1
|
Rodella G, Préat V, Gallez B, Malfanti A. Design Strategies for Hyaluronic Acid-based Drug Delivery Systems in Cancer Immunotherapy. J Control Release 2025; 383:113784. [PMID: 40294800 DOI: 10.1016/j.jconrel.2025.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Despite its robust therapeutic potential, cancer immunotherapy has provided little progress towards improved survival rates for patients bearing immunologically refractory tumors. The implementation of advanced drug delivery systems represents a powerful means of improving cancer immunotherapy by relieving immunosuppression and promoting immune response; however, the overall impact of these systems on immunotherapy currently remains modest. Hyaluronic acid represents a widely used polymer in drug delivery; meanwhile, recent studies linking hyaluronic acid to the immune system make this polymer an attractive component in the design of next-generation cancer immunotherapies. Herein, we review our current understanding of the immunological properties of hyaluronic acid and discuss them in the context of bioactive functions and immune-related interactions with receptors, immune, and cancer cells. We analyze the potential of hyaluronic acid as a component in advanced drug delivery systems, highlighting strategies for the design of more effective vaccines and cancer chemo-immunotherapies. Finally, we discuss critical considerations to facilitate design and clinical translation to overcome existing challenges and maximize therapeutic potential.
Collapse
Affiliation(s)
- Giulia Rodella
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Bernard Gallez
- UCLouvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance, Avenue Mounier 73 B1.73.08, 1200 Brussels, Belgium.
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium; Departement of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo, 5, 35131 Padova, Italy.
| |
Collapse
|
2
|
Moradi A, Bhatia AC, Behr K, Napekoski K, Foldvari M. In Vivo and Ex Vivo Evaluation of a Novel Method for Topical Delivery of Macromolecules Through the Stratum Corneum for Cosmetic Applications. Dermatol Surg 2025; 51:403-408. [PMID: 39635989 PMCID: PMC11939106 DOI: 10.1097/dss.0000000000004504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Effective topical delivery of large/charged molecules into skin has always been challenging. Chemical penetration enhancers, organic substances that increase permeability of skin, have been in use for decades with variable success. One application of enhancers involves multilamellar vesicles composed of submicron emulsion droplets and micelles surrounded by concentric phospholipid bilayers. OBJECTIVE This report introduces the next generation of multilamellar vesicles, termed Tiered-Release Vesicles (TRVs), as a new platform for topical delivery of macromolecules such as peptides and hyaluronic acid (HA). METHODS Fluorescently labeled peptides and HA, diffusion cells, and confocal microscopy were employed to assess the penetration efficiency of macromolecules in TRV formulations using an ex vivo human skin model. Two in vivo studies utilized punch biopsies followed by histochemical staining and analysis. RESULTS Based on fluorescent intensity, TRV formulations delivered a large peptide more completely (2-5 fold) into ex vivo human skin than optimized liposomes. The penetration of 2 HA species in TRV formulations was 3- to 13-fold higher than with a simple gel vehicle. In the case studies, reduction of solar elastosis was observed from a topical TRV formulation. CONCLUSION Topical delivery of large peptides and HA into human skin using TRV technology has been demonstrated.
Collapse
Affiliation(s)
- Amir Moradi
- Moradi MD, Vista California, Vista, California
| | - Ashish C. Bhatia
- Oak Dermatology, Naperville, Illinois
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Wychowaniec JK, Bektas EI, Vernengo AJ, Muerner M, Airoldi M, Tipay PS, Sapudom J, Teo J, Eglin D, D'Este M. Effect of molecular weight of tyramine-modified hyaluronan on polarization state of THP-1 and peripheral blood mononuclear cells-derived macrophages. BIOMATERIALS ADVANCES 2025; 169:214166. [PMID: 39823943 DOI: 10.1016/j.bioadv.2024.214166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/31/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025]
Abstract
The immunomodulatory properties of hyaluronan and its derivatives are key to their use in medicine and tissue engineering. In this work we evaluated the capability of soluble tyramine-modified hyaluronan (THA) synthesized from hyaluronan of two molecular weights (low Mw = 280 kDa and high Mw = 1640 kDa) for polarization of THP-1 and peripheral blood mononuclear cells (PBMCs)-derived macrophages (MΦs). We demonstrate the polarization effects of the supplemented THA by flow cytometry and bead-based multiplex immunoassay for the THP-1 derived MΦs and by semi-automated image analysis from confocal microscopy, immunofluorescent staining utilizing CD68 and CD206 surface markers, RT-qPCR gene expression analysis, as well as using the enzyme-linked immunosorbent assay (ELISA) for PBMCs-derived MΦs. Our data indicate that supplementation with LMW THA drives changes in THP-1 derived MΦs towards a pro-inflammatory M1-like phenotype, whereas supplementation with the HMW THA leads to a more mixed profile with some features of both M1 and M2 phenotypes, suggesting either a heterogeneous population or a transitional state. For cells directly sourced from human patients, PMBCs-derived MΦs, results exhibit a higher degree of variability, pointing out a differential regulation of factors including IL-10 and CD206 between the two cell sources. While human primary cells add to the clinical relevance, donor diversity introduces wider variability in the dataset, preventing drawing strong conclusions. Nevertheless, the MΦs profiles observed in THP-1 derived cells for treatments with LMW and HMW THA are generally consistent with what might be expected for the treatment with non-modified hyaluronans of respective molecular weights, confirming the known association holds true for the chemically tyramine-modified hyaluronan. We stipulate that these responses will provide basis for more accurate in vivo representation and translational immunomodulatory guidance for the use of THA-based biomaterials to a wider biomaterials and tissue engineering communities.
Collapse
Affiliation(s)
| | - Ezgi Irem Bektas
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Andrea J Vernengo
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | - Marcia Muerner
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland; ETH Zürich, Rämistrasse 101, Zürich 8092, Switzerland
| | - Marielle Airoldi
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| | | | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - David Eglin
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne, France
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, Davos 7270, Switzerland
| |
Collapse
|
4
|
Pashkina E, Bykova M, Berishvili M, Lazarev Y, Kozlov V. Hyaluronic Acid-Based Drug Delivery Systems for Cancer Therapy. Cells 2025; 14:61. [PMID: 39851489 PMCID: PMC11764402 DOI: 10.3390/cells14020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
In recent years, hyaluronic acid (HA) has attracted increasing attention as a promising biomaterial for the development of drug delivery systems. Due to its unique properties, such as high biocompatibility, low toxicity, and modifiability, HA is becoming a basis for the creation of targeted drug delivery systems, especially in the field of oncology. Receptors for HA overexpressed in subpopulations of cancer cells, and one of them, CD44, is recognized as a molecular marker for cancer stem cells. This review examines the role of HA and its receptors in health and tumors and analyzes existing HA-based delivery systems and their use in various types of cancer. The development of new HA-based drug delivery systems will bring new opportunities and challenges to anti-cancer therapy.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Department of Clinical Immunology, Novosibirsk State Medical University, 52, Krasny Prospect, 630091 Novosibirsk, Russia
| | - Maria Bykova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
| | - Maria Berishvili
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
| | - Yaroslav Lazarev
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya St., 630099 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Dodd RJ, Allen JE, Day AJ. Hyaluronan in COVID-19: a matrix for understanding lung disease. mBio 2024; 15:e0260924. [PMID: 39555923 PMCID: PMC11633090 DOI: 10.1128/mbio.02609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
The polysaccharide hyaluronan (HA) is an important component of lung extracellular matrix that increases following infection with influenza or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hellman et al. (U. Hellman, E. Rosendal, J. Lehrstrand, J. Henriksson, et al., mBio 15:e01303-24, https://doi.org/10.1128/mbio.01303-24) show that fragmented HA accumulates in the lungs of coronavirus disease 2019 (COVID-19) patients, with systemic levels of HA being associated with reduced lung function 3-6 months after infection. This study provides novel insights into HA's role in COVID-19 pathology and its potential utility as a biomarker for disease severity. However, much remains to be understood about the lung HA matrix in COVID-19 and how it compares to other lung conditions. In particular, the role of HA-binding proteins in organizing HA into a crosslinked network is yet to be fully determined at a molecular level. This knowledge is crucial in understanding the inter-relationships between the structure of the HA matrix and the regulation of the immune response, and thus our ability to target HA therapeutically for improved outcomes in COVID-19.
Collapse
Affiliation(s)
- Rebecca J. Dodd
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Academic Health Science Centre, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Academic Health Science Centre, Manchester, United Kingdom
| | - Judith E. Allen
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Academic Health Science Centre, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Academic Health Science Centre, Manchester, United Kingdom
| | - Anthony J. Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Academic Health Science Centre, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
6
|
Fu Z, Yang G, Yun SY, Jang JM, Ha HC, Shin IC, Back MJ, Piao Y, Kim DK. Hyaluronan and proteoglycan link protein 1 - A novel signaling molecule for rejuvenating aged skin. Matrix Biol 2024; 134:30-47. [PMID: 39226945 DOI: 10.1016/j.matbio.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
The skin seems to rejuvenate upon exposure to factors within the circulation of young organisms. Intrinsic factors that modulate skin aging are poorly understood. We used heterochronic parabiosis and aptamer-based proteomics to identify serum-derived rejuvenating factors. We discovered a novel extracellular function of hyaluronan and proteoglycan link protein 1 (HAPLN1). Its serum levels decreased with age, disturbing the integrity of the skin extracellular matrix, which is predominantly composed of collagen I and hyaluronan; levels of various markers, which decrease in aged skin, were significantly restored in vivo and in vitro by the administration of recombinant human HAPLN1 (rhHAPLN1). rhHAPLN1 protected transforming growth factor beta receptor 2 on the cell surface from endocytic degradation via mechanisms such as regulation of viscoelasticity, CD44 clustering. Moreover, rhHAPLN1 regulated the levels of nuclear factor erythroid 2-related factor 2, phosphorylated nuclear factor kappa B, and some cyclin-dependent kinase inhibitors such as p16 and p21. Therefore, rhHAPLN1 may act as a novel biomechanical signaling protein to rejuvenate aged skin.
