of Science and TechnologyRollaMO65409USA
| | | | - Neil P. King
- Department of BiochemistryUniversity of WashingtonSeattleWA98195USA
- Institute for Protein DesignUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
5
|
Wu R, Yuen J, Cheung E, Huang Z, Chu E. Review of three-dimensional spheroid culture models of gynecological cancers for photodynamic therapy research. Photodiagnosis Photodyn Ther 2024; 45:103975. [PMID: 38237651 DOI: 10.1016/j.pdpdt.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Photodynamic therapy (PDT) is a specific cancer treatment with minimal side effects. However, it remains challenging to apply PDT clinically, partially due to the difficulty of translating research findings to clinical settings as the conventional 2D cell models used for in vitro research are accepted as less physiologically relevant to a solid tumour. 3D spheroids offer a better model for testing PDT mechanisms and efficacy, particularly on photosensitizer uptake, cellular and subcellular distribution and interaction with cellular oxygen consumption. 3D spheroids are usually generated by scaffold-free and scaffold-based methods and are accepted as physiologically relevant models for PDT anticancer research. Scaffold-free methods offer researchers advantages including high efficiency, reproducible, and controlled microenvironment. While the scaffold-based methods offer an extracellular matrix-like 3D scaffold with the necessary architecture and chemical mediators to support the spheroid formation, the natural scaffold used may limit its usage because of low reproducibility due to patch-to-patch variation. Many studies show that the 3D spheroids do offer advantages to gynceologcial cancer PDT investigation. This article will provide a review of the applications of 3D spheroid culture models for the PDT research of gynaecological cancers.
Collapse
Affiliation(s)
- Rwk Wu
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, Scotland, UK.
| | - Jwm Yuen
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China
| | - Eyw Cheung
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China
| | - Z Huang
- MOE Key Laboratory of Photonics Science and Technology for Medicine, Fujian Normal University, Fuzhou, China
| | - Esm Chu
- School of Medical and Health Sciences, Tung Wah College, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Kotelnikova PA, Shipunova VO, Deyev SM. Targeted PLGA-Chitosan Nanoparticles for NIR-Triggered Phototherapy and Imaging of HER2-Positive Tumors. Pharmaceutics 2023; 16:9. [PMID: 38276487 PMCID: PMC10819332 DOI: 10.3390/pharmaceutics16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 01/27/2024] Open
Abstract
Targeted medicine uses the distinctive features of cancer cells to find and destroy tumors. We present human epidermal growth factor receptor 2 (HER2)-targeted PLGA-chitosan nanoparticles for cancer therapy and visualization. Loading with two near-infrared (NIR) dyes provides imaging in the NIR transparency window and phototherapy triggered by 808 nm light. Nile Blue (NB) is a biocompatible solvatochromic NIR dye that serves as an imaging agent. Laser irradiation of IR-780 dye leads to a temperature rise and the generation of reactive oxygen species (ROS). Resonance energy transfer between two dyes allows visualization of tumors in a wide range of visible and IR wavelengths. The combination of two NIR dyes enables the use of nanoparticles for diagnostics only or theranostics. Modification of poly(lactic-co-glycolic acid) (PLGA)-chitosan nanoparticles with trastuzumab provides an efficient nanoparticle uptake by tumor cells and promotes more than sixfold specificity towards HER2-positive cells, leading to a synergistic anticancer effect. We demonstrate optical imaging of the HER2-positive mouse mammary tumor and tumor-specific accumulation of PLGA-IR-780-NB nanoparticles in vivo after intravenous administration. We managed to achieve almost complete suppression of the proliferative activity of cells in vitro by irradiation with an 808 nm laser with a power of 0.27 W for 1 min at a concentration at which nanoparticles are nontoxic to cells in the dark.
Collapse
Affiliation(s)
- Polina A. Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Victoria O. Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Ayoub AM, Atya MS, Abdelsalam AM, Schulze J, Amin MU, Engelhardt K, Wojcik M, Librizzi D, Yousefi BH, Nasrullah U, Pfeilschifter J, Bakowsky U, Preis E. Photoactive Parietin-loaded nanocarriers as an efficient therapeutic platform against triple-negative breast cancer. Int J Pharm 2023; 643:123217. [PMID: 37429562 DOI: 10.1016/j.ijpharm.2023.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
The application of photodynamic therapy has become more and more important in combating cancer. However, the high lipophilic nature of most photosensitizers limits their parenteral administration and leads to aggregation in the biological environment. To resolve this problem and deliver a photoactive form, the natural photosensitizer parietin (PTN) was encapsulated in poly(lactic-co-glycolic acid) nanoparticles (PTN NPs) by emulsification diffusion method. PTN NPs displayed a size of 193.70 nm and 157.31 nm, characterized by dynamic light scattering and atomic force microscopy, respectively. As the photoactivity of parietin is essential for therapy, the quantum yield of PTN NPs and the in vitro release were assessed. The antiproliferative activity, the intracellular generation of reactive oxygen species, mitochondrial potential depolarization, and lysosomal membrane permeabilization were evaluated in triple-negative breast cancer cells (MDA-MB-231 cells). At the same time, confocal laser scanning microscopy (CLSM) and flow cytometry were used to investigate the cellular uptake profile. In addition, the chorioallantoic membrane (CAM) was employed to evaluate the antiangiogenic effect microscopically. The spherical monomodal PTN NPs show a quantum yield of 0.4. The biological assessment on MDA-MB-231 cells revealed that free PTN and PTN NPs inhibited cell proliferation with IC50 of 0.95 µM and 1.9 µM at 6 J/cm2, respectively, and this can be attributed to the intracellular uptake profile as proved by flow cytometry. Eventually, the CAM study illustrated that PTN NPs could reduce the number of angiogenic blood vessels and disrupt the vitality of xenografted tumors. In conclusion, PTN NPs are a promising anticancer strategy in vitro and might be a tool for fighting cancer in vivo.
Collapse
Affiliation(s)
- Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Muhammed S Atya
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Ahmed M Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Muhammad U Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Damiano Librizzi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Germany
| | - Behrooz H Yousefi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Germany
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany.
