1
|
Zhang Q, Zhou X, Zhang W, Wang X, Dou S, Zhao L, El‐Habta R, Zhou Q, Backman LJ, Danielson P. Corneal strain influences keratocyte proliferation and migration through upregulation of ALDH3A1 expression. FASEB J 2024; 38:e70236. [PMID: 39652089 PMCID: PMC11627209 DOI: 10.1096/fj.202401392r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/24/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Keratocytes are the primary resident cells in the corneal stroma. They play an essential role in maintaining corneal physiological function. Studying the factors that affect the phenotype and behavior of keratocytes offers meaningful perspectives for improving the understanding and treatment of corneal injuries. In this study, 3% strain was applied to human keratocytes using the Flexcell® Tension Systems. Real-time quantitative PCR (RT-qPCR) and western blot were used to investigate the influence of strain on the expression of intracellular aldehyde dehydrogenase 3A1 (ALDH3A1). ALDH3A1 knockdown was achieved using double-stranded RNA-mediated interference (RNAi). Immunofluorescence (IF) staining was employed to observe the impact of changes in ALDH3A1 expression on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear translocation. Keratocyte proliferation and migration were assessed by bromodeoxyuridine (BrdU) assay and scratch wound healing assay, respectively. Mouse injury models and single-cell RNA sequencing of keratocytes from keratoconus patients were used to assess how strain influenced ALDH3A1 in vivo. Our results demonstrate that 3% strain suppresses keratocyte proliferation and increases ALDH3A1. Increased ALDH3A1 inhibits NF-κB nuclear translocation, a key step in the activation of the NF-κB signaling pathway. Conversely, ALDH3A1 knockdown promotes NF-κB nuclear translocation, ultimately enhancing keratocyte proliferation and migration. Elevated ALDH3A1 levels were also observed in mouse injury models with increased corneal strain and keratoconus patients. These findings provide valuable insights for further research into the role of corneal strain and its connection to corneal injury repair.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | - Xin Zhou
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | - Wei Zhang
- School of MedicineSoutheast UniversityNanjingChina
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdaoChina
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdaoChina
| | - Leilei Zhao
- Medical CollegeQingdao UniversityQingdaoChina
| | - Roine El‐Habta
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdaoChina
| | - Ludvig J. Backman
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
- Department of Community Medicine and Rehabilitation, Section of PhysiotherapyUmeå UniversityUmeåSweden
| | - Patrik Danielson
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
- Department of Clinical Sciences, OphthalmologyUmeå UniversityUmeåSweden
| |
Collapse
|
2
|
Collins M, Ibeanu N, Grabowska WR, Awwad S, Khaw PT, Brocchini S, Khalili H. Bispecific FpFs: a versatile tool for preclinical antibody development. RSC Chem Biol 2024:d4cb00130c. [PMID: 39347456 PMCID: PMC11427889 DOI: 10.1039/d4cb00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
We previously described FpFs 1̲ (Fab-PEG-Fab) as binding mimetics of IgGs. FpFs are prepared with di(bis-sulfone) conjugation reagents 3̲ that undergo disulfide rebridging conjugation with the accessible disulfide of each Fab (Scheme 1). We have now prepared bispecific FpFs 2̲ (bsFpF and Fab1-PEG-Fab2) as potential bispecific antibody mimetics with the intent that bsFpFs could be used in preclinical antibody development since sourcing bispecific antibodies may be challenging during preclinical research. The di(bis-sulfone) reagent 3̲ was first used to prepare a bsFpF 2̲ by the sequential conjugation of a first Fab and then a second Fab to another target (Scheme 2). Seeking to improve bsFpF synthesis, the asymmetric conjugation reagent, bis-sulfone bis-sulfide 1̲6̲, with different thiol conjugation reactivities at each terminus (Scheme 4) was examined and the bsFpFs appeared to be formed at similar conversion to the di(bis-sulfone) reagent 3̲. To explore the advantages of using common intermediates in the preparation of bsFpF families, we investigated bsFpF synthesis with a protein conjugation-ligation approach (Scheme 5). Reagents with a bis-sulfone moiety for conjugation on one PEG terminus and a ligation moiety on the other terminus were examined. Bis-sulfone