Collapse
Affiliation(s)
- Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - So Yoon Yun
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yongwei Piao
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; HaplnScience Research Institute, HaplnScience, Inc., Seongnam 13494, Republic of Korea.
| |
Collapse
|
7
|
Dodd RJ, Blundell CD, Sattelle BM, Enghild JJ, Milner CM, Day AJ. Chemical modification of hyaluronan oligosaccharides differentially modulates hyaluronan-hyaladherin interactions. J Biol Chem 2024; 300:107668. [PMID: 39128716 PMCID: PMC11460632 DOI: 10.1016/j.jbc.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
The glycosaminoglycan hyaluronan (HA) is a ubiquitous, nonsulfated polysaccharide with diverse biological roles mediated through its interactions with HA-binding proteins (HABPs). Most HABPs belong to the Link module superfamily, including the major HA receptor, CD44, and secreted protein TSG-6, which catalyzes the covalent transfer of heavy chains from inter-α-inhibitor onto HA. The structures of the HA-binding domains (HABDs) of CD44 (HABD_CD44) and TSG-6 (Link_TSG6) have been determined and their interactions with HA extensively characterized. The mechanisms of binding are different, with Link_TSG6 interacting with HA primarily via ionic and CH-π interactions, whereas HABD_CD44 binds solely via hydrogen bonds and van der Waals forces. Here, we exploit these differences to generate HA oligosaccharides, chemically modified at their reducing ends, that bind specifically and differentially to these target HABPs. Hexasaccharides (HA6AN) modified with 2- or 3-aminobenzoic acid (HA6-2AA, HA6-3AA) or 2-amino-4-methoxybenzoic acid (HA6-2A4MBA), had increased affinities for Link_TSG6 compared to unmodified HA6AN. These modifications did not increase the affinity for CD44_HABD. A model of HA6-2AA (derived from the solution dynamic 3D structure of HA4-2AA) was docked into the Link_TSG6 structure, providing evidence that the 2AA-carboxyl forms a salt bridge with Arginine-81. These modeling results informed a second series of chemical modifications for HA oligosaccharides, which again showed differential binding to the two proteins. Several modifications to HA4 and HA6 were found to convert the oligosaccharide into substrates for heavy chain transfer, whereas unmodified HA4 and HA6 are not. This study has generated valuable research tools to further understand HA biology.
Collapse
Affiliation(s)
- Rebecca J Dodd
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | | | | | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Caroline M Milner
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Anthony J Day
- Wellcome Centre for Cell Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
8
|
Cai R, Scott O, Ye G, Le T, Saran E, Kwon W, Inpanathan S, Sayed BA, Botelho RJ, Saric A, Uderhardt S, Freeman SA. Pressure sensing of lysosomes enables control of TFEB responses in macrophages. Nat Cell Biol 2024; 26:1247-1260. [PMID: 38997458 DOI: 10.1038/s41556-024-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Polymers are endocytosed and hydrolysed by lysosomal enzymes to generate transportable solutes. While the transport of diverse organic solutes across the plasma membrane is well studied, their necessary ongoing efflux from the endocytic fluid into the cytosol is poorly appreciated by comparison. Myeloid cells that employ specialized types of endocytosis, that is, phagocytosis and macropinocytosis, are highly dependent on such transport pathways to prevent the build-up of hydrostatic pressure that otherwise offsets lysosomal dynamics including vesiculation, tubulation and fission. Without undergoing rupture, we found that lysosomes incurring this pressure owing to defects in solute efflux, are unable to retain luminal Na+, which collapses its gradient with the cytosol. This cation 'leak' is mediated by pressure-sensitive channels resident to lysosomes and leads to the inhibition of mTORC1, which is normally activated by Na+-coupled amino acid transporters driven by the Na+ gradient. As a consequence, the transcription factors TFEB/TFE3 are made active in macrophages with distended lysosomes. In addition to their role in lysosomal biogenesis, TFEB/TFE3 activation causes the release of MCP-1/CCL2. In catabolically stressed tissues, defects in efflux of solutes from the endocytic pathway leads to increased monocyte recruitment. Here we propose that macrophages respond to a pressure-sensing pathway on lysosomes to orchestrate lysosomal biogenesis as well as myeloid cell recruitment.
Collapse
Affiliation(s)
- Ruiqi Cai
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ori Scott
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gang Ye
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trieu Le
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ekambir Saran
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Whijin Kwon
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Subothan Inpanathan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Blayne A Sayed
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
- Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Amra Saric
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Program in Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stefan Uderhardt
- Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Exploratory Research Unit, Optical Imaging Centre Erlangen, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Spencer A Freeman
- Program in Cell Biology and Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Sanchez B, Ferraro S, Josset-Lamaugarny A, Pagnon A, Hee CK, Nakab L, Sigaudo-Roussel D, Fromy B. Skin Cell and Tissue Responses to Cross-Linked Hyaluronic Acid in Low-Grade Inflammatory Conditions. Int J Inflam 2023; 2023:3001080. [PMID: 37663889 PMCID: PMC10474960 DOI: 10.1155/2023/3001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Hyaluronic acid (HA), used in a variety of medical applications, is associated in rare instances to long-term adverse effects. Although the aetiology of these events is unknown, a number of hypotheses have been proposed, including low molecular weight of HA (LMW-HA) in the filler products. We hypothesized that cross-linked HA and its degradation products, in a low-grade inflammatory microenvironment, could impact immune responses that could affect cell behaviours in the dermis. Using two different cross-linking technologies VYC-15L and HYC-24L+, and their hyaluronidase-induced degradation products, we observed for nondegraded HA, VYC-15L and HYC-24L+, a moderate and transient increase in IL-1β, TNF-α in M1 macrophages under low-grade inflammatory conditions. Endothelial cells and fibroblasts were preconditioned using inflammatory medium produced by M1 macrophages. 24 h after LMW-HA fragments and HA stimulation, no cytokine was released in these preconditioned cells. To further characterize HA responses, we used a novel in vivo murine model exhibiting a systemic low-grade inflammatory phenotype. The intradermal injection of VYC-15L and its degradation products induced an inflammation and cell infiltration into the skin that was more pronounced than those by HYC-24L+. This acute cutaneous inflammation was likely due to mechanical effects due to filler injection and tissue integration rather than its biological effects on inflammation. VYC-15L and its degradation product potentiated microvascular response to acetylcholine in the presence of a low-grade inflammation. The different responses with 2D cell models and mouse model using the two tested cross-linking HA technologies showed the importance to use integrative complex model to better understand the effects of HA products according to inflammatory state.
Collapse
Affiliation(s)
- Benjamin Sanchez
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Sandra Ferraro
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Audrey Josset-Lamaugarny
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Aurélie Pagnon
- NOVOTEC, ZAC du Chêne Europarc, 11 Rue Edison, 69500 Bron, France
| | - Charlie K. Hee
- Allergan Aesthetics, An AbbVie Company, 2525 Dupont Dr., Irvine, CA 92612, USA
| | - Lauren Nakab
- Allergan Aesthetics, An AbbVie Company, 2525 Dupont Dr., Irvine, CA 92612, USA
| | - Dominique Sigaudo-Roussel
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| | - Bérengère Fromy
- Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
- University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
| |
Collapse
|
10
|
Barnes HW, Demirdjian S, Haddock NL, Kaber G, Martinez HA, Nagy N, Karmouty-Quintana H, Bollyky PL. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol 2023; 116:49-66. [PMID: 36750167 PMCID: PMC9899355 DOI: 10.1016/j.matbio.2023.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as the cause of a global pandemic. Infection with SARS-CoV-2 can result in COVID-19 with both acute and chronic disease manifestations that continue to impact many patients long after the resolution of viral replication. There is therefore great interest in understanding the host factors that contribute to COVID-19 pathogenesis. In this review, we address the role of hyaluronan (HA), an extracellular matrix polymer with roles in inflammation and cellular metabolism, in COVID-19 and critically evaluate the hypothesis that HA promotes COVID-19 pathogenesis. We first provide a brief overview of COVID-19 infection. Then we briefly summarize the known roles of HA in airway inflammation and immunity. We then address what is known about HA and the pathogenesis of COVID-19 acute respiratory distress syndrome (COVID-19 ARDS). Next, we examine potential roles for HA in post-acute SARS-CoV-2 infection (PASC), also known as "long COVID" as well as in COVID-associated fibrosis. Finally, we discuss the potential therapeutics that target HA as a means to treat COVID-19, including the repurposed drug hymecromone (4-methylumbelliferone). We conclude that HA is a promising potential therapeutic target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Henry W Barnes
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Sally Demirdjian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Hunter A Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Niemietz I, Brown KL. Hyaluronan promotes intracellular ROS production and apoptosis in TNFα-stimulated neutrophils. Front Immunol 2023; 14:1032469. [PMID: 36814915 PMCID: PMC9939446 DOI: 10.3389/fimmu.2023.1032469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Background Hyaluronan (HA) is an important structural component of the extracellular matrix and has well-described roles in maintaining tissue integrity and homeostasis. With inflammation, HA metabolism (synthesis and degradation) increases and results in higher concentrations of soluble HA. Previously, we demonstrated that (soluble) HA primed resting neutrophils for the oxidative burst in response to a secondary stimulus. Notably, HA-mediated priming was not dependent on degranulation, which is a hallmark of priming by classical agents such as TNFα. In this study, we queried the ability of HA to prime neutrophils to different stimuli and its capacity to modulate neutrophil function in the presence of TNFα. Methods Blood neutrophils from healthy donors were stimulated ex vivo with HA in the absence and presence of classic neutrophil agonists, inclusive of TNFα. Western blotting was used to assess the activation (phosphorylation) of p38 MAPK, and key neutrophil functions associated with priming and activation, such as intracellular and extracellular ROS production, degranulation, and apoptosis, were evaluated by standard chemiluminescence assays (ROS) and flow cytometry. Results Hyaluronan is capable of atypical priming and, with TNFα, co-priming neutrophils for an enhanced (rate and/or magnitude) oxidative burst to various secondary stimuli. In addition, HA can augment intracellular ROS production that is directly induced by TNFα in resting neutrophils, which coincided with the activation of p38 MAPK and apoptosis. Conclusions These data demonstrate that the extracellular matrix component HA is a key modulator of neutrophil function(s) in the presence of inflammatory agents such as TNFα. Moreover, it provides additional evidence for the diversity and complexity of neutrophil priming and activation during inflammation.
