1
|
Chang J, Liang Y, Sun P, Fang X, Sun Q. Molecular and Cellular Mechanisms Linking Chronic Kidney Disease and Sarcopenia in Aging: An Integrated Perspective. Clin Interv Aging 2025; 20:449-458. [PMID: 40226833 PMCID: PMC11992981 DOI: 10.2147/cia.s516704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Chronic kidney disease (CKD) and sarcopenia are prevalent conditions among the aging population, contributing significantly to morbidity and mortality. CKD exacerbates sarcopenia through complex molecular and cellular mechanisms, including chronic inflammation, oxidative stress, uremic toxin accumulation, protein-energy wasting, and hormonal dysregulation. This review explores the interplay between CKD and sarcopenia, focusing on key pathways such as mTOR signaling, the AMPK-FOXO axis, and myostatin/activin pathways that regulate muscle protein metabolism. Additionally, mitochondrial dysfunction and impaired autophagy emerge as critical contributors to muscle wasting. Clinical implications include identifying biomarkers such as interleukin-6, tumor necrosis factor-alpha, myostatin, and Klotho for diagnosis and monitoring, while potential therapeutic strategies involve targeting the AMPK/mTOR pathway, enhancing mitochondrial function, and inhibiting myostatin activity. Emerging approaches, including multi-omics technologies and AI-driven personalized treatment models, offer innovative solutions for understanding and managing the CKD-sarcopenia axis. This review underscores the need for integrated therapeutic strategies and multidisciplinary collaboration to mitigate muscle wasting and improve outcomes in CKD patients. By bridging molecular insights with clinical applications, this work aims to inform future research and translational efforts in addressing this critical healthcare challenge.
Collapse
Affiliation(s)
- Jing Chang
- Department of Internal Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Yuer Liang
- Department of Nephrology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Pingping Sun
- Department of Internal Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Xiangyang Fang
- Department of Internal Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Qianmei Sun
- Department of Nephrology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| |
Collapse
|
2
|
Tsai CC, Wang PC, Hsiung T, Fan YH, Wu JT, Kan WC, Shiao CC. Sarcopenia in Chronic Kidney Disease: A Narrative Review from Pathophysiology to Therapeutic Approaches. Biomedicines 2025; 13:352. [PMID: 40002765 PMCID: PMC11852367 DOI: 10.3390/biomedicines13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease (CKD) is a progressive condition linked to sarcopenia, a syndrome characterized by loss of skeletal muscle mass and strength, affecting a quarter of CKD patients globally. Sarcopenia has multiple paths through which it can worsen morbidity and mortality as well as decrease the quality of life in CKD, including systemic inflammation, hormonal imbalances, metabolic changes, and dysbiosis of gut microbiota. There is a regional variation in the criteria set for diagnosis, with two main groups being the European Working Group on Sarcopenia in Older People and the Asian Working Group for Sarcopenia. Management regimes such as nutritional optimization, vitamin D, exercise, correction of metabolic acidosis, and modulation of gut microbiota constitute effective intervention strategies. Emerging therapeutic options include anabolic agents, myostatin inhibitors, and anti-inflammatory treatment options. Future advances such as genomics, proteomics, and personalized medicine will open up new avenues for addressing the complex pathophysiology of sarcopenia. Hence, a comprehensive multidisciplinary approach focused on the specific needs of each patient will be vital in reducing the effects of sarcopenia and improving the situation of people with CKD.
Collapse
Affiliation(s)
- Chung-Ching Tsai
- Division of Orthopaedics, Department of Surgery, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan;
| | - Ping-Chen Wang
- Department of Medical Research and Education, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan;
| | - Ted Hsiung
- Division of General Surgery, Department of Surgery, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan; (T.H.); (Y.-H.F.); (J.-T.W.)
| | - Yang-Hsin Fan
- Division of General Surgery, Department of Surgery, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan; (T.H.); (Y.-H.F.); (J.-T.W.)
| | - Jui-Teng Wu
- Division of General Surgery, Department of Surgery, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan; (T.H.); (Y.-H.F.); (J.-T.W.)
| | - Wei-Chih Kan
- Department of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan City 71004, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, No. 89, Wenhua 1st St., Rende Dist., Tainan City 71703, Taiwan
| | - Chih-Chung Shiao
- Division of Nephrology, Department of Internal Medicine, Camillian Saint Mary’s Hospital Luodong, No. 160, Zhongzheng S. Rd., Luodong Township, Yilan County 26546, Taiwan
| |
Collapse
|
3
|
Dilaver RG, Demirci M, Crescenzi R, Pridmore M, Ertuglu LA, Guide A, Greevy R, Roshanravan B, Ikizler TA, Gamboa JL. INTERMUSCULAR ADIPOSE TISSUE AND MUSCLE FUNCTION IN PATIENTS ON MAINTENANCE HEMODIALYSIS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.31.25321429. [PMID: 39974089 PMCID: PMC11838629 DOI: 10.1101/2025.01.31.25321429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background and Aims Sarcopenia, defined as a loss in muscle mass and strength, is common in patients with advanced chronic kidney disease (CKD), leading to poor outcomes. Intermuscular adipose tissue (IMAT) accumulation is associated with metabolic and functional abnormalities in chronic disease conditions. This study assesses IMAT in maintenance hemodialysis (MHD) patients and its association with metabolic markers and physical performance. Methods and Results We performed a cross-sectional study comparing MHD patients with controls. IMAT accumulation was measured by analyzing the fat-to-muscle ratio of the calf muscles through Magnetic Resonance Imaging (MRI) scans. Body composition and metabolic markers were assessed (hs-CRP, TNF-α, IL-6, and insulin resistance). Circulating cell-free mitochondrial DNA (ccf-mtDNA) was quantified using qRT-PCR. Muscle function was evaluated with handgrip strength. Inverse propensity weighted (IPW) method was used to test the difference between IMAT levels of the groups. Twenty-five MHD patients and 23 controls were analyzed. The MHD group had higher IMAT accumulation than controls (p < 0.01). IMAT was positively correlated with Body Mass Index (BMI) and fat mass index (FMI) in controls. MHD patients exhibited elevated TNF-α, IL-6, and hs-CRP levels (p < 0.01). Positive correlations were found between IMAT and IL-6 in MHD patients and between IMAT and TNF-α in controls. Handgrip strength was negatively correlated with IMAT in the entire cohort (p <0.01). Conclusion Our findings highlight the potential role of IMAT in muscle catabolism and functional decline in advanced CKD. Targeting IMAT could be a valuable strategy for improving health outcomes in this population.
Collapse
Affiliation(s)
- R. Gulsah Dilaver
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachelle Crescenzi
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Pridmore
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lale A. Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Guide
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baback Roshanravan
- Department of Medicine, Division of Nephrology University of California, Davis, Sacramento, CA, USA
| | - T. Alp Ikizler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Jorge L. Gamboa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Wang M, You L, He X, Peng Y, Wang R, Zhang Z, Shu J, Zhang P, Sun X, Jia L, Xia Z, Ji C, Gao C. Multiomics Analysis Reveals Therapeutic Targets for Chronic Kidney Disease With Sarcopenia. J Cachexia Sarcopenia Muscle 2025; 16:e13696. [PMID: 39911133 PMCID: PMC11799769 DOI: 10.1002/jcsm.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/11/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND The presence of sarcopenia in patients with chronic kidney disease (CKD) is associated with poor prognosis. The mechanism underlying CKD-induced muscle wasting has not yet been fully explored. This study investigates the influence of renal secretions on muscles using multiomics sequencing. METHODS The kidney transcriptome analysis by RNA-seq and protein profiling by tandem mass tag (TMT), serum TMT and muscle TMT were performed in CKD established using 0.2% adenine and control mice. Spp1 recombinant protein was used to study its effect on myotube atrophy in vitro. In animal experiments on CKD, pharmacological inhibition of Spp1 was used to explore the role of Spp1 in skeletal muscle wasting. Transcriptome analysis was performed to identify differentially expressed genes (DEGs) in the gastrocnemius muscle following Spp1 pharmacological inhibition. RESULTS In the renal transcriptome and TMT, 503 and 377 proteins/genes respectively were co-upregulated and co-downregulated. In the serum TMT of CKD and normal control (NC) mice, 22 upregulated and 7 downregulated differentially expressed proteins (DEPs) showed the same expression patterns as those in the kidney transcriptome and TMT analysis. Based on bioinformatics analysis and reported studies, we selected Spp1 for further validation. Spp1 recombinant protein was added to C2C12 myotubes in vitro, and the results indicated that Spp1 significantly increased the protein levels of the muscle atrophy marker (Murf-1) and promoted the smaller myotubes (all p < 0.05). Compared with NC mice, Spp1 mRNA and protein levels were significantly upregulated in the kidneys of CKD mice, and the serum concentration of Spp1 was also markedly increased (all p < 0.05). In animal experiments, pharmacological inhibition of Spp1 increased the weights of gastrocnemius and tibialis anterior muscles (p < 0.05) and improved muscle atrophy phenotype. Transcriptome analysis showed that DEGs in the gastrocnemius muscle following Spp1 pharmacological inhibition were enriched in protein digestion and absorption, glucagon signalling pathway, apelin signalling pathway and ECM-receptor interaction pathway. CONCLUSIONS Our study is the first to establish a regulatory network of kidney-muscle crosstalk to explore the potential mechanism of CKD-related sarcopenia. Employing multiomics analysis, cellular assessment and animal experiments, we have identified that Spp1 could potentialy serve as a promising therapeutic target for CKD patients with sarcopenia.
Collapse
Affiliation(s)
- Meiqiu Wang
- Department of Pediatrics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lianghui You
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Women and Children's Healthcare InstituteWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Xu He
- Department of Pediatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yingchao Peng
- Department of Pediatrics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Ren Wang
- Department of PediatricsJinling Hospital, Nanjing Medical UniversityNanjingChina
| | - Zhiqiang Zhang
- Department of PediatricsJinling Hospital, Nanjing Medical UniversityNanjingChina
| | - Jiaping Shu
- Department of PediatricsMedical School of Southeast UniversityNanjingChina
| | - Pei Zhang
- Department of PediatricsJinling HospitalNanjingChina
| | - Xiaoyi Sun
- Department of Pediatrics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - LiLi Jia
- Department of PediatricsJinling HospitalNanjingChina
| | - Zhengkun Xia
- Department of Pediatrics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Chenbo Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Women and Children's Healthcare InstituteWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjingChina
| | - Chunlin Gao
- Department of Pediatrics, Nanjing Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
5
|
Guo Y, Liu Z, Zhou M, Kuang W, Liu Y, Huang Y, Yin P, Xia Z. Heat exposure promotes sarcopenia via gut microbiota-derived metabolites. Aging Cell 2025; 24:e14370. [PMID: 39468887 PMCID: PMC11822625 DOI: 10.1111/acel.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
The unprecedented rise in global ambient temperatures in the last decade has significantly impacted human health, yet how heat exposure affects the development of sarcopenia remains enigmatic. Here, we demonstrate that chronic heat exposure induces skeletal muscle volume loss, leading to muscle strength and functional decline in mice. The microbiota composition of heat-exposed mice was analyzed using 16S ribosomal DNA analysis. Liquid chromatography-mass spectrometry (LC-MS) was used to explore the effects of heat exposure on the blood metabolome and to further analyze the correlation between blood metabolism and gut microbiota. Transplantation of microbiota from heat-exposed mice to germ-free mice was sufficient to increase adverse effects on skeletal muscle function in the host. Mechanistically, using an untargeted metabolomics strategy, we reveal that altered gut microbiota due to high temperatures is associated with elevated serum levels of homocitrulline. Homocitrulline causes mitochondrial dysfunction in myocytes by exacerbating ferroptosis levels. And Nrf2 activator (Oltipraz) supplementation alleviates muscle atrophy and dysfunction induced by heat exposure. Our findings reveal the detrimental effects of heat exposure on muscle function and provide new strategies for treating sarcopenia.
Collapse
Affiliation(s)
- Yi‐Fan Guo
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhe‐Yu Liu
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Wei‐Hong Kuang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
| | - Ping Yin
- Department of Oral and Maxillofacial Surgery, Center of Stomatology,Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhu‐Ying Xia
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
6
|
Shirai N, Morishita S, Osawa Y, Yamamoto S. Effect of increased fear of falling on falls in patients undergoing HD: A narrative review. Fukushima J Med Sci 2025; 71:13-24. [PMID: 39662936 PMCID: PMC11799665 DOI: 10.5387/fms.24-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/21/2024] [Indexed: 12/13/2024] Open
Abstract
Increased fear of falling (FOF) increases the risk of falling and is an important issue for living an independent life. Patients undergoing hemodialysis (HD) frequently fall, and this may be attributed to increased FOF due to common fall risk factors as well as severe chronic kidney disease and HD-related factors. The purpose of this narrative review was to summarize the current knowledge on the mechanisms of increased FOF leading to falls in patients undergoing HD. Patients undergoing HD have enhanced FOF compared to community elderly people. Furthermore, an increase in FOF is correlated with a decrease in physical activity and physical function. It has been reported that FOF in patients undergoing HD may be associated with past and future falls, and the risk of falling increases sharply when FOF exceeds a certain threshold. Increased FOF may serve as a fundamental mechanism leading to increased fall risk by interacting with physical inactivity and physical frailty, affecting lower limb muscle activity during walking. Further research is needed to clarify the relationship between increased FOF and falls in patients undergoing HD. Regular clinical assessment of FOF is critical for identifying fall risk in patients undergoing HD.
