1
|
Abavisani M, Tafti P, Khoshroo N, Ebadpour N, Khoshrou A, Kesharwani P, Sahebkar A. The heart of the matter: How gut microbiota-targeted interventions influence cardiovascular diseases. Pathol Res Pract 2025; 269:155931. [PMID: 40174272 DOI: 10.1016/j.prp.2025.155931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
The human body is habitat to a wide spectrum of microbial populations known as microbiota, which play an important role in overall health. The considerable research has mostly focused on the gut microbiota due to its potential to impact numerous physiological functions and its correlation with a variety of disorders, such as cardiovascular diseases (CVDs). Imbalances in the gut microbiota, known as dysbiosis, have been linked to the development and progression of CVDs through various processes, including the generation of metabolites like trimethylamine-N-oxide and short-chain fatty acids. Studies have also looked at the idea of using therapeutic interventions, like changing your diet, taking probiotics or prebiotics, or even fecal microbiota transplantation (FMT), to change the gut microbiota's make-up and how it works in order to prevent or treat CVDs. Exploring the cause-and-effect connection between the gut microbiota and CVDs offers a hopeful path for creating innovative microbiome-centered strategies to prevent and cure CVDs. This review presents an in-depth review of the correlation between the gut microbiota and CVDs, as well as potential therapeutic approaches for manipulating the gut microbiota to enhance cardiovascular health.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pourya Tafti
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khoshroo
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Khoshrou
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pardesh, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Li J, Yang Z, Yuan W, Bao Z, Li MD. Heme Metabolism Mediates the Effects of Smoking on Gut Microbiome. Nicotine Tob Res 2024; 26:742-751. [PMID: 37875417 DOI: 10.1093/ntr/ntad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION The number of smokers worldwide increased greatly during the past decades and reached 1.14 billion in 2019, becoming a leading risk factor for human health. Tobacco smoking has wide effects on human genetics, epigenetics, transcriptome, and gut microbiome. Although many studies have revealed effects of smoking on host transcriptome, research on the relationship between smoking, host gene expression, and the gut microbiome is limited. AIMS AND METHODS We first explored transcriptome and metagenome profile differences between smokers and nonsmokers. To evaluate the relationship between host gene expression and gut microbiome, we then applied bidirectional mediation analysis to infer causal relationships between smoking, gene expression, and gut microbes. RESULTS Metagenome and transcriptome analyses revealed 71 differential species and 324 differential expressed genes between smokers and nonsmokers. With smoking as an exposure variable, we identified 272 significant causal relationships between gene expression and gut microbes, among which there were 247 genes that mediate the effect of smoking on gut microbes. Pathway-based enrichment analysis showed that these genes were significantly enriched in heme metabolic pathway, which mainly mediated the changes of Bacteroides finegoldii and Lachnospiraceae bacterium 9_1_43BFAA. Additionally, by performing metabolome data analysis in the Integrated Human Microbiome Project (iHMP) database, we verified the correlation between the intermediate products of the heme metabolism pathway (porphobilinogen, bilirubin, and biliverdin) and gut microbiome. CONCLUSIONS By investigating the bidirectional interaction between smoking-related host gene expression and gut microbes, this study provided evidence for the mediation of smoking on gut microbes through co-involvement or interaction of heme metabolism. IMPLICATIONS By comparing the metagenome and transcriptome sequencing profiles between 34 smokers and 33 age- and gender-matched nonsmokers, we are the first to reveal causal relationships among tobacco smoking, host gene expression, and gut microbes. These findings offer insight into how smoking affects gut microbes through host gene expression and metabolism, which highlights the importance of heme metabolism in modulating the effects of smoking on gut microbiome.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Biomedical Big Data, School of Ophthalmology and Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiwei Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zheng Y, Zhang S, Zhang Z, Zhang T, Teng X, Xiao G, Huang S. Isolation of Lactobacillus acidophilus strain and its anti-obesity effect in a diet induced obese murine model. Lett Appl Microbiol 2024; 77:ovae021. [PMID: 38400571 DOI: 10.1093/lambio/ovae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Intestinal microbiota is a potential determinant of obesity, with probiotic bile salt hydrolase (BSH) as one of the key mechanisms in the anti-obesity effects. In this study, we present a Lactobacillus acidophilus GOLDGUT-LA100 (LA100) with high BSH activity, good gastric acid and bile salt tolerance, and a potential anti-obesity effect. LA100's anti-obesity effects were evaluated in a high-fat diet-induced, obese mouse model. LA100 administration alleviates high-fat diet-induced pathophysiological symptoms, such as body weight gain, high serum glucose and cholesterol level, hepatic lipid accumulation, and adipose inflammation. These results demonstrate concrete anti-obesity benefit in animal models and show promising applications in future clinical studies.
Collapse
Affiliation(s)
- Yanyi Zheng
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | - Silu Zhang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | - Zhizhu Zhang
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | | | - Xin Teng
- Bluepha Co., Ltd, Shenzhen 518000, China
| | - Guoxun Xiao
- Wonderlab Innovation Centre for Healthcare, Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | - Song Huang
- Bluepha Co., Ltd, Shenzhen 518000, China
- Department of Chemical and Biological Engineering, Xiamen University, Xiamen 361102, China
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Amini MR, Rasaei N, Jalalzadeh M, Akhgarjand C, Hashemian M, Jalali P, Hekmatdoost A. The effects of Garcinia cambogia (hydroxycitric acid) on lipid profile: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2024; 38:1028-1043. [PMID: 38151892 DOI: 10.1002/ptr.8102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
Garcinia cambogia (GC) has antioxidant, anticancer, antihistamine, and antimicrobial properties. To determine the effect of GC on lipid profiles, a systematic review and meta-analysis was carried out. Up to February 9, 2023, six electronic databases (Web of Science, Cochrane Library, Embase, PubMed, Scopus, and Google Scholar) were searched at any time without limitations. Trials examining the impact of GC on serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol (HDL-C) in adults were included. The total effect was shown as a weighted mean difference (WMD) and 95% confidence interval (CI) in a random-effects meta-analysis approach. This systematic review and meta-analysis included 14 trials involving 623 subjects. Plasma levels of TC (WMD: -6.76 mg/dL; CI: -12.39 to -0.59, p-value = 0.032), and TG (WMD: -24.21 mg/dL; CI: -37.84 to -10.58, p < 0.001) were significantly reduced after GC use, and plasma HDL-C (WMD: 2.95 mg/dL; CI: 2.01 to 3.89, p < 0.001) levels increased. low-density lipoprotein cholesterol levels (WMD: -1.15 mg/dL; CI: -16.08 to 13.78, p-value = 0.880) were not significantly affected. The effects of lowering TC and TG were more pronounced for periods longer than 8 weeks. Consuming GC has a positive impact on TC, TG, and HDL-C concentrations. The limitations of this study include the short duration of analyzed interventions and significant heterogeneity. Nevertheless, it is imperative to conduct well-structured, and high-quality long-term trials to comprehensively evaluate the clinical effectiveness of GC on lipid profile, and validate these findings.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moharam Jalalzadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Camellia Akhgarjand
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Hashemian
- Epidemiology and Community Health Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Parisa Jalali
- Student Research Committee, Khalkhal University of Medical Sciences, Khalkhal, Iran
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Fan KC, Lin CC, Liu YC, Chao YP, Lai YJ, Chiu YL, Chuang YF. Altered gut microbiota in older adults with mild cognitive impairment: a case-control study. Front Aging Neurosci 2023; 15:1162057. [PMID: 37346147 PMCID: PMC10281289 DOI: 10.3389/fnagi.2023.1162057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction The microbiota-gut-brain axis is implicated in Alzheimer's disease. Gut microbiota alterations in mild cognitive impairment (MCI) are inconsistent and remain to be understood. This study aims to investigate the gut microbial composition associated with MCI, cognitive functions, and structural brain differences. Methods A nested case-control study was conducted in a community-based prospective cohort where detailed cognitive functions and structural brain images were collected. Thirty-one individuals with MCI were matched to sixty-five cognitively normal controls by age strata, gender, and urban/rural area. Fecal samples were examined using 16S ribosomal RNA (rRNA) V3-V4 sequencing. Compositional differences between the two groups were identified and correlated with the cognitive functions and volumes/thickness of brain structures. Results There was no significant difference in alpha and beta diversity between MCIs and cognitively normal older adults. However, the abundance of the genus Ruminococcus, Butyricimonas, and Oxalobacter decreased in MCI patients, while an increased abundance of nine other genera, such as Flavonifractor, were found in MCIs. Altered genera discriminated MCI patients well from controls (AUC = 84.0%) and were associated with attention and executive function. Conclusion This study provides insights into the role of gut microbiota in the neurodegenerative process.