Collapse
Affiliation(s)
- Iwona Niemietz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kelly L Brown
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
MacLeod R, Chan FV, Yuan H, Ye X, Sin YJA, Vitelli TM, Cucu T, Leung A, Baljak I, Osinski S, Fu Y, Jung GID, Amar A, DeAngelis PL, Hellman U, Cowman MK. Selective isolation of hyaluronan by solid phase adsorption to silica. Anal Biochem 2022; 652:114769. [PMID: 35660507 PMCID: PMC9589902 DOI: 10.1016/j.ab.2022.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 11/01/2022]
Abstract
A solid phase adsorption method for selective isolation of hyaluronan (HA) from biological samples is presented. Following enzymatic degradation of protein, HA can be separated from sulfated glycosaminoglycans, other unsulfated glycosaminoglycans, nucleic acids, and proteolytic fragments by adsorption to amorphous silica at specific salt concentrations. The adsorbed HA can be released from silica using neutral and basic aqueous solutions. HA ranging in size from ∼9 kDa to MDa polymers has been purified by this method from human serum and conditioned medium of cultured cells.
Collapse
Affiliation(s)
- Rebecca MacLeod
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 433 First Avenue, 9thfloor, New York, NY, 10010, USA.
| | - Fok Vun Chan
- Echelon Biosciences Inc., 675 Arapeen Drive, Suite 302, Salt Lake City, UT, 84108, USA.
| | - Han Yuan
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Xin Ye
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Yun Jin Ashley Sin
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 433 First Avenue, 9thfloor, New York, NY, 10010, USA.
| | - Teraesa M Vitelli
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 433 First Avenue, 9thfloor, New York, NY, 10010, USA.
| | - Tudor Cucu
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Annie Leung
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Irene Baljak
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 433 First Avenue, 9thfloor, New York, NY, 10010, USA.
| | - Samantha Osinski
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Yuhong Fu
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Gyu Ik Daniel Jung
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Anant Amar
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma, OK, 73104, USA.
| | - Urban Hellman
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87, Umeå, Sweden.
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 433 First Avenue, 9thfloor, New York, NY, 10010, USA; Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
13
|
Huang H, Ding X, Xing D, Lin J, Li Z, Lin J. Hyaluronic Acid Oligosaccharide Derivatives Alleviate Lipopolysaccharide-Induced Inflammation in ATDC5 Cells by Multiple Mechanisms. Molecules 2022; 27:5619. [PMID: 36080383 PMCID: PMC9457626 DOI: 10.3390/molecules27175619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
High molecular weight hyaluronic acids (HMW-HAs) have been used for the palliative treatment of osteoarthritis (OA) for decades, but the pharmacological activity of HA fragments has not been fully explored due to the limited availability of structurally defined HA fragments. In this study, we synthesized a series glycosides of oligosaccharides of HA (o-HAs), hereinafter collectively referred to as o-HA derivatives. Their effects on OA progression were examined in a chondrocyte inflammatory model established by the lipopolysaccharide (LPS)-challenged ATDC5 cells. Cell Counting Kit-8 (CCK-8) assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed that o-HA derivatives (≤100 μg/mL) exhibited no cytotoxicity and pro-inflammatory effects. We found that the o-HA and o-HA derivatives alleviated LPS-induced inflammation, apoptosis, autophagy and proliferation-inhibition of ATDC5 cells, similar to the activities of HMW-HAs. Moreover, Western blot analysis showed that different HA derivatives selectively reversed the effects of LPS on the expression of extracellular matrix (ECM)-related proteins (MMP13, COL2A1 and Aggrecan) in ATDC5 cells. Our study suggested that o-HA derivatives may alleviate LPS-induced chondrocyte injury by reducing the inflammatory response, maintaining cell proliferation, inhibiting apoptosis and autophagy, and decreasing ECM degradation, supporting a potential oligosaccharides-mediated therapy for OA.
Collapse
Affiliation(s)
- Hesuyuan Huang
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing 100044, China
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Xuyang Ding
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing 100044, China
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Jianjing Lin
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing 100044, China
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing 100044, China
- Arthritis Institute, Peking University, Beijing 100044, China
| |
Collapse
|
14
|
Kulshreshtha G, Diep T, Hudson HA, Hincke MT. High value applications and current commercial market for eggshell membranes and derived bioactives. Food Chem 2022; 382:132270. [PMID: 35149473 DOI: 10.1016/j.foodchem.2022.132270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022]
Abstract
Chicken eggshell membrane (ESM) is a highly insoluble structure that is greatly stabilized by extensive desmosine, isodesmosine, and disulfide cross-linkages. The ESM possesses numerous biological functions including anti-microbial, anti-inflammatory, anti-wrinkle, and antioxidant activities. The ESM is mainly proteinaceous; proteomics and bioinformatics analysis of ESM has identified > 500 proteins, such as collagens, glycoproteins, avian beta-defensins, and lysozyme. ESM also contains significant amounts of carbohydrate, including hyaluronic acid (HA). In general, HA plays an important role in tissue hydration and cellular mechanisms such as growth, differentiation, and transport, and has diverse health and medical applications. Despite ESM being rich in important bioactive compounds, it is often considered as a waste product of the egg-breaking industry and is under-utilized. A major challenge for the successful commercial exploitation of ESM and bioactive constituents is its limited solubility and bioavailability due to cross-linkages of ESM fibers. Various processing and extraction methods are employed to overcome these limitations and improve the production of HA and collagen-based ESM formats. Moreover, we believe that there is a wide scope to exploit ESM for novel applications, leading to new intellectual property (IP) and patenting opportunities. This review presents an overview of scientific background, IP landscape and current commercial market for ESM and derived bioactives including collagens and HA. A detailed literature survey is provided for each area of interest. We analyze regulatory guidelines for ESM, contrasting quality control / microbial safety assessment in cosmetics and personal care products (hazard based) with that of the food industry (risk-based). New perspectives for upcycling of ESM waste to commercially viable high-value biomaterials as nutraceutical supplements and as cosmetics ingredients are discussed. This overview of ESM separation techniques and applications could form the basis for directed research and product development in order to exploit the unique bioactivities of ESM.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada
| | - Ty Diep
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, Ontario K0E 1M0, Canada
| | - Helen-Anne Hudson
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, Ontario K0E 1M0, Canada
| | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada; Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Young ID, Nepogodiev SA, Black IM, Le Gall G, Wittmann A, Latousakis D, Visnapuu T, Azadi P, Field RA, Juge N, Kawasaki N. Lipopolysaccharide associated with β-2,6 fructan mediates TLR4-dependent immunomodulatory activity in vitro. Carbohydr Polym 2022; 277:118606. [PMID: 34893207 DOI: 10.1016/j.carbpol.2021.118606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Levan, a β-2,6 fructofuranose polymer produced by microbial species, has been reported for its immunomodulatory properties via interaction with toll-like receptor 4 (TLR4) which recognises lipopolysaccharide (LPS). However, the molecular mechanisms underlying these interactions remain elusive. Here, we investigated the immunomodulatory properties of levan using thoroughly-purified and characterised samples from Erwinia herbicola and other sources. E. herbicola levan was purified by gel-permeation chromatography and LPS was removed from the levan following a novel alkali treatment developed in this study. E. herbicola levan was then characterised by gas chromatography-mass spectrometry and NMR. We found that levan containing LPS, but not LPS-depleted levan, induced TLR4-mediated cytokine production by bone marrow-derived dendritic cells and/or activated TLR4 reporter cells. These data indicated that the immunomodulatory properties of the levan toward TLR4-expressing immune cells were mediated by the LPS. This work also demonstrates the importance of LPS removal when assessing the immunomodulatory activity of polysaccharides.
Collapse
Affiliation(s)
- Ian D Young
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ian M Black
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Gwenaelle Le Gall
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Alexandra Wittmann
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Triinu Visnapuu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Norihito Kawasaki
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
16
|
Han W, Lv Y, Sun Y, Wang Y, Zhao Z, Shi C, Chen X, Wang L, Zhang M, Wei B, Zhao X, Wang X. The anti-inflammatory activity of specific-sized hyaluronic acid oligosaccharides. Carbohydr Polym 2022; 276:118699. [PMID: 34823813 DOI: 10.1016/j.carbpol.2021.118699] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
Severe acute inflammatory conditions may cause tissue damage, sepsis, and death. As a critical component of the extracellular matrix, hyaluronic acid (HA) has been reported to possess pro- and anti-inflammatory properties via Toll-like receptors (TLRs). In this study, we prepared different sizes and structures of HA oligosaccharides and derivatives and investigated the effects on inflammation in vitro and in vivo. Our results showed that HA tetra-saccharide was the minimum fragment to enhance inflammation, whereas HA disaccharide competitively blocked TLR4-dependent inflammation. The enzymatic HA disaccharide (ΔHA2) inhibited lipopolysaccharide (LPS)-induced inflammation. Based on structure-activity relationship analysis, we observed that anti-inflammatory activity depended on HAs polymerization degree, acetyl group, and configuration. In addition, we demonstrated that ΔHA2 reduced LPS-induced pro-inflammatory cytokines production in vivo. ΔHA2, a native metabolite of HA polysaccharides, may have a potential role against LPS-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Wenwei Han
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao 266100, China
| | - Youjing Lv
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Yutong Sun
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yingdi Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Zhan Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Chuanqin Shi
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xiangyan Chen
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Li Wang
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Meifang Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Bo Wei
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| |
Collapse
|
17
|
Gu Y, Forget A, Shastri VP. Biobridge: An Outlook on Translational Bioinks for 3D Bioprinting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103469. [PMID: 34862764 PMCID: PMC8787414 DOI: 10.1002/advs.202103469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/20/2021] [Indexed: 05/30/2023]
Abstract
3D-bioprinting (3DBP) possesses several elements necessary to overcome the deficiencies of conventional tissue engineering, such as defining tissue shape a priori, and serves as a bridge to clinical translation. This transformative potential of 3DBP hinges on the development of the next generation of bioinks that possess attributes for clinical use. Toward this end, in addition to physicochemical characteristics essential for printing, bioinks need to possess proregenerative attributes, while enabling printing of stable structures with a defined biological function that survives implantation and evolves in vivo into functional tissue. With a focus on bioinks for extrusion-based bioprinting, this perspective review advocates a rigorous biology-based approach to engineering bioinks, emphasizing efficiency, reproducibility, and a streamlined translation process that places the clinical endpoint front and center. A blueprint for engineering the next generation of bioinks that satisfy the aforementioned performance criteria for various translational levels (TRL1-5) and a characterization tool kit is presented.
