1
|
Coca A, López S, Órdenes P, Sepúlveda V, Cuevas D, Villarroel A, Álvarez-Indo J, Burgos PV, Tarifeño E, Elizondo-Vega R, García-Robles MA. Knocking down the neuronal lactate transporter MCT2 in the arcuate nucleus of female rats increases food intake and body weight. Sci Rep 2025; 15:7497. [PMID: 40032881 PMCID: PMC11876698 DOI: 10.1038/s41598-025-90513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
In the arcuate nucleus of the hypothalamus, tanycyte-neuron interactions regulate glucose homeostasis and feeding behavior. Previously, we reported that monocarboxylate transporters (MCT) 1 and 4 are localized in tanycytes, whereas MCT2 is present in arcuate nucleus neurons, including orexigenic and anorexigenic neurons (POMC). MCT1 and MCT4 inhibition impacts feeding behavior, suggesting that monocarboxylate transfer between tanycytes and neurons influences food intake. Electrophysiological studies have shown that POMC neurons respond to lactate through transport and indirect signaling using astrocytic hydroxycarboxylic acid receptor 1. To investigate the role of MCT2 further, we generated MCT2 knockdown rats and analyzed their feeding behavior. Female Sprague-Dawley rats received bilateral injections in the arcuate nucleus with an adeno-associated virus (AAV) carrying a specific short hairpin RNA to inhibit MCT2 expression, thereby generating neuronal MCT2 knockdown rats. Knockdown efficiency in rat hypothalamic tissue was assessed using real-time PCR, Western Blot, and immunohistochemistry. The acute effect on feeding behavior was evaluated following 24 h of fasting, followed by 24 h of refeeding. In MCT2-knockdown rats, we observed additional inhibition of MCT1, suggesting a potential glial response to increased parenchymal lactate levels. Both macrostructure and microstructure of feeding were evaluated in MCT2-knockdown rats and compared to control AAV-injected rats. MCT2 knockdown led to a significant increase in macrostructural parameters, such as food intake and body weight. These findings underscore the importance of lactate transfer as a mechanism in tanycyte-neuron communication mediated by monocarboxylates.
Collapse
Affiliation(s)
- Alanis Coca
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Sergio López
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio Órdenes
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Vania Sepúlveda
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Diego Cuevas
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Andrés Villarroel
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Javiera Álvarez-Indo
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Estefanía Tarifeño
- Laboratorio de Expresión y Regulación Génica, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María A García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
2
|
Nguyen HD, Moss AF, Yan F, Romero-Sanchez H, Dao TH. Effects of Feeding Methionine Hydroxyl Analogue Chelated Zinc, Copper, and Manganese on Growth Performance, Nutrient Digestibility, Mineral Excretion and Welfare Conditions of Broiler Chickens: Part 1: Performance Aspects. Animals (Basel) 2025; 15:421. [PMID: 39943191 PMCID: PMC11816048 DOI: 10.3390/ani15030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
This floor pen study explored the effects of feeding mineral methionine hydroxyl analogue chelates (MMHACs) zinc (Zn), copper (Cu), and manganese (Mn) on growth performance, carcass processing weight and quality, nutrient digestibility, gizzard erosion score, and bone parameters of broilers. One-day-old Ross 308 male chicks (n = 384) were randomly allocated to four dietary treatments with eight replicate pens per treatment and 12 birds per pen. The treatments were as follows: (1) inorganic trace mineral ZnSO4 110 ppm, CuSO4 16 ppm, MnO 120 ppm (ITM); (2) MMHAC Zn 40 ppm, Cu 10 ppm, Mn 40 ppm (M10); (3) Inorganic trace mineral ZnSO4 110 ppm, tribasic copper chloride 125 ppm, MnO 120 ppm (T125); (4) MMHAC Zn 40 ppm, Cu 30 ppm, Mn 40 ppm (M30). The birds were fed nutritionally complete wheat sorghum soybean meal-based diets from days 0 to 42 with three feeding phases including starter (days 0-10), grower (days 10-21), and finisher (days 21-42). The findings revealed that birds on the T125, M10, and M30 groups possibly had higher feed intake (p = 0.052) and higher weight gain (p < 0.063) than birds on the ITM group from days 0 to 42. Furthermore, birds fed the M30 diet had higher thigh and drumstick weights compared to those fed the ITM diet at day 42 (p = 0.05). Additionally, birds offered the M30 diet had increased ileal Cu digestibility compared to birds offered the M10 and ITM diets at day 21 (p = 0.006). Gizzard erosion scores and bone parameters were similar between the dietary treatments. Hence, the supplementation of MMHACs to broiler diets at 30 ppm may be a more suitable strategy to increase weight gain and the thigh and drumstick processing weight while maintaining the bone health of broiler chickens.
Collapse
Affiliation(s)
- Hoang Duy Nguyen
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (H.D.N.); (A.F.M.)
| | - Amy Fay Moss
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (H.D.N.); (A.F.M.)
| | - Frances Yan
- Novus International, Inc., 20 Research Park Drive, St. Charles, MO 63304, USA; (F.Y.); (H.R.-S.)
| | - Hugo Romero-Sanchez
- Novus International, Inc., 20 Research Park Drive, St. Charles, MO 63304, USA; (F.Y.); (H.R.-S.)
| | - Thi Hiep Dao
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia; (H.D.N.); (A.F.M.)
- Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi 100000, Vietnam
| |
Collapse
|
3
|
Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz LM, Raymond N, Tsagkaraki E, Harney SM, DiMarzio C, Wang H, McHugh N, Bramato B, Morrison B, Rothstein JD, Khvorova A, Czech MP. Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. eLife 2024; 12:RP89136. [PMID: 38564479 PMCID: PMC10987092 DOI: 10.7554/elife.89136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline-deficient, high-fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.
Collapse
Affiliation(s)
- Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Michael Elleby
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Naideline Raymond
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Emmanouela Tsagkaraki
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Shauna M Harney
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Brett Morrison
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Jeffery D Rothstein
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
4
|
Min K, Yenilmez B, Kelly M, Echeverria D, Elleby M, Lifshitz LM, Raymond N, Tsagkaraki E, Harney SM, DiMarzio C, Wang H, McHugh N, Bramato B, Morrision B, Rothstein JD, Khvorova A, Czech MP. Lactate transporter MCT1 in hepatic stellate cells promotes fibrotic collagen expression in nonalcoholic steatohepatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539244. [PMID: 37205462 PMCID: PMC10187148 DOI: 10.1101/2023.05.03.539244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline deficient, high fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.
Collapse
Affiliation(s)
- Kyounghee Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Michael Elleby
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Naideline Raymond
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | | | - Shauna M Harney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Chloe DiMarzio
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Brett Morrision
- Department of Neurology, Johns Hopkins School of Medicine, USA
| | | | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, USA
| |
Collapse
|
5
|
Kannangara H, Cullen L, Miyashita S, Korkmaz F, Macdonald A, Gumerova A, Witztum R, Moldavski O, Sims S, Burgess J, Frolinger T, Latif R, Ginzburg Y, Lizneva D, Goosens K, Davies TF, Yuen T, Zaidi M, Ryu V. Emerging roles of brain tanycytes in regulating blood-hypothalamus barrier plasticity and energy homeostasis. Ann N Y Acad Sci 2023; 1525:61-69. [PMID: 37199228 PMCID: PMC10524199 DOI: 10.1111/nyas.15009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Seasonal changes in food intake and adiposity in many animal species are triggered by changes in the photoperiod. These latter changes are faithfully transduced into a biochemical signal by melatonin secreted by the pineal gland. Seasonal variations, encoded by melatonin, are integrated by third ventricular tanycytes of the mediobasal hypothalamus through the detection of the thyroid-stimulating hormone (TSH) released from the pars tuberalis. The mediobasal hypothalamus is a critical brain region that maintains energy homeostasis by acting as an interface between the neural networks of the central nervous system and the periphery to control metabolic functions, including ingestive behavior, energy homeostasis, and reproduction. Among the cells involved in the regulation of energy balance and the blood-hypothalamus barrier (BHB) plasticity are tanycytes. Increasing evidence suggests that anterior pituitary hormones, specifically TSH, traditionally considered to have unitary functions in targeting single endocrine sites, display actions on multiple somatic tissues and central neurons. Notably, modulation of tanycytic TSH receptors seems critical for BHB plasticity in relation to energy homeostasis, but this needs to be proven.