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany.
| |
Collapse
|
8
|
Chen Y, Zhou W, Xia Y, Zhang W, Zhao Q, Li X, Gao H, Liang Z, Ma G, Yang K, Zhang L, Zhang Y. Targeted cross-linker delivery for the in situ mapping of protein conformations and interactions in mitochondria. Nat Commun 2023; 14:3882. [PMID: 37391416 PMCID: PMC10313818 DOI: 10.1038/s41467-023-39485-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/15/2023] [Indexed: 07/02/2023] Open
Abstract
Current methods for intracellular protein analysis mostly require the separation of specific organelles or changes to the intracellular environment. However, the functions of proteins are determined by their native microenvironment as they usually form complexes with ions, nucleic acids, and other proteins. Here, we show a method for in situ cross-linking and analysis of mitochondrial proteins in living cells. By using the poly(lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with dimethyldioctadecylammonium bromide (DDAB) to deliver protein cross-linkers into mitochondria, we subsequently analyze the cross-linked proteins using mass spectrometry. With this method, we identify a total of 74 pairs of protein-protein interactions that do not exist in the STRING database. Interestingly, our data on mitochondrial respiratory chain proteins ( ~ 94%) are also consistent with the experimental or predicted structural analysis of these proteins. Thus, we provide a promising technology platform for in situ defining protein analysis in cellular organelles under their native microenvironment.
Collapse
Affiliation(s)
- Yuwan Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinwei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
9
|
Shahbazi-Gahrouei D, Choghazardi Y, Kazemzadeh A, Naseri P, Shahbazi-Gahrouei S. A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy. IET Nanobiotechnol 2023. [PMID: 37139612 DOI: 10.1049/nbt2.12134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
About 50% of cancer patients receive radiation therapy. Despite the therapeutic benefits of this method, the toxicity of radiation in the normal tissues is unavoidable To improve the quality of radiation therapy, in addition to other methods such as IMRT, IGRT, and high radiation dose, nanoparticles have shown excellent potential when ionising radiation is applied to the target volume. Recently, bismuth-based nanoparticles (BiNPs) have become particularly popular in radiation therapy due to their high atomic numbers (Z), high X-ray attenuation coefficient, low toxicity, and low cost. Moreover, it is easy to synthesise in a variety of sizes and shapes. This study aimed to review the effects of the bismuth-based NP and its combination with other compounds, and their potential synergies in radiotherapy, discussed based on their physical, chemical, and biological interactions. Targeted and non-targeted bismuth-based NPs used in radiotherapy as radiosensitizers and dose enhancement effects are described. The results reported in the literature were categorised into various groups. Also, this review has highlighted the importance of bismuth-based NPs in different forms of cancer treatment to find the highest efficiency for applying them as a suitable candidate for various cancer therapy and future clinical applications.
Collapse
Affiliation(s)
- Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yazdan Choghazardi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Kazemzadeh
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Paria Naseri
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
10
|
Habibi N, Bissonnette C, Pei P, Wang D, Chang A, Raymond JE, Lahann J, Mallery SR. Mucopenetrating Janus Nanoparticles For Field-Coverage Oral Cancer Chemoprevention. Pharm Res 2023; 40:749-764. [PMID: 36635487 PMCID: PMC10036282 DOI: 10.1007/s11095-022-03465-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/18/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Oral squamous cell carcinoma (OSCC), is associated with high morbidity and mortality. Preemptive interventions have been postulated to provide superior therapeutic options, but their implementation has been restricted by the availability of broadly applicable local delivery systems. METHODS We address this challenge by engineering a delivery vehicle, Janus nanoparticles (JNP), that combine the dual mucoadhesive properties of a first cationic chitosan compartment with a second hydrophobic poly(lactide-co-glycolide) release compartment. JNP are designed to avoid rapid mucus clearance while ensuring stable loading and controlled release of the IL-6 receptor antagonist, tocilizumab (TCZ). RESULTS The JNP featured defined and monodispersed sizes with an average diameter of 327 nm and a PDI of 0.245, high circularities above 0.90 and supported controlled release of TCZ and effective internalization by oral keratinocytes. TCZ released from JNP retained its biological activity and effectively reduced both, soluble and membrane-bound IL-6Rα (71% and 50%). In full-thickness oral mucosal explants, 76% of the JNP breached the stratum corneum and in 41% were observed in the basal cell layer indicating excellent mucopenetrating properties. When tested in an aggressive OSCC xenograft model, TCZ-loaded JNP showed high levels of xenograft inhibition and outperformed all control groups with respect to inhibition of tumor cell proliferation, reduction in tumor size and reduced expression of the proto-oncogene ERG. CONCLUSION By combining critically required, yet orthogonal properties within the same nanoparticle design, the JNP in this study, demonstrate promise as precision delivery platforms for intraoral field-coverage chemoprevention, a vastly under-researched area of high clinical importance.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Caroline Bissonnette
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
- Department of Stomatology, Faculty of Dentistry, University of Montreal, Montreal, QC, Canada
| | - Ping Pei
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
| | - Daren Wang
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA
| | - Albert Chang
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Jeffery E Raymond
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA
| | - Joerg Lahann
- Biointerfaces Institute, Departments of Chemical Engineering, Material Science and Engineering, Biomedical Engineering, and Macromolecular Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48105, USA.
| | - Susan R Mallery
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, 305 W. 12th Ave, Columbus, OH, 43210, USA.