PEG trans-cyclooctene (TCO) 2̲8̲ and bis-sulfone PEG tetrazine (Tz) 3̲0̲ were used to prepare several bsFpFs targeting various therapeutic targets (TNF-α, IL6R, IL17, and VEGF) and tissue affinity targets (hyaluronic acid and collagen II). Surface plasmon resonance (SPR) binding studies indicated that there was little difference between the dissociation rate constant (k d) for the unmodified Fab, mono-conjugated PEG-Fab and the corresponding Fab in a bsFpF. The Fab association rate (k a) in the bsFpF was slower than for PEG-Fab, which may be because of mass differences that influence SPR results. These observations suggest that each Fab will bind to its target independently of the other Fab and that bsFpF binding profiles can be estimated using the corresponding PEG-Fab conjugates.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London London UK
| | - Nkiru Ibeanu
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Sahar Awwad
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Hanieh Khalili
- School of Pharmacy, University College London London UK
- School of Biomedical Science, University of West London London W5 5RF UK
| |
Collapse
|
3
|
Zhang S, Wu L, Dang M. Antibody mimetics: The next generation antibody engineering, a retrospective and prospective analysis. Biotechnol J 2024; 19:e2300532. [PMID: 38059436 DOI: 10.1002/biot.202300532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Antibody mimetics represent the fourth generation of antibody engineering, following polyclonal antibodies, monoclonal antibodies, and genetically engineered antibody fragments. Despite cumulative studies highlighting the advantages of antibody mimetics, including enhanced recognition properties, superior affinity, stability, penetrability, and cost-effectiveness, a comprehensive review of this evolving field is notably absent. In this study, spanning 1986-2023 and analyzing 24,318 publications, we undertake a retrospective and prospective analysis to elucidate the evolution roadmap of antibody mimetics, providing insights into the current landscape, global contributions, and future trajectories. Concurrently, our aim is to establish standardized terminology and delineate the research scope within the realm of antibody mimetics. These endeavors not only chart the trajectory and scope of antibody mimetics research but also underscore its potential to revolutionize medicine, technology, and science.
Collapse
Affiliation(s)
- Siran Zhang
- Xi'an Middle School of Shaanxi Province, Weiyang, Xi'an, China
- Department of Genetics, Stanford University, Palo Alto, California, USA
- HSS, Stanford University, Stanford, Palo Alto, California, USA
| | - Longjiang Wu
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Mei Dang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, China
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Zhao W, He X, Liu R, Ruan Q. Accelerating corneal wound healing using exosome-mediated targeting of NF-κB c-Rel. Inflamm Regen 2023; 43:6. [PMID: 36703231 PMCID: PMC9881367 DOI: 10.1186/s41232-023-00260-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The integrity of the corneal epithelium is essential for the maintenance of the physiological function of the cornea. Studies have found that inflammation greatly delays corneal wound healing. NF-κB c-Rel is preferentially expressed by immune cells and promotes the expression of inflammatory cytokines. In the current study, we sought to investigate whether c-Rel could be used as a potential therapeutic target for treating a corneal injury. Our studies reveal that expressions of c-Rel and its inflammatory targets are significantly increased in the cornea of mice with corneal injury. In addition, we find that c-Rel-deficient mice exhibit accelerated corneal wound healing and reduced expression of inflammatory cytokines. Further studies show that topical treatment on the corneal surface using nano-polymers or exosomes loaded with c-Rel-specific siRNA (siRel) can effectively accelerate regular and diabetic corneal wound healing. More importantly, we find that exosomes, as carriers of siRel, showed better efficacy than nano-polymers in treating corneal injury. We further demonstrate that exosomes secreted by mesenchymal stem cells can efficiently transfer siRNA into macrophages and dendritic cells but not T cells. Taken together, these results indicate that blocking c-Rel may represent an attracting strategy for the treatment of both regular and diabetic corneal injury.