Collapse
Affiliation(s)
| | - Shinichiro Morishita
- Department of Physical Therapy, Fukushima Medical University School of Health Science
| | | | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
7
|
Stepanova N, Driianska V, Korol L, Snisar L. Association between serum total indoxyl sulfate, intraperitoneal inflammation, and peritoneal dialysis technique failure: a 3-year prospective cohort study. BMC Nephrol 2024; 25:475. [PMID: 39741261 PMCID: PMC11689590 DOI: 10.1186/s12882-024-03935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND The impact of protein-bound uremic toxins, specifically indoxyl sulfate (IS) on peritoneal dialysis (PD) complications remains controversial. This study aimed to explore the link between serum total IS (tIS) levels, proinflammatory cytokines in serum and peritoneal dialysis effluent (PDE), and PD technique survival. METHODS In this prospective cohort study, 84 patients were followed up for three years and analyzed. Stratification into low-tIS (< 22.6 µmol/L) and high-tIS (≥ 22.6 µmol/L) groups was based on the median serum tIS concentration. Logistic regression, Kaplan-Meier, receiving operation characteristic, and Cox regression analyses assessed associations between tIS levels, cytokine concentrations (IL-6, MCP-1, TNF-α), and PD technique failure. RESULTS Patients in the high-tIS group were older and had a higher prevalence of diabetes, a greater incidence of PD-related peritonitis, elevated diastolic blood pressure, and lower HDL cholesterol compared to those in the low-tIS group. They also exhibited higher peritoneal transport characteristics, lower dialysis adequacy, and reduced peritoneal creatinine clearance. Elevated tIS levels significantly correlated with higher PDE cytokine levels, without a corresponding rise in serum cytokine levels. Serum tIS levels ≥ 50 µmol/L predicted PD technique failure with 70.4% sensitivity and 87.9% specificity (p < 0.0001). The association between high tIS levels and PD technique failure remained significant after adjusting for confounders identified in logistic regression, including peritoneal weekly creatinine clearance, the D/P creatinine ratio, high peritoneal transport status, and PDE IL-6 and MCP-1 concentrations (HR 2.9, 95% CI 1.13; 8.21). CONCLUSION Our findings are the first to demonstrate a link between elevated tIS levels, peritoneal inflammation, and an increased risk of PD technique failure. Monitoring tIS levels in PD patients could be clinically relevant for risk assessment and personalized management, potentially improving long-term PD outcomes. Future research should explore interventions targeting tIS reduction to alleviate peritoneal inflammation and improve PD prognosis.
Collapse
Affiliation(s)
- Natalia Stepanova
- Head of the Department of Nephrology and Dialysis, State Institution "Institute of Nephrology National Academy of Medical Sciences of Ukraine", Degtyarivska 17 V, Kyiv, 04050, Ukraine.
- Medical Director of the Dialysis Medical Center LLC "Nephrocenter", Dovzhenka 3, Kyiv, 03057, Ukraine.
| | - Victoria Driianska
- Head of the Laboratory of Immunology, State Institution "Institute of Nephrology of the National Academy of Medical Sciences of Ukraine", Degtyarivska 17 V, Kyiv, 04050, Ukraine
| | - Lesya Korol
- Laboratory of Biochemistry, State Institution "Institute of Nephrology of the National Academy of Medical Sciences of Ukraine", Degtyarivska 17 V, Kyiv, 04050, Ukraine
| | - Lyudmyla Snisar
- Head Doctor of the Dialysis Medical Center LLC, "Nephrocenter", Dovzhenka 3, Kyiv, 03057, Ukraine
| |
Collapse
|
8
|
Hill ZR, Flynn CK, Adams JB. Indoxyl Sulfate and Autism Spectrum Disorder: A Literature Review. Int J Mol Sci 2024; 25:12973. [PMID: 39684683 DOI: 10.3390/ijms252312973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Indoxyl sulfate-a bacterially derived metabolite-has been identified as a toxin that is elevated in children with autism spectrum disorder (ASD). As a neurotoxin, uremic toxin, nephrotoxin, cardiotoxin, osteotoxin, and myotoxin, indoxyl sulfate has been associated with several other conditions, including chronic kidney disease, acute kidney injury, Parkinson's disease, cognitive disorders, and mood disorders such as anxiety and depression. Indoxyl sulfate is derived from bacterial modification of host tryptophan, and elevated levels of indoxyl sulfate are associated with decreased levels of important neurotransmitters including serotonin, dopamine, and norepinephrine. This article will review what is currently known about indoxyl sulfate in relation to ASD and its comorbidities. A systematic review identified six studies of levels of indoxyl sulfate in children with ASD. All six studies found that indoxyl sulfate was significantly elevated in the urine of children with ASD compared to typically developing children. Through this review, indoxyl sulfate was identified as a toxic microbially derived metabolite that is significantly increased in a subset of children with ASD and may contribute to both core and co-morbid ASD symptoms.
Collapse
Affiliation(s)
- Zoë R Hill
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85287, USA
| | - Christina K Flynn
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA
| | - James B Adams
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
9
|
Zhang G, Hu F, Huang T, Ma X, Cheng Y, Liu X, Jiang W, Dong B, Fu C. The recent development, application, and future prospects of muscle atrophy animal models. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025]
Abstract
AbstractMuscle atrophy, characterized by the loss of muscle mass and function, is a hallmark of sarcopenia and cachexia, frequently associated with aging, malignant tumors, chronic heart failure, and malnutrition. Moreover, it poses significant challenges to human health, leading to increased frailty, reduced quality of life, and heightened mortality risks. Despite extensive research on sarcopenia and cachexia, consensus in their assessment remains elusive, with inconsistent conclusions regarding their molecular mechanisms. Muscle atrophy models are crucial tools for advancing research in this field. Currently, animal models of muscle atrophy used for clinical and basic scientific studies are induced through various methods, including aging, genetic editing, nutritional modification, exercise, chronic wasting diseases, and drug administration. Muscle atrophy models also include in vitro and small organism models. Despite their value, each of these models has certain limitations. This review focuses on the limitations and diverse applications of muscle atrophy models to understand sarcopenia and cachexia, and encourage their rational use in future research, therefore deepening the understanding of underlying pathophysiological mechanisms, and ultimately advancing the exploration of therapeutic strategies for sarcopenia and cachexia.
Collapse
Affiliation(s)
- Gongchang Zhang
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Fengjuan Hu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Tingting Huang
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaoqing Ma
- Longkou People Hospital Longkou Shandong Province China
| | - Ying Cheng
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Xiaolei Liu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Wenzhou Jiang
- Longkou People Hospital Longkou Shandong Province China
| | - Birong Dong
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
| | - Chenying Fu
- Geriatric Health Care and Medical Research Center West China Hospital, Sichuan University Chengdu Sichuan Province China
- National Clinical Research Center for Geriatrics West China Hospital, Sichuan University Chengdu Sichuan Province China
- Department of Laboratory of Aging and Geriatric Medicine National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University Chengdu Sichuan Province China
| |
Collapse
|
10
|
Zheng G, Cao J, Wang XH, He W, Wang B. The gut microbiome, chronic kidney disease, and sarcopenia. Cell Commun Signal 2024; 22:558. [PMID: 39574190 PMCID: PMC11580515 DOI: 10.1186/s12964-024-01922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/01/2024] [Indexed: 11/25/2024] Open
Abstract
Sarcopenia is a prevalent condition in patients with chronic kidney disease (CKD), intricately linked to adverse prognoses, heightened cardiovascular risks, and increased mortality rates. Extensive studies have found a close and complex association between gut microbiota, kidney and muscle. On one front, patients with CKD manifest disturbances in gut microbiota and alterations in serum metabolites. These abnormal microbiota composition and metabolites in turn participate in the development of CKD. On another front, altered gut microbiota and its metabolites may lead to significant changes in metabolic homeostasis and inflammation, ultimately contributing to the onset of sarcopenia. The disturbance of gut microbial homeostasis, coupled with the accumulation of toxic metabolites, exerts deleterious effects on skeletal muscles in CKD patients with sarcopenia. This review meticulously describes the alterations observed in gut microbiota and its serum metabolites in CKD and sarcopenia patients, providing a comprehensive overview of pertinent studies. By delving into the intricate interplay of gut microbiota and serum metabolites in CKD-associated sarcopenia, we aim to unveil novel treatment strategies for ameliorating their symptoms and prognosis.
Collapse
Affiliation(s)
- Guohao Zheng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Jingyuan Cao
- Institute of Nephrology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Xiaonan H Wang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - Wei He
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Jeong SH, Park S, Choi JS, Cho NJ, Moon JS, Gil HW. Indoxyl sulfate induces apoptotic cell death by inhibiting glycolysis in human astrocytes. Kidney Res Clin Pract 2024; 43:774-784. [PMID: 37956994 PMCID: PMC11615446 DOI: 10.23876/j.krcp.23.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Neurologic complications, such as cognitive and emotional dysfunction, have frequently been observed in chronic kidney disease (CKD) patients. Previous research shows that uremic toxins play a role in the pathogenesis of CKD-associated cognitive impairment. Since astrocytes contribute to the protection and survival of neurons, astrocyte function and brain metabolism may contribute to the pathogenesis of neurodegeneration. Indoxyl sulfate (IS) is the most popular uremic toxin. However, how IS-induced astrocyte injury brings about neurologic complications in CKD patients has not been elucidated. METHODS The rate of extracellular acidification was measured in astrocytes when IS (0.5-3 mM, 4 or 7 days) treatment was applied. The hexokinase 1 (HK1), pyruvate kinase isozyme M2 (PKM2), pyruvate dehydrogenase (PDH), and phosphofructokinase (PFKP) protein levels were also measured. The activation of the apoptotic pathway was investigated using a confocal microscope, fluorescence- activated cell sorting, and cell three-dimensional imaging was used. RESULTS In astrocytes, IS affected glycolysis in not only dose-dependently but also time-dependently. Additionally, HK1, PKM2, PDH, and PFKP levels were decreased in IS-treated group when compared to the control. The results were prominent in cases with higher doses and longer exposure duration. The apoptotic features after IS treatment were also observed. CONCLUSION Our results showed that the inhibition of glycolysis by IS in astrocytes leads to cell death via apoptosis. Specifically, longterm and higher-dose exposures had more serious effects on astrocytes. Our results suggest that the glycolysis pathway and related targets could provide a novel approach to cognitive dysfunction in CKD patients.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jae-sung Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Nam-Jun Cho
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| |
Collapse
|
12
|
Van Hul M, Neyrinck AM, Everard A, Abot A, Bindels LB, Delzenne NM, Knauf C, Cani PD. Role of the intestinal microbiota in contributing to weight disorders and associated comorbidities. Clin Microbiol Rev 2024; 37:e0004523. [PMID: 38940505 PMCID: PMC11391702 DOI: 10.1128/cmr.00045-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARYThe gut microbiota is a major factor contributing to the regulation of energy homeostasis and has been linked to both excessive body weight and accumulation of fat mass (i.e., overweight, obesity) or body weight loss, weakness, muscle atrophy, and fat depletion (i.e., cachexia). These syndromes are characterized by multiple metabolic dysfunctions including abnormal regulation of food reward and intake, energy storage, and low-grade inflammation. Given the increasing worldwide prevalence of obesity, cachexia, and associated metabolic disorders, novel therapeutic strategies are needed. Among the different mechanisms explaining how the gut microbiota is capable of influencing host metabolism and energy balance, numerous studies have investigated the complex interactions existing between nutrition, gut microbes, and their metabolites. In this review, we discuss how gut microbes and different microbiota-derived metabolites regulate host metabolism. We describe the role of the gut barrier function in the onset of inflammation in this context. We explore the importance of the gut-to-brain axis in the regulation of energy homeostasis and glucose metabolism but also the key role played by the liver. Finally, we present specific key examples of how using targeted approaches such as prebiotics and probiotics might affect specific metabolites, their signaling pathways, and their interactions with the host and reflect on the challenges to move from bench to bedside.