- The Ohio State University Comprehensive Cancer, 460 W. 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Li F, Klepzig LF, Keppler N, Behrens P, Bigall NC, Menzel H, Lauth J. Layer-by-Layer Deposition of 2D CdSe/CdS Nanoplatelets and Polymers for Photoluminescent Composite Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11149-11159. [PMID: 36067458 DOI: 10.1021/acs.langmuir.2c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) semiconductor nanoplatelets (NPLs) are strongly photoluminescent materials with interesting properties for optoelectronics. Especially their narrow photoluminescence paired with a high quantum yield is promising for light emission applications with high color purity. However, retaining these features in solid-state thin films together with an efficient encapsulation of the NPLs is a challenge, especially when trying to achieve high-quality films with a defined optical density and low surface roughness. Here, we show photoluminescent polymer-encapsulated inorganic-organic nanocomposite coatings of 2D CdSe/CdS NPLs in poly(diallyldimethylammonium chloride) (PDDA) and poly(ethylenimine) (PEI), which are prepared by sequential layer-by-layer (LbL) deposition. The electrostatic interaction between the positively charged polyelectrolytes and aqueous phase-transferred NPLs with negatively charged surface ligands is used as a driving force to achieve self-assembled nanocomposite coatings with a well-controlled layer thickness and surface roughness. Increasing the repulsive forces between the NPLs by increasing the pH value of the dispersion leads to the formation of nanocomposites with all NPLs arranging flat on the substrate, while the surface roughness of the 165 nm (50 bilayers) thick coating decreases to Ra = 14 nm. The photoluminescence properties of the nanocomposites are determined by the atomic layer thickness of the NPLs and the 11-mercaptoundecanoic acid ligand used for their phase transfer. Both the full width at half-maximum (20.5 nm) and the position (548 nm) of the nanocomposite photoluminescence are retained in comparison to the colloidal CdSe/CdS NPLs in aqueous dispersion, while the measured photoluminescence quantum yield of 5% is competitive to state-of-the-art nanomaterial coatings. Our approach yields stable polymer-encapsulated CdSe/CdS NPLs in smooth coatings with controllable film thickness, rendering the LbL deposition technique a powerful tool for the fabrication of solid-state photoluminescent nanocomposites.
Collapse
Affiliation(s)
- Fuzhao Li
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute for Technical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Lars F Klepzig
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Nils Keppler
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute of Inorganic Chemistry, Leibniz Universität Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Peter Behrens
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute of Inorganic Chemistry, Leibniz Universität Hannover, Callinstraße 9, 30167 Hannover, Germany
- Laboratory of Nano and Quantum Engineering, Schneiderberg 39, 30167 Hannover, Germany
| | - Nadja C Bigall
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
- Laboratory of Nano and Quantum Engineering, Schneiderberg 39, 30167 Hannover, Germany
| | - Henning Menzel
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute for Technical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Jannika Lauth
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering─Innovation Across Disciplines), 30167 Hannover, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
- Laboratory of Nano and Quantum Engineering, Schneiderberg 39, 30167 Hannover, Germany
- Institute of Physical and Theoretical Chemistry, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Liew HS, Mai CW, Zulkefeli M, Madheswaran T, Kiew LV, Pua LJW, Hii LW, Lim WM, Low ML. Novel Gemcitabine-Re(I) Bisquinolinyl Complex Combinations and Formulations With Liquid Crystalline Nanoparticles for Pancreatic Cancer Photodynamic Therapy. Front Pharmacol 2022; 13:903210. [PMID: 35873548 PMCID: PMC9299370 DOI: 10.3389/fphar.2022.903210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
With less than 10% of 5-year survival rate, pancreatic ductal adenocarcinoma (PDAC) is known to be one of the most lethal types of cancer. Current literature supports that gemcitabine is the first-line treatment of PDAC. However, poor cellular penetration of gemcitabine along with the acquired and intrinsic chemoresistance of tumor against it often reduced its efficacy and hence necessitates the administration of high gemcitabine dose during chemotherapy. Photodynamic therapy (PDT), a more selective and minimally invasive treatment, may be used synergistically with gemcitabine to reduce the doses utilized and dose-related side effects. This study reports the synergistic use of Re(I) bisquinolinyl complex, a transition metal complex photosensitizer with gemcitabine against PDAC. Re(I) bisquinolinyl complex was found to act synergistically with gemcitabine against PDAC in vitro at various ratios. With the aim to enhance cellular uptake and therapeutic efficiency, the Re(I) bisquinolinyl complex and gemcitabine were encapsulated into liquid crystalline nanoparticles (LCNPs) system. The formulations were found to produce homogeneous drug-loaded LCNPs (average size: 159-173 nm, zeta potential +1.06 to -10 mV). Around 70% of gemcitabine and 90% of the Re(I) bisquinolinyl complex were found to be entrapped efficiently in the formulated LCNPs. The release rate of gemcitabine or/and the Re(I) bisquinolinyl complex loaded into LCNPs was evaluated in vitro, and the hydrophilic gemcitabine was released at a faster rate than the lipophilic Re(I) complex. LCNPs loaded with gemcitabine and Re(I) bisquinolinyl complex in a 1:1 ratio illustrated the best anti-cancer activity among the LCNP formulations (IC50 of BxPC3: 0.15 μM; IC50 of SW 1990: 0.76 μM) through apoptosis. The current findings suggest the potential use of transition metal-based photosensitizer as an adjunctive agent for gemcitabine-based chemotherapy against PDAC and the importance of nano-formulation in such application.