Collapse
Affiliation(s)
- Wenbo Zhao
- grid.410587.fShandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250000 China ,grid.410638.80000 0000 8910 6733Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071 China
| | - Xiaozhen He
- grid.410638.80000 0000 8910 6733Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071 China ,grid.490473.dEye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021 China
| | - Ruiling Liu
- grid.410638.80000 0000 8910 6733Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071 China
| | - Qingguo Ruan
- grid.410638.80000 0000 8910 6733Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071 China
| |
Collapse
|
5
|
Shastri DH, Silva AC, Almeida H. Ocular Delivery of Therapeutic Proteins: A Review. Pharmaceutics 2023; 15:pharmaceutics15010205. [PMID: 36678834 PMCID: PMC9864358 DOI: 10.3390/pharmaceutics15010205] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Therapeutic proteins, including monoclonal antibodies, single chain variable fragment (ScFv), crystallizable fragment (Fc), and fragment antigen binding (Fab), have accounted for one-third of all drugs on the world market. In particular, these medicines have been widely used in ocular therapies in the treatment of various diseases, such as age-related macular degeneration, corneal neovascularization, diabetic retinopathy, and retinal vein occlusion. However, the formulation of these biomacromolecules is challenging due to their high molecular weight, complex structure, instability, short half-life, enzymatic degradation, and immunogenicity, which leads to the failure of therapies. Various efforts have been made to overcome the ocular barriers, providing effective delivery of therapeutic proteins, such as altering the protein structure or including it in new delivery systems. These strategies are not only cost-effective and beneficial to patients but have also been shown to allow for fewer drug side effects. In this review, we discuss several factors that affect the design of formulations and the delivery of therapeutic proteins to ocular tissues, such as the use of injectable micro/nanocarriers, hydrogels, implants, iontophoresis, cell-based therapy, and combination techniques. In addition, other approaches are briefly discussed, related to the structural modification of these proteins, improving their bioavailability in the posterior segments of the eye without affecting their stability. Future research should be conducted toward the development of more effective, stable, noninvasive, and cost-effective formulations for the ocular delivery of therapeutic proteins. In addition, more insights into preclinical to clinical translation are needed.
Collapse
Affiliation(s)
- Divyesh H. Shastri
- Department of Pharmaceutics & Pharmaceutical Technology, K.B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gandhinagar 382016, India
- Correspondence:
| | - Ana Catarina Silva
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Hugo Almeida
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mesosystem Investigação & Investimentos by Spinpark, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
6
|
Ayón C, Castán D, Mora A, Naranjo D, Obando F, Mora JJ. Monoclonal Antibodies: A Therapeutic Option for the Treatment of Ophthalmic Diseases of the Eye Posterior Segment. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i3.2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The eye is an organ that allows us to observe the outside world. Pathologies of the eye's posterior segment, such as glaucoma, macular degeneration, diabetic retinopathy, uveitis, and retinoblastoma, cause vision loss. Traditional treatments consist of applying topical medications that do not penetrate properly or using high doses that generate adverse effects. Different laser surgeries stop the pathology's progression but do not allow visual improvement. So, an alternative is to use monoclonal antibodies, proteins produced by different processes that selectively bind to metabolites associated with diseases, reducing the adverse effects of traditional treatments and improving the application of the drug in the area. The two main molecular targets are TNF (adalimumab, infliximab, and certolizumab pegol) and VEGF (bevacizumab and ranibizumab); other possibilities are under investigation.
Collapse
|
7
|
Collins M, Khalili H. Soluble Papain to Digest Monoclonal Antibodies; Time and Cost-Effective Method to Obtain Fab Fragment. Bioengineering (Basel) 2022; 9:bioengineering9050209. [PMID: 35621487 PMCID: PMC9137653 DOI: 10.3390/bioengineering9050209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022] Open
Abstract
Antigen binding fragments (Fabs) used in research (e.g., antibody mimetics, antibody-drug conjugate, bispecific antibodies) are frequently obtained by enzymatic digestion of monoclonal antibodies using immobilised papain. Despite obtaining pure Fab, using immobilised papain to digest IgG has limitations, most notably slow digestion time (more than 8 h), high cost and limited scalability. Here we report a time and cost-effective method to produce pure, active and stable Fab using soluble papain. Large laboratory scale digestion of an antibody (100 mg) was achieved using soluble papain with a digestion time of 30 min and isolated yields of 55–60%. The obtained Fabs displayed similar binding activity as Fabs prepared via immobilised papain digestion. Site-specific conjugation between Fabs and polyethylene glycol (PEG) was carried out to obtain antibody mimetics FpF (Fab-PEG-Fab) indicating that the native disulphide bond had been preserved. Surface-plasmon resonance (SPR) of prepared FpFs showed that binding activity towards the intended antigen was maintained. We anticipate that this work will provide a fast and less costly method for researchers to produce antibody fragments at large scale from whole IgG suitable for use in research.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK;
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Hanieh Khalili
- School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK;
- School of Pharmacy, University College London, London WC1N 1AX, UK
- School of Biomedical Science, University of West London, London W5 5RF, UK
- Correspondence:
| |
Collapse
|
8
|
Conrady CD, Yeh S. A Review of Ocular Drug Delivery Platforms and Drugs for Infectious and Noninfectious Uveitis: The Past, Present, and Future. Pharmaceutics 2021; 13:1224. [PMID: 34452185 PMCID: PMC8399730 DOI: 10.3390/pharmaceutics13081224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Uveitis refers to a broad group of inflammatory disorders of the eye that often require medical and surgical management to improve or stabilize vision and prevent vision-threatening pathological changes to the eye. Drug delivery to the eye to combat inflammation and subsequent complications from uveitic conditions is complex as there are multiple barriers to absorption limiting availability of the needed drug in the affected tissues. As such, there has been substantial interest in developing new drugs and drug delivery platforms to help reduce intraocular inflammation and its complications. In this review, we discuss the challenges of drug delivery, novel technologies recently approved for uveitis patient care and promising drug delivery platforms for uveitis and sequelae of ocular inflammation.