Collapse
Affiliation(s)
- Hasni Kannangara
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liam Cullen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne Macdonald
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ronit Witztum
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ofer Moldavski
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Steven Sims
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jocoll Burgess
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tal Frolinger
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rauf Latif
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yelena Ginzburg
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ki Goosens
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Terry F. Davies
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vitaly Ryu
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine and of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
6
|
Maynard CW, Gilbert E, Yan F, Cline MA, Dridi S. Peripheral and Central Impact of Methionine Source and Level on Growth Performance, Circulating Methionine Levels and Metabolism in Broiler Chickens. Animals (Basel) 2023; 13:1961. [PMID: 37370471 DOI: 10.3390/ani13121961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The present study was designed to evaluate the effects of DL-methionine (DL-Met) 2-hydroxy-4-(methylthio) butanoic acid (HMTBa), or S-(5'-Adenosyl)-L-methionine chloride (SAM), using feeding trial and central administration, on live performance, plasma metabolites, and the expression of feeding-related hypothalamic neuropeptides in broilers raised to a market age (35 d). Final average body weight (BW) and feed conversion ratio (FCR) from the feeding trial exceeded the performance measurements published by the primary breeder. At d35, the MTBHa group had better BW and lower feed intake, which resulted in a better FCR than the DL-Met group at 87 TSAA to lysine. At the molecular levels, the expression of hypothalamic neuropeptide (NPY) and monocarboxylate transporter (MCT) 2 did not differ between all treated groups; however, the mRNA abundances of hypothalamic MCT1 and orexin (ORX) were significantly upregulated in DL-Met- treated groups compared to the control. The ICV administration of SAM significantly reduced feed intake at all tested periods (from 30 to 180 min post injection) compared to the aCSF-treated group (control). The central administration of HMTBa increased feed intake, which reached a significant level only 60 min post administration, compared to the control group. ICV administration of DL-Met slightly increased feed intake compared to the control group, but the difference was not statistically discernable. Quantitative real-time PCR analysis showed that the hypothalamic expression of NPY, cocaine- and amphetamine-regulated transcript, MCT1, and MCT2 was significantly upregulated in the ICV-HMTBa group compared to the aCSF birds. The hypothalamic expression of the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPKα1), D-amino acid oxidase, and hydroxyacid oxidase was significantly upregulated in DL-Met compared to the control group. The mRNA abundances of ORX were significantly increased in the hypothalamus of both DL-Met and HMTBa groups compared to the aCSF birds; however, mTOR gene expression was significantly downregulated in the SAM compared to the control group. Taken together, these data show, for the first time, that DL-Met and HMTBa have a common downstream (ORX) pathway, but also a differential central pathway, typically NPY-MCT for HMTBa and mTOR-AMPK for methionine.
Collapse
Affiliation(s)
- Craig W Maynard
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Frances Yan
- Novus International, Saint Charles, MO 63304, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Dali R, Estrada-Meza J, Langlet F. Tanycyte, the neuron whisperer. Physiol Behav 2023; 263:114108. [PMID: 36740135 DOI: 10.1016/j.physbeh.2023.114108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Reciprocal communication between neurons and glia is essential for normal brain functioning and adequate physiological functions, including energy balance. In vertebrates, the homeostatic process that adjusts food intake and energy expenditure in line with physiological requirements is tightly controlled by numerous neural cell types located within the hypothalamus and the brainstem and organized in complex networks. Within these neural networks, peculiar ependymoglial cells called tanycytes are nowadays recognized as multifunctional players in the physiological mechanisms of appetite control, partly by modulating orexigenic and anorexigenic neurons. Here, we review recent advances in tanycytes' impact on hypothalamic neuronal activity, emphasizing on arcuate neurons.
Collapse
Affiliation(s)
- Rafik Dali
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Judith Estrada-Meza
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Fanny Langlet
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
8
|
Yu Q, Gamayun I, Wartenberg P, Zhang Q, Qiao S, Kusumakshi S, Candlish S, Götz V, Wen S, Das D, Wyatt A, Wahl V, Ectors F, Kattler K, Yildiz D, Prevot V, Schwaninger M, Ternier G, Giacobini P, Ciofi P, Müller TD, Boehm U. Bitter taste cells in the ventricular walls of the murine brain regulate glucose homeostasis. Nat Commun 2023; 14:1588. [PMID: 36949050 PMCID: PMC10033832 DOI: 10.1038/s41467-023-37099-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
The median eminence (ME) is a circumventricular organ at the base of the brain that controls body homeostasis. Tanycytes are its specialized glial cells that constitute the ventricular walls and regulate different physiological states, however individual signaling pathways in these cells are incompletely understood. Here, we identify a functional tanycyte subpopulation that expresses key taste transduction genes including bitter taste receptors, the G protein gustducin and the gustatory ion channel TRPM5 (M5). M5 tanycytes have access to blood-borne cues via processes extended towards diaphragmed endothelial fenestrations in the ME and mediate bidirectional communication between the cerebrospinal fluid and blood. This subpopulation responds to metabolic signals including leptin and other hormonal cues and is transcriptionally reprogrammed upon fasting. Acute M5 tanycyte activation induces insulin secretion and acute diphtheria toxin-mediated M5 tanycyte depletion results in impaired glucose tolerance in diet-induced obese mice. We provide a cellular and molecular framework that defines how bitter taste cells in the ME integrate chemosensation with metabolism.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Igor Gamayun
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Philipp Wartenberg
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Qian Zhang
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Soumya Kusumakshi
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Sarah Candlish
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Viktoria Götz
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Shuping Wen
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Debajyoti Das
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Vanessa Wahl
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Fabien Ectors
- FARAH Mammalian Transgenics Platform, Liège University, Liège, Belgium
| | - Kathrin Kattler
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Daniela Yildiz
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Gaetan Ternier
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Postnatal Brain, Lille Neuroscience & Cognition, UMR-S1172, Lille, France
| | - Philippe Ciofi
- Neurocentre Magendie - INSERM Unit 1215, University of Bordeaux, Bordeaux, France
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ulrich Boehm
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany.
| |
Collapse
|
9
|
Scariot PPM, Papoti M, Polisel EEC, Orsi JB, Van Ginkel PR, Prolla TA, Manchado-Gobatto FB, Gobatto CA. Living high - training low model applied to C57BL/6J mice: Effects on physiological parameters related to aerobic fitness and acid-base balance. Life Sci 2023; 317:121443. [PMID: 36709910 DOI: 10.1016/j.lfs.2023.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
There is a scarcity of data regarding the acclimation to high altitude (hypoxic environment) accompanied by training at low altitude (normoxic conditions), the so-called "living high-training low" (LHTL) model in rodents. We aimed to investigate the effects of aerobic training on C57BL/6J mice living in normoxic (NOR) or hypoxic (HYP) environments on several parameters, including critical velocity (CV), a parameter regarded as a measure of aerobic capacity, on monocarboxylate transporters (MCTs) in muscles and hypothalamus, as well as on hematological parameters and body temperature. In each environment, mice were divided into non-trained (N) and trained (T). Forty rodents were distributed into the following experimental groups (N-NOR; T-NOR; N-HYP and T-HYP). HYP groups were in a normobaric tent where oxygen-depleted air was pumped from a hypoxia generator set an inspired oxygen fraction [FiO2] of 14.5 %. The HYP-groups were kept (18 h per day) in a normobaric tent for consecutive 8-weeks. Training sessions were conducted in normoxic conditions ([FiO2] = 19.5 %), 5 times per week (40 min per session) at intensity equivalent to 80 % of CV. In summary, eight weeks of LHTL did not promote a greater improvement in the CV, protein expression of MCTs in different tissues when compared to the application of training alone. The LHTL model increased red blood cells count, but reduced hemoglobin per erythrocyte was found in mice exposed to LHTL. Although the LHTL did not have a major effect on thermographic records, exercise-induced hyperthermia (in the head) was attenuated in HYP groups when compared to NOR groups.
Collapse
Affiliation(s)
- Pedro Paulo Menezes Scariot
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | - Juan Bordon Orsi
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil
| | - Paul R Van Ginkel
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | - Tomas A Prolla
- Department of Genetics & Medical Genetics, University of Wisconsin, Madison, WI, USA
| | | | - Claudio Alexandre Gobatto
- Laboratory of Applied Sport Physiology, School of Applied Sciences, University of Campinas, Limeira, SP, Brazil.
| |
Collapse
|
10
|
Chen C, Qu M, Liang H, Ouyang K, Xiong Z, Zheng Y, Yan Q, Xu L. Gastrointestinal digestibility insights of different levels of coated complex trace minerals supplementation on growth performance of yellow-feathered broilers. Front Vet Sci 2022; 9:982699. [PMID: 36176698 PMCID: PMC9513376 DOI: 10.3389/fvets.2022.982699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
This study was designed to evaluate the optimum additional level of coated complex trace minerals (TMs) and its impacts on the growth performance of broilers through measurement of digestibility of nutrients and intestinal development. In a 56-day trial, a total of 360 one-day-old male yellow-feathered broilers were randomly divided into six dietary treatment groups. Each treatment contained six replicates, with 10 birds. The control group was supplemented with 1,000 mg/kg of uncoated complex TMs in the basal diet (UCCTM1000). The remaining 5 treatments were degressively supplemented with coated complex TMs from 1,000 to 200 mg/kg in the basal diet, which were considered as (CCTM1000), (CCTM800), (CCTM600), (CCTM400), (CCTM200), respectively. Results: On comparing the UCCTM1000 supplementation, the CCTM1000 supplementation decreased the feed to gain ratio (F/G) (P < 0.05), increased digestibility of crude protein (CP) (P < 0.05), crude fat (CF) (P < 0.05), villus height (VH) of duodenum (P < 0.05), and the mRNA expression level of occludin in jejunal mucosa (P < 0.05). In addition, the F/G was lower in the CCTE600 group than that in the CCTE200 group (P < 0.05). The VH to crypt depth (CD) ratio (V/C) of jejunum and ileum in the CCTM400 and CCTM600 groups was higher (P < 0.05) than that in the CCTM1000 group. The serum endotoxin and D-lactate level and CP digestibility were increased by dietary coated complex TMs addition level. The mRNA expression levels of claudin-1 and ZO-1 in the CCTM600 group were higher (P < 0.05) than that in the CCTM1000 group. In conclusion, adding 600 mg/kg of coated complex TMs showed the minimum F/G and the maximum crude protein digestibility and intestine development of yellow-feathered broilers compared with other treatments. This supplementation level of coated complex TMs could totally replace 1,000 mg/kg of uncoated complex TMs to further decrease the dose of TMs and raise economic benefit.