Collapse
Affiliation(s)
- Hui Shan Liew
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- Centre for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Mohd Zulkefeli
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | | | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lesley Jia Wei Pua
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ling Wei Hii
- Centre for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Wei Meng Lim
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - May Lee Low
- Centre for Cancer and Stem Cell Research, International Medical University, Kuala Lumpur, Malaysia
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Effect of Solvents, Stabilizers and the Concentration of Stabilizers on the Physical Properties of Poly(d,l-lactide- co-glycolide) Nanoparticles: Encapsulation, In Vitro Release of Indomethacin and Cytotoxicity against HepG2-Cell. Pharmaceutics 2022; 14:pharmaceutics14040870. [PMID: 35456705 PMCID: PMC9028368 DOI: 10.3390/pharmaceutics14040870] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
A biocompatible, biodegradable and FDA-approved polymer [Poly lactic-co-glycolic acid (PLGA)] was used to prepare the nanoparticles (NPs) to observe the effect of solvents, stabilizers and their concentrations on the physical properties of the PLGA-NPs, following the encapsulation and in vitro release of Indomethacin (IND). PLGA-NPs were prepared by the single-emulsion solvent evaporation technique using dichloromethane (DCM)/chloroform as the organic phase with Polyvinyl-alcohol (PVA)/Polyvinylpyrrolidone (PVP) as stabilizers to encapsulate IND. The effects of different proportions of PVA/PVP with DCM/chloroform on the physiochemical properties (particle size, the polydispersity index, the zeta potential by Malvern Zetasizer and morphology by SEM) of the NPs were investigated. DSC was used to check the physical state, the possible complexation of PLGA with stabilizer(s) and the crystallinity of the encapsulated drug. Stabilizers at all concentrations produced spherical, regular-shaped, smooth-surfaced discrete NPs. Average size of 273.2–563.9 nm was obtained when PVA (stabilizer) with DCM, whereas it ranged from 317.6 to 588.1 nm with chloroform. The particle size was 273.2–563.9 nm when PVP was the stabilizer with DCM, while it was 381.4–466.6 nm with chloroform. The zeta potentials of PVA-stabilized NPs were low and negative (−0.62 mV) while they were comparatively higher and positive for PVP-stabilized NPs (+17.73 mV). Finally, drug-loaded optimal NPs were composed of PLGA (40 mg) and IND (4 mg) in 1 mL DCM/chloroform with PVA/PVP (1–3%), which resulted in sufficient encapsulation (54.94–74.86%) and drug loading (4.99–6.81%). No endothermic peak of PVA/PVP appeared in the optimized formulation, which indicated the amorphous state of IND in the core of the PLGA-NPs. The in vitro release study indicated a sustained release of IND (32.83–52.16%) from the PLGA-NPs till 72 h and primarily followed the Higuchi matrix release kinetics followed by Korsmeyer–Peppas models. The cell proliferation assay clearly established that the organic solvents used to prepare PLGA-NPs had evaporated. The PLGA-NPs did not show any particular toxicity in the HepG2 cells within the dose range of IND (250–500 µg/mL) and at an equivalent concentration of PLGA-NPs (3571.4–7142.7 µg/mL). The cytotoxicity of the hepatotoxic drug (IND) was reduced by its encapsulation into PLGA-NPs. The outcomes of this investigation could be implemented to prepare PLGA-NPs of acceptable properties for the encapsulation of low/high molecular weight drugs. It would be useful for further in vitro and in vivo applications to use this delivery system.
Collapse
|
14
|
Mohamed NA, Marei I, Crovella S, Abou-Saleh H. Recent Developments in Nanomaterials-Based Drug Delivery and Upgrading Treatment of Cardiovascular Diseases. Int J Mol Sci 2022; 23:1404. [PMID: 35163328 PMCID: PMC8836006 DOI: 10.3390/ijms23031404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. However, despite the recent developments in the management of CVDs, the early and long outcomes vary considerably in patients, especially with the current challenges facing the detection and treatment of CVDs. This disparity is due to a lack of advanced diagnostic tools and targeted therapies, requiring innovative and alternative methods. Nanotechnology offers the opportunity to use nanomaterials in improving health and controlling diseases. Notably, nanotechnologies have recognized potential applicability in managing chronic diseases in the past few years, especially cancer and CVDs. Of particular interest is the use of nanoparticles as drug carriers to increase the pharmaco-efficacy and safety of conventional therapies. Different strategies have been proposed to use nanoparticles as drug carriers in CVDs; however, controversies regarding the selection of nanomaterials and nanoformulation are slowing their clinical translation. Therefore, this review focuses on nanotechnology for drug delivery and the application of nanomedicine in CVDs.
Collapse
Affiliation(s)
- Nura A. Mohamed
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Isra Marei
- Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London SW7 2AZ, UK;
- Department of Pharmacology, Weill Cornell Medicine in Qatar, Doha P.O. Box 24144, Qatar
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
15
|
Liang W, Dong Y, Shao R, Zhang S, Wu X, Huang X, Sun B, Zeng B, Zhao J. Application of Nanoparticles in Drug Delivery for the Treatment of Osteosarcoma: Focusing on the Liposomes. J Drug Target 2021; 30:463-475. [PMID: 34962448 DOI: 10.1080/1061186x.2021.2023160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is one of the most common primary bone malignancies in children and adolescents. The toxicity to healthy tissues from conventional therapeutic strategies, including chemotherapy and radiotherapy, and drug resistance, severely affect OS patients' quality of life and cancer-specific outcomes. Many efforts have been made to develop various nanomaterial-based drug delivery systems with specific properties to overcome these limitations. Among the developed nanocarriers, liposomes are the most successful and promising candidates for providing targeted tumor therapy and enhancing the safety and therapeutic effect of encapsulated agents. Liposomes have low immunogenicity, high biocompatibility, prolonged half-life, active group protection, cell-like membrane structure, safety, and effectiveness. This review will discuss various nanomaterial-based carriers in cancer therapy and then the characteristics and design of liposomes with a particular focus on the targeting feature. We will also summarize the recent advances in the liposomal drug delivery system for OS treatment in preclinical and clinical studies.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Yongqiang Dong
- Department of Orthopedics, Xinchang People's Hospital, Shaoxing 312500, China
| | - Ruyi Shao
- Department of Orthopedics, Zhuji People's Hospital, Shaoxing 312500, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xudong Wu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bin Sun
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, China
| |
Collapse
|
16
|
Li T, Gao L, Zhang B, Nie G, Xie Z, Zhang H, Ågren H. Material-based engineering of bacteria for cancer diagnosis and therapy. APPLIED MATERIALS TODAY 2021; 25:101212. [DOI: 10.1016/j.apmt.2021.101212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
|
18
|
Cai D, Wang F, Wang C, Jin L. Phenotypic and Functional Analyses of B7S1 in Ovarian Cancer. Front Mol Biosci 2021; 8:686803. [PMID: 34307455 PMCID: PMC8299558 DOI: 10.3389/fmolb.2021.686803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Although programmed death (PD) ligand 1 (PD-L1)/PD-1 inhibitors show potent and durable antitumor effects in a variety of tumors, their efficacy in patients with OvCa is modest. Thus, additional immunosuppressive mechanisms beyond PD-L1/PD-1 need to be identified. Methods: The mRNA expression profiles of OvCa patients were obtained from The Cancer Genome Atlas (TCGA) database. The expression and clinical characteristics of VTCN1 (encoding B7S1) in OvCa were analyzed. The molecular interaction network, Gene Ontology (GO) analysis and Gene set enrichment analysis (GSEA) were used to functionally annotate and predict signaling pathways of VTCN1 in OvCa. Moreover, 32 treatment-naïve patients with OvCa were recruited to assess B7S1 expression. The cytotoxic immune phenotypes in distinct subgroups were analyzed. Results: B7S1 expression was increased in tumor sections compared with that in normal tissues from OvCa patients at both the mRNA and protein levels. VTCN1 expression was significantly correlated with the mRNA expression levels of several other co-inhibitory immune checkpoints. B7S1 protein was found to be highly expressed in CD45+CD68+ myeloid cells, whereas its putative receptor was expressed in CD8+ tumor-infiltrating lymphocytes (TILs). Furthermore, expression of B7S1 in antigen-presenting cells (APCs) was significantly correlated with the cytolytic function of CD8+ TILs. Functional annotations indicated that VTCN1 was involved in regulating T cell-mediated immune responses and participated in the activation of a variety of classic signaling pathways related to the progression of human cancer. Conclusion: In OvCa, B7S1 was highly expressed and may initiate dysfunction of CD8+ TILs, which could be targeted for cancer immunotherapy.