Collapse
Affiliation(s)
- Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Steven Yeh
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
9
|
Khalili H. Using different proteolytic enzymes to digest antibody and its impact on stability of antibody mimetics. J Immunol Methods 2020; 489:112933. [PMID: 33232747 DOI: 10.1016/j.jim.2020.112933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
There are opportunities to formulate antibodies as solid-state depots for local therapy, which would minimise large systemic doses that are typically required. We have developed antibody mimetics known as Fab-PEG-Fab (FpF) that display similar binding affinity and functional activity as IgG antibodies. For head-to-head comparison between FpF and IgG, FpF is prepared from the Fabs obtained by enzymatic digestion of IgGs. Here, we report for the first time that using different enzymes to proteolytically digest IgG plays an important role in stability profile of the obtained Fabs leading in different stability profiles of the final conjugated product such as FpF. We prepared an anti-vascular endothelial growth factor (VEGF) FpF from either clinical Fabrani (ranibizumab) or Fabs obtained by enzymatic digestion of bevacizumab (IgG) using immobilised papain and gingisKHANTM (KGP) enzyme. The stability of FpFs was then studied after being lyophilised in comparison with both ranibizumab and bevacizumab. Lyophilisation is being evaluated to produce solid material that can be used for depot fabrication. We observed that using immobilised papain to digest IgG resulted in the heterogenous isomers Fab leading to the preparation of heterogenous FpFbeva-papain mimetic that underwent aggregation during lyophilisation. However, using KGP enzyme generated a homogenous intact Fabbeva-KGP as determined by mass spectral analysis. Interestingly, the FpF mimetics prepared from the homogenous Fabs (Fabrani and Fabbeva-KGP), displayed greater stability compared to their starting bevacizumab and ranibizumab after being lyophilised as determined by DLS analysis. There is a potential to lyophilize FpFs to be used to fabricate solid-state depots.
Collapse
|
10
|
Collins M, Awwad S, Ibeanu N, Khaw PT, Guiliano D, Brocchini S, Khalili H. Dual-acting therapeutic proteins for intraocular use. Drug Discov Today 2020; 26:44-55. [PMID: 33137484 DOI: 10.1016/j.drudis.2020.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/22/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
Intravitreally injected antibody-based medicines have revolutionised the treatment of retinal disease. Bispecific and dual-functional antibodies and therapeutic proteins have the potential to further increase the efficacy of intraocular medicines.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK; School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Sahar Awwad
- School of Pharmacy, University College London, London, WC1N 1AX, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Nkiru Ibeanu
- School of Pharmacy, University College London, London, WC1N 1AX, UK; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, EC1V 9EL, UK
| | - David Guiliano
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK
| | - Steve Brocchini
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Hanieh Khalili
- School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, UK; School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
11
|
Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained release of therapeutic proteins. J Control Release 2020; 326:419-441. [PMID: 32717302 DOI: 10.1016/j.jconrel.2020.07.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
This review highlights how hydrogel formulations can improve intravitreal protein delivery to the posterior segment of the eye in order to increase therapeutic outcome and patient compliance. Several therapeutic proteins have shown excellent clinical successes for the treatment of various intraocular diseases. However, drug delivery to the posterior segment of the eye faces significant challenges due to multiple physiological barriers preventing drugs from reaching the retina, among which intravitreal protein instability and rapid clearance from the site of injection. Hence, frequent injections are required to maintain therapeutic levels. Moreover, because the world population ages, the number of patients suffering from ocular diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) is increasing and causing increased health care costs. Therefore, there is a growing need for suitable delivery systems able to tackle the current limitations in retinal protein delivery, which also may reduce costs. Hydrogels have shown to be promising delivery systems capable of sustaining release of therapeutic proteins and thus extending their local presence. Here, an extensive overview of preclinically developed intravitreal hydrogels is provided with attention to the rational design of clinically useful intravitreal systems. The currently used polymers, crosslinking mechanisms, in vitro/in vivo models and advancements are discussed together with the limitations and future perspective of these biomaterials.