Collapse
Affiliation(s)
- Chuanbin Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
| | - Huan Liang
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
| | - Zhihui Xiong
- Gongqingcheng Element Animal Nutrition Co., Ltd., Gongqingcheng, China
| | - Youchang Zheng
- Gongqingcheng Element Animal Nutrition Co., Ltd., Gongqingcheng, China
| | - Qiuliang Yan
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
11
|
Monocarboxylate transporters (MCTs) in skeletal muscle and hypothalamus of less or more physically active mice exposed to aerobic training. Life Sci 2022; 307:120872. [PMID: 35948119 DOI: 10.1016/j.lfs.2022.120872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
AIMS The synthesis of monocarboxylate transporters (MCTs) can be stimulated by aerobic training, but few is known about this effect associated or not with non-voluntary daily activities. We examined the effect of eight weeks of aerobic training in MCTs on the skeletal muscle and hypothalamus of less or more physically active mice, which can be achieved by keeping them in two different housing models, a small cage (SC) and a large cage (LC). MAIN METHODS Forty male C57BL/6J mice were divided into four groups. In each housing condition, mice were divided into untrained (N) and trained (T). For 8 weeks, the trained animals ran on a treadmill with an intensity equivalent to 80 % of the individual critical velocity (CV), considered aerobic capacity, 40 min/day, 5 times/week. Protein expression of MCTs was determined with fluorescence Western Blot. KEY FINDINGS T groups had higher hypothalamic MCT2 than N groups (ANOVA, P = 0.032). Significant correlations were detected between hypothalamic MCT2 and CV. There was a difference between the SC and LC groups in relation to MCT4 in the hypothalamus (LC > SC, P = 0.044). Trained mice housed in LC (but not SC-T) exhibited a reduction in MCT4 muscle (P < 0.001). SIGNIFICANCE Our findings indicate that aerobically trained mice increased the expression of MCT2 protein in the hypothalamus, which has been related to the uptake of lactate in neurons. Changes in energy metabolism in physically active mice (kept in LC) may be related to upregulation of hypothalamic MCT4, probably participating in the regulation of satiety.
Collapse
|
12
|
Tu L, Fukuda M, Tong Q, Xu Y. The ventromedial hypothalamic nucleus: watchdog of whole-body glucose homeostasis. Cell Biosci 2022; 12:71. [PMID: 35619170 PMCID: PMC9134642 DOI: 10.1186/s13578-022-00799-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
The brain, particularly the ventromedial hypothalamic nucleus (VMH), has been long known for its involvement in glucose sensing and whole-body glucose homeostasis. However, it is still not fully understood how the brain detects and responds to the changes in the circulating glucose levels, as well as brain-body coordinated control of glucose homeostasis. In this review, we address the growing evidence implicating the brain in glucose homeostasis, especially in the contexts of hypoglycemia and diabetes. In addition to neurons, we emphasize the potential roles played by non-neuronal cells, as well as extracellular matrix in the hypothalamus in whole-body glucose homeostasis. Further, we review the ionic mechanisms by which glucose-sensing neurons sense fluctuations of ambient glucose levels. We also introduce the significant implications of heterogeneous neurons in the VMH upon glucose sensing and whole-body glucose homeostasis, in which sex difference is also addressed. Meanwhile, research gaps have also been identified, which necessities further mechanistic studies in future.
Collapse
Affiliation(s)
- Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Makoto Fukuda
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street #8066, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Das M, Ajit K, Mate N, Roy R, Haldar C, Gupta L, Banerjee A. Lactate-Dependent Cross-Talk Between Astrocyte and GnRH-I Neurons in Hypothalamus of Aged Brain: Decreased GnRH-I Transcription. Reprod Sci 2022; 29:2546-2564. [PMID: 35138586 DOI: 10.1007/s43032-021-00814-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022]
Abstract
GnRH-I produced by hypothalamic neurosecretory cells is considered a master regulator of mammalian reproduction. Although GnRH-I transcription is well studied, the effect of ageing on transcriptional regulation of GnRH-I has not yet been explored. Here, we elucidate the effects of ageing on the metabolic environment like lactate level and TNF-α and how these affect GnRH-I transcription. Using pathway analysis of transcriptomic data, we found that lactate is upregulated in ageing astrocytes due to the downregulation of cellular respiration pathways possibly resulting in greater pyruvate concentration for lactate production. This lactate could then be shuttled into neurons where it would affect GnRH-I transcription. We showed that supra-physiological level of lactate in young mouse brain can mimic metabolic disturbances in the old brain and cause downregulation in GnRH-I transcription at a young age. In particular, we found upregulation of GnRH-I repressors in the young brain treated with high levels of lactate similar to old brain. Hence, this confirmed that aged metabolic environment can affect GnRH-I transcription even in the young brain. Further downstream analysis using the TRUST database showed NF-Kb signalling which lies downstream of both lactate and TNF-α as being capable of upregulating GnRH-I repressors. Since NF-Kb signalling has been shown in our study as well as others to be induced by TNF-α during ageing, it is likely that GnRH-I transcriptional regulation is mediated through these pathways. Thus, we formed a model for explaining the downregulation of GnRH-I transcription during ageing through differential expression of its TFs in an aged metabolic environment.
Collapse
Affiliation(s)
- Moitreyi Das
- Department of Zoology, Goa University, Taleigao Plateau, Goa, India.
| | - Kamal Ajit
- Department of Biological Sciences, KK Birla, BITS Pilani, Goa Campus, Zuarinagar, Goa, India
| | - Nayan Mate
- Department of Biological Sciences, KK Birla, BITS Pilani, Goa Campus, Zuarinagar, Goa, India
| | - Ramaballav Roy
- Department of Zoology, Goa University, Taleigao Plateau, Goa, India
| | | | - Lalita Gupta
- Department of Zoology, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Arnab Banerjee
- Department of Biological Sciences, KK Birla, BITS Pilani, Goa Campus, Zuarinagar, Goa, India.
| |
Collapse
|
14
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
15
|
Órdenes P, Villar PS, Tarifeño-Saldivia E, Salgado M, Elizondo-Vega R, Araneda RC, García-Robles MA. Lactate activates hypothalamic POMC neurons by intercellular signaling. Sci Rep 2021; 11:21644. [PMID: 34737351 PMCID: PMC8569171 DOI: 10.1038/s41598-021-00947-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/07/2021] [Indexed: 02/03/2023] Open
Abstract
Previous studies indicate that the activity of hypothalamic POMC neurons can be regulated by glucose via intracellular mechanisms, but its regulation by lactate is poorly understood. In addition to its energetic role, lactate acts as a signaling molecule. In this study, we evaluated the function and location of the lactate receptor, hydroxycarboxylic acid receptor 1 (HCAR1). We used a conditional genetic approach to label POMC neurons and evaluated their sensitivity to lactate using patch-clamp recordings. l-Lactate and 3-chloro-5-hydroxybenzoic acid (3Cl-HBA), HCAR1 specific agonist depolarized POMC neurons and the increase in excitability was abolished by pertussis toxin (PTX), indicating the involvement of Gαi/o-protein-coupled receptors. In addition, the depolarization of a subset of POMC neurons was sensitive to α-cyano-4-hydroxycinnamate (4-CIN), a lactate transporter blocker, suggesting that the depolarization induced by l-lactate can also occur by direct intracellular action. Surprisingly, HCAR1 was not detected in POMC neurons, but instead localized in astrocytes. These results suggest a new lactate-mediated mechanism for astrocyte-neuron intercellular communication.
Collapse
Affiliation(s)
- P Órdenes
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - P S Villar
- Department of Biology Bioscience Research Bldg R-1114, University of Maryland, College Park, MD, 20742, USA
| | - E Tarifeño-Saldivia
- Gene Expression and Regulation Laboratory, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - M Salgado
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - R Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo C Araneda
- Department of Biology Bioscience Research Bldg R-1114, University of Maryland, College Park, MD, 20742, USA.
| | - María A García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
16
|
García-Rodríguez D, Giménez-Cassina A. Ketone Bodies in the Brain Beyond Fuel Metabolism: From Excitability to Gene Expression and Cell Signaling. Front Mol Neurosci 2021; 14:732120. [PMID: 34512261 PMCID: PMC8429829 DOI: 10.3389/fnmol.2021.732120] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ketone bodies are metabolites that replace glucose as the main fuel of the brain in situations of glucose scarcity, including prolonged fasting, extenuating exercise, or pathological conditions such as diabetes. Beyond their role as an alternative fuel for the brain, the impact of ketone bodies on neuronal physiology has been highlighted by the use of the so-called “ketogenic diets,” which were proposed about a century ago to treat infantile seizures. These diets mimic fasting by reducing drastically the intake of carbohydrates and proteins and replacing them with fat, thus promoting ketogenesis. The fact that ketogenic diets have such a profound effect on epileptic seizures points to complex biological effects of ketone bodies in addition to their role as a source of ATP. In this review, we specifically focus on the ability of ketone bodies to regulate neuronal excitability and their effects on gene expression to respond to oxidative stress. Finally, we also discuss their capacity as signaling molecules in brain cells.