Collapse
Affiliation(s)
- Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
| | - Audrey M Neyrinck
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Amandine Everard
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | | | - Laure B Bindels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Nathalie M Delzenne
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
| | - Claude Knauf
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| |
Collapse
|
13
|
Du J, Zhao X, Ding X, Han Q, Duan Y, Ren Q, Wang H, Song C, Wang X, Zhang D, Zhu H. The Role of the Gut Microbiota in Complications among Hemodialysis Patients. Microorganisms 2024; 12:1878. [PMID: 39338552 PMCID: PMC11434415 DOI: 10.3390/microorganisms12091878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The composition of the gut microbiota varies among end-stage renal disease (ESRD) patients on the basis of their mode of renal replacement therapy (RRT), with notably more pronounced dysbiosis occurring in those undergoing hemodialysis (HD). Interventions such as dialysis catheters, unstable hemodynamics, strict dietary restrictions, and pharmacotherapy significantly alter the intestinal microenvironment, thus disrupting the gut microbiota composition in HD patients. The gut microbiota may influence HD-related complications, including cardiovascular disease (CVD), infections, anemia, and malnutrition, through mechanisms such as bacterial translocation, immune regulation, and the production of gut microbial metabolites, thereby affecting both the quality of life and the prognosis of patients. This review focuses on alterations in the gut microbiota and its metabolites in HD patients. Additionally, understanding the impact of the gut microbiota on the complications of HD could provide insights into the development of novel treatment strategies to prevent or alleviate complications in HD patients.
Collapse
Affiliation(s)
- Junxia Du
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Xiaolin Zhao
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiaonan Ding
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yingjie Duan
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Qinqin Ren
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Chenwen Song
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Xiaochen Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Dong Zhang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| |
Collapse
|
14
|
Gao X, Chen Y, Cheng P. Unlocking the potential of exercise: harnessing myokines to delay musculoskeletal aging and improve cognitive health. Front Physiol 2024; 15:1338875. [PMID: 39286235 PMCID: PMC11402696 DOI: 10.3389/fphys.2024.1338875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives This review aims to summarize the common physiological mechanisms associated with both mild cognitive impairment (MCI) and musculoskeletal aging while also examining the relevant literature on how exercise regulation influences the levels of shared myokines in these conditions. Methods The literature search was conducted via databases such as PubMed (including MEDLINE), EMBASE, and the Cochrane Library of Systematic Reviews. The searches were limited to full-text articles published in English, with the most recent search conducted on 16 July 2024. The inclusion criteria for this review focused on the role of exercise and myokines in delaying musculoskeletal aging and enhancing cognitive health. The Newcastle‒Ottawa Scale (NOS) was utilized to assess the quality of nonrandomized studies, and only those studies with moderate to high quality scores, as per these criteria, were included in the final analysis. Data analysis was performed through narrative synthesis. Results The primary outcome of this study was the evaluation of myokine expression, which included IL-6, IGF-1, BDNF, CTSB, irisin, and LIF. A total of 16 studies involving 633 older adults met the inclusion criteria. The current exercise modalities utilized in these studies primarily consisted of resistance training and moderate-to high-intensity cardiovascular exercise. The types of interventions included treadmill training, elastic band training, aquatic training, and Nordic walking training. The results indicated that both cardiovascular exercise and resistance exercise could delay musculoskeletal aging and enhance the cognitive functions of the brain. Additionally, different types and intensities of exercise exhibited varying effects on myokine expression. Conclusion Current evidence suggests that exercise mediates the secretion of specific myokines, including IL-6, IGF-1, BDNF, CTSB, irisin, and LIF, which establish self-regulatory circuits between the brain and muscle. This interaction enhances cognitive function in the brain and improves skeletal muscle function. Future research should focus on elucidating the exact mechanisms that govern the release of myokines, the correlation between the intensity of exercise and the secretion of these myokines, and the distinct processes by which myokines influence the interaction between muscle and the brain.
Collapse
Affiliation(s)
- Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yiyan Chen
- Department of Physical Education, Suzhou Vocational University, Suzhou, China
| | - Peng Cheng
- Department of Basic Teaching, Suzhou City University, Suzhou, China
| |
Collapse
|
15
|
Paschall RE, Quimby JM, Lourenço BN, Summers SC, Schmiedt CW. The Effect of Renaltec on Serum Uremic Toxins in Cats with Experimentally Induced Chronic Kidney Disease. Vet Sci 2024; 11:379. [PMID: 39195833 PMCID: PMC11359303 DOI: 10.3390/vetsci11080379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Serum uremic toxins markedly increase in cats with chronic kidney disease (CKD) and have deleterious consequences. Renaltec is an oral adsorbent that binds uremic toxin precursors in the gut. In this prospective cohort study utilizing 13 purpose-bred cats with remnant kidney model-induced CKD (12 IRIS Stage 2, 1 IRIS Stage 3) eating a standardized renal diet, we aimed to assess the effect of Renaltec administration on serum indoxyl sulfate (IDS) and p-cresol sulfate (pCS) concentrations. Cats were sequentially treated with standard of care for 56 days, 500 mg Renaltec orally once daily for 56 days, and then three months later, 500 mg Renaltec orally twice daily for 56 days. Serum IDS and pCS concentrations were measured 28 and 56 days after the administration of Renaltec. Blood pressure and kidney function were measured before and 56 days after the administration of Renaltec. Significant decreases in serum IDS and pCS concentrations were observed for both once- and twice-daily dosing, particularly during the first 28 days of administration. More cats with BID dosing had clinically significant reductions in serum IDS and pCS concentrations than with SID dosing. Renaltec can reduce the serum concentrations of deleterious gut-derived uremic toxins in cats with CKD.
Collapse
Affiliation(s)
- Rene E. Paschall
- Department of Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Jessica M. Quimby
- Department of Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Bianca N. Lourenço
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (B.N.L.); (C.W.S.)
| | - Stacie C. Summers
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| | - Chad W. Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (B.N.L.); (C.W.S.)
| |
Collapse
|
16
|
Bakinowska E, Olejnik-Wojciechowska J, Kiełbowski K, Skoryk A, Pawlik A. Pathogenesis of Sarcopenia in Chronic Kidney Disease-The Role of Inflammation, Metabolic Dysregulation, Gut Dysbiosis, and microRNA. Int J Mol Sci 2024; 25:8474. [PMID: 39126043 PMCID: PMC11313360 DOI: 10.3390/ijms25158474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive disorder associated with a decline in kidney function. Consequently, patients with advanced stages of CKD require renal replacement therapies, such as dialysis and kidney transplantation. Various conditions lead to the development of CKD, including diabetes mellitus, hypertension, and glomerulonephritis, among others. The disease is associated with metabolic and hormonal dysregulation, including uraemia and hyperparathyroidism, as well as with low-grade systemic inflammation. Altered homeostasis increases the risk of developing severe comorbidities, such as cardiovascular diseases or sarcopenia, which increase mortality. Sarcopenia is defined as a progressive decline in muscle mass and function. However, the precise mechanisms that link CKD and the development of sarcopenia are poorly understood. Knowledge about these linking mechanisms might lead to the introduction of precise treatment strategies that could prevent muscle wasting. This review discusses inflammatory mediators, metabolic and hormonal dysregulation, gut microbiota dysbiosis, and non-coding RNA alterations that could link CKD and sarcopenia.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
- Independent Laboratory of Community Nursing, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Anastasiia Skoryk
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| |
Collapse
|
17
|
Ceyhan AB, Ozcan M, Kim W, Li X, Altay O, Zhang C, Mardinoglu A. Novel drug targets and molecular mechanisms for sarcopenia based on systems biology. Biomed Pharmacother 2024; 176:116920. [PMID: 38876054 DOI: 10.1016/j.biopha.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
Sarcopenia is a major public health concern among older adults, leading to disabilities, falls, fractures, and mortality. This study aimed to elucidate the pathophysiological mechanisms of sarcopenia and identify potential therapeutic targets using systems biology approaches. RNA-seq data from muscle biopsies of 24 sarcopenic and 29 healthy individuals from a previous cohort were analysed. Differential expression, gene set enrichment, gene co-expression network, and topology analyses were conducted to identify target genes implicated in sarcopenia pathogenesis, resulting in the selection of 6 hub genes (PDHX, AGL, SEMA6C, CASQ1, MYORG, and CCDC69). A drug repurposing approach was then employed to identify new pharmacological treatment options for sarcopenia (clofibric-acid, troglitazone, withaferin-a, palbociclib, MG-132, bortezomib). Finally, validation experiments in muscle cell line (C2C12) revealed MG-132 and troglitazone as promising candidates for sarcopenia treatment. Our approach, based on systems biology and drug repositioning, provides insight into the molecular mechanisms of sarcopenia and offers potential new treatment options using existing drugs.
Collapse
Affiliation(s)
- Atakan Burak Ceyhan
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Mehmet Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkiye
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Ozlem Altay
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK; Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden.
| |
Collapse
|
18
|
Hsu B, Wang C, Lai Y, Kuo C, Lin Y. Association of endothelial dysfunction and peripheral arterial disease with sarcopenia in chronic kidney disease. J Cachexia Sarcopenia Muscle 2024; 15:1199-1208. [PMID: 38644163 PMCID: PMC11154745 DOI: 10.1002/jcsm.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Endothelial dysfunction and peripheral arterial disease (PAD), which disturb skeletal muscle microperfusion, are highly prevalent in patients with chronic kidney disease (CKD). We evaluated the association of endothelial dysfunction and PAD with sarcopenia in patients with non-dialysis CKD. METHODS This cross-sectional study included 420 patients with stages 3-5 non-dialysis CKD aged 69.0 ± 11.8 years. Skeletal muscle index (skeletal muscle mass/height2), handgrip strength, 6-m gait speed and strength of hip flexion and knee extension were measured. Sarcopenia was defined according to the Asian Working Group for Sarcopenia 2019. Endothelial dysfunction and PAD were assessed using the vascular reactivity index (VRI) and ankle-brachial index (ABI), respectively. A VRI < 1.0 was classified as poor endothelial function, and an ABI < 0.9 was defined as PAD. Additionally, endothelial and inflammatory biomarkers, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), asymmetric dimethylarginine, endothelin-1 (ET-1) and interleukin-6, were measured in a subgroup of 262 patients. RESULTS Among the participants, 103 (24.5%) were classified as having sarcopenia. Compared with patients without sarcopenia, those with sarcopenia had significantly lower ABI (1.04 ± 0.16 vs. 1.08 ± 0.15, P = 0.028 for the right ABI; 1.01 ± 0.16 vs. 1.06 ± 0.16, P = 0.002 for the left ABI) and VRI (0.83 ± 0.57 vs. 1.08 ± 0.56, P < 0.001) and had higher serum levels of ICAM-1 (P < 0.001), VCAM-1 (P = 0.003) and ET-1 (P = 0.037). Multivariate logistic regression revealed that, beyond age and body mass index, the average ABI (odds ratio [OR]: 0.81/0.1 increase; 95% confidence interval [CI]: 0.67-0.98; P = 0.032) and VRI (OR: 0.93/0.1 increase; 95% CI: 0.88-0.98; P = 0.010) were independently associated with sarcopenia. Among the endothelial biomarkers measured, ICAM-1 (OR: 2.47/1-SD increase; 95% CI: 1.62-3.75) and VCAM-1 (OR: 1.91/1-SD increase; 95% CI: 1.27-2.87) were independent predictors of sarcopenia. Group stratification based on the cut-offs of VRI and ABI showed that those with both poor VRI and ABI had the greatest risk for sarcopenia (OR: 4.22; 95% CI: 1.69-10.49), compared with those with normal VRI and ABI. CONCLUSIONS Endothelial dysfunction and PAD are independently associated with sarcopenia in patients with stages 3-5 CKD, suggesting the dominant role of vascular dysfunction in sarcopenia.
Collapse
Affiliation(s)
- Bang‐Gee Hsu
- Division of NephrologyHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- School of MedicineTzu Chi UniversityHualienTaiwan
| | - Chih‐Hsien Wang
- Division of NephrologyHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- School of MedicineTzu Chi UniversityHualienTaiwan
| | - Yu‐Hsien Lai
- Division of NephrologyHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- School of MedicineTzu Chi UniversityHualienTaiwan
| | - Chiu‐Huang Kuo
- Division of NephrologyHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- School of Post‐baccalaureate Chinese MedicineTzu Chi UniversityHualienTaiwan
| | - Yu‐Li Lin
- Division of NephrologyHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- School of MedicineTzu Chi UniversityHualienTaiwan
| |
Collapse
|
19
|
Wakamatsu T, Yamamoto S, Yoshida S, Narita I. Indoxyl Sulfate-Induced Macrophage Toxicity and Therapeutic Strategies in Uremic Atherosclerosis. Toxins (Basel) 2024; 16:254. [PMID: 38922148 PMCID: PMC11209365 DOI: 10.3390/toxins16060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Cardiovascular disease (CVD) frequently occurs in patients with chronic kidney disease (CKD), particularly those undergoing dialysis. The mechanisms behind this may be related to traditional risk factors and CKD-specific factors that accelerate atherosclerosis and vascular calcification in CKD patients. The accumulation of uremic toxins is a significant factor in CKD-related systemic disorders. Basic research suggests that indoxyl sulfate (IS), a small protein-bound uremic toxin, is associated with macrophage dysfunctions, including increased oxidative stress, exacerbation of chronic inflammation, and abnormalities in lipid metabolism. Strategies to mitigate the toxicity of IS include optimizing gut microbiota, intervening against the abnormality of intracellular signal transduction, and using blood purification therapy with higher efficiency. Further research is needed to examine whether lowering protein-bound uremic toxins through intervention leads to a reduction in CVD in patients with CKD.