Collapse
Affiliation(s)
- Kang-Chen Fan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chien Liu
- Department of Neurology, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yen-Jun Lai
- Division of Medical Imaging, Department of Radiology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Yen-Ling Chiu
- Department of Medical Research, Far Eastern Memorial Hospital, Taipei, Taiwan
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Fang Chuang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei, Taiwan
| |
Collapse
|
6
|
Han HS, Soundharrajan I, Valan Arasu M, Kim D, Choi KC. Leuconostoc Citreum Inhibits Adipogenesis and Lipogenesis by Inhibiting p38 MAPK/Erk 44/42 and Stimulating AMPKα Signaling Pathways. Int J Mol Sci 2023; 24:7367. [PMID: 37108530 PMCID: PMC10138540 DOI: 10.3390/ijms24087367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics provide a range of health benefits. Several studies have shown that using probiotics in obesity treatment can reduce bodyweight. However, such treatments are still restricted. Leuconostoc citreum, an epiphytic bacterium, is widely used in a variety of biological applications. However, few studies have investigated the role of Leuconostoc spp. in adipocyte differentiation and its molecular mechanisms. Therefore, the objective of this study was to determine the effects of cell-free metabolites of L. citreum (LSC) on adipogenesis, lipogenesis, and lipolysis in 3T3-L1 adipocytes. The results showed that LSC treatment reduced the accumulation of lipid droplets and expression levels of CCAAT/ enhancer-binding protein-α & β (C/EBP-α & β), peroxisome proliferator-activated receptor-γ (PPAR-γ), serum regulatory binding protein-1c (SREBP-1c), adipocyte fatty acid binding protein (aP2), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), resistin, pp38MAPK, and pErk 44/42. However, compared to control cells, adiponectin, an insulin sensitizer, was elevated in adipocytes treated with LSC. In addition, LSC treatment increased lipolysis by increasing pAMPK-α and suppressing FAS, ACC, and PPAR-γ expression, similarly to the effects of AICAR, an AMPK agonist. In conclusion, L. citreum is a novel probiotic strain that can be used to treat obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Hyo-Shim Han
- Department of Biotechnology, Sunchon University, Suncheon 57922, Republic of Korea;
| | - Ilavenil Soundharrajan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Jeonju 55365, Republic of Korea
| | - Ki-Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| |
Collapse
|
7
|
Kang YG, Lee T, Ro J, Oh S, Kwak JH, Kim AR. Combination of Lactobacillus plantarum HAC03 and Garcinia cambogia Has a Significant Anti-Obesity Effect in Diet-Induced Obesity Mice. Nutrients 2023; 15:nu15081859. [PMID: 37111078 PMCID: PMC10142012 DOI: 10.3390/nu15081859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a major global health problem which is associated with various diseases and psychological conditions. Increasing understanding of the relationship between obesity and gut microbiota has led to a worldwide effort to use microbiota as a treatment for obesity. However, several clinical trials have shown that obesity treatment with single strains of probiotics did not achieve as significant results as in animal studies. To overcome this limitation, we attempted to find a new combination that goes beyond the effects of probiotics alone by combining probiotics and a natural substance that has a stronger anti-obesity effect. In this study, we used a diet-induced obesity mouse (DIO) model to investigate the effects of combining Lactobacillus plantarum HAC03 with Garcinia cambogia extract, as compared to the effects of each substance alone. Combining L. plantarum HAC03 and G. cambogia, treatment showed a more than two-fold reduction in weight gain compared to each substance administered alone. Even though the total amount administered was kept the same as for other single experiments, the combination treatment significantly reduced biochemical markers of obesity and adipocyte size, in comparison to the treatment with either substance alone. The treatment with a combination of two substances also significantly decreased the gene expression of fatty acid synthesis (FAS, ACC, PPARγ and SREBP1c) in mesenteric adipose tissue (MAT). Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that the combination of L. plantarum HAC03 and G. cambogia extract treatment changed the diversity of gut microbiota and altered specific bacterial taxa at the genus level (the Eubacterium coprostanoligenes group and Lachnospiraceae UCG group) and specific functions (NAD salvage pathway I and starch degradation V). Our results support that the idea that the combination of L. plantarum HAC03 and G. cambogia extract has a synergistic anti-obesity effect by restoring the composition of the gut microbiota. This combination also increases the abundance of bacteria responsible for energy metabolism, as well as the production of SCFAs and BCAAs. Furthermore, no significant adverse effects were observed during the experiment.
Collapse
Affiliation(s)
- Youn-Goo Kang
- School of Creative Convergence Education, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
- School of Life Science, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
| | - Taeyoung Lee
- School of Life Science, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
| | - Jaeyoung Ro
- School of Life Science, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
| | - Sanghun Oh
- HDSbio Inc., Pohang 37668, Gyeong-Buk, Republic of Korea
| | - Jin-Hwan Kwak
- School of Life Science, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
- HDSbio Inc., Pohang 37668, Gyeong-Buk, Republic of Korea
- Sunlin University, Pohang 37560, Gyeong-Buk, Republic of Korea
| | - Ah-Ram Kim
- School of Creative Convergence Education, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
- School of Life Science, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
- HDSbio Inc., Pohang 37668, Gyeong-Buk, Republic of Korea
- School of Applied Artificial Intelligence, Handong Global University, Pohang 37554, Gyeong-Buk, Republic of Korea
| |
Collapse
|
8
|
Pant R, Sharma N, Kabeer SW, Sharma S, Tikoo K. Selenium-Enriched Probiotic Alleviates Western Diet-Induced Non-alcoholic Fatty Liver Disease in Rats via Modulation of Autophagy Through AMPK/SIRT-1 Pathway. Biol Trace Elem Res 2023; 201:1344-1357. [PMID: 35499800 DOI: 10.1007/s12011-022-03247-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Current study was aimed to investigate the ability of L.acidophilus SNZ 86 to biotransform inorganic selenium to a more active organic form, resulting in trace element enrichment. Selenium-enriched L. acidophilus SNZ 86 has been shown to be effective in the treatment of a variety of gastrointestinal illnesses, indicating the need for additional research to determine the full potential of this therapeutic strategy in the treatment of metabolic disorders. Herein, we employed the western style diet-induced model of non-alcoholic fatty liver disease (NAFLD) to explore the therapeutic effect of selenium-enriched probiotic (SP). Male Sprague Dawley rats (160-180 g) were fed a high-fat (58% Kcal of fat) and high-fructose (30% w/v) diet for 12 weeks to develop an animal model mimicking NAFLD. High-fat and High-fructose diet-fed rats exhibited hyperglycemia, hyperlipidemia, insulin resistance, abnormal liver function test, increased hepatic oxidative stress, and steatosis. SP was then administered orally (L acidophilus 1 × 109 CFU/ml containing 0.4 g Se/day; p.o.) for 8 weeks. The selenium enrichment within L. acidophilus SNZ 86 was validated by TEM, which allowed for visualisation of the selenium deposition and size distribution in the probiotic. In NAFLD control rats, the expression of autophagy proteins (LC-3 A/B and Beclin), AMPK, and SIRT-1 was significantly reduced indicating downregulation of autophagy. However, supplementation of SP ameliorates hepatic steatosis as evidenced by improved biochemical markers and autophagic activation via upregulation of the AMPK and SIRT-1 pathway showing the relevance of autophagy in the disease aetiology. Collectively, these findings provide us with a better understanding of the role of SP in the treatment of hepatic steatosis and establish a therapeutic basis for potential clinical application of SP in the prevention of NAFLD and associated pathological conditions.
Collapse
Affiliation(s)
- Rajat Pant
- Department of Pharmacology and Toxicology, Laboratory of Epigenetics and Diseases, National Institute of Pharmaceutical Education and Research, S.A.S Nagar (Mohali), Punjab, 160062, Mohali, India
| | - Nisha Sharma
- Department of Pharmacology and Toxicology, Laboratory of Epigenetics and Diseases, National Institute of Pharmaceutical Education and Research, S.A.S Nagar (Mohali), Punjab, 160062, Mohali, India
| | - Shaheen Wasil Kabeer
- Department of Pharmacology and Toxicology, Laboratory of Epigenetics and Diseases, National Institute of Pharmaceutical Education and Research, S.A.S Nagar (Mohali), Punjab, 160062, Mohali, India
| | - Shivam Sharma
- Department of Pharmacology and Toxicology, Laboratory of Epigenetics and Diseases, National Institute of Pharmaceutical Education and Research, S.A.S Nagar (Mohali), Punjab, 160062, Mohali, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, Laboratory of Epigenetics and Diseases, National Institute of Pharmaceutical Education and Research, S.A.S Nagar (Mohali), Punjab, 160062, Mohali, India.
| |
Collapse
|
9
|
Pang Y, Zheng Y, Yang N, Zan M, Zhang L, Ding W. Potential novel biomarkers in small intestine for obesity/obesity resistance revealed by multi-omics analysis. Lipids Health Dis 2022; 21:98. [PMID: 36209126 PMCID: PMC9547412 DOI: 10.1186/s12944-022-01711-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Although obesity is caused by different factors, individual susceptibility to obesity differs among people under the same circumstances. The microbiota in the caecum or fresh faeces and metabolites in blood or urine contribute to obesity resistance; however, the microbiota or metabolites in the small intestine have not been extensively studied. Methods To investigate the relationship between the microbiota or metabolites in the small intestine and susceptibility to obesity, eighty-eight male C57BL/6 mice were fed a high-fat diet (HFD) for 8 weeks to establish two models of obesity and obesity resistance. For further study, six mice were chosen from among the obesity models, and twelve mice were randomly chosen from among the obesity resistance models. After fasting plasma glucose and behavioural testing, the mice were fed in single cages for another 4 weeks to observe their weight and food intake. All mice were sacrificed at 20 weeks of age. Serum ALT, AST, HDL, LDL, TG and TC levels were measured using an automatic biochemical analyser. The microbiota and metabolites in the small intestine contents were analysed using 16 S sequencing and an ultrahigh-performance liquid chromatographic system, respectively. Transcripts in the jejunum were evaluated using full-length transcriptome sequencing and verified by qPCR. Results The results showed that HFD induced depression and anxiety behaviours and higher fasting plasma glucose, ALT, AST, HDL, LDL, TG and TC levels in the obese mice; however, these levels were improved in obese resistance mice. The correlation analysis showed that the phosphatidylcholine, TG, and phosphatidylethanolamine levels were higher in obese mice and correlated positively with intestinal microflora (Desulfovibrio and Gemella) and the Cxcl10 gene. A higher abundance of Clostridium_sensu_stricto_1 in obesity-resistant mice correlated negatively with the metabolite contents (neuromedin N and enkephalin L) and Pck1 gene expression and correlated positively with certain metabolites (5-hydroxy-L-tryptophan, cinnamyl alcohol and 1 H-indole-3-acetamide) and genes expression (Gdf15, Igfbp6 and Spp1). Conclusion Clostridium_sensu_stricto_1, neuromedin N, enkephalin L, Pck1, 5-hydroxy-L-tryptophan, Cxcl10 and cinnamyl alcohol may be novel biomarkers in the small intestine for obesity/obesity resistance. These might be helpful for obesity prevention or for treating obese patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01711-0.