Collapse
Affiliation(s)
- Darío García-Rodríguez
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa" (CBMSO UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alfredo Giménez-Cassina
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa" (CBMSO UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Wang J, Beecher K. TSPO: an emerging role in appetite for a therapeutically promising biomarker. Open Biol 2021; 11:210173. [PMID: 34343461 PMCID: PMC8331234 DOI: 10.1098/rsob.210173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that an obesogenic Western diet causes neuroinflammatory damage to the brain, which then promotes further appetitive behaviour. Neuroinflammation has been extensively studied by analysing the translocator protein of 18 kDa (TSPO), a protein that is upregulated in the inflamed brain following a damaging stimulus. As a result, there is a rich supply of TSPO-specific agonists, antagonists and positron emission tomography ligands. One TSPO ligand, etifoxine, is also currently used clinically for the treatment of anxiety with a minimal side-effect profile. Despite the neuroinflammatory pathogenesis of diet-induced obesity, and the translational potential of targeting TSPO, there is sparse literature characterizing the effect of TSPO on appetite. Therefore, in this review, the influence of TSPO on appetite is discussed. Three putative mechanisms for TSPO's appetite-modulatory effect are then characterized: the TSPO–allopregnanolone–GABAAR signalling axis, glucosensing in tanycytes and association with the synaptic protein RIM-BP1. We highlight that, in addition to its plethora of functions, TSPO is a regulator of appetite. This review ultimately suggests that the appetite-modulating function of TSPO should be further explored due to its potential therapeutic promise.
Collapse
Affiliation(s)
- Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Rohrbach A, Caron E, Dali R, Brunner M, Pasquettaz R, Kolotuev I, Santoni F, Thorens B, Langlet F. Ablation of glucokinase-expressing tanycytes impacts energy balance and increases adiposity in mice. Mol Metab 2021; 53:101311. [PMID: 34325016 PMCID: PMC8379510 DOI: 10.1016/j.molmet.2021.101311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023] Open
Abstract
Objectives Glucokinase (GCK) is critical for glucosensing. In rats, GCK is expressed in hypothalamic tanycytes and appears to play an essential role in feeding behavior. In this study, we investigated the distribution of GCK-expressing tanycytes in mice and their role in the regulation of energy balance. Methods In situ hybridization, reporter gene assay, and immunohistochemistry were used to assess GCK expression along the third ventricle in mice. To evaluate the impact of GCK-expressing tanycytes on arcuate neuron function and mouse physiology, Gck deletion along the ventricle was achieved using loxP/Cre recombinase technology in adult mice. Results GCK expression was low along the third ventricle, but detectable in tanycytes facing the ventromedial arcuate nucleus from bregma −1.5 to −2.2. Gck deletion induced the death of this tanycyte subgroup through the activation of the BAD signaling pathway. The ablation of GCK-expressing tanycytes affected different aspects of energy balance, leading to an increase in adiposity in mice. This phenotype was systematically associated with a defect in NPY neuron function. In contrast, the regulation of glucose homeostasis was mostly preserved, except for glucoprivic responses. Conclusions This study describes the role of GCK in tanycyte biology and highlights the impact of tanycyte loss on the regulation of energy balance. vmARH tanycytes express glucokinase. Glucokinase deletion in tanycytes induces cell death. Ablation of vmARH tanycytes alters energy balance and adiposity. Ablation of vmARH tanycytes alters NPY neuron function.
Collapse
Affiliation(s)
- Antoine Rohrbach
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S, 1172, Lille, France
| | - Rafik Dali
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Maxime Brunner
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Faculty of Biology and Medicine, 1011, Lausanne, Switzerland
| | - Roxane Pasquettaz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Irina Kolotuev
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Faculty of Biology and Medicine, 1011, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fanny Langlet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
19
|
Salgado M, García-Robles MÁ, Sáez JC. Purinergic signaling in tanycytes and its contribution to nutritional sensing. Purinergic Signal 2021; 17:607-618. [PMID: 34018139 DOI: 10.1007/s11302-021-09791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022] Open
Abstract
Tanycytes are hypothalamic radial glial-like cells with an important role in the regulation of neuroendocrine axes and energy homeostasis. These cells have been implicated in glucose, amino acids, and fatty acid sensing in the hypothalamus of rodents, where they are strategically positioned. While their cell bodies contact the cerebrospinal fluid, their extensive processes contact neurons of the arcuate and ventromedial nuclei, protagonists in the regulation of food intake. A growing body of evidence has shown that purinergic signaling plays a relevant role in this homeostatic role of tanycytes, likely regulating the release of gliotransmitters that will modify the activity of satiety-controlling hypothalamic neurons. Connexin hemichannels have proven to be particularly relevant in these mechanisms since they are responsible for the release of ATP from tanycytes in response to nutritional signals. On the other hand, either ionotropic or metabotropic ATP receptors are involved in the generation of intracellular Ca2+ waves in response to hypothalamic nutrients, which can spread between glial cells and towards neighboring neurons. This review will summarize recent evidence that supports a nutrient sensor role for tanycytes, highlighting the participation of purinergic signaling in this process.
Collapse
Affiliation(s)
- Magdiel Salgado
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - María Á García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
20
|
Bolborea M, Langlet F. What is the physiological role of hypothalamic tanycytes in metabolism? Am J Physiol Regul Integr Comp Physiol 2021; 320:R994-R1003. [PMID: 33826442 DOI: 10.1152/ajpregu.00296.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In vertebrates, the energy balance process is tightly controlled by complex neural circuits that sense metabolic signals and adjust food intake and energy expenditure in line with the physiological requirements of optimal conditions. Within neural networks controlling energy balance, tanycytes are peculiar ependymoglial cells that are nowadays recognized as multifunctional players in the metabolic hypothalamus. However, the physiological function of hypothalamic tanycytes remains unclear, creating a number of ambiguities in the field. Here, we review data accumulated over the years that demonstrate the physiological function of tanycytes in the maintenance of metabolic homeostasis, opening up new research avenues. The presumed involvement of tanycytes in the pathophysiology of metabolic disorders and age-related neurodegenerative diseases will be finally discussed.
Collapse
Affiliation(s)
- Matei Bolborea
- Central and Peripheral Mechanisms of Neurodegeneration, INSERM U1118, Université de Strasbourg, Strasbourg, France.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Fanny Langlet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Barahona MJ, Rojas J, Uribe EA, García-Robles MA. Tympanic Membrane Rupture During Stereotaxic Surgery Disturbs the Normal Feeding Behavior in Rats. Front Behav Neurosci 2020; 14:591204. [PMID: 33335480 PMCID: PMC7735996 DOI: 10.3389/fnbeh.2020.591204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Stereotactic surgery is a widely used procedure in neuroscience research to study the brain’s regulation of feeding behavior. In line with this notion, this study aims to assess how food consumption and feeding patterns are affected in response to the use of auditory bars that preserve or damage the tympanic membrane during stereotactic surgery. Our previous observations led us to hypothesize that the traumatic tympanic membrane rupture affects food intake and feeding patterns in rats undergoing stereotactic procedures. Thereby, female and male rats were cannulated in the third ventricle (3V) using both types of auditory bars. Post-surgical pain was assessed using the grimace scale. Food intake, meal patterns and weight gain or loss were analyzed for 5–7 consecutive days after surgery. Normal food intake, increased body weight and regular meal patterns were observed from postoperative day 2 when the stereotactic procedure was performed using auditory bars that maintain the integrity of the tympanic membrane. However, tympanic membrane rupture prevented the expected recovery of food intake and body weight. This effect was accompanied by an alteration in eating patterns, which was persistent over 7 days of recovery. Thus, tympanic membrane preservation during surgery is necessary to evaluate short-term feeding patterns. This study demonstrates auditory bars that do not damage the tympanic membrane should be used when performing stereotactic surgery for subsequent analysis of rat behavior.
Collapse
Affiliation(s)
- María J Barahona
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Joaquín Rojas
- Centro Regional de Estudios para la Vida (CREAV), Universidad de Concepción, Concepción, Chile
| | - Elena A Uribe
- Laboratorio de Enzmología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María A García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
22
|
Recabal A, Fernández P, López S, Barahona MJ, Ordenes P, Palma A, Elizondo-Vega R, Farkas C, Uribe A, Caprile T, Sáez JC, García-Robles MA. The FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway. J Neurochem 2020; 156:182-199. [PMID: 32936929 PMCID: PMC7894481 DOI: 10.1111/jnc.15188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
In the adult hypothalamus, the neuronal precursor role is attributed to the radial glia-like cells that line the third-ventricle (3V) wall called tanycytes. Under nutritional cues, including hypercaloric diets, tanycytes proliferate and differentiate into mature neurons that moderate body weight, suggesting that hypothalamic neurogenesis is an adaptive mechanism in response to metabolic changes. Previous studies have shown that the tanycyte glucosensing mechanism depends on connexin-43 hemichannels (Cx43 HCs), purine release, and increased intracellular free calcium ion concentration [(Ca2+ )i ] mediated by purinergic P2Y receptors. Since, Fibroblast Growth Factor 2 (FGF2) causes similar purinergic events in other cell types, we hypothesize that this pathway can be also activated by FGF2 in tanycytes to promote their proliferation. Here, we used bromodeoxyuridine (BrdU) incorporation to evaluate if FGF2-induced tanycyte cell division is sensitive to Cx43 HC inhibition in vitro and in vivo. Immunocytochemical analyses showed that cultured tanycytes maintain the expression of in situ markers. After FGF2 exposure, tanycytic Cx43 HCs opened, enabling release of ATP to the extracellular milieu. Moreover, application of external ATP was enough to induce their cell division, which could be suppressed by Cx43 HC or P2Y1-receptor inhibitors. Similarly, in vivo experiments performed on rats by continuous infusion of FGF2 and a Cx43 HC inhibitor into the 3V, demonstrated that FGF2-induced β-tanycyte proliferation is sensitive to Cx43 HC blockade. Thus, FGF2 induced Cx43 HC opening, triggered purinergic signaling, and increased β-tanycytes proliferation, highlighting some of the molecular mechanisms involved in the cell division response of tanycyte. This article has an Editorial Highlight see https://doi.org/10.1111/jnc.15218.