Collapse
Affiliation(s)
- Takuya Wakamatsu
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
- Ohgo Clinic, Maebashi 371-0232, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
| | - Shiori Yoshida
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
| |
Collapse
|
20
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
21
|
Higashihara T, Odawara M, Nishi H, Sugasawa T, Suzuki Y, Kametaka S, Inagi R, Nangaku M. Uremia Impedes Skeletal Myocyte Myomixer Expression and Fusogenic Activity: Implication for Uremic Sarcopenia. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:759-771. [PMID: 38637109 DOI: 10.1016/j.ajpath.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 04/20/2024]
Abstract
In patients with chronic kidney disease (CKD), skeletal muscle mass and function are known to occasionally decline. However, the muscle regeneration and differentiation process in uremia has not been extensively studied. In mice with CKD induced by adenine-containing diet, the tibialis anterior muscle injured using a barium chloride injection method recovered poorly as compared to control mice. In the cultured murine skeletal myocytes, stimulation with indoxyl sulfate (IS), a representative uremic toxin, morphologically jeopardized the differentiation, which was counteracted by L-ascorbic acid (L-AsA) treatment. Transcriptome analysis of cultured myocytes identified a set of genes whose expression was down-regulated by IS stimulation but up-regulated by L-AsA treatment. Gene silencing of myomixer, one of the genes in the set, impaired myocyte fusion during differentiation. By contrast, lentiviral overexpression of myomixer compensated for a hypomorphic phenotype caused by IS treatment. The split-luciferase technique demonstrated that IS stimulation negatively affected early myofusion activity that was rescued by L-AsA treatment. Lastly, in mice with CKD compared with control mice, myomixer expression in the muscle tissue in addition to the muscle weight after the injury was reduced, both of which were restored with L-AsA treatment. Collectively, data showed that the uremic milieu impairs the expression of myomixer and impedes the myofusion process. Considering frequent musculoskeletal injuries in uremic patients, defective myocyte fusion followed by delayed muscle damage recovery could underlie their muscle loss and weakness.
Collapse
Affiliation(s)
- Takaaki Higashihara
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Motoki Odawara
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Takehito Sugasawa
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Sports Medicine Analysis, Open Facility Network Office, Research Facility Center for Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Yumika Suzuki
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Satoshi Kametaka
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Thome T, Vugman NA, Stone LE, Wimberly K, Scali ST, Ryan TE. A tryptophan-derived uremic metabolite/Ahr/Pdk4 axis governs skeletal muscle mitochondrial energetics in chronic kidney disease. JCI Insight 2024; 9:e178372. [PMID: 38652558 PMCID: PMC11141944 DOI: 10.1172/jci.insight.178372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology and
| | | | | | - Keon Wimberly
- Department of Applied Physiology and Kinesiology and
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, USA
- Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology and
- Center for Exercise Science and
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
23
|
Barisione C, Verzola D, Garibaldi S, Altieri P, Furfaro AL, Nitti M, Pratesi G, Palombo D, Ameri P. Indoxyl sulphate-initiated activation of cardiac fibroblasts is modulated by aryl hydrocarbon receptor and nuclear factor-erythroid-2-related factor 2. J Cell Mol Med 2024; 28:e18192. [PMID: 38506079 PMCID: PMC10951876 DOI: 10.1111/jcmm.18192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
In the last decade, extensive attention has been paid to the uremic toxin indoxyl sulphate (IS) as an inducer of cardiac fibroblast (cFib) activation and cardiac fibrosis in chronic kidney disease. At cellular level, IS engages aryl hydrocarbon receptor (AhR) and regulates many biological functions. We analysed how AhR inhibition by CH-223191 (CH) and overexpression of non-functional (dominant negative, DN) nuclear factor-erythroid-2-related factor 2 (NRF2), a transcription factor recruited by AhR, modulate the response of neonatal mouse (nm) cFib to IS. We also evaluated nm-cardiomyocytes after incubation with the conditioned medium (CM) of IS±CH-treated nm-cFib. IS induced activation, collagen synthesis, TLR4 and-downstream-MCP-1, and the genes encoding angiotensinogen, angiotensin-converting enzyme, angiotensin type 1 receptor (AT1r) and neprilysin (Nepr) in nm-cFib. CH antagonized IS-initiated nm-cFib activation, but did not affect or even magnified the other features. IS promoted NRF2 nuclear translocation and expression the NRF2 target Nqo1. Both pre-incubation with CH and transfection of DN-NRF2 resulted in loss of NRF2 nuclear localization. Moreover, DN-NRF2 overexpression led to greater TLR4 and MCP-1 levels following exposure to IS. The CM of IS-primed nm-cFib and to a larger extent the CM of IS+CH-treated nm-cFib upregulated AT1r, Nepr and TNFα and myostatin genes in nm-cardiomyocytes. Hence, IS triggers pro-inflammatory activation of nm-cFib partly via AhR, and AhR-NRF2 counteract it. Strategies other than AhR inhibition are needed to target IS detrimental actions on cardiac cells.
Collapse
Affiliation(s)
- Chiara Barisione
- Department of Surgical and Integrated Diagnostic SciencesUniversity of GenovaGenovaItaly
- Cardiac, Thoracic and Vascular DepartmentIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Daniela Verzola
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| | | | - Paola Altieri
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| | | | - Mariapaola Nitti
- Department of Experimental MedicineUniversity of GenovaGenovaItaly
| | - Giovanni Pratesi
- Department of Surgical and Integrated Diagnostic SciencesUniversity of GenovaGenovaItaly
- Cardiac, Thoracic and Vascular DepartmentIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Domenico Palombo
- Department of Surgical and Integrated Diagnostic SciencesUniversity of GenovaGenovaItaly
| | - Pietro Ameri
- Cardiac, Thoracic and Vascular DepartmentIRCCS Ospedale Policlinico San MartinoGenovaItaly
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| |
Collapse
|
24
|
Cha RH. Pharmacologic therapeutics in sarcopenia with chronic kidney disease. Kidney Res Clin Pract 2024; 43:143-155. [PMID: 38389147 PMCID: PMC11016676 DOI: 10.23876/j.krcp.23.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 02/24/2024] Open
Abstract
Inflammation, metabolic acidosis, renin-angiotensin system activation, insulin resistance, and impaired perfusion to skeletal muscles, among others, are possible causes of uremic sarcopenia. These conditions induce the activation of the nuclear factor-kappa B and mitogen-activated protein kinase pathways, adenosine triphosphate ubiquitin-proteasome system, and reactive oxygen species system, resulting in protein catabolism. Strategies for the prevention and treatment of sarcopenia in chronic kidney disease (CKD) are aerobic and resistance exercises along with nutritional interventions. Anabolic hormones have shown beneficial effects. Megestrol acetate increased weight, protein catabolic rate, and albumin concentration, and it increased intracellular water component and muscle mass. Vitamin D supplementation showed improvement in physical function, muscle strength, and muscle mass. Correction of metabolic acidosis showed an increase in protein intake, serum albumin levels, body weight, and mid-arm circumference. The kidney- gut-muscle axis indicates that dysbiosis and changes in gut-derived uremic toxins and short-chain fatty acids affect muscle mass, composition, strength, and functional capacity. Biotic supplements, AST-120 administration, hemodiafiltration, and preservation of residual renal function are alleged to reduce uremic toxins, including indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Synbiotics reversed the microbiota change in CKD patients and decreased uremic toxins. AST-120 administration changed the overall gut microbiota composition in CKD. AST-120 prevented IS and PCS tissue accumulation, ameliorated muscle atrophy, improved exercise capacity and mitochondrial biogenesis, restored epithelial tight junction proteins, and reduced plasma endotoxin levels and markers of oxidative stress and inflammation. In a human study, the addition of AST-120 to standard treatment had modest beneficial effects on gait speed change and quality of life.
Collapse
Affiliation(s)
- Ran-hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| |
Collapse
|
25
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
26
|
Troutman AD, Arroyo E, Sheridan EM, D'Amico DJ, Brandt PR, Hinrichs R, Chen X, Lim K, Avin KG. Skeletal muscle atrophy in clinical and preclinical models of chronic kidney disease: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2024; 15:21-35. [PMID: 38062879 PMCID: PMC10834351 DOI: 10.1002/jcsm.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 02/03/2024] Open
Abstract
Patients with chronic kidney disease (CKD) are often regarded as experiencing wasting of muscle mass and declining muscle strength and function, collectively termed sarcopenia. The extent of skeletal muscle wasting in clinical and preclinical CKD populations is unclear. We evaluated skeletal muscle atrophy in preclinical and clinical models of CKD, with multiple sub-analyses for muscle mass assessment methods, CKD severity, sex and across the different preclinical models of CKD. We performed a systematic literature review of clinical and preclinical studies that measured muscle mass/size using the following databases: Ovid Medline, Embase and Scopus. A random effects meta-analysis was utilized to determine standard mean difference (SMD; Hedges' g) between healthy and CKD. Heterogeneity was evaluated using the I2 statistic. Preclinical study quality was assessed via the Systematic Review Centre for Laboratory Animal Experimentation and clinical studies quality was assessed via the Newcastle-Ottawa Scale. This study was registered in PROSPERO (CRD42020180737) prior to initiation of the search. A total of 111 studies were included in this analysis using the following subgroups: 106 studies in the primary CKD analysis, 18 studies that accounted for diabetes and 7 kidney transplant studies. Significant atrophy was demonstrated in 78% of the preclinical studies and 49% of the clinical studies. The random effects model demonstrated a medium overall SMD (SMD = 0.58, 95% CI = 0.52-0.64) when combining clinical and preclinical studies, a medium SMD for the clinical population (SMD = 0.48, 95% CI = 0.42-0.55; all stages) and a large SMD for preclinical CKD (SMD = 0.95, 95% CI = 0.76-1.14). Further sub-analyses were performed based upon assessment methods, disease status and animal model. Muscle atrophy was reported in 49% of the clinical studies, paired with small mean differences. Preclinical studies reported significant atrophy in 78% of studies, with large mean differences. Across multiple clinical sub-analyses such as severity of CKD, dialysis modality and diabetes, a medium mean difference was found. Sub-analyses in both clinical and preclinical studies found a large mean difference for males and medium for females suggesting sex-specific implications. Muscle atrophy differences varied based upon assessment method for clinical and preclinical studies. Limitations in study design prevented conclusions to be made about the extent of muscle loss with disease progression, or the impact of dialysis. Future work would benefit from the use of standardized measurement methods and consistent clinical staging to improve our understanding of atrophy changes in CKD progression, and analysis of biological sex differences.