Collapse
Affiliation(s)
- Yawei Gu
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
| | - Aurelien Forget
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
| | - V. Prasad Shastri
- Institute for Macromolecular ChemistryUniversity of FreiburgFreiburg79104Germany
- Bioss‐Centre for Biological Signalling StudiesUniversity of FreiburgBreisgau79104Germany
| |
Collapse
|
18
|
Kocurkova A, Nesporova K, Sandanusova M, Kerberova M, Lehka K, Velebny V, Kubala L, Ambrozova G. Endogenously-Produced Hyaluronan and Its Potential to Regulate the Development of Peritoneal Adhesions. Biomolecules 2021; 12:biom12010045. [PMID: 35053193 PMCID: PMC8773905 DOI: 10.3390/biom12010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Formation of peritoneal adhesions (PA) is one of the major complications following intra-abdominal surgery. It is primarily caused by activation of the mesothelial layer and underlying tissues in the peritoneal membrane resulting in the transition of mesothelial cells (MCs) and fibroblasts to a pro-fibrotic phenotype. Pro-fibrotic transition of MCs—mesothelial-to-mesenchymal transition (MMT), and fibroblasts activation to myofibroblasts are interconnected to changes in cellular metabolism and culminate in the deposition of extracellular matrix (ECM) in the form of fibrotic tissue between injured sides in the abdominal cavity. However, ECM is not only a mechanical scaffold of the newly synthetized tissue but reciprocally affects fibrosis development. Hyaluronan (HA), an important component of ECM, is a non-sulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcUA) that can affect the majority of processes involved in PA formation. This review considers the role of endogenously produced HA in the context of different fibrosis-related pathologies and its overlap in the development of PA.
Collapse
Affiliation(s)
- Anna Kocurkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Kristina Nesporova
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Miriam Sandanusova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Michaela Kerberova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
| | - Katerina Lehka
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Correspondence:
| |
Collapse
|
19
|
Hartmann F, Gorski DJ, Newman AAC, Homann S, Petz A, Owsiany KM, Serbulea V, Zhou YQ, Deaton RA, Bendeck M, Owens GK, Fischer JW. SMC-Derived Hyaluronan Modulates Vascular SMC Phenotype in Murine Atherosclerosis. Circ Res 2021; 129:992-1005. [PMID: 34615369 DOI: 10.1161/circresaha.120.318479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Felicia Hartmann
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Daniel J Gorski
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Alexandra A C Newman
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville.,Department of Biochemistry and Molecular Genetics (A.A.C.N., K.M.O.), University of Virginia-School of Medicine, Charlottesville.,Cardiovascular Research Center in the Department of Medicine, New York University (A.A.C.N.)
| | - Susanne Homann
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Anne Petz
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Katherine M Owsiany
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville.,Department of Biochemistry and Molecular Genetics (A.A.C.N., K.M.O.), University of Virginia-School of Medicine, Charlottesville
| | - Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville
| | - Yu-Qing Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (Y.Q.-Z., M.B.)
| | - Rebecca A Deaton
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville
| | - Michelle Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (Y.Q.-Z., M.B.)
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville
| | - Jens W Fischer
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| |
Collapse
|
20
|
Šínová R, Pavlík V, Ondrej M, Velebný V, Nešporová K. Hyaluronan: A key player or just a bystander in skin photoaging? Exp Dermatol 2021; 31:442-458. [PMID: 34726319 DOI: 10.1111/exd.14491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Photoaged skin exhibits signs of inflammation, DNA damage and changes in morphology that are visible at the macroscopic and microscopic levels. Photoaging also affects the extracellular matrix (ECM) including hyaluronan (HA), the main polysaccharide component thereof. HA is a structurally simple but biologically complex molecule that serves as a water-retaining component and provides both a scaffold for a number of the proteins of the ECM and the ligand for cellular receptors. The study provides an overview of the literature concerning the changes in HA amount, size and metabolism, and the potential role of HA in photoaging. We also suggest novel HA contributions to photoaging based on our knowledge of the role of HA in other pathological processes, including the senescence and inflammation-triggered ECM reorganization. Moreover, we discuss potential direct or indirect intervention to mitigate photoaging that targets the hyaluronan metabolism, as well as supplementation.
Collapse
Affiliation(s)
- Romana Šínová
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vojtěch Pavlík
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Ondrej
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Department of Radiobiology, Faculty of Military Health Sciences, University of Defense in Brno, Hradec Kralove, Czech Republic
| | | | | |
Collapse
|
21
|
Garantziotis S. Modulation of hyaluronan signaling as a therapeutic target in human disease. Pharmacol Ther 2021; 232:107993. [PMID: 34587477 DOI: 10.1016/j.pharmthera.2021.107993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The extracellular matrix is an active participant, modulator and mediator of the cell, tissue, organ and organismal response to injury. Recent research has highlighted the role of hyaluronan, an abundant glycosaminoglycan constituent of the extracellular matrix, in many fundamental biological processes underpinning homeostasis and disease development. From this basis, emerging studies have demonstrated the therapeutic potential of strategies which target hyaluronan synthesis, biology and signaling, with significant promise as therapeutics for a variety of inflammatory and immune diseases. This review summarizes the state of the art in this field and discusses challenges and opportunities in what could emerge as a new class of therapeutic agents, that we term "matrix biologics".
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
22
|
Sadgrove NJ, Simmonds MSJ. Pharmacodynamics of Aloe vera and acemannan in therapeutic applications for skin, digestion, and immunomodulation. Phytother Res 2021; 35:6572-6584. [PMID: 34427371 DOI: 10.1002/ptr.7242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Scientific studies of Aloe vera have tentatively explained therapeutic claims from a mechanistic perspective. Furthermore, in vitro outcomes demonstrate that the breakage of acemannan chains into smaller fragments enhances biological effects. These fragments can intravenously boost vaccine efficacy or entrain the immune system to attack cancer cells by mannose receptor agonism of macrophage or dendritic cells. With oral consumption, epithelialisation also occurs at injured sites in the small intestine or colon. The main advantage of dietary acemannan is the attenuation of the digestive process, increasing satiety, and slowing the release of sugars from starches. In the colon, acemannan is digested by microbes into short-chain fatty acids that are absorbed and augment the sensation of satiety and confer a host of other health benefits. In topical applications, an acemannan/chitosan combination accelerates the closure of wounds by promoting granular tissue formation, which creates a barrier between macrophages or neutrophils and the wound dressing. This causes M2 polarisation, reversal of inflammation, and acceleration of the re-epithelialisation process. This review summarises and explains the current pharmacodynamic paradigm in the context of acemannan in topical, oral, and intravenous applications. However, due to contradictory results in the literature, further research is required to provide scientific evidence to confirm or nullify these claims.
Collapse
|
23
|
Vernon RB, Gooden MD, Chan CK, Workman G, Obika M, Wight TN. Autocrine Hyaluronan Influences Sprouting and Lumen Formation During HUVEC Tubulogenesis In Vitro. J Histochem Cytochem 2021; 69:415-428. [PMID: 34080894 DOI: 10.1369/00221554211022703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although many studies have focused on a role for hyaluronan (HA) of interstitial extracellular matrix (presumably produced by non-vascular "stromal" cells) in regulating vascular growth, we herein examine the influence of "autocrine HA" produced by vascular endothelial cells themselves on tubulogenesis, using human umbilical vein endothelial cells (HUVECs) in angiogenic and vasculogenic three-dimensional collagen gel cultures. Relative to unstimulated controls, tubulogenic HUVECs upregulated HAS2 mRNA and increased the synthesis of cell-associated HA (but not HA secreted into media). Confocal microscopy/immunofluorescence on cultures fixed with neutral-buffered 10% formalin (NBF) revealed cytoplasmic HAS2 in HUVEC cords and tubes. Cultures fixed with NBF (with cetylpyridinium chloride added to retain HA), stained for HA using "affinity fluorescence" (biotinylated HA-binding protein with streptavidin-fluor), and viewed by confocal microscopy showed HA throughout tube lumens, but little/no HA on the abluminal sides of the tubes or in the surrounding collagen gel. Lumen formation in angiogenic and vasculogenic cultures was strongly suppressed by metabolic inhibitors of HA synthesis (mannose and 4-methylumbelliferone). Hyaluronidase strongly inhibited lumen formation in angiogenic cultures, but not in vasculogenic cultures (where developing lumens are not open to culture medium). Collectively, our results point to a role for autocrine, luminal HA in microvascular sprouting and lumen development. (J Histochem Cytochem 69: 415-428, 2021).