Collapse
Affiliation(s)
- Dongli Cai
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine,Tongji University, Shanghai, China
| | - Fang Wang
- Department of Gynaecology, Shanghai East Hospital, School of Medicine,Tongji University, Shanghai, China
| | - Changgang Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine,Tongji University, Shanghai, China
| |
Collapse
|
19
|
El-Hussein A, Manoto SL, Ombinda-Lemboumba S, Alrowaili ZA, Mthunzi-Kufa P. A Review of Chemotherapy and Photodynamic Therapy for Lung Cancer Treatment. Anticancer Agents Med Chem 2021; 21:149-161. [PMID: 32242788 DOI: 10.2174/1871520620666200403144945] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 11/22/2022]
Abstract
Cancer is among the leading causes of mortality and morbidity worldwide. Among the different types of cancers, lung cancer is considered to be the leading cause of death related to cancer and the most commonly diagnosed form of such disease. Chemotherapy remains a dominant treatment modality for many types of cancers at different stages. However, in many cases, cancer cells develop drug resistance and become nonresponsive to chemotherapy, thus, necessitating the exploration of alternative and /or complementary treatment modalities. Photodynamic Therapy (PDT) has emerged as an effective treatment modality for various malignant neoplasia and tumors. In PDT, the photochemical interaction of light, Photosensitizer (PS) and molecular oxygen produces Reactive Oxygen Species (ROS), which induces cell death. Combination therapy, by using PDT and chemotherapy, can promote synergistic effect against this fatal disease with the elimination of drug resistance, and enhancement of the efficacy of cancer eradication. In this review, we give an overview of chemotherapeutic modalities, PDT, and the different types of drugs associated with each therapy. Furthermore, we also explored the combined use of chemotherapy and PDT in the course of lung cancer treatment and how this approach could be the last resort for thousands of patients that have been diagnosed by this fatal disease.
Collapse
Affiliation(s)
- Ahmed El-Hussein
- National Institute of Laser Enhanced Science, Cairo University, Giza, Egypt
| | - Sello L Manoto
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, Pretoria, South Africa
| | | | - Ziya A Alrowaili
- Physics Department, College of Science, Jouf University, Jouf, Saudi Arabia
| | - Patience Mthunzi-Kufa
- Council for Scientific and Industrial Research (CSIR), National Laser Centre, Pretoria, South Africa
| |
Collapse
|
20
|
Ahmadi S, Rabiee N, Bagherzadeh M, Elmi F, Fatahi Y, Farjadian F, Baheiraei N, Nasseri B, Rabiee M, Dastjerd NT, Valibeik A, Karimi M, Hamblin MR. Stimulus-Responsive Sequential Release Systems for Drug and Gene Delivery. NANO TODAY 2020; 34:100914. [PMID: 32788923 PMCID: PMC7416836 DOI: 10.1016/j.nantod.2020.100914] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive characteristic is the ability to release one or more drugs (or release drugs along with genes) in a controlled sequence at different times or at different sites. This approach can lengthen gene expression periods, reduce the side effects of drugs, enhance the efficacy of drugs, and induce an anti-proliferative effect on cancer cells due to the synergistic effects of genes and drugs. The key objective of this review is to summarize recent progress in SR-based drug/gene delivery systems for cancer and other diseases.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Faranak Elmi
- Department of Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Department of Biology, Faculty of science, Marand Branch, Islamic Azad University, Marand, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department, Bioengineering Division and Bioengineering Centre, Hacettepe University, 06800, Ankara, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, 06830, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
21
|
Allen C, Evans JC. ‘Hip to be square’: Designing PLGA formulations for the future. J Control Release 2020; 319:487-488. [DOI: 10.1016/j.jconrel.2020.01.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Darrigues E, Nima ZA, Griffin RJ, Anderson JM, Biris AS, Rodriguez A. 3D cultures for modeling nanomaterial-based photothermal therapy. NANOSCALE HORIZONS 2020; 5:400-430. [PMID: 32118219 DOI: 10.1039/c9nh00628a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Photothermal therapy (PTT) is one of the most promising techniques for cancer tumor ablation. Nanoparticles are increasingly being investigated for use with PTT and can serve as theranostic agents. Based on the ability of near-infrared nano-photo-absorbers to generate heat under laser irradiation, PTT could prove advantageous in certain situations over more classical cancer therapies. To analyze the efficacy of nanoparticle-based PTT, preclinical in vitro studies typically use 2D cultures, but this method cannot completely mimic the complex tumor organization, bioactivity, and physiology that all control the complex penetration depth, biodistribution, and tissue diffusion parameters of nanomaterials in vivo. To fill this knowledge gap, 3D culture systems have been explored for PTT analysis. These models provide more realistic microenvironments that allow spatiotemporal oxygen gradients and cancer cell adaptations to be considered. This review highlights the work that has been done to advance 3D models for cancer microenvironment modeling, specifically in the context of advanced, functionalized nanoparticle-directed PTT.