Collapse
Affiliation(s)
- Ashley D Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Eliott Arroyo
- Department of Medicine, Division of Nephrology & Hypertension, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth M Sheridan
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Duncan J D'Amico
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Peyton R Brandt
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Rachel Hinrichs
- University Library, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Xiwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Kenneth Lim
- Department of Medicine, Division of Nephrology & Hypertension, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keith G Avin
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
- Department of Medicine, Division of Nephrology & Hypertension, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
28
|
Cong T, Yang C, Cao Q, Ren J, Luo Y, Yuan P, Zheng B, Liu Y, Yang H, Kang W, Ou A, Li X. The Role of GNMT and MMP12 Expression in Determining TACE Efficacy: Validation at Transcription and Protein Levels. J Hepatocell Carcinoma 2024; 11:95-111. [PMID: 38250306 PMCID: PMC10800115 DOI: 10.2147/jhc.s441179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose Transarterial chemoembolization (TACE) represents a significant therapeutic modality for hepatocellular carcinoma (HCC). We aimed to develop a gene signature to accurately predict patient TACE response and explore the underlying mechanisms. Methods Three independent datasets were utilized, including GSE104580, GSE14520 and external validation from the Cancer Hospital Chinese Academy of Medical Sciences. GSE104580 was randomly partitioned into a training set and a validation set, whereas GSE14520 was categorized into a resection group and a TACE group. Logistic regression was used to develop a TACE effectiveness model. Immunohistochemistry is utilized to confirm the protein expression trends of the signature genes. Immune infiltration and functional enrichment analyses were conducted to investigate the potential underlying mechanisms. Results A 2-gene signature consisting of glycine N-methyltransferase (GNMT) and matrix metalloproteinase-12 (MMP12) was constructed, and based on this, all the patients were assigned TACE effectiveness scores and categorized into high effectiveness (HE) and low effectiveness (LE) groups. The HE group exhibited a better prognosis than the LE group in the various cohorts (p < 0.05). In the external validation set, immunohistochemistry confirmed the expression of the signature genes exhibiting an upregulated trend of GNMT in the HE group and MMP12 in the LE group, the LE group also exhibited a poorer prognosis [for overall survival (OS), HE group: 881 days vs LE group: 273 days (p < 0.05), and for progression-free survival (PFS), HE group: 458 days vs LE group: 136 days (p < 0.05)]. Multivariate analysis in all the datasets identified LE status as an independent risk factor for OS, disease-free survival (DFS) and PFS. The infiltration level of M0 macrophages and activated mast cells in the LE group was significantly higher than in the HE group. The hypoxia signaling pathway and glycolysis pathway were significantly enriched in the LE group. Conclusion The loss of GNMT and the overexpression of MMP12 may be critical factors influencing TACE efficacy.
Collapse
Affiliation(s)
- Tianhao Cong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chao Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qi Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jinrui Ren
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yingen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Pei Yuan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yu Liu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hongcai Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wendi Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Aixin Ou
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
29
|
Bataille S, McKay N, Koppe L, Beau A, Benoit B, Bartoli M, Da Silva N, Poitevin S, Aniort J, Chermiti R, Burtey S, Dou L. Indoxyl sulfate inhibits muscle cell differentiation via Myf6/MRF4 and MYH2 downregulation. Nephrol Dial Transplant 2023; 39:103-113. [PMID: 37349959 DOI: 10.1093/ndt/gfad123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with a significant decrease in muscle strength and mass, possibly related to muscle cell damage by uremic toxins. Here, we studied in vitro and in vivo the effect of indoxyl sulfate (IS), an indolic uremic toxin, on myoblast proliferation, differentiation and expression of myogenic regulatory factors (MRF)-myoblast determination protein 1 (MyoD1), myogenin (Myog), Myogenic Factor 5 (Myf5) and myogenic regulatory factor 4 (Myf6/MRF4)-and expression of myosin heavy chain, Myh2. METHODS C2C12 myoblasts were cultured in vitro and differentiated in myotubes for 7 days in the presence of IS at a uremic concentration of 200 µM. Myocytes morphology and differentiation was analyzed after hematoxylin-eosin staining. MRF genes' expression was studied using reverse transcription polymerase chain reaction in myocytes and 5/6th nephrectomized mice muscle. Myf6/MRF4 protein expression was studied using enzyme-linked immunosorbent assay; MYH2 protein expression was studied using western blotting. The role of Aryl Hydrocarbon Receptor (AHR)-the cell receptor of IS-was studied by adding an AHR inhibitor into the cell culture milieu. RESULTS In the presence of IS, the myotubes obtained were narrower and had fewer nuclei than control myotubes. The presence of IS during differentiation did not modify the gene expression of the MRFs Myf5, MyoD1 and Myog, but induced a decrease in expression of Myf6/MRF4 and MYH2 at the mRNA and the protein level. AHR inhibition by CH223191 did not reverse the decrease in Myf6/MRF4 mRNA expression induced by IS, which rules out the implication of the ARH genomic pathway. In 5/6th nephrectomized mice, the Myf6/MRF4 gene was down-regulated in striated muscles. CONCLUSION In conclusion, IS inhibits Myf6/MRF4 and MYH2 expression during differentiation of muscle cells, which could lead to a defect in myotube structure. Through these new mechanisms, IS could participate in muscle atrophy observed in CKD.
Collapse
Affiliation(s)
- Stanislas Bataille
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Department of Nephrology, Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France
| | - Nathalie McKay
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- University Lyon, CarMeN lab, INSERM U1060, INRAE, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Alice Beau
- University Lyon, CarMeN lab, INSERM U1060, INRAE, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Bérengère Benoit
- University Lyon, CarMeN lab, INSERM U1060, INRAE, Université Claude Bernard Lyon 1, Pierre Bénite, France
| | - Marc Bartoli
- Aix Marseille University, MMG, INSERM, Marseille, France
| | | | | | - Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Rania Chermiti
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Stéphane Burtey
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix-Marseille University, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | - Laetitia Dou
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
| |
Collapse
|
30
|
Ohashi A, Nakatani M, Hori H, Nakai S, Tsuchida K, Hasegawa M, Tsuboi N. Effects of N-acetyl-L-tryptophan on desorption of the protein-bound uremic toxin indoxyl sulfate and effects on uremic sarcopenia. Ther Apher Dial 2023; 27:1023-1027. [PMID: 37596835 DOI: 10.1111/1744-9987.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 08/20/2023]
Abstract
INTRODUCTION Indoxyl sulfate (IS) is a protein-bound uremic toxin that causes uremic sarcopenia. IS has poor dialysis clearance; however, the addition of a binding competitor improves its removal efficiency. METHODS Dialysis experiments were performed using N-acetyl-l-tryptophan (L-NAT) instead of l-tryptophan (Trp) using pooled sera obtained from dialysis patients. The molecular structures of L-NAT and Trp were similar to that of IS. Therefore, we examined whether Trp and L-NAT were involved in muscle atrophy in the same manner as IS by performing culture experiments using a human myotube cell line. RESULTS The removal efficiency of L-NAT was the same as that of Trp. However, L-NAT concentrations in the pooled sera increased at the end of the experiment. Trp (1 mM) decreased the area of human myocytes, similar to IS, whereas L-NAT did not. CONCLUSION L-NAT is a binding competitor with the ability to remove protein-bound IS while preventing sarcopenia.
Collapse
Affiliation(s)
- Atsushi Ohashi
- Faculty of Clinical Science, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Masashi Nakatani
- Faculty of Rehabilitation and Care, Seijoh University, Tokai, Japan
| | - Hideo Hori
- Faculty of Clinical Science, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Shigeru Nakai
- Faculty of Clinical Science, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Midori Hasegawa
- Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Naotake Tsuboi
- Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
31
|
Hou YC, Liao MT, Tsai KW, Zheng CM, Chiu HW, Lu KC. Indoxyl sulfate induced frailty in patients with end-stage renal disease by disrupting the PGC-1α-FNDC5 axis. Aging (Albany NY) 2023; 15:11532-11545. [PMID: 37878003 PMCID: PMC10637807 DOI: 10.18632/aging.205141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/08/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE Sarcopenia or frailty is common among patients with chronic kidney disease (CKD). The protein-bound uremic toxin indoxyl sulfate (IS) is associated with frailty. IS induces apoptosis and disruption of mitochondrial activity in skeletal muscle. However, the association of IS with anabolic myokines such as irisin in patients with CKD or end-stage renal disease (ESRD) is unclear. This study aims to elucidate whether IS induces frailty by dysregulating irisin in patients with CKD. MATERIALS AND METHODS The handgrip strength of 53 patients, including 28 patients with ESRD, was examined. Serum concentrations of IS and irisin were analyzed. CKD was established in BALB/c mice through 5/6 nephrectomy. Pathologic analysis of skeletal muscle was assessed through haematoxylin and eosin and Masson's trichrome staining. Expression of peroxisome proliferator-activated receptor-gamma coactivator PGC-1α and irisin were analyzed using real-time polymerase chain reaction and Western blotting. RESULTS Handgrip strength was lower among patients with ESRD than among those without ESRD. In total, 64.3% and 24% of the patients in the ESRD and control groups had low handgrip strength, respectively (p < 0.05). Serum concentrations of IS were significantly higher in the ESRD group than in the control group (222.81 ± 90.67 μM and 23.19 ± 33.28 μM, respectively, p < 0.05). Concentrations of irisin were lower in the ESRD group than in the control group (64.62 ± 32.64 pg/mL vs. 99.77 ± 93.29 pg/mL, respectively, p < 0.05). ROC curves for low handgrip strength by irisin and IS were 0.298 (95% confidence interval (CI): 0.139-0.457, p < 0.05) and 0.733 (95% CI: 0.575-0.890, p < 0.05), respectively. The percentage of collagen was significantly higher in mice with 5/6 nephrectomy than in the control group. After resveratrol (RSV) treatment, the percentage of collagen significantly decreased. RSV modulates TGF-β signaling. In vitro analysis revealed that IS treatment suppressed expression of PGC-1α and FNDC5 in a dose-dependent manner, whereas RSV treatment attenuated IS-induced phenomena in C2C12 cells. CONCLUSION IS was positively correlated with frailty in patients with ESRD through the modulation of the PGC-1α-FNDC5 axis. RSV may be a potential drug for reversing IS-induced suppression of the PGC-1α-FNDC5 axis in skeletal muscle.
Collapse
Affiliation(s)
- Yi-Chou Hou
- Division of Nephrology, Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City 231, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Cai-Mei Zheng
- Department of Internal Medicine, Division of Nephrology, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 110, Taiwan
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 110, Taiwan
| | - Hui-Wen Chiu
- TMU Research Centre of Urology and Kidney, Taipei Medical University, New Taipei City 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, New Taipei City 110, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 110, Taiwan
| | - Kuo-Cheng Lu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 243, Taiwan
| |
Collapse
|
32
|
Kubo I, Izawa KP, Kajisa N, Nakamura H, Kimura K, Ogura A, Kanai M, Makihara A, Nishio R, Matsumoto D. Association between worsening renal function severity during hospitalization and low physical function at discharge: a retrospective cohort study of older patients with heart failure and chronic kidney disease from Japan. Eur Geriatr Med 2023; 14:869-878. [PMID: 37330929 DOI: 10.1007/s41999-023-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND The number of hospitalized older patients with chronic heart failure, chronic kidney disease, and worsening renal function is rising in Japan. This study aimed to clarify the impact of the severity of worsening renal function during hospitalization on low physical function at discharge of these patients. METHODS We included 573 consecutive heart failure patients who underwent phase I cardiac rehabilitation. Worsening renal function severity was defined according to elevation during hospitalization of baseline serum creatinine on admission: non-worsening renal function, serum creatinine < 0.2 mg/dL; worsening renal function II/I, serum creatinine ≥ 0.2 to < 0.5 mg/dL; worsening renal function III, and serum creatinine ≥ 0.5 mL/dL. Physical function was measured with the Short Performance Physical Battery. We compared background factors, clinical parameters, pre-hospitalization walking levels, Functional Independence Measure score, and physical function in the three renal function groups. Multiple regression analysis was performed with the Short Performance Physical Battery at discharge as the dependent variable. RESULTS The final analysis included 196 patients (mean age 82.7 years, male 51.5%) categorized into three groups based on worsening renal function: worsening renal function grade III group (n = 55), worsening renal function grade II/I group (n = 36), and non-worsening renal function group (n = 105). There is no significant difference in walking levels before hospitalization between the three groups, but physical function at discharge was significantly lower in the worsening renal function III group. Moreover, worsening renal function III was an independent factor for low physical function at discharge. CONCLUSION Worsening of renal function during hospitalization in older patients with heart failure and chronic kidney disease was strongly associated with low physical function at discharge, even after adjusting for other potentially confounding factors, such as pre-hospitalization walking levels, walking start day, and Geriatric Nutrition Risk Index at discharge. Notably, worsening renal function of mild or moderate severity (grade II/I) did not show a significant association with low physical function.
Collapse
Affiliation(s)
- Ikko Kubo
- Department of Rehabilitation, Yodogawa Christian Hospital, Osaka, Japan
- Department of Public Health, Graduate School of Health Sciences, Kobe University, 10-2 Tomogaoka 7-chome, Suma, Kobe, 654-0142, Japan
- Cardiovascular Stroke Renal Project (CRP), Kobe, Japan
| | - Kazuhiro P Izawa
- Department of Public Health, Graduate School of Health Sciences, Kobe University, 10-2 Tomogaoka 7-chome, Suma, Kobe, 654-0142, Japan.