Collapse
Affiliation(s)
- Robert B Vernon
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Michel D Gooden
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Christina K Chan
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Gail Workman
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Masanari Obika
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Thomas N Wight
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| |
Collapse
|
24
|
Li Z, Bratlie KM. The Influence of Polysaccharides-Based Material on Macrophage Phenotypes. Macromol Biosci 2021; 21:e2100031. [PMID: 33969643 DOI: 10.1002/mabi.202100031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 02/03/2023]
Abstract
Macrophage polarization is a key factor in determining the success of implanted tissue engineering scaffolds. Polysaccharides (derived from plants, animals, and microorganisms) are known to modulate macrophage phenotypes by recognizing cell membrane receptors. Numerous studies have developed polysaccharide-based materials into functional biomaterial substrates for tissue regeneration and pharmaceutical application due to their immunostimulatory activities and anti-inflammatory response. They are used as hydrogel substrates, surface coatings, and drug delivery carriers. In addition to their innate immunological functions, the newly endowed physical and chemical properties, including substrate modulus, pore size/porosity, surface binding chemistry, and the mole ratio of polysaccharides in hybrid materials may regulate macrophage phenotypes more precisely. Growing evidence indicates that the sulfation pattern of glycosaminoglycans and proteoglycans expressed on polarized macrophages leads to the changes in protein binding, which may alter macrophage phenotype and influence the immune response. A comprehensive understanding of how different types of polysaccharide-based materials alter macrophage phenotypic changes can be beneficial to predict transplantation/implantation outcomes. This review focuses on recent advances in promoting wound healing and balancing macrophage phenotypes using polysaccharide-based substrates/coatings and new directions to address the limitations in the current understanding of macrophage responses to polysaccharides.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
25
|
Margraf A, Ludwig N, Zarbock A, Rossaint J. Systemic Inflammatory Response Syndrome After Surgery: Mechanisms and Protection. Anesth Analg 2020; 131:1693-1707. [PMID: 33186158 DOI: 10.1213/ane.0000000000005175] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immune system is an evolutionary hallmark of higher organisms that defends the host against invading pathogens and exogenous infections. This defense includes the recruitment of immune cells to the site of infection and the initiation of an inflammatory response to contain and eliminate pathogens. However, an inflammatory response may also be triggered by noninfectious stimuli such as major surgery, and, in case of an overshooting, still not comprehensively understood reaction, lead to tissue destruction and organ dysfunction. Unfortunately, in some cases, the immune system may not effectively distinguish between stimuli elicited by major surgery, which ideally should only require a modest inflammatory response, and those elicited by trauma or pathogenic infection. Surgical procedures thus represent a potential trigger for systemic inflammation that causes the secretion of proinflammatory cytokines, endothelial dysfunction, glycocalyx damage, activation of neutrophils, and ultimately tissue and multisystem organ destruction. In this review, we discuss and summarize currently available mechanistic knowledge on surgery-associated systemic inflammation, demarcation toward other inflammatory complications, and possible therapeutic options. These options depend on uncovering the underlying mechanisms and could include pharmacologic agents, remote ischemic preconditioning protocols, cytokine blockade or clearance, and optimization of surgical procedures, anesthetic regimens, and perioperative inflammatory diagnostic assessment. Currently, a large gap between basic science and clinically confirmed data exists due to a limited evidence base of translational studies. We thus summarize important steps toward the understanding of the precise time- and space-regulated processes in systemic perioperative inflammation.
Collapse
Affiliation(s)
- Andreas Margraf
- From the Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | | | | |
Collapse
|
26
|
D'Ascola A, Scuruchi M, Ruggeri RM, Avenoso A, Mandraffino G, Vicchio TM, Campo S, Campo GM. Hyaluronan oligosaccharides modulate inflammatory response, NIS and thyreoglobulin expression in human thyrocytes. Arch Biochem Biophys 2020; 694:108598. [PMID: 32976824 DOI: 10.1016/j.abb.2020.108598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune thyroid diseases, such as Hashimoto's thyroiditis, are characterized by lymphocytic infiltration and altered function of the thyroid. During inflammation, it has been reported a decreased expression in Tg and NIS, accompanied by an increase in HA production that accumulates in the gland. HA fragments produced in different pathological states can modulate gene expression in a variety of cell types and may prime inflammatory response by interacting with the TLR-2, TLR-4 and CD44 that, in turn, induce NF-kB activation finally responsible of inflammatory mediator transcription, such as IL-1β, TNF-α and IL-6. The aim of this study was to investigate the potential inflammatory effect and the biochemical pathways activated by 6-mer HA oligosaccharides in cultured human thyrocytes. 6-mer HA treatment induced up-regulation of TLR-2, TLR-4, CD44 mRNA and related protein levels, increased HA production and NF-kB activation, that in turn increased IL-1β and IL-6 concentrations. Instead, we found evidence of an opposite effect on thyroid specific-gene Tg and NIS, that were decreased after 6-mer HA addition. Thyrocytes exposition to specific blocking antibodies for TLR-2, TLR-4 and CD44 abolished up-regulation of NF-κB activation and the consequent pro-inflammatory cytokine production, while restored Tg and NIS levels. A further goal of this study was demonstrate that also other LMW HA have pro inflammatory proprieties. These data suggest that HA fragments, through the involvement of TLR-2, TLR-4 and CD44 signaling cascade, contribute to prime the inflammatory response in thyrocytes and, by reducing the expression of thyroid-specific genes, could promote the loss of function of gland such as in Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital, via C. Valeria 1, 98125, Messina, Italy.
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital, via C. Valeria 1, 98125, Messina, Italy
| | - Rosaria Maddalena Ruggeri
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital, via C. Valeria 1, 98125, Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences, and Morphofunctional Images, University of Messina, University Hospital, via C. Valeria 1, 98125 Messina, Italy University of Messina, via C. Valeria 1, 98125, Messina, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital, via C. Valeria 1, 98125, Messina, Italy
| | - Teresa Manuela Vicchio
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital, via C. Valeria 1, 98125, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences, and Morphofunctional Images, University of Messina, University Hospital, via C. Valeria 1, 98125 Messina, Italy University of Messina, via C. Valeria 1, 98125, Messina, Italy
| | - Giuseppe Maurizio Campo
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital, via C. Valeria 1, 98125, Messina, Italy
| |
Collapse
|
27
|
Kobayashi T, Chanmee T, Itano N. Hyaluronan: Metabolism and Function. Biomolecules 2020; 10:E1525. [PMID: 33171800 PMCID: PMC7695009 DOI: 10.3390/biom10111525] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
As a major polysaccharide component of the extracellular matrix, hyaluronan plays essential roles in the organization of tissue architecture and the regulation of cellular functions, such as cell proliferation and migration, through interactions with cell-surface receptors and binding molecules. Metabolic pathways for biosynthesis and degradation tightly control the turnover rate, concentration, and molecular size of hyaluronan in tissues. Despite the relatively simple chemical composition of this polysaccharide, its wide range of molecular weights mediate diverse functions that depend on molecular size and tissue concentration. Genetic engineering and pharmacological approaches have demonstrated close associations between hyaluronan metabolism and functions in many physiological and pathological events, including morphogenesis, wound healing, and inflammation. Moreover, emerging evidence has suggested that the accumulation of hyaluronan extracellular matrix and fragments due to the altered expression of hyaluronan synthases and hyaluronidases potentiates cancer development and progression by remodeling the tumor microenvironment. In addition to the well-known functions exerted by extracellular hyaluronan, recent metabolomic approaches have also revealed that its synthesis can regulate cellular functions via the reprogramming of cellular metabolism. This review highlights the current advances in knowledge on the biosynthesis and catabolism of hyaluronan and describes the diverse functions associated with hyaluronan metabolism.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan;
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand;
| | - Naoki Itano
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
28
|
Imbert PRC, Saric A, Pedram K, Bertozzi CR, Grinstein S, Freeman SA. An Acquired and Endogenous Glycocalyx Forms a Bidirectional "Don't Eat" and "Don't Eat Me" Barrier to Phagocytosis. Curr Biol 2020; 31:77-89.e5. [PMID: 33096038 DOI: 10.1016/j.cub.2020.09.082] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/28/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Macrophages continuously survey their environment in search of pathogens or apoptotic corpses or debris. Targets intended for clearance expose ligands that initiate their phagocytosis ("eat me" signals), while others avoid phagocytosis by displaying inhibitory ligands ("don't eat me" signals). We report that such ligands can be obscured by the glycosaminoglycans and glycoproteins that coat pathogenic as well as malignant phagocytic targets. In addition, a reciprocal barrier of self-synthesized or acquired glycocalyx components on the macrophage surface shrouds phagocytic receptors, curtailing their ability to engage particles. The coating layers of macrophages and their targets hinder phagocytosis by both steric and electrostatic means. Their removal by enzymatic means is shown to markedly enhance phagocytic efficiency. In particular, we show that the removal of mucins, which are overexpressed in cancer cells, facilitates their clearance. These results shed light on the physical barriers that modulate phagocytosis, which have been heretofore underappreciated. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Paul R C Imbert
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Amra Saric
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kayvon Pedram
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Damodarasamy M, Vernon RB, Pathan JL, Keene CD, Day AJ, Banks WA, Reed MJ. The microvascular extracellular matrix in brains with Alzheimer's disease neuropathologic change (ADNC) and cerebral amyloid angiopathy (CAA). Fluids Barriers CNS 2020; 17:60. [PMID: 32993718 PMCID: PMC7525948 DOI: 10.1186/s12987-020-00219-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/09/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The microvasculature (MV) of brains with Alzheimer's disease neuropathologic change (ADNC) and cerebral amyloid angiopathy (CAA), in the absence of concurrent pathologies (e.g., infarctions, Lewy bodies), is incompletely understood. OBJECTIVE To analyze microvascular density, diameter and extracellular matrix (ECM) content in association with ADNC and CAA. METHODS We examined samples of cerebral cortex and isolated brain microvasculature (MV) from subjects with the National Institute on Aging-Alzheimer's Association (NIA-AA) designations of not-, intermediate-, or high ADNC and from subjects with no CAA and moderate-severe CAA. Cases for all groups were selected with no major (territorial) strokes, ≤ 1 microinfarct in screening sections, and no Lewy body pathology. MV density and diameter were measured from cortical brain sections. Levels of basement membrane (BM) ECM components, the protein product of TNF-stimulated gene-6 (TSG-6), and the ubiquitous glycosaminoglycan hyaluronan (HA) were assayed by western blots or HA ELISA of MV lysates. RESULTS We found no significant changes in MV density or diameter among any of the groups. Levels of BM laminin and collagen IV (col IV) were lower in MV isolated from the high ADNC vs. not-ADNC groups. In contrast, BM laminin was significantly higher in MV from the moderate-severe CAA vs. the no CAA groups. TSG-6 and HA content were higher in the presence of both high ADNC and CAA, whereas levels of BM fibronectin and perlecan were similar among all groups. CONCLUSIONS Cortical MV density and diameter are not appreciably altered by ADNC or CAA. TSG-6 and HA are increased in both ADNC and CAA, with laminin and col IV decreased in the BM of high ADNC, but laminin increased in moderate-severe CAA. These results show that changes in the ECM occur in AD and CAA, but independently of one another, and likely reflect on the regional functioning of the brain microvasculature.