Collapse
Affiliation(s)
- Yueshan Pang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 611130, Chengdu, China.,The Second Clinical Medical College, North SiChuan Medical College, 637000, Nanchong, China
| | - Yali Zheng
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 611130, Chengdu, China
| | - Ni Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 611130, Chengdu, China
| | - Meng Zan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611130, Chengdu, China
| | - Lu Zhang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 611130, Chengdu, China
| | - WeiJun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 611130, Chengdu, China.
| |
Collapse
|
10
|
Chen AC, Fang TJ, Ho HH, Chen JF, Kuo YW, Huang YY, Tsai SY, Wu SF, Lin HC, Yeh YT. A multi-strain probiotic blend reshaped obesity-related gut dysbiosis and improved lipid metabolism in obese children. Front Nutr 2022; 9:922993. [PMID: 35990345 PMCID: PMC9386160 DOI: 10.3389/fnut.2022.922993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background and aims Obese children are more prone to becoming obese adults, and excess adiposity consequently increases the risk of many complications, such as metabolic syndromes, non-alcoholic fatty liver disease, cardiovascular disease, etc. This study aimed to evaluate the effects of multi-strain probiotics on the gut microbiota and weight control in obese children. Methods A double-blind, randomized, placebo-controlled trial was carried out on overweight and obese children. Subjects received 12 weeks of treatment with supplementary probiotics that contained three strains: Lactobacillus salivarius AP-32, L. rhamnosus bv-77, and Bifidobacterium animalis CP-9, plus diet and exercise guidance. A total of 82 children were enrolled, and 53 children completed the study. Results The supplementation of multi-strain probiotics resulted in a significant effect demonstrating high-density lipoprotein (HDL) and adiponectin elevation. At the same time, body mass index (BMI) and serum total cholesterol, low-density lipoprotein (LDL), leptin, and tumor necrosis factor-alpha (TNF-α) levels were reduced. Lactobacillus spp. and B. animalis were particularly increased in subjects who received probiotic supplements. The abundance of Lactobacillus spp. was inversely correlated with the ether lipid metabolism pathway, while that of B. animalis was positively correlated with serum adiponectin levels. Conclusion Our results show that obesity-related gut dysbiosis can be reshaped by the supplementation of a multi-strain probiotic to improve lipid metabolism. The regular administration of a multi-strain probiotic supplement may be helpful for weight control and health management in overweight and obese children.
Collapse
Affiliation(s)
- An-Chyi Chen
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Tzu-Jung Fang
- College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Jui-Fen Chen
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shu-Fen Wu
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Chinese Medicine, China Medical University, Taichung City, Taiwan.,Asia University Hospital, Asia University, Taichung City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| |
Collapse
|
11
|
H. Baky M, Fahmy H, Farag MA. Recent Advances in Garcinia cambogia Nutraceuticals in Relation to Its Hydroxy Citric Acid Level. A Comprehensive Review of Its Bioactive Production, Formulation, and Analysis with Future Perspectives. ACS OMEGA 2022; 7:25948-25957. [PMID: 35936438 PMCID: PMC9352243 DOI: 10.1021/acsomega.2c02838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/07/2022] [Indexed: 05/14/2023]
Abstract
Garcinia cambogia (Gaertn.) Desr. (known as Malabar tamarind) is a popular traditional herbal medicine and is one of the well-known folk medicines reported for the treatment of obesity and incorporated in several nutraceuticals worldwide. These effects are mediated by a myriad of bioactive compounds with most effects attributed to its hydroxy citric acid (HCA) content. This review aims to present a holistic overview on novel trends in the production of G. cambogia bioactive components and how extraction optimization is important to ensure best product quality with its reported nanoformulations with particular emphasis on HCA content. Further, an overview of the different analytical approaches used for quality control assessment of G. cambogia plant and its nutraceuticals is presented highlighting both advantages and limitations. Moreover, analytical approaches for detecting G. cambogia metabolites in biological fluids with emphasis on HCA level to determine its pharmacokinetics and proof of efficacy are presented for the first time.
Collapse
Affiliation(s)
- Mostafa H. Baky
- Pharmacognosy
Department, Faculty of Pharmacy, Egyptian
Russian University, Badr City, Cairo 11829, Egypt
| | - Heba Fahmy
- Pharmacognosy
Department, Faculty of Pharmacy, Modern
University for Technology & Information, Cairo 11835, Egypt
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
- . Tel: +011-202-2362245. Fax: +011-202-25320005
| |
Collapse
|
12
|
Lee KD, Ilavenil S, Karnan M, Yang CJ, Kim D, Choi KC. Novel Bacillus ginsengihumi CMRO6 Inhibits Adipogenesis via p38MAPK/Erk44/42 and Stimulates Glucose Uptake in 3T3-L1 Pre-Adipocytes through Akt/AS160 Signaling. Int J Mol Sci 2022; 23:4727. [PMID: 35563118 PMCID: PMC9104516 DOI: 10.3390/ijms23094727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
The health benefits of probiotics have been known for decades, but there has only been limited use of probiotics in the treatment of obesity. In this study, we describe, for the first time, the role of cell-free metabolites (CM) from Bacillus ginsengihumi-RO6 (CMRO6) in adipogenesis and lipogenesis in 3T3-L1 pre-adipocytes. The experimental results show that CMRO6 treatment effectively reduced lipid droplet accumulation and the expression of CCAAT/enhancer-binding protein α and β (C/EBPα and C/EBPβ), peroxisome proliferator-activated receptor γ (PPAR-γ), serum regulatory binding protein 1c (SREBP-1c), fatty acid-binding protein 4 (FABP4), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), phosphorylated p38MAPK, and Erk44/42. Additionally, CMRO6 treatment significantly increased glucose uptake and phosphorylated Akt (S473), AS160, and TBC1D1 protein expressions. Considering the results of this study, B. ginsengihumi may be a novel probiotic used for the treatment of obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Kyung Dong Lee
- Department of Companion Animals, Dongsin University, Naju 58245, Korea;
| | - Soundharrajan Ilavenil
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| | - Muthusamy Karnan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| | - Chul-Ju Yang
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju 55365, Korea;
| | - Ki Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea; (S.I.); (M.K.)
| |
Collapse
|
13
|
Li Y, Kang Y, Du Y, Chen M, Guo L, Huang X, Li T, Chen S, Yang F, Yu F, Hong J, Kong X. Effects of Konjaku Flour on the Gut Microbiota of Obese Patients. Front Cell Infect Microbiol 2022; 12:771748. [PMID: 35300378 PMCID: PMC8921482 DOI: 10.3389/fcimb.2022.771748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Gut microbiota have been thought to play a role in the emergence of obesity and metabolic disorders, thus dietary fiber may be an effective strategy for the management of obesity by modulating the gut microbiota. The aim of the present study was to investigate the effects of konjaku flour (KF) supplementation on treating obesity and regulating intestinal microbiota in obese adults. METHODS In a 5-week, randomized, double-blind, place-controlled trial, sixty-nine obese volunteers aged 25 to 35 with body mass index ≥28 kg/m2 were randomly assigned to receive KF or placebo (lotus root starch). Obesity index, blood parameters, and gut microbiota were analyzed. RESULTS KF remarkably reduced the body mass index (BMI), fat mass, percentage body fat (PBF), serum triglyceride (TG), glycated hemoglobin A1c (HbA1c), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels in the patients (p <0.05 or p <0.01). Meanwhile, high-throughput sequencing and bioinformatics analysis showed that the konjac flour treatment notably increased the α-diversity and changed the β-diversity of intestinal microflora in patients (p <0.01). Moreover, konjac flour could also evidently increase the abundance of some of the beneficial microorganisms related to obesity of patients, such as Lachnospiraceae, Roseburia, Solobacterium, R. inulinivorans, Clostridium perfringens, and Intestinimonas butyriciproducens, and reduce the abundance of the harmful microorganisms, such as Lactococcus, Bacteroides fragilis, Lactococcus garvieae, B. coprophilus, B. ovatus, and B. thetaiotaomicron (p <0.01). Specifically, C. perfringens was significantly negatively correlated with serum total cholesterol (TC) (p <0.01). CONCLUSION These results suggested that KF can achieve positive effects on treating obesity, which manifest on reducing BMI, fat mass, blood glucose, and blood lipid, improving hepatic function, and also regulating intestinal microfloral structure. Therefore, changes in gut microbiota may explain in part the effects of KF.