Collapse
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 S University Avenue, Little Rock, AR 72204, USA.
| | | | | | | | | | | |
Collapse
|
23
|
PLGA-methionine labeled BODIPY nano-conjugate for in-vivo optical tumor imaging. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01232-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Rajaee A, Wang S, Zhao L, Wang D, Liu Y, Wang J, Ying K. Multifunction bismuth gadolinium oxide nanoparticles as radiosensitizer in radiation therapy and imaging. ACTA ACUST UNITED AC 2019; 64:195007. [DOI: 10.1088/1361-6560/ab2154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Bidkar AP, Sanpui P, Ghosh SS. Red Blood Cell-Membrane-Coated Poly(Lactic-co-glycolic Acid) Nanoparticles for Enhanced Chemo- and Hypoxia-Activated Therapy. ACS APPLIED BIO MATERIALS 2019; 2:4077-4086. [DOI: 10.1021/acsabm.9b00584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anil Parsram Bidkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani, Dubai Campus, Dubai International Academic City,
P.O. Box No. 345055, Dubai, UAE
| | - Siddhartha Sankar Ghosh
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| |
Collapse
|
26
|
Li M, Xiong T, Du J, Tian R, Xiao M, Guo L, Long S, Fan J, Sun W, Shao K, Song X, Foley JW, Peng X. Superoxide Radical Photogenerator with Amplification Effect: Surmounting the Achilles’ Heels of Photodynamic Oncotherapy. J Am Chem Soc 2019; 141:2695-2702. [DOI: 10.1021/jacs.8b13141] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mingle Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Shenzhen 518057, China
| | - Ruisong Tian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Ming Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Lianying Guo
- Department of Pathophysiology, Dalian Medical University, Dalian 116044, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Shenzhen 518057, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Shenzhen 518057, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Shenzhen 518057, China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Shenzhen 518057, China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - James W. Foley
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
27
|
Chittasupho C, Posritong P, Ariyawong P. Stability, Cytotoxicity, and Retinal Pigment Epithelial Cell Binding of Hyaluronic Acid-Coated PLGA Nanoparticles Encapsulating Lutein. AAPS PharmSciTech 2018; 20:4. [PMID: 30560323 DOI: 10.1208/s12249-018-1256-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
The application of lutein was limited due to water insolubility and susceptible to heat and light degradation. In this study, hyaluronic acid (HA)-coated PLGA nanoparticles encapsulating lutein were fabricated by a solvent displacement method to improve the physicochemical properties and the stability of lutein. A biphasic release profile of lutein was observed, following zero-order release kinetics. The physical stability of lutein stored at 4°C, 30°C, and 40°C for 30 days was enhanced when lutein was encapsulated in the nanoparticles. The degradation of lutein in PLGA NPs coated with HA was fitted to a second-order kinetic model. The rate constant increased with increasing storage temperature. The activation energy of lutein-NPs was 63.26 kJ/mol. The half-lives of lutein in PLGA-NPs were about 49, 4, and 2 days at a storage temperature of 4°C, 30°C, and 40°C, respectively. The results suggested that lutein-NPs should be stored at 4°C to prevent physical and chemical degradation. The photodegradation of lutein in NPs followed a second-order kinetic model. The rate constant was 0.0155 mg-1 ml day-1. Cell viability study revealed that HA-coated PLGA nanoparticles encapsulating lutein did not show toxicity against retinal pigment epithelial cells (ARPE-19). The NPs bound ARPE-19 cells in a time- and a dose-dependent manner. The binding efficiency of lutein-NPs decreased at higher concentrations, suggesting that the NPs might reach binding saturation capacity. In conclusion, HA-coated PLGA nanoparticles could be used to deliver lutein and improved physicochemical property of lutein. Graphical abstract ᅟ.
Collapse
|
28
|
Li Z, Marks H, Evans CL, Apiou-Sbirlea G. Sensing, monitoring, and release of therapeutics: the translational journey of next generation bandages. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-9. [PMID: 30592189 PMCID: PMC6987519 DOI: 10.1117/1.jbo.24.2.021201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
This article aims to be a progress report on the Sensing, Monitoring And Release of Therapeutics (SMART) bandage-one of the three technologies that received the inaugural SPIE Photonics West Translational Research Symposium Award in 2015. Invented and developed by Dr. Conor L. Evans and his research team at the Wellman Center for Photomedicine, Massachusetts General Hospital, the SMART bandage is a tool aiming to provide measurements of physiological parameters in the skin alongside the administration of therapeutics on-demand. Since the project began in 2012, the chemists, physicists, and biomedical engineers in the team have worked closely with partners from academia and industry to develop oxygen-sensing SMART bandage prototypes that are now in first-in-human clinical studies. This report gives perspectives on the genesis and translational journey of the technology with an emphasis on the challenges encountered, and the solutions innovated at each stage of development.
Collapse
Affiliation(s)
- Zongxi Li
- Mass General Research Institute, Boston, Massachusetts, United States
| | - Haley Marks
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Charlestown, Massachusetts, United States
| | - Conor L. Evans
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Charlestown, Massachusetts, United States
| | - Gabriela Apiou-Sbirlea
- Mass General Research Institute, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Charlestown, Massachusetts, United States
| |
Collapse
|
29
|
Li M, Xia J, Tian R, Wang J, Fan J, Du J, Long S, Song X, Foley JW, Peng X. Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors. J Am Chem Soc 2018; 140:14851-14859. [DOI: 10.1021/jacs.8b08658] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mingle Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jing Xia
- Department School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Ruisong Tian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - James W. Foley
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02142, United States
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
30
|
Siegrist S, Cörek E, Detampel P, Sandström J, Wick P, Huwyler J. Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology 2018; 13:73-99. [PMID: 30182784 DOI: 10.1080/17435390.2018.1505000] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The increasing nanomedicine usage has raised concerns about their possible impact on human health. Present evaluation strategies for nanomaterials rely on a case-by-case hazard assessment. They take into account material properties, biological interactions, and toxicological responses. Authorities have also emphasized that exposure route and intended use should be considered in the safety assessment of nanotherapeutics. In contrast to an individual assessment of nanomaterial hazards, we propose in the present work a novel and unique evaluation strategy designed to uncover potential adverse effects of such materials. We specifically focus on spherical engineered nanoparticles used as parenterally administered nanomedicines. Standardized assay protocols from the US Nanotechnology Characterization Laboratory as well as the EU Nanomedicine Characterisation Laboratory can be used for experimental data generation. We focus on both cellular uptake and intracellular persistence as main indicators for nanoparticle hazard potentials. Based on existing regulatory specifications defined by authorities such as the European Medicines Agency and the United States Food and Drug Administration, we provide a robust framework for application-oriented classification paired with intuitive decision making. The Hazard Evaluation Strategy (HES) for injectable nanoparticles is a three-tiered concept covering physicochemical characterization, nanoparticle (bio)interactions, and hazard assessment. It is cost-effective and can assist in the design and optimization of nanoparticles intended for therapeutic use. Furthermore, this concept is designed to be adaptable for alternative exposure and application scenarios. To the knowledge of the authors, the HES is unique in its methodology based on exclusion criteria. It is the first hazard evaluation strategy designed for nanotherapeutics.