Collapse
Affiliation(s)
- Antonia Recabal
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Paola Fernández
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago
| | - Sergio López
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - María J Barahona
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Patricio Ordenes
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Alejandra Palma
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | | | - Carlos Farkas
- Research Institute in Oncology and Hematology, Winnipeg, Manitoba, Canada
| | - Amparo Uribe
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Universidad de Concepción, Concepción, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
23
|
Yoo S, Cha D, Kim S, Jiang L, Cooke P, Adebesin M, Wolfe A, Riddle R, Aja S, Blackshaw S. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 2020; 68:1987-2000. [PMID: 32173924 PMCID: PMC7423758 DOI: 10.1002/glia.23817] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Tanycytes are radial glial cells located in the mediobasal hypothalamus. Recent studies have proposed that tanycytes play an important role in hypothalamic control of energy homeostasis, although this has not been directly tested. Here, we report the phenotype of mice in which tanycytes of the arcuate nucleus and median eminence were conditionally ablated in adult mice. Although the cerebrospinal fluid-hypothalamic barrier was rendered more permeable following tanycyte ablation, neither the blood-hypothalamic barrier nor leptin-induced pSTAT3 activation in hypothalamic parenchyma were affected. We observed a significant increase in visceral fat distribution accompanying insulin insensitivity in male mice, without significant effect on either body weight or food intake. A high-fat diet tended to accelerate overall body weight gain in tanycyte-ablated mice, but the development of visceral adiposity and insulin insensitivity was comparable to wildtype. Thermoneutral housing exacerbated fat accumulation and produced a shift away from fat oxidation in tanycyte-ablated mice. These results clarify the extent to which tanycytes regulate energy balance, and demonstrate a role for tanycytes in regulating fat metabolism.
Collapse
Affiliation(s)
- Sooyeon Yoo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Cha
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Soohyun Kim
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick Cooke
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mobolanie Adebesin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ryan Riddle
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Susan Aja
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Pasquettaz R, Kolotuev I, Rohrbach A, Gouelle C, Pellerin L, Langlet F. Peculiar protrusions along tanycyte processes face diverse neural and nonneural cell types in the hypothalamic parenchyma. J Comp Neurol 2020; 529:553-575. [PMID: 32515035 PMCID: PMC7818493 DOI: 10.1002/cne.24965] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
Abstract
Tanycytes are highly specialized ependymal cells that line the bottom and the lateral walls of the third ventricle. In contact with the cerebrospinal fluid through their cell bodies, they send processes into the arcuate nucleus, the ventromedial nucleus, and the dorsomedial nucleus of the hypothalamus. In the present work, we combined transgenic and immunohistochemical approaches to investigate the neuroanatomical associations between tanycytes and neural cells present in the hypothalamic parenchyma, in particular in the arcuate nucleus. The specific expression of tdTomato in tanycytes first allowed the observation of peculiar subcellular protrusions along tanycyte processes and at their endfeet such as spines, swelling, en passant boutons, boutons, or claws. Interestingly, these protrusions contact different neural cells in the brain parenchyma including blood vessels and neurons, and in particular NPY and POMC neurons in the arcuate nucleus. Using both fluorescent and electron microscopy, we finally observed that these tanycyte protrusions contain ribosomes, mitochondria, diverse vesicles, and transporters, suggesting dense tanycyte/neuron and tanycyte/blood vessel communications. Altogether, our results lay the neuroanatomical basis for tanycyte/neural cell interactions, which will be useful to further understand cell-to-cell communications involved in the regulation of neuroendocrine functions.
Collapse
Affiliation(s)
- Roxane Pasquettaz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Irina Kolotuev
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Rohrbach
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Cathy Gouelle
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex, France.,Inserm U1082, Universite de Poitiers, Poitiers Cedex, France
| | - Fanny Langlet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Langlet F. Targeting Tanycytes: Balance between Efficiency and Specificity. Neuroendocrinology 2020; 110:574-581. [PMID: 31986518 DOI: 10.1159/000505549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022]
Abstract
Tanycytes are peculiar ependymoglial cells lining the bottom and the lateral wall of the third ventricle. For a decade, the utilization of molecular genetic approaches allowed us to make important discoveries about their diverse physiological functions. Here, I review the current methods used to target tanycytes, focusing on their specificity, their efficiency, their limitations, as well as their potential future improvements.
Collapse
Affiliation(s)
- Fanny Langlet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,
| |
Collapse
|
26
|
Müller-Fielitz H, Schwaninger M. The Role of Tanycytes in the Hypothalamus-Pituitary-Thyroid Axis and
the Possibilities for Their Genetic Manipulation. Exp Clin Endocrinol Diabetes 2019; 128:388-394. [DOI: 10.1055/a-1065-1855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThyroid hormone (TH) regulation is important for development, energy homeostasis,
heart function, and bone formation. To control the effects of TH in target
organs, the hypothalamus-pituitary-thyroid (HPT) axis and the tissue-specific
availability of TH are highly regulated by negative feedback. To exert a central
feedback, TH must enter the brain via specific transport mechanisms and cross
the blood-brain barrier. Here, tanycytes, which are located in the ventral walls
of the 3rd ventricle in the mediobasal hypothalamus (MBH), function as
gatekeepers. Tanycytes are able to transport, sense, and modify the release of
hormones of the HPT axis and are involved in feedback regulation. In this
review, we focus on the relevance of tanycytes in thyrotropin-releasing hormone
(TRH) release and review available genetic tools to investigate the
physiological functions of these cells.
Collapse
Affiliation(s)
- Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology,
Lübeck, University of Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology,
Lübeck, University of Lübeck, Germany
| |
Collapse
|
27
|
Elizondo-Vega R, Oyarce K, Salgado M, Barahona MJ, Recabal A, Ordenes P, López S, Pincheira R, Luz-Crawford P, García-Robles MA. Inhibition of Hypothalamic MCT4 and MCT1-MCT4 Expressions Affects Food Intake and Alters Orexigenic and Anorexigenic Neuropeptide Expressions. Mol Neurobiol 2019; 57:896-909. [PMID: 31578706 PMCID: PMC7031169 DOI: 10.1007/s12035-019-01776-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022]
Abstract
Feeding behavior regulation is a complex process, which depends on the central integration of different signals, such as glucose, leptin, and ghrelin. Recent studies have shown that glial cells known as tanycytes that border the basal third ventricle (3V) detect glucose and then use glucose-derived signaling to inform energy status to arcuate nucleus (ARC) neurons to regulate feeding behavior. Monocarboxylate transporters (MCT) 1 and MCT4 are localized in the cellular processes of tanycytes, which could facilitate monocarboxylate release to orexigenic and anorexigenic neurons. We hypothesize that MCT1 and MCT4 inhibitions could alter the metabolic communication between tanycytes and ARC neurons, affecting feeding behavior. We have previously shown that MCT1 knockdown rats eat more and exhibit altered satiety parameters. Here, we generate MCT4 knockdown rats and MCT1-MCT4 double knockdown rats using adenovirus-mediated transduction of a shRNA into the 3V. Feeding behavior was evaluated in MCT4 and double knockdown animals, and neuropeptide expression in response to intracerebroventricular glucose administration was measured. MCT4 inhibition produced a decrease in food intake, contrary to double knockdown. MCT4 inhibition was accompanied by a decrease in eating rate and mean meal size and an increase in mean meal duration, parameters that are not changed in the double knockdown animals with exception of eating rate. Finally, we observed a loss in glucose regulation of orexigenic neuropeptides and abnormal expression of anorexigenic neuropeptides in response to fasting when these transporters are inhibited. Taken together, these results indicate that MCT1 and MCT4 expressions in tanycytes play a role in feeding behavior regulation.