Collapse
Affiliation(s)
- Blessing C Ilochonwu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
12
|
The effects of intravitreal adalimumab injection on pseudophakic macular edema. BMC Res Notes 2020; 13:354. [PMID: 32711577 PMCID: PMC7382825 DOI: 10.1186/s13104-020-05197-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/18/2020] [Indexed: 01/12/2023] Open
Abstract
Objective Pseudophakic macular edema is a frequent complication following cataract surgery. Inflammation is a major etiologic factor in the development of pseudophakic cystoid macular edema. Tumor necrosis factor-alpha has an important role in ocular inflammation. Adalimumab (Humira) is an inhibitor of tumor necrosis factor-alpha that has been approved in the United States. An open-label, uncontrolled, prospective, interventional study of five consecutive patients (5 eyes) with cystoid macular edema who were treated with off-label intravitreal adalimumab at Khalili Hospital was conducted. Slit-lamp examination and optical coherence tomography were done for all patients. Results No statistically significant difference was detected between best corrected visual acuity and central macular thickness before and after injection in pseudophakic macular edema. One patient developed uveitis approximately 2 weeks after injection. Based on the results, adalimumab does not appear to be an effective treatment for pseudophakic macular edema, and it may cause uveitis. Caution should be exercised when using this drug. Trial registration Iranian Registry of Clinical Trials IRCT2016100430130N1, 2016.12.03, Retrospectively registered
Collapse
|
13
|
Kowalski T, Mack HG. Ocular complications of tumour necrosis factor alpha inhibitors. Clin Exp Optom 2019; 103:148-154. [PMID: 31077451 DOI: 10.1111/cxo.12904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/01/2023] Open
Abstract
Tumour necrosis factor alpha inhibitors are a relatively recent development and are becoming increasingly common in the management of many chronic inflammatory conditions such as rheumatoid arthritis, inflammatory bowel disease, ankylosing spondylitis and juvenile idiopathic arthritis. However, their ocular side effect profile is incomplete and poorly recognised, with mostly anecdotal cases reported in the literature. In this report we review the literature regarding ocular side effects associated with tumour necrosis factor alpha blockade.
Collapse
Affiliation(s)
- Tanya Kowalski
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Heather G Mack
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Victoria, Australia.,Eye Surgery Associates, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Zhao Y, Cooper DKC, Wang H, Chen P, He C, Cai Z, Mou L, Luan S, Gao H. Potential pathological role of pro-inflammatory cytokines (IL-6, TNF-α, and IL-17) in xenotransplantation. Xenotransplantation 2019; 26:e12502. [PMID: 30770591 DOI: 10.1111/xen.12502] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/04/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022]
Abstract
The major limitation of organ transplantation is the shortage of available organs from deceased human donors which leads to the deaths of thousands of patients each year. Xenotransplantation is considered to be an effective way to resolve the problem. Immune rejection and coagulation dysfunction are two major hurdles for the successful survival of pig xenografts in primate recipients. Pro-inflammatory cytokines, such as IL-6, TNF-α, and IL-17, play important roles in many diseases and in allotransplantation. However, the pathological roles of these pro-inflammatory cytokines in xenotransplantation remain unclear. Here, we briefly review the signaling transduction and expression regulation of IL-6, TNF-α, and IL-17 and evaluate their potential pathological roles in in vitro and in vivo models of xenotransplantation. We found that IL-6, TNF-α, and IL-17 were induced in most in vitro or in vivo xenotransplantation model. Blockade of these cytokines using gene modification, antibody, or inhibitor had different effects in xenotransplantation. Inhibition of IL-6 signaling with tocilizumab decreased CRP but did not increase xenograft survival. The one possible reason is that tocilizumab can not suppress IL-6 signaling in porcine cells or organs. Other drugs which inhibit IL-6 signaling need to be investigated in xenotransplantation model. Inhibition of TNF-α was beneficial for the survival of xenografts in pig-to-mouse, rat, or NHP models. Blockade of IL-17 using a neutralizing antibody also increased xenograft survival in several animal models. However, the role of IL-17 in the pig-to-NHP xenotransplantation model remains unclear and needs to be further investigated. Moreover, blockade of TNF-α and IL-6 together has got a better effect in pig-to-baboon kidney xenotransplantation. Blockade two or even more cytokines together might get better effect in suppressing xenograft rejection. Better understanding the role of these cytokines in xenotransplantation will be beneficial for choosing better immunosuppressive strategy or producing genetic modification pig.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China.,Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China.,Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Huiyun Wang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Pengfei Chen
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Chen He
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Hanchao Gao