- Cardiovascular Stroke Renal Project (CRP), Kobe, Japan.
| | - Nozomu Kajisa
- Department of Rehabilitation, Yodogawa Christian Hospital, Osaka, Japan
| | - Hiroaki Nakamura
- Department of Rehabilitation, Yodogawa Christian Hospital, Osaka, Japan
| | - Kyo Kimura
- Department of Rehabilitation, Yodogawa Christian Hospital, Osaka, Japan
| | - Asami Ogura
- Department of Public Health, Graduate School of Health Sciences, Kobe University, 10-2 Tomogaoka 7-chome, Suma, Kobe, 654-0142, Japan
- Cardiovascular Stroke Renal Project (CRP), Kobe, Japan
| | - Masashi Kanai
- Department of Public Health, Graduate School of Health Sciences, Kobe University, 10-2 Tomogaoka 7-chome, Suma, Kobe, 654-0142, Japan
- Cardiovascular Stroke Renal Project (CRP), Kobe, Japan
| | - Ayano Makihara
- Department of Public Health, Graduate School of Health Sciences, Kobe University, 10-2 Tomogaoka 7-chome, Suma, Kobe, 654-0142, Japan
- Cardiovascular Stroke Renal Project (CRP), Kobe, Japan
| | - Ryo Nishio
- Department of Cardiovascular Medicine, Yodogawa Christian Hospital, Osaka, Japan
| | - Daisuke Matsumoto
- Department of Cardiovascular Medicine, Yodogawa Christian Hospital, Osaka, Japan
| |
Collapse
|
33
|
Kuskunov T, Tilkiyan E, Doykov D, Boyanov K, Bivolarska A, Hristov B. The Effect of Synbiotic Supplementation on Uremic Toxins, Oxidative Stress, and Inflammation in Hemodialysis Patients-Results of an Uncontrolled Prospective Single-Arm Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1383. [PMID: 37629672 PMCID: PMC10456308 DOI: 10.3390/medicina59081383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Introduction: Numerous studies to date have shown that the development of dysbiotic gut microbiota is a characteristic finding in chronic kidney disease (CKD). A number of uremic toxins progressively accumulate in the course of CKD, some of them generated by the intestinal microbiome, such as indoxyl sulfate (IS) and p-cresyl sulfate (p-CS). They are found to be involved in the pathogenesis of certain complications of uremic syndrome, including low-grade chronic inflammation and oxidative stress. The aim of the present study is to research the serum concentration of IS and p-CS in end stage renal disease (ESRD) patients undergoing conventional hemodialysis, as well as to study the possibilities of influencing some markers of inflammation and oxidative stress after taking a synbiotic. Materials and Methods: Thirty patients with end-stage renal disease (ESRD) undergoing hemodialysis treatment who were taking a synbiotic in the form of Lactobacillus acidophilus La-14 2 × 1011 (CFU)/g and prebiotic fructooligosaccharides were included in the study. Serum levels of total IS, total p-CS, Interleukin-6 (IL-6), and Malondialdehyde (MDA) were measured at baseline and after 8 weeks. Results. The baseline values of the four investigated indicators in the patients were significantly higher-p-CS (29.26 ± 58.32 pg/mL), IS (212.89 ± 208.59 ng/mL), IL-6 (13.84 ± 2.02 pg/mL), and MDA (1430.33 ± 583.42 pg/mL), compared to the results obtained after 8 weeks of intake, as we found a significant decrease in the parameters compared to the baseline-p-CS (6.40 ± 0.79 pg/mL, p = 0.041), IS (47.08 ± 3.24 ng/mL, p < 0.001), IL-6 (9.14 ± 1.67 pg/mL, p < 0.001), and MDA (1003.47 ± 518.37 pg/mL, p < 0.001). Conclusions: The current study found that the restoration of the intestinal microbiota in patients with CKD significantly decreases the level of certain uremic toxins. It is likely that this favorably affects certain aspects of CKD, such as persistent low-grade inflammation and oxidative stress.
Collapse
Affiliation(s)
- Teodor Kuskunov
- Department of Propaedeutics of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Hemodialysis Unit, University Hospital “Kaspela”, 4000 Plovdiv, Bulgaria
| | - Eduard Tilkiyan
- Second Department of Internal Diseases, Section “Nephrology”, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Nephrology Clinic, University Hospital “Kaspela”, 4000 Plovdiv, Bulgaria
| | - Daniel Doykov
- Second Department of Internal Diseases, Section “Gastroenterology”, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Gastroenterology Clinic, University Hospital “Kaspela”, 4000 Plovdiv, Bulgaria
| | - Krasimir Boyanov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.B.); (A.B.)
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.B.); (A.B.)
| | - Bozhidar Hristov
- Second Department of Internal Diseases, Section “Gastroenterology”, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Gastroenterology Clinic, University Hospital “Kaspela”, 4000 Plovdiv, Bulgaria
| |
Collapse
|
34
|
Hung KC, Yao WC, Liu YL, Yang HJ, Liao MT, Chong K, Peng CH, Lu KC. The Potential Influence of Uremic Toxins on the Homeostasis of Bones and Muscles in Chronic Kidney Disease. Biomedicines 2023; 11:2076. [PMID: 37509715 PMCID: PMC10377042 DOI: 10.3390/biomedicines11072076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with chronic kidney disease (CKD) often experience a high accumulation of protein-bound uremic toxins (PBUTs), specifically indoxyl sulfate (IS) and p-cresyl sulfate (pCS). In the early stages of CKD, the buildup of PBUTs inhibits bone and muscle function. As CKD progresses, elevated PBUT levels further hinder bone turnover and exacerbate muscle wasting. In the late stage of CKD, hyperparathyroidism worsens PBUT-induced muscle damage but can improve low bone turnover. PBUTs play a significant role in reducing both the quantity and quality of bone by affecting osteoblast and osteoclast lineage. IS, in particular, interferes with osteoblastogenesis by activating aryl hydrocarbon receptor (AhR) signaling, which reduces the expression of Runx2 and impedes osteoblast differentiation. High PBUT levels can also reduce calcitriol production, increase the expression of Wnt antagonists (SOST, DKK1), and decrease klotho expression, all of which contribute to low bone turnover disorders. Furthermore, PBUT accumulation leads to continuous muscle protein breakdown through the excessive production of reactive oxygen species (ROS) and inflammatory cytokines. Interactions between muscles and bones, mediated by various factors released from individual tissues, play a crucial role in the mutual modulation of bone and muscle in CKD. Exercise and nutritional therapy have the potential to yield favorable outcomes. Understanding the underlying mechanisms of bone and muscle loss in CKD can aid in developing new therapies for musculoskeletal diseases, particularly those related to bone loss and muscle wasting.
Collapse
Affiliation(s)
- Kuo-Chin Hung
- Division of Nephrology, Department of Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
- Department of Medical Education and Clinical Research, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Yi-Lien Liu
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Hung-Jen Yang
- Department of General Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Keong Chong
- Division of Endocrinology and Metabolism, Department of Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Ching-Hsiu Peng
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
35
|
Balestrieri N, Palzkill V, Pass C, Tan J, Salyers ZR, Moparthy C, Murillo A, Kim K, Thome T, Yang Q, O’Malley KA, Berceli SA, Yue F, Scali ST, Ferreira LF, Ryan TE. Activation of the Aryl Hydrocarbon Receptor in Muscle Exacerbates Ischemic Pathology in Chronic Kidney Disease. Circ Res 2023; 133:158-176. [PMID: 37325935 PMCID: PMC10330629 DOI: 10.1161/circresaha.123.322875] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic solutes, which are ligands for AHR (aryl hydrocarbon receptor), are associated with limb amputation in PAD. Herein, we examined the role of AHR activation in the myopathy of PAD and CKD. METHODS AHR-related gene expression was evaluated in skeletal muscle obtained from mice and human PAD patients with and without CKD. AHRmKO (skeletal muscle-specific AHR knockout) mice with and without CKD were subjected to femoral artery ligation, and a battery of assessments were performed to evaluate vascular, muscle, and mitochondrial health. Single-nuclei RNA sequencing was performed to explore intercellular communication. Expression of the constitutively active AHR was used to isolate the role of AHR in mice without CKD. RESULTS PAD patients and mice with CKD displayed significantly higher mRNA expression of classical AHR-dependent genes (Cyp1a1, Cyp1b1, and Aldh3a1) when compared with either muscle from the PAD condition with normal renal function (P<0.05 for all 3 genes) or nonischemic controls. AHRmKO significantly improved limb perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and strength, as well as enhanced mitochondrial function in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. CONCLUSIONS These findings establish AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in CKD. Further, the totality of the results provides support for testing of clinical interventions that diminish AHR signaling in these conditions.
Collapse
Affiliation(s)
- Nicholas Balestrieri
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Victoria Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Caroline Pass
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Zachary R. Salyers
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Chatick Moparthy
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Ania Murillo
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Qingping Yang
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Kerri A. O’Malley
- Department of Surgery, The University of Florida, Gainesville, FL, USA
| | - Scott A. Berceli
- Department of Surgery, The University of Florida, Gainesville, FL, USA
| | - Feng Yue
- Department of Animal Sciences, The University of Florida, Gainesville, FL, USA
- Myology Institute, The University of Florida, Gainesville, FL, USA
| | | | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- Myology Institute, The University of Florida, Gainesville, FL, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- Myology Institute, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Sprick JD, Jeong J, Sabino-Carvalho JL, Li S, Park J. Neurocirculatory regulation and adaptations to exercise in chronic kidney disease. Am J Physiol Heart Circ Physiol 2023; 324:H843-H855. [PMID: 37000610 PMCID: PMC10191135 DOI: 10.1152/ajpheart.00115.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by pronounced exercise intolerance and exaggerated blood pressure reactivity during exercise. Classic mechanisms of exercise intolerance in CKD have been extensively described previously and include uremic myopathy, chronic inflammation, malnutrition, and anemia. We contend that these classic mechanisms only partially explain the exercise intolerance experienced in CKD and that alterations in cardiovascular and autonomic regulation also play a key contributing role. The purpose of this review is to examine the physiological factors that contribute to neurocirculatory dysregulation during exercise and discuss the adaptations that result from regular exercise training in CKD. Key neurocirculatory mechanisms contributing to exercise intolerance in CKD include augmentation of the exercise pressor reflex, aberrations in neurocirculatory control, and increased neurovascular transduction. In addition, we highlight how some contributing factors may be improved through exercise training, with a specific focus on the sympathetic nervous system. Important areas for future work include understanding how the exercise prescription may best be optimized in CKD and how the beneficial effects of exercise training may extend to the brain.
Collapse
Affiliation(s)
- Justin D Sprick
- Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, Texas, United States
| | - Jinhee Jeong
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeann L Sabino-Carvalho
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Sabrina Li
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| |
Collapse
|
37
|
Balestrieri N, Palzkill V, Pass C, Tan J, Salyers ZR, Moparthy C, Murillo A, Kim K, Thome T, Yang Q, O'Malley KA, Berceli SA, Yue F, Scali ST, Ferreira LF, Ryan TE. Chronic activation of the aryl hydrocarbon receptor in muscle exacerbates ischemic pathology in chronic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541060. [PMID: 37292677 PMCID: PMC10245783 DOI: 10.1101/2023.05.16.541060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the cellular and physiological mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic toxins, many of which are ligands for the aryl hydrocarbon receptor (AHR), are associated with adverse limb outcomes in PAD. We hypothesized that chronic AHR activation, driven by the accumulation of tryptophan-derived uremic metabolites, may mediate the myopathic condition in the presence of CKD and PAD. Both PAD patients with CKD and mice with CKD subjected to femoral artery ligation (FAL) displayed significantly higher mRNA expression of classical AHR-dependent genes ( Cyp1a1 , Cyp1b1 , and Aldh3a1 ) when compared to either muscle from the PAD condition with normal renal function ( P <0.05 for all three genes) or non-ischemic controls. Skeletal-muscle-specific AHR deletion in mice (AHR mKO ) significantly improved limb muscle perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and contractile function, as well as enhanced mitochondrial oxidative phosphorylation and respiratory capacity in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. These findings establish chronic AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in PAD. Further, the totality of the results provide support for testing of clinical interventions that diminish AHR signaling in these conditions.
Collapse
|
38
|
Yi J, Cha JG, Hahn S. Comparison of shear wave elastography with gray-scale USG and CT for quantitative evaluation of rectus femoris muscle. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:703-710. [PMID: 36710597 DOI: 10.1002/jcu.23435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE The purpose of this study was to compare the measurement of shear wave elastography (SWE) and gray scale ultrasonography (GSU) and CT attenuation of mid-rectus femoris (RF) muscle in healthy adults. METHODS This prospective study included 70 participants with a healthy body mass index (<25 kg/m2 ) between June 2019 and January 2020. Echo intensity (EI) grading of RF on GSU was performed. SWE was performed for the three levels of the RF. Measurements were repeated 10 min after the first measurement. The mid-RF attenuation on CT was also measured. Interobserver agreement of EI grade among three readers was assessed using weighted-kappa statistics. The reliability of SWE was assessed using intraclass correlation coefficient. The correlations between the SWE and CT/GSU measurements were analyzed. RESULTS Interobserver agreement of EI grade on GSU by the three radiologists was moderate to substantial (k = 0.562-0.767). The inter-session agreements for SWE were almost perfect for mid RF (k = 0.822-0.829) and substantial for proximal and distal RF (k = 0.767-0.795). There were significant correlations between SWE-EI and SWE-CT attenuation (p < 0.001, respectively) at the mid-RF. CONCLUSIONS SWE measurements on mid-RF demonstrated the highest reliability. SWE parameters showed a strong correlation with EI on GSU and attenuation on CT.