Collapse
Affiliation(s)
- Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion, Chile
| | - Karina Oyarce
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepcion, Chile
| | - Magdiel Salgado
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion, Chile
| | - María José Barahona
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion, Chile
| | - Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion, Chile
| | - Patricio Ordenes
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion, Chile
| | - Sergio López
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion, Chile
| | - Roxana Pincheira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Angeles García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepcion, Chile.
| |
Collapse
|
28
|
Wu X, Dai S, Hua J, Hu H, Wang S, Wen A. Influence of Dietary Copper Methionine Concentrations on Growth Performance, Digestibility of Nutrients, Serum Lipid Profiles, and Immune Defenses in Broilers. Biol Trace Elem Res 2019; 191:199-206. [PMID: 30515712 DOI: 10.1007/s12011-018-1594-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
A 42-day experiment was conducted to evaluate the influence of dietary copper (Cu) concentrations on growth performance, nutrient digestibility, and serum parameters in broilers aged from 1 to 42 days. Five hundred forty 1-day-old broilers were randomly assigned into 1 of the following 6 dietary treatments: (1) control (basal diet without supplemental Cu), (2) 15 mg/kg supplemental Cu (Cu15), (3) 30 mg/kg supplemental Cu (Cu30), (4) 60 mg/kg supplemental Cu (Cu60), (5) 120 mg/kg supplemental Cu (Cu120), and (6) 240 mg/kg supplemental Cu (Cu240), Cu as copper methionine. A 4-day metabolism trial was conducted during the last week of the experiment feeding. The results showed that dietary Cu supplementation increased the average daily gain and the average daily feed intake (P < 0.01). The feed gain ratio, however, was not affected by dietary Cu (P > 0.10). Additionally, dietary Cu supplementation increased the digestibility of fat and energy (P < 0.05). The concentration of serum cholesterol, triglycerides, and high-density lipoprotein cholesterol decreased with dietary Cu supplementation (P < 0.05). The activities of serum Cu-Zn superoxide dismutase (P < 0.05), glutathione peroxidase (P < 0.05), and ceruloplasmin (P = 0.09), on the contrary, were increased by Cu addition. For immune indexes, dietary Cu supplementation increased serum IgA and IgM (P < 0.05). In addition, the activities of serum ALT increased with increasing dietary Cu supplementation (P < 0.05). In conclusion, our data suggest that Cu supplementation can increase fat digestibility and promote growth. Additionally, dietary Cu supplementation can reduce serum cholesterol and enhance antioxidant capacity in broilers.
Collapse
Affiliation(s)
- Xuezhuang Wu
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Sifa Dai
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Hong Hu
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China.
| |
Collapse
|
29
|
Kim S, Kim N, Park S, Jeon Y, Lee J, Yoo SJ, Lee JW, Moon C, Yu SW, Kim EK. Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and improve energy balance. Autophagy 2019; 16:1200-1220. [PMID: 31469345 PMCID: PMC7469491 DOI: 10.1080/15548627.2019.1659616] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hypothalamic glial cells named tanycytes, which line the 3rd ventricle (3V), are components of the hypothalamic network that regulates a diverse array of metabolic functions for energy homeostasis. Herein, we report that TSPO (translocator protein), an outer mitochondrial protein, is highly enriched in tanycytes and regulates homeostatic responses to nutrient excess as a potential target for an effective intervention in obesity. Administration of a TSPO ligand, PK11195, into the 3V, and tanycyte-specific deletion of Tspo reduced food intake and elevated energy expenditure, leading to negative energy balance in a high-fat diet challenge. Ablation of tanycytic Tspo elicited AMPK-dependent lipophagy, breaking down lipid droplets into free fatty acids, thereby elevating ATP in a lipid stimulus. Our findings suggest that tanycytic TSPO affects systemic energy balance through macroautophagy/autophagy-regulated lipid metabolism, and highlight the physiological significance of TSPO in hypothalamic lipid sensing and bioenergetics in response to overnutrition. Abbreviations 3V: 3rd ventricle; ACAC: acetyl-Coenzyme A carboxylase; AGRP: agouti related neuropeptide; AIF1/IBA1: allograft inflammatory factor 1; AMPK: AMP-activated protein kinase; ARC: arcuate nucleus; Atg: autophagy related; Bafilo: bafilomycin A1; CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2, beta; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CNS: central nervous system; COX4I1: cytochrome c oxidase subunit 4I1; FFA: free fatty acid; GFAP: glial fibrillary acidic protein; HFD: high-fat diet; ICV: intracerebroventricular; LAMP2: lysosomal-associated membrane protein 2; LD: lipid droplet; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MBH: mediobasal hypothalamus; ME: median eminence; MEF: mouse embryonic fibroblast; NCD: normal chow diet; NEFM/NFM: neurofilament medium; NPY: neuropeptide Y; OL: oleic acid; POMC: pro-opiomelanocortin-alpha; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; Rax: retina and anterior neural fold homeobox; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; RER: respiratory exchange ratio; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TG: triglyceride; TSPO: translocator protein; ULK1: unc-51 like kinase 1; VCO2: carbon dioxide production; VMH: ventromedial hypothalamus; VO2: oxygen consumption
Collapse
Affiliation(s)
- Seolsong Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea
| | - Nayoun Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea
| | - Seokjae Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea
| | - Yoonjeong Jeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea
| | - Jaemeun Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea
| | - Seung-Jun Yoo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea
| | - Ji-Won Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea
| |
Collapse
|
30
|
Salgado M, Ordenes P, Villagra M, Uribe E, García-Robles MDLA, Tarifeño-Saldivia E. When a Little Bit More Makes the Difference: Expression Levels of GKRP Determines the Subcellular Localization of GK in Tanycytes. Front Neurosci 2019; 13:275. [PMID: 30983961 PMCID: PMC6449865 DOI: 10.3389/fnins.2019.00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
Glucose homeostasis is performed by specialized cells types that detect and respond to changes in systemic glucose concentration. Hepatocytes, β-cells and hypothalamic tanycytes are part of the glucosensor cell types, which express several proteins involved in the glucose sensing mechanism such as GLUT2, Glucokinase (GK) and Glucokinase regulatory protein (GKRP). GK catalyzes the phosphorylation of glucose to glucose-6-phosphate (G-6P), and its activity and subcellular localization are regulated by GKRP. In liver, when glucose concentration is low, GKRP binds to GK holding it in the nucleus, while the rise in glucose concentration induces a rapid export of GK from the nucleus to the cytoplasm. In contrast, hypothalamic tanycytes display inverse compartmentalization dynamic in response to glucose: a rise in the glucose concentration drives nuclear compartmentalization of GK. The underlying mechanism responsible for differential GK subcellular localization in tanycytes has not been described yet. However, it has been suggested that relative expression between GK and GKRP might play a role. To study the effects of GKRP expression levels in the subcellular localization of GK, we used insulinoma 832/13 cells and hypothalamic tanycytes to overexpress the tanycytic sequences of Gckr. By immunocytochemistry and Western blot analysis, we observed that overexpression of GKRP, independently of the cellular context, turns GK localization to a liver-like fashion, as GK is mainly localized in the nucleus in response to low glucose. Evaluating the expression levels of GKRP in relation to GK through RT-qPCR, suggest that excess of GKRP might influence the pattern of GK subcellular localization. In this sense, we propose that the low expression of GKRP (in relation to GK) observed in tanycytes is responsible, at least in part, for the compartmentalization pattern observed in this cell type. Since GKRP behaves as a GK inhibitor, the regulation of GKRP expression levels or activity in tanycytes could be used as a therapeutic target to regulate the glucosensing activity of these cells and consequently to regulate feeding behavior.
Collapse
Affiliation(s)
- Magdiel Salgado
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Patricio Ordenes
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Marcos Villagra
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Elena Uribe
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | | | - Estefanía Tarifeño-Saldivia
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| |
Collapse
|
31
|
Langlet F. Tanycyte Gene Expression Dynamics in the Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:286. [PMID: 31133987 PMCID: PMC6514105 DOI: 10.3389/fendo.2019.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Animal survival relies on a constant balance between energy supply and energy expenditure, which is controlled by several neuroendocrine functions that integrate metabolic information and adapt the response of the organism to physiological demands. Polarized ependymoglial cells lining the floor of the third ventricle and sending a single process within metabolic hypothalamic parenchyma, tanycytes are henceforth described as key components of the hypothalamic neural network controlling energy balance. Their strategic position and peculiar properties convey them diverse physiological functions ranging from blood/brain traffic controllers, metabolic modulators, and neural stem/progenitor cells. At the molecular level, these functions rely on an accurate regulation of gene expression. Indeed, tanycytes are characterized by their own molecular signature which is mostly associated to their diverse physiological functions, and the detection of variations in nutrient/hormone levels leads to an adequate modulation of genetic profile in order to ensure energy homeostasis. The aim of this review is to summarize recent knowledge on the nutritional control of tanycyte gene expression.