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China.,Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China.,Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
15
|
Peciak K, Laurine E, Tommasi R, Choi JW, Brocchini S. Site-selective protein conjugation at histidine. Chem Sci 2019; 10:427-439. [PMID: 30809337 PMCID: PMC6354831 DOI: 10.1039/c8sc03355b] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
Site-selective conjugation generally requires both (i) molecular engineering of the protein of interest to introduce a conjugation site at a defined location and (ii) a site-specific conjugation technology. Three N-terminal interferon α2-a (IFN) variants with truncated histidine tags were prepared and conjugation was examined using a bis-alkylation reagent, PEG(10kDa)-mono-sulfone 3. A histidine tag comprised of two histidines separated by a glycine (His2-tag) underwent PEGylation. Two more IFN variants were then prepared with the His2-tag engineered at different locations in IFN. Another IFN variant was prepared with the His-tag introduced in an α-helix, and required three contiguous histidines to ensure that two histidine residues in the correct conformation would be available for conjugation. Since histidine is a natural amino acid, routine methods of site-directed mutagenesis were used to generate the IFN variants from E. coli in soluble form at titres comparable to native IFN. PEGylation conversions ranged from 28-39%. A single step purification process gave essentially the pure PEG-IFN variant (>97% by RP-HPLC) in high recovery with isolated yields ranging from 21-33%. The level of retained bioactivity was strongly dependent on the site of PEG conjugation. The highest biological activity of 74% was retained for the PEG10-106(HGHG)-IFN variant which is unprecedented for a PEGylated IFN. The His2-tag at 106(HGHG)-IFN is engineered at the flexible loop most distant from IFN interaction with its dimeric receptor. The biological activity for the PEG10-5(HGH)-IFN variant was determined to be 17% which is comparable to other PEGylated IFN conjugates achieved at or near the N-terminus that have been previously described. The lowest retained activity (10%) was reported for PEG10-120(HHH)-IFN which was prepared as a negative control targeting a IFN site thought to be involved in receptor binding. The presence of two histidines as a His2-tag to generate a site-selective target for bis-alkylating PEGylation is a feasible approach for achieving site-selective PEGylation. The use of a His2-tag to strategically engineer a conjugation site in a protein location can result in maximising the retention of the biological activity following protein modification.
Collapse
Affiliation(s)
- Karolina Peciak
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | | | - Rita Tommasi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Ji-Won Choi
- Abzena , Babraham Research Campus, Babraham , Cambridge CB22 3AT , UK
| | - Steve Brocchini
- UCL School of Pharmacy , University College London , 29-39 Brunswick Square , London , WC1N 1AX , UK .
| |
Collapse
|
16
|
Leal I, Rodrigues FB, Sousa DC, Romão VC, Duarte GS, Carreño E, Dick AD, Marques-Neves C, Costa J, Fonseca JE. Efficacy and safety of intravitreal anti-tumour necrosis factor drugs in adults with non-infectious uveitis - a systematic review. Acta Ophthalmol 2018; 96:e665-e675. [PMID: 29577629 DOI: 10.1111/aos.13699] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/09/2017] [Indexed: 12/29/2022]
Abstract
Anti-tumour necrosis factor (TNF) drugs have been extensively used in non-infectious uveitis (NIU), when corticosteroids or conventional immunosuppressive drugs cannot adequately control inflammation or intolerable side-effects occur. However, systemic anti-TNF therapies are also associated with a myriad of side-effects. Therefore, intravitreal administration of anti-TNF biologics has been employed to minimize patient morbidity and systemic adverse effects, while maintaining therapeutic effectivity. We undertook a systematic review to determine evidence of efficacy and safety of intravitreal administration of anti-TNF drugs in adults with NIU. We conducted this systematic review according to the PRISMA guidelines. The protocol was registered with PROSPERO (CRD42016041946). We searched CENTRAL, MEDLINE and EMBASE, from inception to April 2017, as well as clinical trial registries and grey literature. The qualitative analysis included all studies of adult patients with a diagnosis of NIU and who received intravitreal anti-TNF drugs with a 4-week minimum follow-up. A total of 4840 references were considered for title and abstract screening. Seven full texts were screened, and five studies were considered for analysis. All studies were open-label, single-centre, prospective, non-randomized, interventional case series with a follow-up between 4 and 26 weeks, employing either adalimumab in two studies and infliximab in three. Three studies showed a treatment effect of anti-TNF intravitreal injections, while one study revealed short-term improvement and one study revealed no efficacy of anti-TNF intravitreal therapy. None of the studies reported ocular adverse effects but only two studies included electrophysiological assessment in the safety analysis and no study assessed systemic human anti-drug antibodies. The available evidence is not sufficiently robust to conclude about the clinical effectivity of intravitreal anti-TNF in NIU and so no recommendation can be made. In conclusion, intravitreal injection of anti-TNF antibodies remains a possible treatment option to be explored through robust clinical investigation.