Collapse
Affiliation(s)
- Yu Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yuhui Du
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Minghui Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Liqiong Guo
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Xinwei Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Tingting Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Shi Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Fan Yang
- Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Fubing Yu
- Department of Gastroenterology, The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Jingan Hong
- Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiangyang Kong
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
14
|
Mao K, Gao J, Wang X, Li X, Geng S, Zhang T, Sadiq FA, Sang Y. Bifidobacterium animalis subsp. lactis BB-12 Has Effect Against Obesity by Regulating Gut Microbiota in Two Phases in Human Microbiota-Associated Rats. Front Nutr 2022; 8:811619. [PMID: 35083265 PMCID: PMC8784422 DOI: 10.3389/fnut.2021.811619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Bifidobacterium animalis subsp. lactis BB-12 (BB-12) is an extensively studied probiotics species, which has been reported to improve the human gut microbiota. This study aimed to confirm the effects of BB-12 on high-fat diet (HFD)-induced gut microbiota disorders. The probiotic BB-12 was consumed by human microbiota-associated rats and changes in gut microbiota were compared using next generation sequencing of the fecal samples collected from the normal chow group, the HFD group, and the BB-12-supplemented group. The enterotypes switched from Prevotella dominant to Akkermansia dominant as a result of switching diet from normal chow to HFD. BB-12 conferred protection on the gut microbiota composition of the rats by increasing the abundance of Prevotella and decreasing the abundance of Clostridium, Blautia, and Bacteroides in 0-3 weeks. In addition, Prevotella-dominant enterotype was maintained, which provides improve obesity effects. A decrease in body weight and the Firmicutes/Bacteroidetes ratio were also observed at week 3. While in 4-8 weeks, the enrichment of short-chain fatty acids-producing bacteria such as Eubacterium and Parabacteroides and probiotics such as Bifidobacterium was observed. The results revealed that BB-12 against obesity by regulating gut microbiota in two phases. After a short-term intervention, BB-12 supplementation suppressed the transition from the healthy to obesity state by protecting Prevotella-dominant enterotype, whereas after a long-term intervention, BB-12 ameliorates obesity by enriching beneficial bacteria in the gut.
Collapse
Affiliation(s)
- Kemin Mao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jie Gao
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xianghong Wang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiyu Li
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shuo Geng
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Tuo Zhang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Yaxin Sang
- Department of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
15
|
Acharya KD, Friedline RH, Ward DV, Graham ME, Tauer L, Zheng D, Hu X, de Vos WM, McCormick BA, Kim JK, Tetel MJ. Differential effects of Akkermansia-enriched fecal microbiota transplant on energy balance in female mice on high-fat diet. Front Endocrinol (Lausanne) 2022; 13:1010806. [PMID: 36387852 PMCID: PMC9647077 DOI: 10.3389/fendo.2022.1010806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Estrogens protect against weight gain and metabolic disruption in women and female rodents. Aberrations in the gut microbiota composition are linked to obesity and metabolic disorders. Furthermore, estrogen-mediated protection against diet-induced metabolic disruption is associated with modifications in gut microbiota. In this study, we tested if estradiol (E2)-mediated protection against obesity and metabolic disorders in female mice is dependent on gut microbiota. Specifically, we tested if fecal microbiota transplantation (FMT) from E2-treated lean female mice, supplemented with or without Akkermansia muciniphila, prevented high fat diet (HFD)-induced body weight gain, fat mass gain, and hyperglycemia in female recipients. FMT from, and cohousing with, E2-treated lean donors was not sufficient to transfer the metabolic benefits to the E2-deficient female recipients. Moreover, FMT from lean donors supplemented with A. muciniphila exacerbated HFD-induced hyperglycemia in E2-deficient recipients, suggesting its detrimental effect on the metabolic health of E2-deficient female rodents fed a HFD. Given that A. muciniphila attenuates HFD-induced metabolic insults in males, the present findings suggest a sex difference in the impact of this microbe on metabolic health.
Collapse
Affiliation(s)
- Kalpana D. Acharya
- Neuroscience Department, Wellesley College, Wellesley, MA, United States
| | | | - Doyle V. Ward
- Center for Microbiome Research, Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, United States
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Madeline E. Graham
- Neuroscience Department, Wellesley College, Wellesley, MA, United States
| | - Lauren Tauer
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Doris Zheng
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Xiaodi Hu
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- University of Helsinki, Helsinki, Finland
| | - Beth A. McCormick
- Center for Microbiome Research, Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, United States
- University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Jason K. Kim
- University of Massachusetts Chan Medical School, Worcester, MA, United States
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA, United States
- *Correspondence: Marc J. Tetel,
| |
Collapse
|
16
|
Tan P, Liu H, Zhao J, Gu X, Wei X, Zhang X, Ma N, Johnston LJ, Bai Y, Zhang W, Nie C, Ma X. Amino acids metabolism by rumen microorganisms: Nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149596. [PMID: 34426337 DOI: 10.1016/j.scitotenv.2021.149596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
For the ruminant animal industry, the emission of nitrogenous substances, such as nitrous oxide (N2O) and ammonia (NH3), not only challenges environmental sustainability but also restricts its development. The metabolism of proteins and amino acids by rumen microorganisms is a key factor affecting nitrogen (N) excretion in ruminant animals. Rumen microorganisms that affect N excretion mainly include three types: proteolytic and peptidolytic bacteria (PPB), ureolytic bacteria (UB), and hyper-ammonia-producing bacteria (HAB). Microbes residing in the rumen, however, are influenced by several complex factors, such as diet, which results in fluctuations in the rumen metabolism of proteins and amino acids and ultimately affects N emission. Combining feed nutrition strategies (including ingredient adjustment and feed additives) and ecological mitigation strategies of N2O and NH3 in industrial practice can reduce the emission of nitrogenous pollutants from the ruminant breeding industry. In this review, the characteristics of the rumen microbial community related to N metabolism in ruminants were used as the metabolic basis. Furthermore, an effective strategy to increase N utilisation efficiency in combination with nutrition and ecology was reviewed to provide an inside-out approach to reduce N emissions from ruminants.
Collapse
Affiliation(s)
- Peng Tan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Han Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Jing Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xueling Gu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xiaojian Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, MN 56267, USA
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
17
|
Chen J, Liu Y, Huang Y, Tong A, Liu B, Zeng F. Schizochytrium
oil and its Mixture with Fish Oil and
Sacha inchi
Oil Ameliorate Gut Microbiota Composition and Lipid Metabolism via the FAS/HMGCR/SREBP Signaling Pathway. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Yilin Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Ying Huang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Aijun Tong
- College of Food Science Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Bin Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou 350002 China
- National Engineering Research Center of JUNCAO Technology Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Feng Zeng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou 350002 China
- National Engineering Research Center of JUNCAO Technology Fujian Agriculture and Forestry University Fuzhou 350002 China
| |
Collapse
|
18
|
Xiao C, Fedirko V, Beitler J, Bai J, Peng G, Zhou C, Gu J, Zhao H, Lin IH, Chico CE, Jeon S, Knobf TM, Conneely KN, Higgins K, Shin DM, Saba N, Miller A, Bruner D. The role of the gut microbiome in cancer-related fatigue: pilot study on epigenetic mechanisms. Support Care Cancer 2021; 29:3173-3182. [PMID: 33078326 PMCID: PMC8055716 DOI: 10.1007/s00520-020-05820-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Recent evidence supports a key role of gut microbiome in brain health. We conducted a pilot study to assess associations of gut microbiome with cancer-related fatigue and explore the associations with DNA methylation changes. METHODS Self-reported Multidimensional Fatigue Inventory and stool samples were collected at pre-radiotherapy and one-month post-radiotherapy in patients with head and neck cancer. Gut microbiome data were obtained by sequencing the 16S ribosomal ribonucleic acid gene. DNA methylation changes in the blood were assessed using Illumina Methylation EPIC BeadChip. RESULTS We observed significantly different gut microbiota patterns among patients with high vs. low fatigue across time. This pattern was characterized by low relative abundance in short-chain fatty acid-producing taxa (family Ruminococcaceae, genera Subdoligranulum and Faecalibacterium; all p < 0.05), with high abundance in taxa associated with inflammation (genera Family XIII AD3011 and Erysipelatoclostridium; all p < 0.05) for high-fatigue group. We identified nine KEGG Orthology pathways significantly different between high- vs. low-fatigue groups over time (all p < 0.001), including pathways related to fatty acid synthesis and oxidation, inflammation, and brain function. Gene set enrichment analysis (GSEA) was performed on the top differentially methylated CpG sites that were associated with the taxa and fatigue. All biological processes from the GSEA were related to immune responses and inflammation (FDR < 0.05). CONCLUSIONS Our results suggest different patterns of the gut microbiota in cancer patients with high vs. low fatigue. Results from functional pathways and DNA methylation analyses indicate that inflammation is likely to be the major driver in the gut-brain axis for cancer-related fatigue.
Collapse
Affiliation(s)
- Canhua Xiao
- School of Nursing, Yale University, 400 West Campus Drive, Room 20102, Orange, CT, 06477, USA.
| | - Veronika Fedirko
- School of Public Health, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Jonathan Beitler
- Department of Radiation, School of Medicine, Emory University, 1365-C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Jinbing Bai
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, 30322, USA
| | - Gang Peng
- Department of Epidemiology and Public Health, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06510, USA
| | - Chao Zhou
- Department of Epidemiology and Public Health, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06510, USA
| | - Jianlei Gu
- Department of Epidemiology and Public Health, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06510, USA
| | - Hongyu Zhao
- Department of Epidemiology and Public Health, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06510, USA
| | - I-Hsin Lin
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, 485 Lexington Ave, New York, NY, 10017, USA
| | - Cynthia E Chico
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA, 30322, USA
| | - Sangchoon Jeon
- School of Nursing, Yale University, 400 West Campus Drive, Room 20102, Orange, CT, 06477, USA
| | - Tish M Knobf
- School of Nursing, Yale University, 400 West Campus Drive, Room 20102, Orange, CT, 06477, USA
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Kristin Higgins
- Department of Radiation, School of Medicine, Emory University, 1365-C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, 1365-C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Nabil Saba
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, 1365-C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Andrew Miller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, 1365-B Clifton Road, Atlanta, GA, 30322, USA
| | - Deborah Bruner
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, 30322, USA
| |
Collapse
|
19
|
Mammadova G, Ozkul C, Yilmaz Isikhan S, Acikgoz A, Yildiz BO. Characterization of gut microbiota in polycystic ovary syndrome: Findings from a lean population. Eur J Clin Invest 2021; 51:e13417. [PMID: 32991745 DOI: 10.1111/eci.13417] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Limited available animal and human data suggest an association between dysbiosis of gut microbiota and PCOS. We aimed to determine whether gut microbiota in lean women with PCOS shows any alterations compared to healthy women. MATERIALS AND METHODS Twenty-four lean patients with PCOS phenotype A according to the Rotterdam 2003 diagnostic criteria and 22 BMI-matched healthy women were included in this study. Anthropometric, hormonal and biochemical measurements were carried out in all participants. 16S rRNA gene V3-V4 region amplicon sequencing was performed on stool samples. Preprocessing of the raw data was performed using QIIME, and both QIIME and R packages were used for microbiome analysis. RESULTS Bacterial richness and diversity did not show a significant difference between patients and controls. Beta diversity was similar between the groups. However, Erysipelotrichaceae, Proteobacteria, Gammaproteobacteria, Enterobacteriaceae, Planococcaceae, Gemmules and Bacillales were significantly abundant in PCOS group according to LEfSe analysis. Clostridium cluster XVII showed increased abundance in patient group, while Clostridium sensustricto and Roseburia were decreased compared to controls. Random forest prediction analysis revealed Clostridium cluster XIVb as the most discriminative feature of patient group and Roseburia for healthy controls. Testosterone and androstenedione were negatively correlated with alpha and phylogenetic diversity. CONCLUSIONS Our results suggest that gut microbiome of lean PCOS patients with full phenotype shows compositional alterations with similar bacterial richness and diversity compared to controls and that hyperandrogenism is associated with dysbiosis.