Collapse
Affiliation(s)
- Stefan Siegrist
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| | - Emre Cörek
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| | - Pascal Detampel
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| | - Jenny Sandström
- b Swiss Centre for Applied Human Toxicology , Basel , Switzerland
| | - Peter Wick
- c Laboratory for Patricles-Biology Interactions , Empa Swiss Federal Laboratories for Materials Science and Technology , St. Gallen , Switzerland
| | - Jörg Huwyler
- a Division of Pharmaceutical Technology , Pharmacenter, University of Basel , Basel , Switzerland
| |
Collapse
|
31
|
Bandelli D, Helbing C, Weber C, Seifert M, Muljajew I, Jandt KD, Schubert US. Maintaining the Hydrophilic–Hydrophobic Balance of Polyesters with Adjustable Crystallinity for Tailor-Made Nanoparticles. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Damiano Bandelli
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christian Helbing
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Seifert
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Irina Muljajew
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Klaus D. Jandt
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Chair of Materials Science (CMS), Department of Materials Science and Technology, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
32
|
Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, Shao J, Wu M, Liu B, Liang C, Ye C, Tao H. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget 2018; 8:39833-39848. [PMID: 28418855 PMCID: PMC5503657 DOI: 10.18632/oncotarget.16243] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy, one of the most promising minimally invasive treatments, has received increasing focus in tumor therapy research, which has been widely applied in treating superficial tumors. Three basic factors - photosensitizer, the light source, and oxidative stress - are responsible for tumor cell cytotoxicity. However, due to insufficient luminous flux and peripheral tissue damage, the utilization of photodynamic therapy is facing a huge limitation in deep tumor therapy. Osteosarcoma is the typical deep tumor, which is the most commonly occurring malignancy in children and adolescents. Despite developments in surgery, high risks of the amputation still threatens the health of osteosarcoma patients. In this review, we summarize recent developments in the field of photodynamic therapy and specifically PDT research in OS treatment modalities. In addition, we also provide some novel suggestions, which could potentially be a breakthrough in PDT-induced OS therapies. PDT has the potential to become an effective therapy while the its limitations still present when applied on the treatment of OS or other types of deep tumors. Thus, more researches and studies in the field are required.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Minzu Wu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengyi Ye
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
33
|
Mohammad-Hadi L, MacRobert AJ, Loizidou M, Yaghini E. Photodynamic therapy in 3D cancer models and the utilisation of nanodelivery systems. NANOSCALE 2018; 10:1570-1581. [PMID: 29308480 DOI: 10.1039/c7nr07739d] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photodynamic therapy (PDT) is the subject of considerable research in experimental cancer models mainly for the treatment of solid cancerous tumours. Recent studies on the use of nanoparticles as photosensitiser carriers have demonstrated improved PDT efficacy in experimental cancer therapy. Experiments typically employ conventional monolayer cell culture but there is increasing interest in testing PDT using three dimensional (3D) cancer models. 3D cancer models can better mimic in vivo models than 2D cultures by for example enabling cancer cell interactions with a surrounding extracellular matrix which should enable the treatment to be optimised prior to in vivo studies. The aim of this review is to discuss recent research using PDT in different types of 3D cancer models, from spheroids to nano-fibrous scaffolds, using a range of photosensitisers on their own or incorporated in nanoparticles and nanodelivery systems.
Collapse
Affiliation(s)
- Layla Mohammad-Hadi
- Division of Surgery and Interventional Science, Department of Nanotechnology, University College London, Royal Free Campus, Rowland Hill St, London NW3 2PE, UK.
| | | | | | | |
Collapse
|
34
|
Larue L, Ben Mihoub A, Youssef Z, Colombeau L, Acherar S, André JC, Arnoux P, Baros F, Vermandel M, Frochot C. Using X-rays in photodynamic therapy: an overview. Photochem Photobiol Sci 2018; 17:1612-1650. [DOI: 10.1039/c8pp00112j] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy is a therapeutic option to treat cancer and other diseases.
Collapse
|
35
|
Prasad M, Lambe UP, Brar B, Shah I, J M, Ranjan K, Rao R, Kumar S, Mahant S, Khurana SK, Iqbal HMN, Dhama K, Misri J, Prasad G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018; 97:1521-1537. [PMID: 29793315 DOI: 10.1016/j.biopha.2017.11.026] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 02/08/2023] Open
Abstract
In recent years nanotechnology has revolutionized the healthcare strategies and envisioned to have a tremendous impact to offer better health facilities. In this context, medical nanotechnology involves design, fabrication, regulation, and application of therapeutic drugs and devices having a size in nano-range (1-100 nm). Owing to the revolutionary implications in drug delivery and gene therapy, nanotherapeutics has gained increasing research interest in the current medical sector of the modern world. The areas which anticipate benefits from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic problems. The development of nanotherapeutics with multi-functionalities has considerable potential to fill the lacunae existing in the present therapeutic domain. Nanomedicines in the field of cancer management have enhanced permeability and retention of drugs thereby effectively targeting the affected tissues. Polymeric conjugates of asparaginase, polymeric micelles of paclitaxel have been recmended for various types of cancer treatment .The advancement of nano therapeutics and diagnostics can provide the improved effectiveness of the drug with less or no toxicity concerns. Similarly, diagnostic imaging is having potential future applications with newer imaging elements at nano level. The newly emerging field of nanorobotics can provide new directions in the field of healthcare. In this article, an attempt has been made to highlight the novel nanotherapeutic potentialities of polymeric nanoparticles, nanoemulsion, solid lipid nanoparticle, nanostructured lipid carriers, dendrimers, nanocapsules and nanosponges based approaches. The useful applications of these nano-medicines in the field of cancer, nutrition, and health have been discussed in details. Regulatory and safety concerns along with the commercial status of nanosystems have also been presented. In summary, a successful translation of emerging nanotherapeutics into commercial products may lead to an expansion of biomedical science. Towards the end of the review, future perspectives of this important field have been introduced briefly.