Collapse
Affiliation(s)
- Jisook Yi
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Jang Gyu Cha
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Seok Hahn
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
39
|
Martín-Del-Campo F, Avesani CM, Stenvinkel P, Lindholm B, Cueto-Manzano AM, Cortés-Sanabria L. Gut microbiota disturbances and protein-energy wasting in chronic kidney disease: a narrative review. J Nephrol 2023; 36:873-883. [PMID: 36689170 PMCID: PMC9869315 DOI: 10.1007/s40620-022-01560-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/18/2022] [Indexed: 01/24/2023]
Abstract
Protein-energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with increased morbidity and mortality, and lower quality of life. It is a complex syndrome, in which inflammation and retention of uremic toxins are two main factors. Causes of inflammation and uremic toxin retention in CKD are multiple; however, gut dysbiosis plays an important role, serving as a link between those entities and PEW. Besides, there are several pathways by which microbiota may influence PEW, e.g., through effects on appetite mediated by microbiota-derived proteins and hormonal changes, or by impacting skeletal muscle via a gut-muscle axis. Hence, microbiota disturbances may influence PEW independently of its relationship with local and systemic inflammation. A better understanding of the complex interrelationships between microbiota and the host may help to explain how changes in the gut affect distant organs and systems of the body and could potentially lead to the development of new strategies targeting the microbiota to improve nutrition and clinical outcomes in CKD patients. In this review, we describe possible interactions of gut microbiota with nutrient metabolism, energy balance, hunger/satiety signals and muscle depletion, all of which are strongly related to PEW in CKD patients.
Collapse
Affiliation(s)
- Fabiola Martín-Del-Campo
- Unidad de Investigación Médica en Enfermedades Renales, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Carla Maria Avesani
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, M99 Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, M99 Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, M99 Karolinska University Hospital Huddinge, 14186, Stockholm, Sweden.
| | - Alfonso M Cueto-Manzano
- Unidad de Investigación Médica en Enfermedades Renales, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Laura Cortés-Sanabria
- Unidad de Investigación Médica en Enfermedades Renales, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| |
Collapse
|
40
|
Koppe L, Mak RH. Is There a Need to "Modernize" and "Simplify" the Diagnostic Criteria of Protein-Energy Wasting? Semin Nephrol 2023; 43:151403. [PMID: 37541069 DOI: 10.1016/j.semnephrol.2023.151403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Protein energy wasting(PEW) is a term that most nephrologists used to define nutritional disorders in patients with acute kidney injury and chronic kidney disease. Although this nomenclature is well implemented in the field of nephrology, the use of other terms such as cachexia or malnutritionin the majority of chronic diseases can induce confusion regarding the definition and interpretation of these terms. There is ample evidence in the literature that the pathways involved in cachexia/malnutrition and PEW are common. However, in kidney diseases, there are pathophysiological conditions such as accumulation of uremic toxins, and the use of dialysis, which may induce a phenotypic specificity justifying the original term PEW. In light of the latest epidemiologic studies, the criteria for PEW used in 2008 probably need to be updated. The objective of this review is to summarize the main mechanisms involved in cachexia/malnutrition and PEW. We discuss the need to modernize and simplify the current definition and diagnostic criteria of PEW. We consider the interest of proposing a specific nomenclature of PEW for children and elderly patients with kidney diseases.
Collapse
Affiliation(s)
- Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France; University Lyon, Cardiovasculaire, Métabolisme, Diabète et Nutrition Laboratory, Institut National des Sciences Appliquées-Lyon, Institut National de la Santé et de la Recherche Médicale U1060, l'Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Claude Bernard Lyon 1, Villeurbanne, France.
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California San Diego, La Jolla, California
| |
Collapse
|
41
|
Abstract
Muscle wasting (ie, atrophy) is a serious consequence of chronic kidney disease (CKD) that reduces muscle strength and function. It reduces the quality of life for CKD patients and increases the risks of comorbidities and mortality. Current treatment strategies to prevent or reverse skeletal muscle loss are limited owing to the broad and systemic nature of the initiating signals and the multifaceted catabolic mechanisms that accelerate muscle protein degradation and impair protein synthesis and repair pathways. Recent evidence has shown how organs such as muscle, adipose, and kidney communicate with each other through interorgan exchange of proteins and RNAs during CKD. This crosstalk changes cell functions in the recipient organs and represents an added dimension in the complex processes that are responsible for muscle atrophy in CKD. This complexity creates challenges for the development of effective therapies to ameliorate muscle wasting and weakness in patients with CKD.
Collapse
Affiliation(s)
- Xiaonan H Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA
| | - S Russ Price
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC; Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC.
| |
Collapse
|
42
|
Disentangling the Complexity of Nutrition, Frailty and Gut Microbial Pathways during Aging: A Focus on Hippuric Acid. Nutrients 2023; 15:nu15051138. [PMID: 36904138 PMCID: PMC10005077 DOI: 10.3390/nu15051138] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Hippuric acid (HA) is a metabolite resulting from the hepatic glycine conjugation of benzoic acid (BA) or from the gut bacterial metabolism of phenylalanine. BA is generally produced by gut microbial metabolic pathways after the ingestion of foods of vegetal origin rich in polyphenolic compounds, namely, chlorogenic acids or epicatechins. It can also be present in foods, either naturally or artificially added as a preservative. The plasma and urine HA levels have been used in nutritional research for estimating the habitual fruit and vegetable intake, especially in children and in patients with metabolic diseases. HA has also been proposed as a biomarker of aging, since its levels in the plasma and urine can be influenced by the presence of several age-related conditions, including frailty, sarcopenia and cognitive impairment. Subjects with physical frailty generally exhibit reduced plasma and urine levels of HA, despite the fact that HA excretion tends to increase with aging. Conversely, subjects with chronic kidney disease exhibit reduced HA clearance, with HA retention that may exert toxic effects on the circulation, brain and kidneys. With regard to older patients with frailty and multimorbidity, interpreting the HA levels in the plasma and urine may result particularly challenging because HA is at the crossroads between diet, gut microbiota, liver and kidney function. Although these considerations may not make HA the ideal biomarker of aging trajectories, the study of its metabolism and clearance in older subjects may provide valuable information for disentangling the complex interaction between diet, gut microbiota, frailty and multimorbidity.
Collapse
|
43
|
Thome T, Kim K, Dong G, Ryan TE. The Role of Mitochondrial and Redox Alterations in the Skeletal Myopathy Associated with Chronic Kidney Disease. Antioxid Redox Signal 2023; 38:318-337. [PMID: 36245209 PMCID: PMC9986033 DOI: 10.1089/ars.2022.0143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/12/2022]
Abstract
Significance: An estimated 700 million people globally suffer from chronic kidney disease (CKD). In addition to increasing cardiovascular disease risk, CKD is a catabolic disease that results in a loss of muscle mass and function, which are strongly associated with mortality and a reduced quality of life. Despite the importance of muscle health and function, there are no treatments available to prevent or attenuate the myopathy associated with CKD. Recent Advances: Recent studies have begun to unravel the changes in mitochondrial and redox homeostasis within skeletal muscle during CKD. Impairments in mitochondrial metabolism, characterized by reduced oxidative phosphorylation, are found in both rodents and patients with CKD. Associated with aberrant mitochondrial function, clinical and preclinical findings have documented signs of oxidative stress, although the molecular source and species are ill-defined. Critical Issues: First, we review the pathobiology of CKD and its associated myopathy, and we review muscle cell bioenergetics and redox biology. Second, we discuss evidence from clinical and preclinical studies that have implicated the involvement of mitochondrial and redox alterations in CKD-associated myopathy and review the underlying mechanisms reported. Third, we discuss gaps in knowledge related to mitochondrial and redox alterations on muscle health and function in CKD. Future Directions: Despite what has been learned, effective treatments to improve muscle health in CKD remain elusive. Further studies are needed to uncover the complex mitochondrial and redox alterations, including post-transcriptional protein alterations, in patients with CKD and how these changes interact with known or unknown catabolic pathways contributing to poor muscle health and function. Antioxid. Redox Signal. 38, 318-337.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
- Center for Exercise Science, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Tan Y, Liu X, Yang Y, Li B, Yu F, Zhao W, Fu C, Yu X, Han Z, Cheng M. Metabolomics analysis reveals serum biomarkers in patients with diabetic sarcopenia. Front Endocrinol (Lausanne) 2023; 14:1119782. [PMID: 37033246 PMCID: PMC10073735 DOI: 10.3389/fendo.2023.1119782] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION Diabetic sarcopenia (DS) is characterized by muscle atrophy, slower nerve conduction, reduced maximum tension generated by skeletal muscle contraction, and slower contraction rate. Hence, DS can cause limb movement degeneration, slow movement, reduced balance, reduced metabolic rate, falls, fractures, etc. Moreover, the relevant early biological metabolites and their pathophysiological mechanism have yet to be characterized. METHOD The current cross-sectional study employed serum metabolomics analysis to screen potential noninvasive biomarkers in patients with diabetic sarcopenia. A total of 280 diabetic patients were enrolled in the study (n = 39 sarcopenia [DS], n = 241 without sarcopenia [DM]). Ten patients were randomly selected from both groups. Non-targeted metabolomic analysis was performed by ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. RESULTS A total of 632 differential metabolites were identified, including 82 that were significantly differentially abundant (P < 0.05, VIP > 1, FC > 1.2 or FC < 0.8). Compared with the DM group, the contents of pentadecanoic acid, 5'-methylthioadenosine (5'-MTA), N,N-dimethylarginine (asymmetric dimethylarginine, ADMA), and glutamine in the DS group were significantly increased, while that of isoxanthohumol was decreased. DISCUSSION Based on receiver operating characteristic curve analysis, pentadecanoic acid, 5'-MTA, ADMA, and glutamine may serve as potential biomarkers of DS. Moreover, ATP-binding cassette (ABC) transporters and the mammalian target of the rapamycin signaling pathway were found to potentially have important regulatory roles in the occurrence and development of DS (P < 0.05). Collectively, the differential metabolites identified in this study provide new insights into the underlying pathophysiology of DS and serve as a basis for therapeutic interventions.
Collapse
Affiliation(s)
- Yuwei Tan
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xiaosong Liu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Yinping Yang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Aixinzhuoer Medical Laboratory, Jinan, China
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Zhenxia Han
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
- *Correspondence: Mei Cheng,
| |
Collapse
|
45
|
Troutman AD, Arroyo E, Lim K, Moorthi RN, Avin KG. Skeletal Muscle Complications in Chronic Kidney Disease. Curr Osteoporos Rep 2022; 20:410-421. [PMID: 36149594 PMCID: PMC10064704 DOI: 10.1007/s11914-022-00751-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW To provide an overview of the recent literature investigating the pathophysiology of skeletal muscle changes, interventions for skeletal muscle, and effects of exercise in chronic kidney disease (CKD). RECENT FINDINGS There are multiple CKD-related changes that negatively impact muscle size and function. However, the variability in the assessment of muscle size, in particular, hinders the ability to truly understand the impact it may have in CKD. Exercise interventions to improve muscle size and function demonstrate inconsistent responses that warrant further investigation to optimize exercise prescription. Despite progress in the field, there are many gaps in the knowledge of the pathophysiology of sarcopenia of CKD. Identifying these gaps will help in the design of interventions that can be tested to target muscle loss and its consequences such as impaired mobility, falls, and poor quality of life in patients with CKD.
Collapse
Affiliation(s)
- Ashley D Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, CF-326, 1140 W. Michigan St., Indianapolis, IN, 46202, USA
| | - Eliott Arroyo
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenneth Lim
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ranjani N Moorthi
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keith G Avin
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, CF-326, 1140 W. Michigan St., Indianapolis, IN, 46202, USA.