Collapse
Affiliation(s)
- Gulnar Mammadova
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ceren Ozkul
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | | | - Aylin Acikgoz
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Bulent O Yildiz
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkey.,Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
20
|
Labban RSM, ALfawaz HA, Moubayed NM, Shawakir YA, El-Ansary A. Impacts of the independent and synergistic effects of curcuma and mangosteen extracts on the gut bacterial composition in lean and obese rats. Microb Pathog 2021; 153:104794. [PMID: 33581279 DOI: 10.1016/j.micpath.2021.104794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/23/2022]
Abstract
Dietary polyphenols in plant extracts are being widely investigated due to their great health-promoting activities and effect on modulating gut ecology. In turn, gut microbiota, plays a vital role in the biological activities of phenolic metabolites, particularly after the intake of food rich in polyphenols, such as plant extracts. However, this two-way relationship between polyphenols and microbiota is poorly understood. We prepared curcuma and mangosteen methanol extracts and fed them to healthy, lean, and obese rats over a period of 10 weeks. Subsequent alterations in the gut microbiota were determined. Overall, Firmicutes were more abundant than Bacteroidetes throughout the experiment. A particular increase of gram-positive cocci species and a significant decrease in both Clostridium and Bacteroides species were noted primarily in the first weeks of both plant extract intake in the control and lean rats. Compared to obese rats fed a regular diet, obese rats fed plant extracts showed an increase in Enterobacteriacea, Clostridium, and Bacteroides species and a decrease in gram-positive cocci in the first weeks of treatment with the last weeks of treatment the results at the species level were inverted.
Collapse
Affiliation(s)
- Ranyah Shaker M Labban
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia; Ministry of Health, General Administration of Nutrition, Riyadh, Saudi Arabia
| | - Hanan A ALfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nadine Ms Moubayed
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Yasser Al- Shawakir
- Prince Naif for Health Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Lesser Investigated Natural Ingredients for the Management of Obesity. Nutrients 2021; 13:nu13020510. [PMID: 33557185 PMCID: PMC7913945 DOI: 10.3390/nu13020510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity, an epidemiological disorder, is related to various complications in both the developed and developing world. It epitomizes a crucial risk factor for health, decreasing productivity and life expectancy while increasing health care costs worldwide. Conventional therapies with synthetic drugs or bariatric surgery, associated with numerous side effects, recurrence, and surgical complexity, have been restricted in their use. Lifestyle changes and dietary restrictions are the proven methods for successful weight loss, although maintaining a strict lifestyle is a challenge. Multiple natural products have been explored for weight management with varied efficacy. The current review explores less explored natural herbs, their active constituents, and their mechanisms of action against obesity.
Collapse
|
22
|
Hopper CP, De La Cruz LK, Lyles KV, Wareham LK, Gilbert JA, Eichenbaum Z, Magierowski M, Poole RK, Wollborn J, Wang B. Role of Carbon Monoxide in Host-Gut Microbiome Communication. Chem Rev 2020; 120:13273-13311. [PMID: 33089988 DOI: 10.1021/acs.chemrev.0c00586] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nature is full of examples of symbiotic relationships. The critical symbiotic relation between host and mutualistic bacteria is attracting increasing attention to the degree that the gut microbiome is proposed by some as a new organ system. The microbiome exerts its systemic effect through a diverse range of metabolites, which include gaseous molecules such as H2, CO2, NH3, CH4, NO, H2S, and CO. In turn, the human host can influence the microbiome through these gaseous molecules as well in a reciprocal manner. Among these gaseous molecules, NO, H2S, and CO occupy a special place because of their widely known physiological functions in the host and their overlap and similarity in both targets and functions. The roles that NO and H2S play have been extensively examined by others. Herein, the roles of CO in host-gut microbiome communication are examined through a discussion of (1) host production and function of CO, (2) available CO donors as research tools, (3) CO production from diet and bacterial sources, (4) effect of CO on bacteria including CO sensing, and (5) gut microbiome production of CO. There is a large amount of literature suggesting the "messenger" role of CO in host-gut microbiome communication. However, much more work is needed to begin achieving a systematic understanding of this issue.
Collapse
Affiliation(s)
- Christopher P Hopper
- Institute for Experimental Biomedicine, University Hospital Wuerzburg, Wuerzburg, Bavaria DE 97080, Germany.,Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, Florida 32611, United States
| | - Ladie Kimberly De La Cruz
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lauren K Wareham
- The Vanderbilt Eye Institute and Department of Ophthalmology & Visual Sciences, The Vanderbilt University Medical Center and School of Medicine, Nashville, Tennessee 37232, United States
| | - Jack A Gilbert
- Department of Pediatrics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marcin Magierowski
- Cellular Engineering and Isotope Diagnostics Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow PL 31-531, Poland
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Sheffield S10 2TN, U.K
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg DE 79085, Germany.,Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Binghe Wang
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
23
|
Binyamin D, Werbner N, Nuriel-Ohayon M, Uzan A, Mor H, Abbas A, Ziv O, Teperino R, Gutman R, Koren O. The aging mouse microbiome has obesogenic characteristics. Genome Med 2020; 12:87. [PMID: 33046129 PMCID: PMC7552538 DOI: 10.1186/s13073-020-00784-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background During aging, there is a physiological decline, an increase of morbidity and mortality, and a natural change in the gut microbiome. In this study, we investigated the influence of the gut microbiome on different metabolic parameters in adult and aged mice. Methods Fecal and blood samples from adult (n = 42, 100–300 days) and aging (n = 32, 550–750 days) mice were collected. Microbiome analysis was done using QIIME2. Mouse weight and body composition were measured using NMR, and insulin and leptin levels in the blood were measured with Mouse Adipokine Magnetic Bead Panel kit. Fecal microbiota transplantation experiments from adult and aged mice into young germ-free mice were carried out in order to examine the effect of the gut microbiome of adult and aging mice on weight, body composition, insulin, and leptin. Results We demonstrate that the microbiomes from adult and aged mice are distinguishable. We also report changes in metabolic parameters as we observed significantly higher weight and fat mass and low lean mass in aged compared to adult mice along with high insulin and leptin levels in the blood. The transplanted gut microbiome from aged mice transferred part of the phenotypes seen in aged mice. Fat body mass and insulin levels were higher in the mice who received feces from aged mice than mice receiving feces from adult mice. In addition, they consumed more food and had a higher respiratory quotient compared to mice receiving adult feces. Conclusions We conclude that aged mice have a gut microbiota with obesogenic characteristics. In addition, the gut bacterial population itself is sufficient to induce some of the manifestations of obesity.
Collapse
Affiliation(s)
- Dana Binyamin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nir Werbner
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Atara Uzan
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Hadar Mor
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Atallah Abbas
- Laboratory of Integrative Physiology, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
| | - Oren Ziv
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Roee Gutman
- Laboratory of Integrative Physiology, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel.,Department of Animal Sciences, Faculty of Sciences and Technology, Tel-Hai College, 12210, Upper Galilee, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
24
|
Soundharrajan I, Kuppusamy P, Srisesharam S, Lee JC, Sivanesan R, Kim D, Choi KC. Positive metabolic effects of selected probiotic bacteria on diet-induced obesity in mice are associated with improvement of dysbiotic gut microbiota. FASEB J 2020; 34:12289-12307. [PMID: 32701200 DOI: 10.1096/fj.202000971r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2025]
Abstract
Given the rising evidence that gut malfunction including changes in the gut microbiota composition, plays a major role in the development of obesity and associated metabolic diseases, the exploring of novel probiotic bacteria with potential health benefits has attracted great attention. Recently Lactobacillus spp., exert potent anti-obesity effects by regulating key transcriptional and translational factors in adipose tissues. However, the molecular mechanism behind the anti-obesity effect of probiotics is not yet fully understood. Therefore, we investigated the effect of Lactobacillus plantarum A29 on the expression of adipogenic and lipogenic genes in 3T3-L1 adipocytes and high-fat diet (HFD)-fed mice. We observed that the treatment of 3T3-L1 adipocytes with the cell-free metabolites of L plantarum inhibited their differentiation and fat depositions via downregulating the key adipogenic transcriptional factors (PPAR-γ, C/EBP-α, and C/EBP-β) and their downstream targets (FAS, aP2, ACC, and SREBP-1). Interestingly, supplementation with L plantarum reduced the fat mass and serum lipid profile concurrently with downregulation of lipogenic gene expression in the adipocytes, resulting in reductions in the bodyweight of HFD-fed obese mice. L plantarum treatment attenuated the development of obesity in HFD-fed mice via the activation of p38MAPK, p44/42, and AMPK-α by increasing their phosphorylation. Further analysis revealed that A29 modulated gut-associated microbiota composition. Thus, A 29 potential probiotic strain may alleviate the obesity development and its associated metabolic disorders via inhibiting PPARγ through activating the p38MAPK and p44/42 signaling pathways.