Collapse
Affiliation(s)
- Mamatha Damodarasamy
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Robert B Vernon
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jasmine L Pathan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, USA
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - May J Reed
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA.
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington Harborview Medical Center, Seattle, WA, 98104, USA.
| |
Collapse
|
30
|
Kari OK, Tavakoli S, Parkkila P, Baan S, Savolainen R, Ruoslahti T, Johansson NG, Ndika J, Alenius H, Viitala T, Urtti A, Lajunen T. Light-Activated Liposomes Coated with Hyaluronic Acid as a Potential Drug Delivery System. Pharmaceutics 2020; 12:E763. [PMID: 32806740 PMCID: PMC7465487 DOI: 10.3390/pharmaceutics12080763] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 01/22/2023] Open
Abstract
Light-activated liposomes permit site and time-specific drug delivery to ocular and systemic targets. We combined a light activation technology based on indocyanine green with a hyaluronic acid (HA) coating by synthesizing HA-lipid conjugates. HA is an endogenous vitreal polysaccharide and a potential targeting moiety to cluster of differentiation 44 (CD44)-expressing cells. Light-activated drug release from 100 nm HA-coated liposomes was functional in buffer, plasma, and vitreous samples. The HA-coating improved stability in plasma compared to polyethylene glycol (PEG)-coated liposomes. Liposomal protein coronas on HA- and PEG-coated liposomes after dynamic exposure to undiluted human plasma and porcine vitreous samples were hydrophilic and negatively charged, thicker in plasma (~5 nm hard, ~10 nm soft coronas) than in vitreous (~2 nm hard, ~3 nm soft coronas) samples. Their compositions were dependent on liposome formulation and surface charge in plasma but not in vitreous samples. Compared to the PEG coating, the HA-coated liposomes bound more proteins in vitreous samples and enriched proteins related to collagen interactions, possibly explaining their slightly reduced vitreal mobility. The properties of the most abundant proteins did not correlate with liposome size or charge, but included proteins with surfactant and immune system functions in plasma and vitreous samples. The HA-coated light-activated liposomes are a functional and promising alternative for intravenous and ocular drug delivery.
Collapse
Affiliation(s)
- Otto K. Kari
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Shirin Tavakoli
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Petteri Parkkila
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Simone Baan
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80.082, 3508 TB Utrecht, The Netherlands
| | - Roosa Savolainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Teemu Ruoslahti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
| | - Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland;
| | - Joseph Ndika
- Human Microbiome Research, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (J.N.); (H.A.)
| | - Harri Alenius
- Human Microbiome Research, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (J.N.); (H.A.)
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland;
| | - Arto Urtti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
- Institute of Chemistry, St. Petersburg State University, Petergof, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Tatu Lajunen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland; (O.K.K.); (S.T.); (P.P.); (S.B.); (R.S.); (T.R.); (T.V.); (A.U.)
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Science, Tokyo University of Pharmacy & Life Sciences, 1432-1 Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
31
|
Niemietz I, Moraes AT, Sundqvist M, Brown KL. Hyaluronan primes the oxidative burst in human neutrophils. J Leukoc Biol 2020; 108:705-713. [PMID: 32421905 DOI: 10.1002/jlb.3ma0220-216rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/18/2020] [Accepted: 04/08/2020] [Indexed: 11/10/2022] Open
Abstract
Hyaluronan (HA) is a glycosaminoglycan that in its natural, high molecular mass (HMM) form, promotes tissue repair and homeostasis. With inflammation, HA metabolism and HMM HA fragmentation to low molecular mass (LMM) forms is greatly enhanced. Considerable evidence suggests that LMM HA may act as a damage-associated molecular pattern to initiate innate immune responses. However, the responsiveness of myeloid cells to LMM HA is controversial and largely unknown for neutrophils. Peripheral blood cells from healthy donors were incubated ex vivo with pharmaceutical grade HA of different molecular mass (HMM, LMM, and HA fragments <10 kDa). Key innate immune functions were assessed, namely production of cytokines and reactive oxygen species release (ROS), granule mobilization, and apoptosis. None of the tested sizes of HA altered cytokine production by PBMC and neutrophils. Also, HA had no effect on neutrophil granule mobilization and apoptosis. In contrast, HA primed neutrophils for rapid and robust release of ROS in response to a secondary stimulus (N-formyl-methionyl-leucyl phenylalanine). Priming occurred within 20 min of exposure to HA and was similar for all tested molecular mass. The observed effect was independent of granule mobilization and associated with the activation of intracellular signaling pathways involving Src family kinases, glycogen synthase kinase-3, and the proline-rich Akt substrate of 40 kDa. Our findings provide new evidence that HA, irrespective of molecular mass, is a specific priming agent of the neutrophil oxidative burst, which is a critical, early component of an innate immune response.
Collapse
Affiliation(s)
- Iwona Niemietz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Abigail T Moraes
- BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Martina Sundqvist
- BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly L Brown
- BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Harris EN, Baker E. Role of the Hyaluronan Receptor, Stabilin-2/HARE, in Health and Disease. Int J Mol Sci 2020; 21:E3504. [PMID: 32429122 PMCID: PMC7279005 DOI: 10.3390/ijms21103504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Stabilin-2/HARE is the primary clearance receptor for circulating hyaluronan (HA), a polysaccharide found in the extracellular matrix (ECM) of metazoans. HA has many biological functions including joint lubrication, ocular turgor pressure, skin elasticity and hydration, cell motility, and intercellular signaling, among many others. The regulatory system for HA content in the tissues, lymphatics, and circulatory systems is due, in part, to Stabilin-2/HARE. The activity of this receptor was discovered about 40 years ago (early 1980s), cloned in the mid-1990s, and has been characterized since then. Here, we discuss the overall domain organization of this receptor and how it correlates to ligand binding, cellular signaling, and its role in known physiological disorders such as cancer.
Collapse
Affiliation(s)
- Edward N. Harris
- Department of Biochemistry, University of Nebraska, 1901 Vine St., Lincoln, NE 68588, USA;
| | | |
Collapse
|
33
|
Takasugi M, Firsanov D, Tombline G, Ning H, Ablaeva J, Seluanov A, Gorbunova V. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat Commun 2020; 11:2376. [PMID: 32398747 PMCID: PMC7217962 DOI: 10.1038/s41467-020-16050-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Naked mole-rat (NMR), the longest-living rodent, produces very-high-molecular-mass hyaluronan (vHMM-HA), compared to other mammalian species. However, it is unclear if exceptional polymer length of vHMM-HA is important for longevity. Here, we show that vHMM-HA (>6.1 MDa) has superior cytoprotective properties compared to the shorter HMM-HA. It protects not only NMR cells, but also mouse and human cells from stress-induced cell-cycle arrest and cell death in a polymer length-dependent manner. The cytoprotective effect is dependent on the major HA-receptor, CD44. We find that vHMM-HA suppresses CD44 protein-protein interactions, whereas HMM-HA promotes them. As a result, vHMM-HA and HMM-HA induce opposing effects on the expression of CD44-dependent genes, which are associated with the p53 pathway. Concomitantly, vHMM-HA partially attenuates p53 and protects cells from stress in a p53-dependent manner. Our results implicate vHMM-HA in anti-aging mechanisms and suggest the potential applications of vHMM-HA for enhancing cellular stress resistance.
Collapse
Affiliation(s)
- Masaki Takasugi
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Gregory Tombline
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Hanbing Ning
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Zhengzhou, Henan, 450052, People's Republic of China
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
34
|
Cowman MK, Shortt C, Arora S, Fu Y, Villavieja J, Rathore J, Huang X, Rakshit T, Jung GI, Kirsch T. Role of Hyaluronan in Inflammatory Effects on Human Articular Chondrocytes. Inflammation 2020; 42:1808-1820. [PMID: 31243649 PMCID: PMC6719336 DOI: 10.1007/s10753-019-01043-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hyaluronan (HA) fragments have been proposed to elicit defensive or pro-inflammatory responses in many cell types. For articular chondrocytes in an inflammatory environment, studies have failed to reach consensus on the endogenous production or effects of added HA fragments. The present study was undertaken to resolve this discrepancy. Cultured primary human articular chondrocytes were exposed to the inflammatory cytokine IL-1β, and then tested for changes in HA content/size in conditioned medium, and for the expression of genes important in HA binding/signaling or metabolism, and in other catabolic/anabolic responses. Changes in gene expression caused by enzymatic degradation of endogenous HA, or addition of exogenous HA fragments, were examined. IL-1β increased the mRNA levels for HA synthases HAS2/HAS3 and for the HA-binding proteins CD44 and TSG-6. mRNA levels for TLR4 and RHAMM were very low and were little affected by IL-1β. mRNA levels for catabolic markers were increased, while type II collagen (α1(II)) and aggrecan were decreased. HA concentration in the conditioned medium was increased, but the HA was not degraded. Treatment with recombinant hyaluronidase or addition of low endotoxin HA fragments did not elicit pro-inflammatory responses. Our findings showed that HA fragments were not produced by IL-1β-stimulated human articular chondrocytes in the absence of other sources of reactive oxygen or nitrogen species, and that exogenous HA fragments from oligosaccharides up to about 40 kDa in molecular mass were not pro-inflammatory agents for human articular chondrocytes, probably due to low expression of TLR4 and RHAMM in these cells.