Collapse
|
32
|
Palma-Chavez A, Konar-Nié M, Órdenes P, Maurelia F, Elizondo-Vega R, Oyarce K, López S, Rojas J, Steinberg X, García-Robles MA, Sepúlveda FJ. Glucose Increase DAGLα Levels in Tanycytes and Its Inhibition Alters Orexigenic and Anorexigenic Neuropeptides Expression in Response to Glucose. Front Endocrinol (Lausanne) 2019; 10:647. [PMID: 31620093 PMCID: PMC6763563 DOI: 10.3389/fendo.2019.00647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is composed of a group of Gi-coupled protein receptors and enzymes, producing and degrading the endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA). Endocannabinoid-mediated signaling modulates brain functions, such as pain, mood, memory, and feeding behavior. The activation of the ECS is associated with overeating and obesity; however, the expression of components of this system has been only partially studied in the hypothalamus, a critical region implicated in feeding behavior. Within this brain region, anorexigenic, and orexigenic neurons of the arcuate nucleus (ARC) are in close contact with tanycytes, glial radial-like cells that line the lateral walls and floor of the third ventricle (3V). The specific function of tanycytes and the effects of metabolic signals generated by them on adjacent neurons is starting to be elucidated. We have proposed that the ECS within tanycytes modulates ARC neurons, thus modifying food intake. Here, we evaluated the expression and the loss of function of the 2-AG-producing enzyme, diacylglycerol lipase-alpha (DAGLα). Using Western blot and immunohistochemistry analyses in basal hypothalamus sections of adult rats under several glycemic conditions, we confirm that DAGLα is strongly expressed at the basal hypothalamus in glial and neuronal cells, increasing further in response to greater extracellular glucose levels. Using a DAGLα-inhibiting adenovirus (shRNA), suppression of DAGLα expression in tanycytes altered the usual response to intracerebroventricular glucose in terms of neuropeptides produced by neurons of the ARC. Thus, these results strongly suggest that the tanycytes could generate 2-AG, which modulates the function of anorexigenic and orexigenic neurons.
Collapse
Affiliation(s)
- Alejandra Palma-Chavez
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
- Laboratorio de Bioquímica y Biología Celular, Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - Macarena Konar-Nié
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
| | - Patricio Órdenes
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
| | - Felipe Maurelia
- Laboratorio de Bioquímica y Biología Celular, Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
| | - Karina Oyarce
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - Sergio López
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
| | - Joaquin Rojas
- Centro de Estudios Avanzados para la Vida (CREAV), Universidad de Concepción, Concepción, Chile
| | - Ximena Steinberg
- Laboratorio de Bioquímica y Biología Celular, Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - María A. García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
- Centro de Estudios Avanzados para la Vida (CREAV), Universidad de Concepción, Concepción, Chile
- *Correspondence: María A. García-Robles
| | - Fernando J. Sepúlveda
- Laboratorio de Biología Celular, Departamento de Biología Celular, Universidad de Concepcion, Concepción, Chile
- Laboratorio de Bioquímica y Biología Celular, Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
- Fernando J. Sepúlveda
| |
Collapse
|
33
|
Elizondo-Vega RJ, Recabal A, Oyarce K. Nutrient Sensing by Hypothalamic Tanycytes. Front Endocrinol (Lausanne) 2019; 10:244. [PMID: 31040827 PMCID: PMC6476911 DOI: 10.3389/fendo.2019.00244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 01/28/2023] Open
Abstract
Nutritional signals have long been implicated in the control of cellular processes that take place in the hypothalamus. This includes food intake regulation and energy balance, inflammation, and most recently, neurogenesis. One of the main glial cells residing in the hypothalamus are tanycytes, radial glial-like cells, whose bodies are located in the lining of the third ventricle, with processes extending to the parenchyma and reaching neuronal nuclei. Their unique anatomical location makes them directly exposed to nutrients in the cerebrospinal fluid. Several research groups have shown that tanycytes can respond to nutritional signals by different mechanisms, such as calcium signaling, metabolic shift, and changes in proliferation/differentiation potential. Despite cumulative evidence showing tanycytes have the molecular components to participate in nutrient detection and response, there are no enough functional studies connecting tanycyte nutrient sensing with hypothalamic functions, nor that highlight the relevance of this process in physiological and pathological context. This review will summarize recent evidence that supports a nutrient sensor role for tanycytes in the hypothalamus, highlighting the need for more detailed analysis on the actual implications of tanycyte-nutrient sensing and how this process can be modulated, which might allow the discovery of new metabolic and signaling pathways as therapeutic targets, for the treatment of hypothalamic related diseases.
Collapse
Affiliation(s)
- Roberto Javier Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karina Oyarce
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- *Correspondence: Karina Oyarce
| |
Collapse
|
34
|
Al-Khawaga S, AlRayahi J, Khan F, Saraswathi S, Hasnah R, Haris B, Mohammed I, Abdelalim EM, Hussain K. A SLC16A1 Mutation in an Infant With Ketoacidosis and Neuroimaging Assessment: Expanding the Clinical Spectrum of MCT1 Deficiency. Front Pediatr 2019; 7:299. [PMID: 31380330 PMCID: PMC6657212 DOI: 10.3389/fped.2019.00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
The solute carrier family 16 member 1 (SLC16A1) gene encodes for monocarboxylate transporter 1 (MCT1) that mediates the movement of monocarboxylates, such as lactate and pyruvate across cell membranes. Inactivating recessive homozygous or heterozygous mutations in the SLC16A1 gene were described in patients with recurrent ketoacidosis and hypoglycemia, a potentially lethal condition. In the brain where MCT1 is highly localized around axons and oligodendrocytes, glucose is the most crucial energy substrate while lactate is an alternative substrate. MCT1 mutation or reduced expression leads to neuronal loss due to axonal degeneration in an animal model. Herein, we describe a 28 months old female patient who presented with the first hypoglycemic attack associated with ketoacidosis starting at the age of 3 days old. Whole exome sequencing (WES) performed at 6 months of age revealed a c.218delG mutation in exon 3 in the SLC16A1 gene. The variant is expected to result in loss of normal MCT1 function. Our patient is amongst the youngest presenting with MCT1 deficiency. A detailed neuroimaging assessment performed at 18 months of age revealed a complex white and gray matter disease, with heterotopia. The threshold of blood glucose to circumvent neurological sequelae cannot be set because it is patient-specific, nevertheless, neurodevelopmental follow up is recommended in this patient. Further functional studies will be required to understand the role of the MCT1 in key tissues such as the central nervous system (CNS), liver, muscle and ketone body metabolism. Our case suggests possible neurological sequelae that could be associated with MCT1 deficiency, an observation that could facilitate the initiation of appropriate neurodevelopmental follow up in such patients.
Collapse
Affiliation(s)
- Sara Al-Khawaga
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jehan AlRayahi
- Division of Neuroradiology, Diagnostic Imaging, Sidra Medicine, Doha, Qatar
| | - Faiyaz Khan
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Saras Saraswathi
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Reem Hasnah
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Basma Haris
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Idris Mohammed
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
35
|
Recabal A, Elizondo-Vega R, Philippot C, Salgado M, López S, Palma A, Tarifeño-Saldivia E, Timmermann A, Seifert G, Caprile T, Steinhäuser C, García-Robles MA. Connexin-43 Gap Junctions Are Responsible for the Hypothalamic Tanycyte-Coupled Network. Front Cell Neurosci 2018; 12:406. [PMID: 30534054 PMCID: PMC6275304 DOI: 10.3389/fncel.2018.00406] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Tanycytes are hypothalamic radial glia-like cells that form the basal wall of the third ventricle (3V) where they sense glucose and modulate neighboring neuronal activity to control feeding behavior. This role requires the coupling of hypothalamic cells since transient decreased hypothalamic Cx43 expression inhibits the increase of brain glucose-induced insulin secretion. Tanycytes have been postulated as possible hypothalamic neuronal precursors due to their privileged position in the hypothalamus that allows them to detect mitogenic signals and because they share the markers and characteristics of neuronal precursors located in other neurogenic niches, including the formation of coupled networks through connexins. Using wild-type (WT), Cx30−/– and Cx30−/–, Cx43fl/fl:glial fibrillary acidic protein (GFAP)-Cre (double knockout, dKO) mouse lines, we demonstrated that tanycytes are highly coupled to each other and also give rise to a panglial network specifically through Cx43. Using the human GFAP (hGFAP)-enhanced green fluorescent protein (EGFP) transgenic mouse line, we provided evidence that the main parenchymal-coupled cells were astrocytes. In addition, electrophysiological parameters, such as membrane resistance, were altered when Cx43 was genetically absent or pharmacologically inhibited. Finally, in the dKO mouse line, we detected a significant decrease in the number of hypothalamic proliferative parenchymal cells. Our results demonstrate the importance of Cx43 in tanycyte homotypic and panglial coupling and show that Cx43 function influences the proliferative potential of hypothalamic cells.
Collapse
Affiliation(s)
- Antonia Recabal
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Roberto Elizondo-Vega
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Camille Philippot
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | - Magdiel Salgado
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Sergio López
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Alejandra Palma
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Estefanía Tarifeño-Saldivia
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Aline Timmermann
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | - Teresa Caprile
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion Concepcion, Chile
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn Bonn, Germany
| | | |
Collapse
|
36
|
Cavalcanti-de-Albuquerque JP, Kincheski GC, Louzada RA, Galina A, Pierucci APTR, Carvalho DP. Intense physical exercise potentiates glucose inhibitory effect over food intake of male Wistar rats. Exp Physiol 2018; 103:1076-1086. [PMID: 29893447 DOI: 10.1113/ep086916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/06/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does an acute session of exercise affect food intake of male Wistar rats? What is the main finding and its importance? Food intake in male Wistar rats is decreased in the first hour after physical exercise independent of the intensity. Moreover, high-intensity exercise potentiates the anorexic effect of peripheral glucose administration. This work raises new feeding-related targets that would explain how exercise drives body weight loss. ABSTRACT Obesity has emerged as a critical metabolic disorder in modern society. An adequate lifestyle with a well-oriented programme of diet and physical exercise (PE) can prevent or potentially even cure obesity. Additionally, PE might lead to weight loss by increasing energy expenditure and decreasing hunger perception. In this article, we hypothesize that an acute exercise session would potentiate the glucose inhibitory effects on food intake in male Wistar rats. Our data show that moderate- or high-intensity PE significantly decreased food intake, although no changes in the expression of feeding-related neuropeptide in the arcuate nucleus of the hypothalamus were found. Exercised animals demonstrated a reduced glucose tolerance and increased blood insulin concentration. Intraperitoneal administration of glucose decreased food intake in control animals. In the animals submitted to moderate-intensity PE, the decrease in food intake promoted by glucose was similar to controls; however, an interaction was observed when glucose was injected in the high-intensity PE group, in which food intake was significantly lower than the effect produced by glucose alone. A different pattern of expression was observed for the monocarboxylate transporter isoforms (MCT1, 2 and 4) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFBP3) in the hypothalamus, which was dependent on the exercise intensity. In conclusion, PE decreases food intake independently of the intensity. However, an interaction between PE and the anorexic effect of glucose is only observed when a high-intensity exercise is performed. These data show an essential role of exercise intensity in the modulation of the glucose inhibitory effect on food intake.