Collapse
Affiliation(s)
- Ilavenil Soundharrajan
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| | - Palaniselvam Kuppusamy
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| | - Srigopalram Srisesharam
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| | - Jeong Chae Lee
- Research Center of Bioactive Materials, Institute of Molecular Biology and Genetics, Chonbuk National University, Jeonju, Republic of Korea
| | - Ravikumar Sivanesan
- Department of Zoology, Rajah Serfoji Government Arts College, Thanjavur, Tamilnadu, India
| | - Dahye Kim
- Faculty of Biotechnology, College of Applied Life Science, Jeju National University, Jeju, Republic of Korea
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| |
Collapse
|
25
|
Soleimani A, Motamedzadeh A, Zarrati Mojarrad M, Bahmani F, Amirani E, Ostadmohammadi V, Tajabadi-Ebrahimi M, Asemi Z. The Effects of Synbiotic Supplementation on Metabolic Status in Diabetic Patients Undergoing Hemodialysis: a Randomized, Double-Blinded, Placebo-Controlled Trial. Probiotics Antimicrob Proteins 2020; 11:1248-1256. [PMID: 30560426 DOI: 10.1007/s12602-018-9499-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study was conducted to evaluate the effects of synbiotic supplementation on metabolic profiles in diabetic patients undergoing hemodialysis (HD). This randomized, double-blinded, placebo-controlled clinical trial was performed in 60 diabetic HD patients. Participants were randomly assigned into two groups to receive either synbiotic capsule, containing Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum (2 × 109 CFU/g each), plus 0.8 g/day of inulin (n = 30) or placebo (n = 30) for 12 weeks. Synbiotic supplementation significantly decreased fasting plasma glucose (β - 13.56 mg/dL; 95% CI, - 23.82, - 3.30; P = 0.01), insulin levels (β - 5.49 μIU/mL; 95% CI, - 6.92, - 4.05; P < 0.001), and insulin resistance (β - 2.25; 95% CI, - 3.02, - 1.48; P < 0.001), while increased the quantitative insulin sensitivity check index (β 0.02; 95% CI, 0.01, 0.02; P < 0.001) compared with the placebo. Additionally, synbiotic intake resulted in a significant reduction in high-sensitivity C-reactive protein (β - 2930.48 ng/mL; 95% CI, - 3741.15, - 2119.80; P < 0.001) and malondialdehyde levels (β - 0.60 μmol/L; 95% CI, - 0.99, - 0.20; P = 0.003). Moreover, we found a significant increase in total antioxidant capacity (β 142.99 mmol/L; 95% CI, 61.72, 224.25; P = 0.001) and total glutathione levels (β 131.11 μmol/L; 95% CI, 89.35, 172.87; P < 0.001) in the synbiotic group compared with the placebo group. Overall, synbiotic supplementation for 12 weeks had beneficial effects on glycemic control, biomarkers of inflammation, and oxidative stress in diabetic patients under HD. This study was registered in the Iranian website (www.irct.ir) for registration of clinical trials (http://www.irct.ir: IRCT2017090133941N17). http://www.irct.ir: IRCT2017090133941N17.
Collapse
Affiliation(s)
- Alireza Soleimani
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Malihe Zarrati Mojarrad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahidreza Ostadmohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Tajabadi-Ebrahimi
- Faculty member of Science department, science faculty, Islamic Azad University Tehran Central Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
26
|
Cai H, Wen Z, Li X, Meng K, Yang P. Lactobacillus plantarum FRT10 alleviated high-fat diet-induced obesity in mice through regulating the PPARα signal pathway and gut microbiota. Appl Microbiol Biotechnol 2020; 104:5959-5972. [PMID: 32409945 DOI: 10.1007/s00253-020-10620-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
Previous studies showed that probiotics supplementation contributed to alleviate obesity. This work was to assess the efficacy of Lactobacillus plantarum FRT10 from sour dough in alleviating obesity in mice fed with a high-fat diet (HFD), and the underlying mechanisms focusing on modulation of the gut microbiota profile. Kunming mice were fed with a regular diet (CT), a high-fat diet (HFD), and two HFDs containing low and high doses of L. plantarum FRT10 for 8 weeks. The physiological and biochemical modulations in liver were analyzed. Cecal contents were analyzed by high-throughput 16S ribosomal RNA sequencing. FRT10 supplementation significantly reduced body weight gain, fat weight, and liver triacylglycerols (TGs) and alanine aminotransferase (ALT) concentrations (P < 0.05). FRT10 significantly ameliorated the HFD-induced gut dysbiosis, as evidenced by increased abundance of microbes, including Butyricicoccus, Butyricimonas, Intestinimonas, Odoribacter, and Alistipes, and decreased abundance of Desulfovibrionaceae, Roseburia, and Lachnoclostridium. Lactobacillus, Bifidobacterium, and Akkermansia were markedly increased after FRT10 intervention. In addition, real-time quantitative PCR revealed that FRT10 upregulated the mRNA expression levels of peroxisome proliferator-activated receptor-α (PPARα) and carnitine palmitoyltransferase-1α (CPT1α), and downregulated the mRNA expression levels of sterol regulatory element-binding protein 1 (SREBP-1) and TG-synthesizing enzyme diacylglycerol acyltransferase 1 (DGAT1) in liver. These findings suggested that FRT10 had anti-obesity effects in obese mice partly related to the activation of PPARα/CPT1α pathway. FRT10 can be considered a single probiotic agent for preventing HFD-induced obesity in humans and animals.
Collapse
Affiliation(s)
- Hongying Cai
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,National Engineering Research Center of Biological Feed, Beijing, 100081, China
| | - Zhiguo Wen
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiumei Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,National Engineering Research Center of Biological Feed, Beijing, 100081, China.
| |
Collapse
|
27
|
Cheng D, Song J, Xie M, Song D. The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Bang S, Yoo D, Kim SJ, Jhang S, Cho S, Kim H. Establishment and evaluation of prediction model for multiple disease classification based on gut microbial data. Sci Rep 2019; 9:10189. [PMID: 31308384 PMCID: PMC6629854 DOI: 10.1038/s41598-019-46249-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Diseases prediction has been performed by machine learning approaches with various biological data. One of the representative data is the gut microbial community, which interacts with the host's immune system. The abundance of a few microorganisms has been used as markers to predict diverse diseases. In this study, we hypothesized that multi-classification using machine learning approach could distinguish the gut microbiome from following six diseases: multiple sclerosis, juvenile idiopathic arthritis, myalgic encephalomyelitis/chronic fatigue syndrome, acquired immune deficiency syndrome, stroke and colorectal cancer. We used the abundance of microorganisms at five taxonomy levels as features in 696 samples collected from different studies to establish the best prediction model. We built classification models based on four multi-class classifiers and two feature selection methods including a forward selection and a backward elimination. As a result, we found that the performance of classification is improved as we use the lower taxonomy levels of features; the highest performance was observed at the genus level. Among four classifiers, LogitBoost-based prediction model outperformed other classifiers. Also, we suggested the optimal feature subsets at the genus-level obtained by backward elimination. We believe the selected feature subsets could be used as markers to distinguish various diseases simultaneously. The finding in this study suggests the potential use of selected features for the diagnosis of several diseases.
Collapse
Affiliation(s)
- Sohyun Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - DongAhn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Soo-Jin Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soyun Jhang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Seoae Cho
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea.
- C&K genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea.
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Zhao W, Liu Y, Latta M, Ma W, Wu Z, Chen P. Probiotics database: a potential source of fermented foods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1579737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenbin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Yuheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Maria Latta
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
30
|
Peng M, He Q, Li S, Li L, Ma H. Integrated analysis of proteomics-delineated and metabolomics-delineated hepatic metabolic responses to (-)-hydroxycitric acid in chick embryos. J Cell Biochem 2019; 120:1258-1270. [PMID: 30317645 DOI: 10.1002/jcb.27085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
(-)-Hydroxycitric acid [(-)-HCA] is widely used as a nutritional supplement to control body weight and fat accumulation in animals and humans, whereas the underlying biochemical mechanism is unclear. Broiler chicken was used as a model for studies of obesity due to its natural hyperglycemia and being insulin resistant. The current study aimed to obtain a systematic view of serum metabolites and hepatic proteins and well understand the mechanism of hepatic metabolic response to (-)-HCA treatment in chick embryos. The results showed that 22, 90, and 82 of differentially expressed proteins were identified at E14d, E19d, and H1d in chick embryos treated with (-)-HCA, respectively. Meanwhile, 5, 83, and 88 of serum metabolites significantly changed at E14d, E19d, and H1d in chick embryos after (-)-HCA treatment. Bioinformatics analysis showed that the key proteins and metabolites, which were significantly altered in chick embryos treated with (-)-HCA, were mainly involved in the citrate cycle, glycolysis/gluconeogenesis, fatty acid metabolism, and pyruvate metabolism. Our data indicated that (-)-HCA treatment might promote fat metabolism via regulating the key protein expression levels and metabolite contents in the citrate cycle, glycolysis/gluconeogenesis, and oxidative phosphorylation during chicken embryonic development. These results will deepen our understanding of the mechanism of fat reduction by (-)-HCA and provide substantial information for (-)-HCA as a nutritional supplement to control body weight gain and curb obesity-related diseases.