Collapse
Affiliation(s)
- Mary K Cowman
- Department of Biomedical Engineering, New York University Tandon School of Engineering, 433 First Avenue, room 910, New York, NY, 10010, USA. .,Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA. .,Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA.
| | - Claire Shortt
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
| | - Shivani Arora
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Yuhong Fu
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Jemma Villavieja
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Jai Rathore
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Xiayun Huang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Tatini Rakshit
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Gyu Ik Jung
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA
| | - Thorsten Kirsch
- Department of Biomedical Engineering, New York University Tandon School of Engineering, 433 First Avenue, room 910, New York, NY, 10010, USA.,Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
35
|
Retrospective review of delayed adverse events secondary to treatment with a smooth, cohesive 20-mg/mL hyaluronic acid filler in 4500 patients. J Am Acad Dermatol 2020; 83:86-95. [PMID: 32035107 DOI: 10.1016/j.jaad.2020.01.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent publications have suggested an increased risk of delayed adverse events (DAEs) with a smooth, cohesive 20-mg/mL hyaluronic acid filler, Juvéderm Voluma (HA-V). OBJECTIVE To examine the occurrence of HA-V DAEs and identify patterns and characteristics. METHODS Charts from patients who received HA-V between February 1, 2009, and February 28, 2018 from 2 clinics were analyzed. RESULTS In 4500 patients who received 9324 treatments with HA-V, 44 DAEs were identified, for a combined incidence of 0.98% per patient, 0.47% per treatment, and 0.23% per syringe. Patients with DAEs received a slightly larger cumulative amount of HA-V than those who did not. Delayed swelling and nodule formation were the most common reactions and occurred a median of 4 months after treatment, with an increase in frequency between October and January. About a third were preceded by an identifiable immunologic stimulus. DAEs were transient and resolved without incident. LIMITATIONS The retrospective nature made it difficult to capture time to resolution or remember potential triggers. CONCLUSION In this large, long-term, retrospective review, HA-V DAEs occurred at a rate of 0.98% per patient. Although the exact cause has yet to be elucidated, we hypothesize that an increase in fragmentation during the HA-V degradation process may trigger an inflammatory response after an immunologic trigger.
Collapse
|
36
|
Groux-Degroote S, Cavdarli S, Uchimura K, Allain F, Delannoy P. Glycosylation changes in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:111-156. [PMID: 31997767 DOI: 10.1016/bs.apcsb.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in a number of inflammatory diseases. Pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of glycan chains, inducing the expression of specific carbohydrate antigens at the cell surface that can be recognized by different types of lectins or by bacterial adhesins, contributing to the development of diseases. Glycosylation can also regulate biological functions of immune cells by recruiting leukocytes to inflammation sites with pro- or anti-inflammatory effects. Cell surface proteoglycans provide a large panel of binding sites for many mediators of inflammation, and regulate their bio-availability and functions. In this review, we summarize the current knowledge of the glycosylation changes occurring in mucin type O-linked glycans, glycosaminoglycans, as well as in glycosphingolipids, with a particular focus on cystic fibrosis and neurodegenerative diseases, and their consequences on cell interactions and disease progression.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Sumeyye Cavdarli
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Kenji Uchimura
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Fabrice Allain
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Philippe Delannoy
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
37
|
Hong Y, Kim YK, Kim GB, Nam GH, Kim SA, Park Y, Yang Y, Kim IS. Degradation of tumour stromal hyaluronan by small extracellular vesicle-PH20 stimulates CD103 + dendritic cells and in combination with PD-L1 blockade boosts anti-tumour immunity. J Extracell Vesicles 2019; 8:1670893. [PMID: 31632619 PMCID: PMC6781230 DOI: 10.1080/20013078.2019.1670893] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 09/14/2019] [Indexed: 12/13/2022] Open
Abstract
Highly accumulated hyaluronan (HA) not only provides a physiological barrier but also supports an immune-suppressive tumour microenvironment. High-molecular-weight (HMW)-HA inhibits the activation of immune cells and their access into tumour tissues, whereas, low-molecular-weight oligo-HA is known to potentially activate dendritic cells (DCs). In this paper, we investigated whether small extracellular vesicle (EVs)-PH20 hyaluronidase induces tumour HA degradation, which, in turn, activates DCs to promote anti-cancer immune responses. Informed by our previous work, we used a small EV carrying GPI-anchored PH20 hyaluronidase (Exo-PH20) that could deeply penetrate into tumour foci via HA degradation. We found that Exo-PH20-treatment successfully activates the maturation and migration of DCs in vivo, particularly CD103+ DCs leading to the activation of tumour-specific CD8+ T cells, which work together to inhibit tumour growth. Moreover, combination with anti-PD-L1 antibody provided potent tumour-specific CD8+ T cell immune responses as well as elicited prominent tumour growth inhibition both in syngenic and spontaneous breast cancer models, and this anti-tumour immunity was durable. Together, these results present new insights for HA degradation by Exo-PH20, providing a better understanding of oligo HA-triggered immune responses to cancer.
Collapse
Affiliation(s)
- Yeonsun Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yoon Kyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gi Beom Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yoon Park
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
38
|
Melanocyte Hyaluronan Coat Fragmentation Enhances the UVB-Induced TLR-4 Receptor Signaling and Expression of Proinflammatory Mediators IL6, IL8, CXCL1, and CXCL10 via NF-κB Activation. J Invest Dermatol 2019; 139:1993-2003.e4. [PMID: 30935974 DOI: 10.1016/j.jid.2019.03.1135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/20/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
|
39
|
High Molecular Weight Hyaluronan Suppresses Macrophage M1 Polarization and Enhances IL-10 Production in PM 2.5-Induced Lung Inflammation. Molecules 2019; 24:molecules24091766. [PMID: 31067702 PMCID: PMC6539614 DOI: 10.3390/molecules24091766] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022] Open
Abstract
PM2.5 is particulate matter with a diameter of 2.5 μm or less. Airway macrophages are the key players regulating PM2.5-induced inflammation. High molecular weight hyaluronan (HMW-HA) has previously been shown to exert protective effects on PM2.5-induced acute lung injury and inflammation. However, little is known about the detailed mechanism. In this study, we aimed to determine whether HMW-HA alleviates PM2.5-induced pulmonary inflammation by modulating macrophage polarization. The levels of M1 biomarkers TNF-α, IL-1β, IL-6, CXCL1, CXCL2, NOS2 and CD86, as well as M2 biomarkers IL-10, MRC1, and Arg-1 produced by macrophages were measured by ELISA, qPCR, and flow cytometry. In addition, the amount of M1 macrophages in lung tissues was examined by immunofluorescence of CD68 and NOS2. We observed a decline in PM2.5-induced M1 polarization both in macrophages and lung tissues when HMW-HA was administered simultaneously. Meanwhile, western blot analysis revealed that PM2.5-induced JNK and p38 phosphorylation was suppressed by HMW-HA. Furthermore, in vitro and in vivo studies showed that co-stimulation with HMW-HA and PM2.5 promoted the expression and release of IL-10, but exhibited limited effects on the transcription of MRC1 and ARG1. In conclusion, our results demonstrated that HMW-HA ameliorates PM2.5-induced lung inflammation by repressing M1 polarization through JNK and p38 pathways and promoting the production of pro-resolving cytokine IL-10.
Collapse
|
40
|
Tammi MI, Oikari S, Pasonen-Seppänen S, Rilla K, Auvinen P, Tammi RH. Activated hyaluronan metabolism in the tumor matrix — Causes and consequences. Matrix Biol 2019; 78-79:147-164. [PMID: 29709595 DOI: 10.1016/j.matbio.2018.04.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/13/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023]
|
41
|
Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol 2019; 78-79:1-10. [PMID: 30802498 DOI: 10.1016/j.matbio.2019.02.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Cell-matrix interactions are fundamental to many developmental, homeostatic, immune and pathologic processes. Hyaluronan (HA), a critical component of the extracellular matrix (ECM) that regulates normal structural integrity and development, also regulates tissue responses during injury, repair, and regeneration. Though simple in its primary structure, HA regulates biological responses in a highly complex manner with balanced contributions from its molecular size and concentration, synthesis versus enzymatic and/or oxidative-nitrative fragmentation, interactions with key HA binding proteins and cell associated receptors, and its cell context-specific signaling. This review highlights the different, but inter-related factors that dictate the biological activity of HA and introduces the overarching themes that weave throughout this special issue of Matrix Biology on hyaluronan.
Collapse
|
42
|
Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J 2019; 286:2883-2908. [PMID: 30724463 DOI: 10.1111/febs.14777] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
Hyaluronan (HA) is a linear nonsulfated glycosaminoglycan of the extracellular matrix that plays a pivotal role in a variety of biological processes. High-molecular weight HA exhibits different biological properties than oligomers and low-molecular weight HA. Depending on their molecular size, HA fragments can influence cellular behavior in a different mode of action. This phenomenon is attributed to the different manner of interaction with the HA receptors, especially CD44 and RHAMM. Both receptors can trigger signaling cascades that regulate cell functional properties, such as proliferation migration, angiogenesis, and wound healing. HA fragments are able to enhance or attenuate the HA receptor-mediated signaling pathways, as they compete with the endogenous HA for binding to the receptors. The modulation of these pathways could be crucial for the development of pathological conditions, such as inflammation and cancer. The primary goal of this review is to critically present the importance of HA molecular size on cellular signaling, functional cell properties, and morphology in normal and pathological conditions, including inflammation and cancer. A deeper understanding of these mechanisms could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia G Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
43
|
Reed MJ, Damodarasamy M, Pathan JL, Chan CK, Spiekerman C, Wight TN, Banks WA, Day AJ, Vernon RB, Keene CD. Increased Hyaluronan and TSG-6 in Association with Neuropathologic Changes of Alzheimer's Disease. J Alzheimers Dis 2019; 67:91-102. [PMID: 30507579 PMCID: PMC6398602 DOI: 10.3233/jad-180797] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Little is known about the extracellular matrix (ECM) during progression of AD pathology. Brain ECM is abundant in hyaluronan (HA), a non-sulfated glycosaminoglycan synthesized by HA synthases (HAS) 1-3 in a high molecular weight (MW) form that is degraded into lower MW fragments. We hypothesized that pathologic severity of AD is associated with increases in HA and HA-associated ECM molecules. To test this hypothesis, we assessed HA accumulation and size; HA synthases (HAS) 1-3; and the HA-stabilizing hyaladherin, TSG-6 in parietal cortex samples from autopsied research subjects with not AD (CERAD = 0, Braak = 0- II, n = 12-21), intermediate AD (CERAD = 2, Braak = III-IV, n = 13-18), and high AD (CERAD = 3, Braak = V-VI, n = 32-40) neuropathologic change. By histochemistry, HA was associated with deposits of amyloid and tau, and was also found diffusely in brain parenchyma, with overall HA quantity (measured by ELSA) significantly greater in brains with high AD neuropathology. Mean HA MW was similar among the samples. HAS2 and TSG-6 mRNA expression, and TSG-6 protein levels were significantly increased in high AD and both molecules were present in vasculature, NeuN-positive neurons, and Iba1-positive microglia. These results did not change when accounting for gender, advanced age (≥ 90 years versus <90 years), or the clinical diagnosis of dementia. Collectively, our results indicate a positive correlation between HA accumulation and AD neuropathology, and suggest a possible role for HA synthesis and metabolism in AD progression.