Collapse
Affiliation(s)
- Inês Leal
- Department of Ophthalmology; Hospital de Santa Maria-CHLN; Lisbon Academic Medical Centre; Lisboa Portugal
- Department of Ophthalmology; Faculdade de Medicina; Universidade de Lisboa; Lisboa Portugal
- Centro de Estudos das Ciências da Visão; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Filipe B Rodrigues
- Laboratory of Clinical Pharmacology and Therapeutics; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
- Clinical Pharmacology Unit; Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
- Huntington's Disease Centre; University College London; London UK
| | - David Cordeiro Sousa
- Department of Ophthalmology; Hospital de Santa Maria-CHLN; Lisbon Academic Medical Centre; Lisboa Portugal
- Department of Ophthalmology; Faculdade de Medicina; Universidade de Lisboa; Lisboa Portugal
- Centro de Estudos das Ciências da Visão; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Vasco C Romão
- Department of Rheumatology; Hospital de Santa Maria-CHLN; Lisbon Academic Medical Centre; Lisbon Portugal
- Rheumatology Research Unit; Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Gonçalo S Duarte
- Laboratory of Clinical Pharmacology and Therapeutics; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
- Clinical Pharmacology Unit; Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - Ester Carreño
- Clinical Research Unit; Bristol Eye Hospital NHS Foundation Trust; Bristol UK
| | - Andrew D Dick
- Clinical Research Unit; Bristol Eye Hospital NHS Foundation Trust; Bristol UK
- School of Clinical Sciences; Faculty of Medicine and Dentistry; University of Bristol; Bristol UK
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology; London UK
| | - Carlos Marques-Neves
- Department of Ophthalmology; Hospital de Santa Maria-CHLN; Lisbon Academic Medical Centre; Lisboa Portugal
- Department of Ophthalmology; Faculdade de Medicina; Universidade de Lisboa; Lisboa Portugal
- Centro de Estudos das Ciências da Visão; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - João Costa
- Laboratory of Clinical Pharmacology and Therapeutics; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
- Clinical Pharmacology Unit; Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
- Evidence Based Medicine Centre; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
- Portuguese Collaborating Centre of the Cochrane Iberoamerican Network; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - João Eurico Fonseca
- Department of Rheumatology; Hospital de Santa Maria-CHLN; Lisbon Academic Medical Centre; Lisbon Portugal
- Rheumatology Research Unit; Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
17
|
Mandal A, Pal D, Agrahari V, Trinh HM, Joseph M, Mitra AK. Ocular delivery of proteins and peptides: Challenges and novel formulation approaches. Adv Drug Deliv Rev 2018; 126:67-95. [PMID: 29339145 DOI: 10.1016/j.addr.2018.01.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
Abstract
The impact of proteins and peptides on the treatment of various conditions including ocular diseases over the past few decades has been advanced by substantial breakthroughs in structural biochemistry, genetic engineering, formulation and delivery approaches. Formulation and delivery of proteins and peptides, such as monoclonal antibodies, aptamers, recombinant proteins and peptides to ocular tissues poses significant challenges owing to their large size, poor permeation and susceptibility to degradation. A wide range of advanced drug delivery systems including polymeric controlled release systems, cell-based delivery and nanowafers are being exploited to overcome the challenges of frequent administration to ocular tissues. The next generation systems integrated with new delivery technologies are anticipated to generate improved efficacy and safety through the expansion of the therapeutic target space. This review will highlight recent advances in formulation and delivery strategies of protein and peptide based biopharmaceuticals. We will also describe the current state of proteins and peptides based ocular therapy and future therapeutic opportunities.