Collapse
Affiliation(s)
- Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Ikbal Shah
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Manimegalai J
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sandip Kumar Khurana
- Central Institute for Research on Buffaloes, Sirsa Road, Hisar, Haryana, 125001, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Jyoti Misri
- Division of Animal Health, Indian Council of Agriculture Research, New Delhi, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| |
Collapse
|
36
|
Klein OJ, Yuan H, Nowell NH, Kaittanis C, Josephson L, Evans CL. An Integrin-Targeted, Highly Diffusive Construct for Photodynamic Therapy. Sci Rep 2017; 7:13375. [PMID: 29042620 PMCID: PMC5645319 DOI: 10.1038/s41598-017-13803-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/03/2017] [Indexed: 11/12/2022] Open
Abstract
Targeted antineoplastic agents show great promise in the treatment of cancer, having the ability to impart cytotoxicity only to specific tumor types. However, these therapies do not experience uniform uptake throughout tumors, leading to sub-lethal cell killing that can impart treatment resistance, and cause problematic off-target effects. Here we demonstrate a photodynamic therapy construct that integrates both a cyclic RGD moiety for integrin-targeting, as well as a 5 kDa PEG chain that passivates the construct and enables its rapid diffusion throughout tumors. PEGylation of the photosensitizer construct was found to prevent photosensitizer aggregation, boost the generation of cytotoxic reactive radical species, and enable the rapid uptake of the construct into cells throughout large (>500 µm diameter) 3D tumor spheroids. Replacing the cyclic RGD with the generic RAD peptide led to the loss of cellular uptake in 3D culture, demonstrating the specificity of the construct. Photodynamic therapy with the construct was successful in inducing cytotoxicity, which could be competitively blocked by a tenfold concentration of free cyclic RGD. This construct is a first-of-its kind theranostic that may serve as a new approach in our growing therapeutic toolbox.
Collapse
Affiliation(s)
- Oliver J Klein
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 13th St, CNY149, Charlestown, MA, 02129, USA
| | - Hushan Yuan
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 13th St, CNY149, Charlestown, MA, 02129, USA
| | - Nicholas H Nowell
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 13th St, CNY149, Charlestown, MA, 02129, USA
| | - Charalambos Kaittanis
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 13th St, CNY149, Charlestown, MA, 02129, USA
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, 13th St, CNY149, Charlestown, MA, 02129, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 13th St, CNY149, Charlestown, MA, 02129, USA.
| |
Collapse
|
37
|
Mohammadi MR, Nojoomi A, Mozafari M, Dubnika A, Inayathullah M, Rajadas J. Nanomaterials engineering for drug delivery: a hybridization approach. J Mater Chem B 2017; 5:3995-4018. [PMID: 32264132 DOI: 10.1039/c6tb03247h] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The last twenty years have witnessed great advances in biology, medicine, and materials science, leading to the development of various nanoparticle (NP)-mediated drug delivery systems. Innovation in materials science has led the generation of biodegradable, biocompatible, stimuli-responsive, and targeted delivery systems. However, currently available nanotherapeutic technologies are not efficient, which has culminated in the failure of their clinical trials. Despite huge efforts devoted to drug delivery nanotherapeutics, only a small amount of the injected material could reach the desired target. One promising strategy to enhance the efficiency of NP drug delivery is to hybridize multiple materials, where each component could play a critical role in an efficient multipurpose delivery system. This review aims to comprehensively cover different techniques, materials, advantages, and drawbacks of various systems to develop hybrid nano-vesicles for drug delivery. Attention is finally given to the hybridization benefits in overcoming the biological barriers for drug delivery. It is believed that the advent of modern nano-formulations for multifunctional hybrid carriers paves the way for future advances to achieve more efficient drug delivery systems.
Collapse
Affiliation(s)
- M Rezaa Mohammadi
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, 1050 Arastradero Road, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
38
|
Jung HS, Han J, Shi H, Koo S, Singh H, Kim HJ, Sessler JL, Lee JY, Kim JH, Kim JS. Overcoming the Limits of Hypoxia in Photodynamic Therapy: A Carbonic Anhydrase IX-Targeted Approach. J Am Chem Soc 2017; 139:7595-7602. [PMID: 28459562 DOI: 10.1021/jacs.7b02396] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major challenge in photodynamic cancer therapy (PDT) is avoiding PDT-induced hypoxia, which can lead to cancer recurrence and progression through activation of various angiogenic factors and significantly reduce treatment outcomes. Reported here is an acetazolamide (AZ)-conjugated BODIPY photosensitizer (AZ-BPS) designed to mitigate the effects of PDT-based hypoxia by combining the benefits of anti-angiogenesis therapy with PDT. AZ-BPS showed specific affinity to aggressive cancer cells (MDA-MB-231 cells) that overexpress carbonic anhydrase IX (CAIX). It displayed enhanced photocytotoxicity compared to a reference compound, BPS, which is an analogous PDT agent that lacks an acetazolamide unit. AZ-BPS also displayed an enhanced in vivo efficacy in a xenograft mouse tumor regrowth model relative to BPS, an effect attributed to inhibition of tumor angiogenesis by both PDT-induced ROS generation and CAIX knockdown. AZ-BPS was evaluated successfully in clinical samples collected from breast cancer patients. We thus believe that the combined approach described here represents an attractive therapeutic approach to targeting CAIX-overexpressing tumors.
Collapse
Affiliation(s)
- Hyo Sung Jung
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-1224, United States
| | - Jiyou Han
- Department of Biological Sciences, Laboratory of Stem Cell Research and Biotechnology, Hyupsung University , Hwasung-si 18330, Korea
| | - Hu Shi
- Department of Chemistry, Sungkyunkwan University , Suwon 440-746, Korea
| | | | | | | | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-1224, United States
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University , Suwon 440-746, Korea
| | | | | |
Collapse
|