Collapse
Affiliation(s)
- Mengling Peng
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China
| | - Qianqian He
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China
| | - Shengnan Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, China
| |
Collapse
|
31
|
Ejtahed HS, Angoorani P, Soroush AR, Atlasi R, Hasani-Ranjbar S, Mortazavian AM, Larijani B. Probiotics supplementation for the obesity management; A systematic review of animal studies and clinical trials. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
Bonartsev AP, Voinova VV, Bonartseva GA. Poly(3-hydroxybutyrate) and Human Microbiota (Review). APPL BIOCHEM MICRO+ 2018; 54:547-568. [DOI: 10.1134/s0003683818060066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/11/2025]
|
33
|
Duskaev GK, Rakhmatullin SG, Kazachkova NM, Sheida YV, Mikolaychik IN, Morozova LA, Galiev BH. Effect of the combined action of Quercus cortex extract and probiotic substances on the immunity and productivity of broiler chickens. Vet World 2018; 11:1416-1422. [PMID: 30532495 PMCID: PMC6247875 DOI: 10.14202/vetworld.2018.1416-1422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 01/19/2023] Open
Abstract
Aim: This study was designed to investigate the synergistic effect of the combined action of probiotic bacterial strains (Bifidobacterium adolescentis and Lactobacillus acidophilus) and Quercus cortex extract as biologically active substances in the feed on the immunity and productivity of Gallus gallus domesticus. Materials and Methods: For the experiment, 120 7-day-old broiler chickens were selected (4 groups, n=30, 3 replicates with 10 birds in each group). The groups were as follows: The reference group - basic diet (BD); experimental Group I - BD + Q. cortex extract (Q. cortex), 2.5 ml/kg of body weight; experimental Group II - BD + probiotic preparation based on B. adolescentis, 80.0 million colony-forming units (CFU), and L. acidophilus, 1.0 million CFU (dosage in accordance with the recommendations of the manufacturer); and experimental Group III - BD + probiotic + extract of Q. cortex. The following methods of study were used: Chemiluminescence and biochemical and hematological analysis. Results: The results of the experiment showed a slight decrease in the level of leukocytes in Groups II (p≤0.05) and III, and of hemoglobin in Group III (p≤0.05), compared to the reference group. The level of alanine aminotransferase and aspartate aminotransferase in Group II was higher than both the reference group (p≤0.05) and the other groups. Introduction of Q. cortex extract into the diet increased the level of triglycerides (p≤0.05) and urea in the blood serum. The combined use of probiotic preparations and the extract resulted in an increase in the level of iron in the blood serum by 78.1% (p≤0.05) in Group III. An increase in indicators of the antioxidant system (catalase increased in Group I by 27.2% (p≤0.05) and by 3.0–12.7% in other groups; superoxide dismutase increased by 3.0–13.2%) and nonspecific immunity (β-lysine increased by 8.8–16.0%) was noted. Introduction of the extract and probiotic preparation into the diet contributed to increasing the live weight of chickens at the age of 15 days by 5.9 and 7.4%, respectively (p≤0.05). In experimental Group II, this trend continued, and by the end of the period, the weight of animals exceeded that of their peers in other groups by 0.7-7.0%. Given the high preservation rate of poultry in the II and III Groups, and the low feed consumption per 1 kg of live weight gain (by 3.1–6.7%), the efficiency of growth was higher than in the reference group. Conclusion: Thus, the combined use of probiotic strains of bacteria and Q. cortex extract helped to increase the antioxidant activity of the organism and antimicrobial components of blood plasma compared with broiler chickens with similar growth rates but without the supplementation of this combination.
Collapse
Affiliation(s)
- G K Duskaev
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg - 460 000, Russia
| | - S G Rakhmatullin
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg - 460 000, Russia
| | - N M Kazachkova
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg - 460 000, Russia
| | - Y V Sheida
- Institute of Bioelements, Orenburg State University, Orenburg, 460018, Russia
| | - I N Mikolaychik
- Kurgan State Agriculture Academy, Lesnikovo, Ketovsky, Kurgan Region, 641300, Russia
| | - L A Morozova
- Kurgan State Agriculture Academy, Lesnikovo, Ketovsky, Kurgan Region, 641300, Russia
| | - B H Galiev
- Department for Feeding Agricultural Animals and Fodder Technology, Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg - 460 000, Russia
| |
Collapse
|
34
|
Kong C, Gao R, Yan X, Huang L, Qin H. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition 2018; 60:175-184. [PMID: 30611080 DOI: 10.1016/j.nut.2018.10.002] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/03/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Gut microbiota plays a crucial role in host energy homeostasis, which is affected by both high-fat diets (HFDs) and high-sucrose diets (HCDs). Probiotics treatment can effectively modulate intestinal microbiota. However, it remains unclear whether probiotics can effectively improve HFD- and HCD-induced microbiota dysbiosis. METHODS Mice were fed either an HFD, HCD, or normal diet for 13 wk and administered probiotics during the last 4 wk of the diet. Fecal and cecal samples were collected and analyzed by high-throughput 16S ribosomal RNA sequencing. RESULTS Body weight increased more in the HFD group compared with the HCD group. Probiotics supplementation slowed weight gain in both the HFD and HCD groups. Both the HFD and HCD reduced microbial diversity, abundance of butyric acid-producing bacteria, and some other beneficial bacteria, including Lactobacillus, Clostridium sensu stricto, Prevotella, and Alloprevotella, but increased conditional pathogenic bacteria, such as Bacteroides, Alistipes, and Anaerotruncus. Probiotics markedly restored the proportions of bacteria affected in the HFD and HCD groups and increased the abundance of microbiota negatively associated with obesity, including Bifidobacterium, Lactococcus, and Akkermansia. In addition, Oscillibacter, Escherichia/Shigella, Acinetobacter, and Blautia significantly increased in the HCD group; Allobaculum, Olsenella, and Ruminococcus were significantly changed in the HFD group. HCD-induced microbiota dysbiosis was more susceptible to probiotics treatment compared with the HFD. CONCLUSIONS Probiotics treatment can mitigate diet-induced obesity partly through modulating intestinal microbiota, especially in HCD-induced obesity.
Collapse
Affiliation(s)
- Cheng Kong
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China; Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Renyuan Gao
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China; Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Xuebing Yan
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China; Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Linsheng Huang
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China; Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Huanlong Qin
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China; Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, Lee PA, Choi SY, Seo M, Lee HJ, Jung EJ, Park H, Roy N, Kim H, Lee MM, Rubin EM, Lee SW, Kim JF. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 2018; 36:nbt.4232. [PMID: 30295674 DOI: 10.1038/nbt.4232] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/01/2018] [Indexed: 11/09/2022]
Abstract
Tomato variety Hawaii 7996 is resistant to the soil-borne pathogen Ralstonia solanacearum, whereas the Moneymaker variety is susceptible to the pathogen. To evaluate whether plant-associated microorganisms have a role in disease resistance, we analyzed the rhizosphere microbiomes of both varieties in a mesocosm experiment. Microbiome structures differed between the two cultivars. Transplantation of rhizosphere microbiota from resistant plants suppressed disease symptoms in susceptible plants. Comparative analyses of rhizosphere metagenomes from resistant and susceptible plants enabled the identification and assembly of a flavobacterial genome that was far more abundant in the resistant plant rhizosphere microbiome than in that of the susceptible plant. We cultivated this flavobacterium, named TRM1, and found that it could suppress R. solanacearum-disease development in a susceptible plant in pot experiments. Our findings reveal a role for native microbiota in protecting plants from microbial pathogens, and our approach charts a path toward the development of probiotics to ameliorate plant diseases.
Collapse
Affiliation(s)
- Min-Jung Kwak
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyun Gi Kong
- Department of Applied Biology, Dong-A University, Busan, Republic of Korea
| | - Kihyuck Choi
- Department of Applied Biology, Dong-A University, Busan, Republic of Korea
| | - Soon-Kyeong Kwon
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ju Yeon Song
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jidam Lee
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Pyeong An Lee
- Department of Applied Biology, Dong-A University, Busan, Republic of Korea
| | - Soo Yeon Choi
- Department of Applied Biology, Dong-A University, Busan, Republic of Korea
| | | | - Hyoung Ju Lee
- Department of Applied Biology, Dong-A University, Busan, Republic of Korea
| | - Eun Joo Jung
- Department of Applied Biology, Dong-A University, Busan, Republic of Korea
| | - Hyein Park
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Nazish Roy
- Department of Applied Biology, Dong-A University, Busan, Republic of Korea
| | - Heebal Kim
- C&K Genomics, Seoul, Republic of Korea
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Myeong Min Lee
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Edward M Rubin
- Department of Energy Joint Genome Institute (DOE JGI) and Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Seon-Woo Lee
- Department of Applied Biology, Dong-A University, Busan, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Strategic Initiative for Microbiomes in Agriculture and Food (iMAF), Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Park SS, Lee YJ, Song S, Kim B, Kang H, Oh S, Kim E. Lactobacillus acidophilus NS1 attenuates diet-induced obesity and fatty liver. J Endocrinol 2018; 237:87-100. [PMID: 29507043 DOI: 10.1530/joe-17-0592] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022]
Abstract
Obesity is a major threat to public health, and it is strongly associated with insulin resistance and fatty liver disease. Here, we demonstrated that administration of Lactobacillus acidophilus NS1 (LNS1) significantly reduced obesity and hepatic lipid accumulation, with a concomitant improvement in insulin sensitivity, in high-fat diet (HFD)-fed mice. Furthermore, administration of LNS1 inhibited the effect of HFD feeding on the SREBP-1c and PPARα signaling pathways and reduced lipogenesis with an increase in fatty acid oxidation in ex vivo livers from HFD-fed mice. These LNS1 effects were confirmed in HepG2 cells and ex vivo livers by treatment with LNS1 culture supernatant (LNS1-CS). Interestingly, AMPK phosphorylation and activity in the liver of HFD-fed mice were increased by administration of LNS1. Consistently, chemical inhibition of AMPK with compound C, a specific inhibitor of AMPK, dramatically reduced the effect of LNS1-CS on lipid metabolism in HepG2 cells and ex vivo livers by modulating the SREBP-1c and PPARα signaling pathways. Furthermore, administration of LNS1 to HFD-fed mice significantly improved insulin resistance and increased Akt phosphorylation in the liver, white adipose tissue and skeletal muscle. Together, these data suggest that LNS1 may prevent diet-induced obesity and related metabolic disorders by improving lipid metabolism and insulin sensitivity through an AMPK→SREBP-1c/PPARα signaling pathway.