Collapse
|
18
|
Herrington-Symes A, Choi JW, Brocchini S. Interferon dimers: IFN-PEG-IFN. J Drug Target 2017; 25:881-890. [PMID: 28817988 DOI: 10.1080/1061186x.2017.1363214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Increasingly complex proteins can be made by a recombinant chemical approach where proteins that can be made easily can be combined by site-specific chemical conjugation to form multifunctional or more active protein therapeutics. Protein dimers may display increased avidity for cell surface receptors. The increased size of protein dimers may also increase circulation times. Cytokines bind to cell surface receptors that dimerise, so much of the solvent accessible surface of a cytokine is involved in binding to its target. Interferon (IFN) homo-dimers (IFN-PEG-IFN) were prepared by two methods: site-specific bis-alkylation conjugation of PEG to the two thiols of a native disulphide or to two imidazoles on a histidine tag of two His8-tagged IFN (His8IFN). Several control conjugates were also prepared to assess the relative activity of these IFN homo-dimers. The His8IFN-PEG20-His8IFN obtained by histidine-specific conjugation displayed marginally greater in vitro antiviral activity compared to the IFN-PEG20-IFN homo-dimer obtained by disulphide re-bridging conjugation. This result is consistent with previous observations in which enhanced retention of activity was made possible by conjugation to an N-terminal His-tag on the IFN. Comparison of the antiviral and antiproliferative activities of the two IFN homo-dimers prepared by disulphide re-bridging conjugation indicated that IFN-PEG10-IFN was more biologically active than IFN-PEG20-IFN. This result suggests that the size of PEG may influence the antiviral activity of IFN-PEG-IFN homo-dimers.
Collapse
Affiliation(s)
| | - Ji-Won Choi
- a Abzena , Babraham Research Campus , Babraham, Cambridge , UK
| | | |
Collapse
|
19
|
De Groef L, Cordeiro MF. Is the Eye an Extension of the Brain in Central Nervous System Disease? J Ocul Pharmacol Ther 2017; 34:129-133. [PMID: 28609158 DOI: 10.1089/jop.2016.0180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lies De Groef
- 1 Glaucoma and Retinal Neurodegenerative Disease Research Group, Institute of Ophthalmology, University College London , London, United Kingdom .,2 Neural Circuit Development and Regeneration Research Group, Department of Biology, University of Leuven , Leuven, Belgium
| | - Maria Francesca Cordeiro
- 1 Glaucoma and Retinal Neurodegenerative Disease Research Group, Institute of Ophthalmology, University College London , London, United Kingdom .,3 Western Eye Hospital , Imperial College Healthcare NHS Trust, London, United Kingdom .,4 ICORG, Department of Surgery and Cancer, Imperial College London , London, United Kingdom
| |
Collapse
|
20
|
Qu Y, Xu J, Zhou H, Dong R, Kang M, Zhao J. Chitin Oligosaccharide (COS) Reduces Antibiotics Dose and Prevents Antibiotics-Caused Side Effects in Adolescent Idiopathic Scoliosis (AIS) Patients with Spinal Fusion Surgery. Mar Drugs 2017; 15:70. [PMID: 28335413 PMCID: PMC5367027 DOI: 10.3390/md15030070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/19/2017] [Accepted: 03/08/2017] [Indexed: 01/13/2023] Open
Abstract
Antibiotics are always considered for surgical site infection (SSI) in adolescent idiopathic scoliosis (AIS) surgery. However, the use of antibiotics often causes the antibiotic resistance of pathogens and side effects. Thus, it is necessary to explore natural products as drug candidates. Chitin Oligosaccharide (COS) has anti-inflammation and anti-bacteria functions. The effects of COS on surgical infection in AIS surgery were investigated. A total of 312 AIS patients were evenly and randomly assigned into control group (CG, each patient took one-gram alternative Azithromycin/Erythromycin/Cloxacillin/Aztreonam/Ceftazidime or combined daily), experiment group (EG, each patient took 20 mg COS and half-dose antibiotics daily), and placebo group (PG, each patient took 20 mg placebo and half-dose antibiotics daily). The average follow-up was one month, and infection severity and side effects were analyzed. The effects of COS on isolated pathogens were analyzed. SSI rates were 2%, 3% and 8% for spine wounds and 1%, 2% and 7% for iliac wound in CG, EG and PG (p < 0.05), respectively. COS reduces the side effects caused by antibiotics (p < 0.05). COS improved biochemical indexes and reduced the levels of interleukin (IL)-6 and tumor necrosis factor (TNF) alpha. COS reduced the antibiotics dose and antibiotics-caused side effects in AIS patients with spinal fusion surgery by improving antioxidant and anti-inflammatory activities. COS should be developed as potential adjuvant for antibiotics therapies.
Collapse
Affiliation(s)
- Yang Qu
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| | - Jinyu Xu
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| | - Haohan Zhou
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| | - Rongpeng Dong
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| | - Mingyang Kang
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| | - Jianwu Zhao
- Department of Orthopedics, The Second Hospital of JiLin University, Changchun 130041, China.
| |
Collapse
|