Collapse
Affiliation(s)
- João Paulo Cavalcanti-de-Albuquerque
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Nutrition Josue de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Grasielle Clotildes Kincheski
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Center of Health Science, Rio de Janeiro, Brazil
| | - Ruy Andrade Louzada
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Galina
- Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Center of Health Science, Rio de Janeiro, Brazil
| | | | - Denise P Carvalho
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocr Rev 2018; 39:333-368. [PMID: 29351662 DOI: 10.1210/er.2017-00235] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Bénédicte Dehouck
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Ariane Sharif
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Philippe Ciofi
- Inserm, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| |
Collapse
|
38
|
Barahona MJ, Llanos P, Recabal A, Escobar-Acuña K, Elizondo-Vega R, Salgado M, Ordenes P, Uribe E, Sepúlveda FJ, Araneda RC, García-Robles MA. Glial hypothalamic inhibition of GLUT2 expression alters satiety, impacting eating behavior. Glia 2017; 66:592-605. [PMID: 29178321 PMCID: PMC5814884 DOI: 10.1002/glia.23267] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022]
Abstract
Glucose is a key modulator of feeding behavior. By acting in peripheral tissues and in the central nervous system, it directly controls the secretion of hormones and neuropeptides and modulates the activity of the autonomic nervous system. GLUT2 is required for several glucoregulatory responses in the brain, including feeding behavior, and is localized in the hypothalamus and brainstem, which are the main centers that control this behavior. In the hypothalamus, GLUT2 has been detected in glial cells, known as tanycytes, which line the basal walls of the third ventricle (3V). This study aimed to clarify the role of GLUT2 expression in tanycytes in feeding behavior using 3V injections of an adenovirus encoding a shRNA against GLUT2 and the reporter EGFP (Ad‐shGLUT2). Efficient in vivo GLUT2 knockdown in rat hypothalamic tissue was demonstrated by qPCR and Western blot analyses. Specificity of cell transduction in the hypothalamus and brainstem was evaluated by EGFP‐fluorescence and immunohistochemistry, which showed EGFP expression specifically in ependymal cells, including tanycytes. The altered mRNA levels of both orexigenic and anorexigenic neuropeptides suggested a loss of response to increased glucose in the 3V. Feeding behavior analysis in the fasting‐feeding transition revealed that GLUT2‐knockdown rats had increased food intake and body weight, suggesting an inhibitory effect on satiety. Taken together, suppression of GLUT2 expression in tanycytes disrupted the hypothalamic glucosensing mechanism, which altered the feeding behavior.
Collapse
Affiliation(s)
- María J Barahona
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paula Llanos
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Kathleen Escobar-Acuña
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Magdiel Salgado
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio Ordenes
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Chile
| | - Fernando J Sepúlveda
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Chile.,Departamento de Ciencias Biológica Universidad Andrés Bello, Concepción, Chile
| | - Ricardo C Araneda
- Department of Biology, University of Maryland, College Park, Maryland
| | - María A García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
39
|
Abstract
Glucokinase (GK), the hexokinase involved in glucosensing in pancreatic β-cells, is also expressed in arcuate nucleus (AN) neurons and hypothalamic tanycytes, the cells that surround the basal third ventricle (3V). Several lines of evidence suggest that tanycytes may be involved in the regulation of energy homeostasis. Tanycytes have extended cell processes that contact the feeding-regulating neurons in the AN, particularly, agouti-related protein (AgRP), neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and proopiomelanocortin (POMC) neurons. In this study, we developed an adenovirus expressing GK shRNA to inhibit GK expression in vivo. When injected into the 3V of rats, this adenovirus preferentially transduced tanycytes. qRT-PCR and Western blot assays confirmed GK mRNA and protein levels were lower in GK knockdown animals compared to the controls. In response to an intracerebroventricular glucose injection, the mRNA levels of anorexigenic POMC and CART and orexigenic AgRP and NPY neuropeptides were altered in GK knockdown animals. Similarly, food intake, meal duration, frequency of eating events and the cumulative eating time were increased, whereas the intervals between meals were decreased in GK knockdown rats, suggesting a decrease in satiety. Thus, GK expression in the ventricular cells appears to play an important role in feeding behavior.
Collapse
|
40
|
Recabal A, Caprile T, García-Robles MDLA. Hypothalamic Neurogenesis as an Adaptive Metabolic Mechanism. Front Neurosci 2017; 11:190. [PMID: 28424582 PMCID: PMC5380718 DOI: 10.3389/fnins.2017.00190] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022] Open
Abstract
In the adult brain, well-characterized neurogenic niches are located in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the hippocampus. In both regions, neural precursor cells (NPCs) share markers of embryonic radial glia and astroglial cells, and in vitro clonal expansion of these cells leads to neurosphere formation. It has also been more recently demonstrated that neurogenesis occurs in the adult hypothalamus, a brain structure that integrates peripheral signals to control energy balance and dietary intake. The NPCs of this region, termed tanycytes, are ependymal-glial cells, which comprise the walls of the infundibular recess of the third ventricle and contact the median eminence. Thus, tanycytes are in a privileged position to detect hormonal, nutritional and mitogenic signals. Recent studies reveal that in response to nutritional signals, tanycytes are capable of differentiating into orexigenic or anorexigenic neurons, suggesting that these cells are crucial for control of feeding behavior. In this review, we discuss evidence, which suggests that hypothalamic neurogenesis may act as an additional adaptive mechanism in order to respond to changes in diet.
Collapse
Affiliation(s)
- Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile.,Laboratorio de Guía Axonal, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| | - Teresa Caprile
- Laboratorio de Guía Axonal, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| | - María de Los Angeles García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepción, Chile
| |
Collapse
|
41
|
Lewis JE, Ebling FJP. Tanycytes As Regulators of Seasonal Cycles in Neuroendocrine Function. Front Neurol 2017; 8:79. [PMID: 28344570 PMCID: PMC5344904 DOI: 10.3389/fneur.2017.00079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Annual cycles of physiology and behavior are highly prevalent in organisms inhabiting temperate and polar regions. Examples in mammals include changes in appetite and body fat composition, hibernation and torpor, growth of antlers, pelage and horns, and seasonal reproduction. The timing of these seasonal cycles reflects an interaction of changing environmental signals, such as daylength, and intrinsic rhythmic processes: circannual clocks. As neuroendocrine signals underlie these rhythmic processes, the focus of most mechanistic studies has been on neuronal systems in the hypothalamus. Recent studies also implicate the pituitary stalk (pars tuberalis) and hypothalamic tanycytes as key pathways in seasonal timing. The pars tuberalis expresses a high density of melatonin receptors, so is highly responsive to changes in the nocturnal secretion of melatonin from the pineal gland as photoperiod changes across the year. The pars tuberalis in turn regulates tanycyte function in the adjacent hypothalamus via paracrine signals. Tanycytes are radial glial cells that persist into adulthood and function as a stem cell niche. Their cell soma are embedded in the ependymal lining of the third ventricle, and they also send elaborate projections through the arcuate nucleus, many of which terminate on capillaries in the median eminence. This anatomy underlies their function as sensors of nutrients in the circulation, and as regulators of transport of hormones and metabolites into the hypothalamus. In situ hybridization studies reveal robust seasonal changes in gene expression in tanycytes, for example, those controlling transport and metabolism of thyroid hormone and retinoic acid. These hormonal signals play a key role in the initial development of the brain, and experimental manipulation of thyroid hormone availability in the adult hypothalamus can accelerate or block seasonal cyclicity in sheep and Siberian hamsters. We hypothesize that seasonal rhythms depends upon reuse of developmental mechanisms in the adult hypothalamus and that tanycytes are key orchestrators of these processes.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
42
|
Elizondo-Vega R, García-Robles MA. Molecular Characteristics, Regulation, and Function of Monocarboxylate Transporters. ADVANCES IN NEUROBIOLOGY 2017; 16:255-267. [PMID: 28828614 DOI: 10.1007/978-3-319-55769-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lactate transporters play an important role in the glutamate recycling. Here their kinetics and tissue distribution with emphasis on the brain are addressed. Recent evidence shows their participation in important brain functions that involve intercellular communication, such as hypothalamic glucose sensing. Furthermore, we describe the regulation of their expression and some animal models that have allowed clarification of their functions.
Collapse
|