Collapse
Affiliation(s)
- Sung-Soo Park
- Department of Biological SciencesCollege of Natural Sciences, Chonnam National University, Gwangju, South Korea
| | - Yeon-Joo Lee
- Department of Biological SciencesCollege of Natural Sciences, Chonnam National University, Gwangju, South Korea
| | - Sooyeon Song
- Division of Animal ScienceCollege of Agriculture & Life Science, Chonnam National University, Gwangju, South Korea
| | - Boyong Kim
- Gwangju CenterKorea Basic Science Institute, Gwangju, South Korea
| | - Hyuno Kang
- Gwangju CenterKorea Basic Science Institute, Gwangju, South Korea
| | - Sejong Oh
- Division of Animal ScienceCollege of Agriculture & Life Science, Chonnam National University, Gwangju, South Korea
| | - Eungseok Kim
- Department of Biological SciencesCollege of Natural Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
37
|
Hepatotoxicity Associated with Use of the Weight Loss Supplement Garcinia cambogia: A Case Report and Review of the Literature. Case Reports Hepatol 2018; 2018:6483605. [PMID: 29721342 PMCID: PMC5867608 DOI: 10.1155/2018/6483605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/03/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
The use of herbal and dietary supplements for weight loss is becoming increasingly common as obesity is becoming major health problem in the United States. Despite the popularity of these natural supplements, there are no guidelines for their therapeutic doses and their safety is always a concern. Garcinia cambogia extract with its active ingredient “hydroxycitric acid” is a component of many weight loss regimens. It suppresses fatty acid biosynthesis and decreases appetite. However, its prolonged use in weight maintenance is unknown. Here we describe a case of acute hepatitis after the use of Garcinia cambogia for weight loss.
Collapse
|
38
|
Lyu M, Wang YF, Fan GW, Wang XY, Xu SY, Zhu Y. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota. Front Microbiol 2017; 8:2146. [PMID: 29167659 PMCID: PMC5682319 DOI: 10.3389/fmicb.2017.02146] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022] Open
Abstract
It has become apparent that gut microbiota is closely associated with cardiometabolic diseases (CMDs), and alteration in microbiome compositions is also linked to the host environment. Next generation sequencing (NGS) has facilitated in-depth studies on the effects of herbal medicine and functional food on gut microbiota. Both herbal medicine and functional food contain fiber, polyphenols and polysaccharides, exerting prebiotics-like activities in the prevention and treatment of CMDs. The administrations of herbal medicine and functional food lead to increased the abundance of phylum Bacteroidetes, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella, while reducing phylum Firmicutes and Firmicutes/Bacteroidetes ratio in gut. Both herbal medicine and functional food interact with gut microbiome and alter the microbial metabolites including short-chain fatty acids (SCFAs), bile acids (BAs) and lipopolysaccharides (LPS), which are now correlated with metabolic diseases such as type 2 diabetes (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). In addition, trimethylamine (TMA)-N-oxide (TMAO) is recently linked to atherosclerosis (AS) and cardiovascular disease (CVD) risks. Moreover, gut-organs axes may serve as the potential strategy for treating CMDs with the intervention of herbal medicine and functional food. In summary, a balance between herbal medicine and functional food rich in fiber, polyphenols and polysaccharides plays a vital role in modulating gut microbiota (phylum Bacteroidetes, Firmicutes and Firmicutes/Bacteroidetes ratio, and genus Akkermansia, Bifidobacteria, Lactobacillus, Bacteroides and Prevotella) through SCFAs, BAs, LPS and TMAO signaling regarding CMDs. Targeting gut-organs axes may serve as a new therapeutic strategy for CMDs by herbal medicine and functional food in the future. This review aims to summarize the balance between herbal medicine and functional food utilized for the prevention and treatment of CMDs through modulating gut microbiota.
Collapse
Affiliation(s)
- Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Yue-Fei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Guan-Wei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Ying Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Neuroscience Program, Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| |
Collapse
|
39
|
Seo M, Heo J, Yoon J, Kim SY, Kang YM, Yu J, Cho S, Kim H. Methanobrevibacter attenuation via probiotic intervention reduces flatulence in adult human: A non-randomised paired-design clinical trial of efficacy. PLoS One 2017; 12:e0184547. [PMID: 28937980 PMCID: PMC5609747 DOI: 10.1371/journal.pone.0184547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
TRIAL DESIGN The aim of this study was to investigate which of the gut microbes respond to probiotic intervention, as well as study whether they are associated with gastrointestinal symptoms in a healthy adult human. For the experimental purpose, twenty-one healthy adults were recruited and received probiotic mixture, which is composed of five Lactobacilli strains and two Bifidobacteria strains, once a day for 60 days. Defecation survey and Bioelectrical Impedance Analysis were conducted pre- and post-administration to measure phenotypic differences. Stool samples of the subjects were collected twice. METHODS The statistical analysis was performed for pair designed metagenome data with 11 phenotypic records of the bioelectrical impedance body composition analyzer and 6 responses of the questionnaires about gastrointestinal symptom. Furthemore, correlation-based network analysis was conducted for exploring complex relationships among microbiome communities. RESULTS The abundances of Citrobacter, Klebsiella, and Methanobrevibacter were significantly reduced, which are strong candidates to be highly affected by the probiotic administration. In addition, interaction effects were observed between flatulence symptom attenuation and decreasing patterns of the Methanobrevibacter abundance. CONCLUSIONS These results reveal that probiotic intervention modulated the composition of gut microbiota and reduced the abundance of potential pathogens (i.e. Citrobacter and Klebsiella). In addition, methanogens (i.e. Methanobrevibacter) associated with the gastrointestinal symptom in an adult human.
Collapse
Affiliation(s)
- Minseok Seo
- C&K Genomics, Seoul National University Research Park, Seoul, Republic of Korea
| | - Jaeyoung Heo
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
| | - Joon Yoon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Se-Young Kim
- R&D Center, CTCBIO, Inc., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Yoon-Mo Kang
- R&D Center, CTCBIO, Inc., Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Jihyun Yu
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seoae Cho
- C&K Genomics, Seoul National University Research Park, Seoul, Republic of Korea
- * E-mail: (HK); (SC)
| | - Heebal Kim
- C&K Genomics, Seoul National University Research Park, Seoul, Republic of Korea
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- * E-mail: (HK); (SC)
| |
Collapse
|
40
|
Botchlett R, Woo SL, Liu M, Pei Y, Guo X, Li H, Wu C. Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 2017; 233:R145-R171. [PMID: 28400405 PMCID: PMC5511693 DOI: 10.1530/joe-16-0580] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023]
Abstract
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscles, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb the local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in controlling the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Rachel Botchlett
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Pinnacle Clinical ResearchLive Oak, USA
| | - Shih-Lung Woo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Mengyang Liu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Ya Pei
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Xin Guo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Baylor College of MedicineHouston, USA
| | - Honggui Li
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| |
Collapse
|
41
|
Chanyi RM, Craven L, Harvey B, Reid G, Silverman MJ, Burton JP. Faecal microbiota transplantation: Where did it start? What have studies taught us? Where is it going? SAGE Open Med 2017; 5:2050312117708712. [PMID: 28540051 PMCID: PMC5431603 DOI: 10.1177/2050312117708712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/12/2017] [Indexed: 12/14/2022] Open
Abstract
The composition and activity of microorganisms in the gut, the microbiome, is emerging as an important factor to consider with regard to the treatment of many diseases. Dysbiosis of the normal community has been implicated in inflammatory bowel disease, Crohn’s disease, diabetes and, most notoriously, Clostridium difficile infection. In Canada, the leading treatment strategy for recalcitrant C. difficile infection is to receive faecal material which by nature is filled with microorganisms and their metabolites, from a healthy individual, known as a faecal microbiota transplantation. This influx of bacteria into the gut helps to restore the microbiota to a healthy state, preventing C. difficile from causing further disease. Much of what is known with respect to the microbiota and faecal microbiota transplantation comes from animal studies simulating the human disease. Although these models allow researchers to perform studies that would be difficult in humans, they do not always recapitulate the human microbiome. This makes the translation of these results to humans somewhat questionable. The purpose of this review is to analyse these animal models and discuss the advantages and the disadvantages of them in relation to human translation. By understanding some of the limitation of animal models, we will be better able to design and perform experiments of most relevance to human applications.
Collapse
Affiliation(s)
- Ryan M Chanyi
- Division of Urology, Department of Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
| | - Laura Craven
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Brandon Harvey
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Gregor Reid
- Division of Urology, Department of Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
| | - Michael J Silverman
- Division of Infectious Diseases, Department of Medicine, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Jeremy P Burton
- Division of Urology, Department of Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada.,Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
42
|
Huang T, Yan X, Yan X, Huang F, Li J, Xiao J, Li Y. Modulation of gut microbiota by berberine and decocted Coptis chinensis Franch. in a high-fat diet-induced metabolic syndrome rat model. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|