- Division of Nephrology & Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
46
|
Gaillard F, Ould Rabah M, Garcelon N, Touam M, Neuraz A, Legendre C, Anglicheau D, Prié D, Bienaimé F. Allograft function and muscle mass evolution after kidney transplantation. J Cachexia Sarcopenia Muscle 2022; 13:2875-2887. [PMID: 36106518 PMCID: PMC9745471 DOI: 10.1002/jcsm.13066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Advanced chronic kidney disease is associated with muscle wasting, but how glomerular filtration rate (GFR) recovery after kidney transplantation is associated with muscle mass is unknown. METHODS We took advantage of the simultaneous measurement of GFR (using iohexol plasma clearance; ioGFR) and creatinine excretion rate (a surrogate marker of muscle mass; CER) performed 3 months after transplantation and at a later time point at our institution to investigate the interplay between allograft function, muscle mass, and outcome in kidney transplant recipients. RESULTS Between June 2005 and October 2019, 1319 successive kidney transplant recipients (mean age 50.4 ± 14.6; 38.7% female) underwent GFR measurement at our institution 3 months after kidney transplantation. CER (CER3 ) and ioGFR (ioGFR3 ) were 7.7 ± 2.6 μmol/min and 53 ± 17.1 mL/min/1.73 m2 , respectively. Multivariable analysis identified female gender, older donor and recipient age, reduced body mass index, coronary disease, dialysis history, proteinuria, and reduced ioGFR3 as independent predictors of low CER3 (ioGFR3 : β coefficient 0.19 [95% confidence interval 0.14 to 0.24]). A total of 1165 patients had a subsequent CER measurement after a median follow-up of 9.5 months. Of them, 373 (32%) experienced an increase in CER > 10%, while 222 (19%) showed a CER decrease of more than 10%. Multivariable analysis adjusted for CER3 and other confounders identified ioGFR3 as an independent predictor of CER at follow-up (β coefficient 0.11 [95% confidence interval 0.07 to 0.16]). In multivariable Cox analysis, reduced CER at 3 months or at follow-up were consistently associated with mortality (hazard ratio [95% confidence interval] at 3 months: 0.82 [0.74 to 0.91]; at follow-up: 0.79 [0.69 to 0.99]) but not with graft loss. CONCLUSIONS Glomerular filtration rate recovery is a determinant of muscle mass variation after kidney transplantation. Early interventions targeting muscle mass gain may be beneficial for kidney transplant recipients.
Collapse
Affiliation(s)
- François Gaillard
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot et faculté de médecine, Université Lyon 1, Lyon, France
| | - Mélissa Ould Rabah
- Service de Physiologie, Hôpital Necker-Enfants Malades, Assistance-Publique-Hôpitaux de Paris, Paris, France.,Faculté de médecine, Université de Paris-Cité, Paris, France
| | - Nicolas Garcelon
- Université de Paris-Cité, Imagine Institute, Data Science Platform, INSERM UMR 1163, Paris, France
| | - Malik Touam
- Service de Néphrologie et Transplantation, Hôpital Necker-Enfants Malades, Assistance-Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Neuraz
- Service d'Informatique Médical, Hôpital Necker-Enfants Malades, Assistance-Publique-Hôpitaux de Paris, Paris, France
| | - Christophe Legendre
- Faculté de médecine, Université de Paris-Cité, Paris, France.,Service de Néphrologie et Transplantation, Hôpital Necker-Enfants Malades, Assistance-Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, INSERM U1151, Paris, France
| | - Dany Anglicheau
- Faculté de médecine, Université de Paris-Cité, Paris, France.,Service de Néphrologie et Transplantation, Hôpital Necker-Enfants Malades, Assistance-Publique-Hôpitaux de Paris, Paris, France.,Institut Necker-Enfants Malades, INSERM U1151, Paris, France
| | - Dominique Prié
- Service de Physiologie, Hôpital Necker-Enfants Malades, Assistance-Publique-Hôpitaux de Paris, Paris, France.,Faculté de médecine, Université de Paris-Cité, Paris, France.,Institut Necker-Enfants Malades, INSERM U1151, Paris, France
| | - Frank Bienaimé
- Service de Physiologie, Hôpital Necker-Enfants Malades, Assistance-Publique-Hôpitaux de Paris, Paris, France.,Faculté de médecine, Université de Paris-Cité, Paris, France.,Institut Necker-Enfants Malades, INSERM U1151, Paris, France
| |
Collapse
|
47
|
Lefevre C, Bindels LB. Role of the Gut Microbiome in Skeletal Muscle Physiology and Pathophysiology. Curr Osteoporos Rep 2022; 20:422-432. [PMID: 36121571 DOI: 10.1007/s11914-022-00752-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the recent findings about the contribution of the gut microbiome to muscle pathophysiology and discuss molecular pathways that may be involved in such process. Related findings in the context of cancer cachexia are outlined. RECENT FINDINGS Many bacterial metabolites have been reported to exert a beneficial or detrimental impact on muscle physiology. Most of the evidence concentrates on short-chain fatty acids (SCFAs), with an emerging role for bile acids, bacterial amino acid metabolites (bAAms), and bacterial polyphenol metabolites. Other molecular players worth considering include cytokines, hormones, lipopolysaccharides, and quorum sensing molecules. The current literature clearly establishes the ability for the gut microbiome to modulate muscle function and mass. The understanding of the mechanisms underlying this gut-muscle axis may lead to the delivery of novel therapeutic tools to tackle muscle wasting in cancer cachexia, chronic kidney disease, liver fibrosis, and age-related sarcopenia.
Collapse
Affiliation(s)
- Camille Lefevre
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.11, 1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Avenue Pasteur 6, 1300, Wavre, Belgium.
| |
Collapse
|
48
|
Bullen AL, Ascher SB, Scherzer R, Garimella PS, Katz R, Hallan SI, Cheung AK, Raphael KL, Estrella MM, Jotwani VK, Malhotra R, Seegmiller JC, Shlipak MG, Ix JH. Markers of Kidney Tubular Secretion and Risk of Adverse Events in SPRINT Participants with CKD. J Am Soc Nephrol 2022; 33:1915-1926. [PMID: 35973732 PMCID: PMC9528325 DOI: 10.1681/asn.2022010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Kidney tubular secretion is an essential mechanism for clearing many common antihypertensive drugs and other metabolites and toxins. It is unknown whether novel measures of tubular secretion are associated with adverse events (AEs) during hypertension treatment. METHODS Among 2089 SPRINT (Systolic Blood Pressure Intervention Trial) participants with baseline eGFR <60 ml/min per 1.73 m2, we created a summary secretion score by averaging across the standardized spot urine-to-plasma ratios of ten novel endogenous tubular secretion measures, with lower urine-to-plasma ratios reflecting worse tubular secretion. Multivariable Cox proportional hazards models were used to evaluate associations between the secretion score and risk of a composite of prespecified serious AEs (hypotension, syncope, bradycardia, AKI, electrolyte abnormalities, and injurious falls). The follow-up protocol for SPRINT routinely assessed two laboratory monitoring AEs (hyperkalemia and hypokalemia). RESULTS Overall, 30% of participants experienced at least one AE during a median follow-up of 3.0 years. In multivariable models adjusted for eGFR and albuminuria, lower (worse) secretion scores at baseline were associated with greater risk of the composite AE outcome (hazard ratio per 1-SD lower secretion score, 1.16; 95% confidence interval, 1.04 to 1.27). In analyses of the individual AEs, lower secretion score was associated with significantly greater risk of AKI, serious electrolyte abnormalities, and ambulatory hyperkalemia. Associations were similar across randomized treatment assignment groups. CONCLUSION Among SPRINT participants with CKD, worse tubular secretion was associated with greater risk of AEs, independent of eGFR and albuminuria.
Collapse
Affiliation(s)
- Alexander L. Bullen
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, California
- Division of Nephrology-Hypertension, University of California, San Diego, California
| | - Simon B. Ascher
- Kidney Health Research Collaborative, Department of Medicine, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California
- Division of Hospital Medicine, University of California Davis, Sacramento, California
| | - Rebecca Scherzer
- Kidney Health Research Collaborative, Department of Medicine, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California
| | - Pranav S. Garimella
- Division of Nephrology-Hypertension, University of California, San Diego, California
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Stein I. Hallan
- Department of Clinical and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Nephrology, St Olav University Hospital, Trondheim, Norway
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, University of Utah Health, Salt Lake City, Utah
- Medical Service, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Kalani L. Raphael
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University and VA Portland Health Care System, Portland, Oregon
| | - Michelle M. Estrella
- Kidney Health Research Collaborative, Department of Medicine, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California
| | - Vasantha K. Jotwani
- Kidney Health Research Collaborative, Department of Medicine, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California
| | - Rakesh Malhotra
- Division of Nephrology-Hypertension, University of California, San Diego, California
| | - Jesse C. Seegmiller
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Michael G. Shlipak
- Kidney Health Research Collaborative, Department of Medicine, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, California
| | - Joachim H. Ix
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, California
- Division of Nephrology-Hypertension, University of California, San Diego, California
| |
Collapse
|
49
|
Shin HE, Won CW, Kim M. Metabolomic profiles to explore biomarkers of severe sarcopenia in older men: A pilot study. Exp Gerontol 2022; 167:111924. [PMID: 35963453 DOI: 10.1016/j.exger.2022.111924] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The pathophysiology of sarcopenia is complex and multifactorial; however, it has not yet been fully elucidated. Identifying metabolomic profiles may help clarify the mechanisms underlying sarcopenia. OBJECTIVE This pilot study explored potential noninvasive biomarkers of severe sarcopenia through metabolomic analysis in community-dwelling older men. METHODS Twenty older men (mean age: 81.9 ± 2.8 years) were selected from the Korean Frailty and Aging Cohort Study. Participants with severe sarcopenia (n = 10) were compared with non-sarcopenic, age- and body mass index-matched controls (n = 10). Severe sarcopenia was defined as low muscle mass, low muscle strength, and low physical performance using the Asian Working Group for Sarcopenia 2019 criteria. Non-targeted metabolomic profiling of plasma metabolites was performed using capillary electrophoresis time-of-flight mass spectrometry and absolute quantification was performed in target metabolites. RESULTS Among 191 plasma metabolic peaks, the concentrations of 10 metabolites significantly differed between severe sarcopenia group and non-sarcopenic controls. The plasma concentrations of L-alanine, homocitrulline, N-acetylserine, gluconic acid, N-acetylalanine, proline, and sulfotyrosine were higher, while those of 4-methyl-2-oxovaleric acid, 3-methyl-2-oxovaleric acid, and tryptophan were lower in participants with severe sarcopenia than in non-sarcopenic controls (all, p < 0.05). Among the 53 metabolites quantified as target metabolites, L-alanine (area under the receiver operating characteristic curve [AUC] = 0.760; p = 0.049), gluconic acid (AUC = 0.800; p = 0.023), proline (AUC = 0.785; p = 0.031), and tryptophan (AUC = 0.800; p = 0.023) determined the presence of severe sarcopenia. CONCLUSIONS Plasma metabolomic analysis demonstrated that L-alanine, gluconic acid, proline, and tryptophan may be potential biomarkers of severe sarcopenia. The identified metabolites can provide new insights into the underlying pathophysiology of severe sarcopenia and serve as the basis for preventive interventions.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, South Korea.
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
50
|
Shirai N, Inoue T, Ogawa M, Okamura M, Morishita S, Suguru Y, Tsubaki A. Relationship between Nutrition-Related Problems and Falls in Hemodialysis Patients: A Narrative Review. Nutrients 2022; 14:nu14153225. [PMID: 35956401 PMCID: PMC9370180 DOI: 10.3390/nu14153225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023] Open
Abstract
Falls are a social problem that increase healthcare costs. Hemodialysis (HD) patients need to avoid falling because fractures increase their risk of death. Nutritional problems such as frailty, sarcopenia, undernutrition, protein-energy wasting (PEW), and cachexia may increase the risk of falls and fractures in patients with HD. This review aimed to summarize the impact of frailty, sarcopenia, undernutrition, PEW, and cachexia on falls in HD patients. The reported global incidence of falls in HD patients is 0.85-1.60 falls per patient per year. HD patients fall frequently, but few reports have investigated the relationship between nutrition-related problems and falls. Several studies reported that frailty and undernutrition increase the risk of falls in HD patients. Nutritional therapy may help to prevent falls in HD patients. HD patients' falls are caused by nutritional problems such as iatrogenic and non-iatrogenic factors. Falls increase a person's fear of falling, reducing physical activity, which then causes muscle weakness and further decreased physical activity; this cycle can cause multiple falls. Further research is necessary to clarify the relationships between falls and sarcopenia, cachexia, and PEW. Routine clinical assessments of nutrition-related problems are crucial to prevent falls in HD patients.
Collapse
Affiliation(s)
- Nobuyuki Shirai
- Department of Rehabilitation, Niigata Rinko Hospital, Niigata 950-8725, Japan
| | - Tatsuro Inoue
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
- Correspondence: ; Tel.: +81-25-257-4443; Fax: +81-25-257-4443
| | - Masato Ogawa
- Division of Rehabilitation Medicine, Kobe University Hospital, Kobe 650-0017, Japan
| | - Masatsugu Okamura
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Shinichiro Morishita
- Department of Physical Therapy, School of Health Science, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yamamoto Suguru
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
| | - Atsuhiro Tsubaki
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| |
Collapse
|