Collapse
Affiliation(s)
- MJ Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - M Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - JL Pathan
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - CK Chan
- Matrix Biology Program, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - C Spiekerman
- Center for Biomedical Statistics, Institute for Translational Health Sciences, University of Washington, Seattle, WA, USA
| | - TN Wight
- Matrix Biology Program, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - WA Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
- VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| | - AJ Day
- Wellcome Trust Centre for Cell-Matrix Research, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - RB Vernon
- Matrix Biology Program, Benaroya Research Institute, Virginia Mason, Seattle, WA, USA
| | - CD Keene
- Department of Pathology, Division of Neuropathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
44
|
Price ZK, Lokman NA, Ricciardelli C. Differing Roles of Hyaluronan Molecular Weight on Cancer Cell Behavior and Chemotherapy Resistance. Cancers (Basel) 2018; 10:E482. [PMID: 30513961 PMCID: PMC6316154 DOI: 10.3390/cancers10120482] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Hyaluronan (HA), a glycosaminoglycan located in the extracellular matrix, is important in embryo development, inflammation, wound healing and cancer. There is an extensive body of research demonstrating the role of HA in all stages of cancer, from initiation to relapse and therapy resistance. HA interacts with multiple cell surface receptors, including CD44, receptor for hyaluronan mediated motility (RHAMM) and intracellular signaling pathways, including receptor tyrosine kinase pathways, to promote the survival and proliferation of cancer cells. Additionally, HA promotes the formation of cancer stem cell (CSC) populations, which are hypothesized to be responsible for the initiation of tumors and therapy resistance. Recent studies have identified that the molecular weight of HA plays differing roles on both normal and cancer cell behavior. This review explores the role of HA in cancer progression and therapy resistance and how its molecular weight is important in regulating CSC populations, epithelial to mesenchymal transition (EMT), ATP binding cassette (ABC) transporter expression and receptor tyrosine kinase pathways.
Collapse
Affiliation(s)
- Zoe K Price
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, South Australia 5000, Australia.
| | - Noor A Lokman
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, South Australia 5000, Australia.
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, South Australia 5000, Australia.
| |
Collapse
|
45
|
Johnson P, Arif AA, Lee-Sayer SSM, Dong Y. Hyaluronan and Its Interactions With Immune Cells in the Healthy and Inflamed Lung. Front Immunol 2018; 9:2787. [PMID: 30555472 PMCID: PMC6281886 DOI: 10.3389/fimmu.2018.02787] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Hyaluronan is a hygroscopic glycosaminoglycan that contributes to both extracellular and pericellular matrices. While the production of hyaluronan is essential for mammalian development, less is known about its interaction and function with immune cells. Here we review what is known about hyaluronan in the lung and how it impacts immune cells, both at homeostasis and during lung inflammation and fibrosis. In the healthy lung, alveolar macrophages provide the first line of defense and play important roles in immunosurveillance and lipid surfactant homeostasis. Alveolar macrophages are surrounded by a coat of hyaluronan that is bound by CD44, a major hyaluronan receptor on immune cells, and this interaction contributes to their survival and the maintenance of normal alveolar macrophage numbers. Alveolar macrophages are conditioned by the alveolar environment to be immunosuppressive, and can phagocytose particulates without alerting an immune response. However, during acute lung infection or injury, an inflammatory immune response is triggered. Hyaluronan levels in the lung are rapidly increased and peak with maximum leukocyte infiltration, suggesting a role for hyaluronan in facilitating leukocyte access to the injury site. Hyaluronan can also be bound by hyaladherins (hyaluronan binding proteins), which create a provisional matrix to facilitate tissue repair. During the subsequent remodeling process hyaluronan concentrations decline and levels return to baseline as homeostasis is restored. In chronic lung diseases, the inflammatory and/or repair phases persist, leading to sustained high levels of hyaluronan, accumulation of associated immune cells and an inability to resolve the inflammatory response.
Collapse
Affiliation(s)
- Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yifei Dong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
46
|
De Robertis M, Pasquet L, Loiacono L, Bellard E, Messina L, Vaccaro S, Di Pasquale R, Fazio VM, Rols MP, Teissie J, Golzio M, Signori E. In Vivo Evaluation of a New Recombinant Hyaluronidase to Improve Gene Electro-Transfer Protocols for DNA-Based Drug Delivery against Cancer. Cancers (Basel) 2018; 10:cancers10110405. [PMID: 30373297 PMCID: PMC6265783 DOI: 10.3390/cancers10110405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
Cancer vaccines based on plasmid DNA represent a good therapeutic perspective, despite their low potency. Animal-derived hyaluronidases (Hyals) are employed in oncological clinical practice. Hyal has been also demonstrated to be a good enhancer of intramuscular Gene Electro-Transfer (GET) efficiency in anti-cancer preclinical protocols, with increased transfected cells and higher expression of the encoded genes. Nevertheless, the use of animal-derived Hyals results limited respect to their potentialities, since such preparations could be affected by low purity, variable potency and uncertain safety. To improve the delivery of intramuscular GET-based protocols in mouse, we investigated a new recombinant Hyal, the rHyal-sk, to assess in vivo safety and activity of this treatment at cellular and biochemical levels. We evaluated the cellular events and the inflammation chemical mediators involved at different time points after rHyal-sk administration plus GET. Our results demonstrated the in vivo safety and efficacy of rHyal-sk when injected once intramuscularly in association with GET, with no toxicity, good plasmid in-take ability, useful inflammatory response activation, and low immunogenicity. Following these findings, we would recommend the use of the new rHyal-sk for the delivery of DNA-based vaccines and immunotherapy, as well as into clinical practice, for tumor disease treatments.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", via Orabona 4, 70126 Bari, Italy.
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome, Italy.
- CNR-Institute of Translational Pharmacology, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Lise Pasquet
- Vaccine Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA.
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, BP64182, 205 Route de Narbonne, 31077 Toulouse, France.
| | - Luisa Loiacono
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome, Italy.
- New Drug Modalities, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK.
| | - Elisabeth Bellard
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, BP64182, 205 Route de Narbonne, 31077 Toulouse, France.
| | - Luciano Messina
- Fidia Farmaceutici S.p.A., Local Unit Fidia Research Sud, Contrada Pizzuta snc, 96017 Noto, Siracusa, Italy.
| | - Susanna Vaccaro
- Fidia Farmaceutici S.p.A., Local Unit Fidia Research Sud, Contrada Pizzuta snc, 96017 Noto, Siracusa, Italy.
| | - Roberta Di Pasquale
- Fidia Farmaceutici S.p.A., Local Unit Fidia Research Sud, Contrada Pizzuta snc, 96017 Noto, Siracusa, Italy.
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome, Italy.
- Fondazione IRCCS Casa Sollievo della Sofferenza, Laboratorio di Oncologia, viale dei Cappuccini, 71013 San Giovanni Rotondo (FG), Italy.
| | - Marie-Pierre Rols
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, BP64182, 205 Route de Narbonne, 31077 Toulouse, France.
| | - Justin Teissie
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, BP64182, 205 Route de Narbonne, 31077 Toulouse, France.
| | - Muriel Golzio
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, BP64182, 205 Route de Narbonne, 31077 Toulouse, France.
| | - Emanuela Signori
- Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome, Italy.
- CNR-Institute of Translational Pharmacology, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
47
|
Bell TJ, Brand OJ, Morgan DJ, Salek-Ardakani S, Jagger C, Fujimori T, Cholewa L, Tilakaratna V, Östling J, Thomas M, Day AJ, Snelgrove RJ, Hussell T. Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol 2018; 80:14-28. [PMID: 29933044 PMCID: PMC6548309 DOI: 10.1016/j.matbio.2018.06.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022]
Abstract
Little is known about the impact of viral infections on lung matrix despite its important contribution to mechanical stability and structural support. The composition of matrix also indirectly controls inflammation by influencing cell adhesion, migration, survival, proliferation and differentiation. Hyaluronan is a significant component of the lung extracellular matrix and production and degradation must be carefully balanced. We have discovered an imbalance in hyaluronan production following resolution of a severe lung influenza virus infection, driven by hyaluronan synthase 2 from epithelial cells, endothelial cells and fibroblasts. Furthermore hyaluronan is complexed with inter-α-inhibitor heavy chains due to elevated TNF-stimulated gene 6 expression and sequesters CD44-expressing macrophages. We show that intranasal administration of exogenous hyaluronidase is sufficient to release inter-α-inhibitor heavy chains, reduce lung hyaluronan content and restore lung function. Hyaluronidase is already used to facilitate dispersion of co-injected materials in the clinic. It is therefore feasible that fibrotic changes following severe lung infection and inflammation could be overcome by targeting abnormal matrix production. Influenza causes prolonged changes in hyaluronan due to increased synthase activity Influenza induces persistent hyaluronan cross-linking by inter-alpha-inhibitor heavy chains Pockets of persistent hyaluronan are associated with CD44-expressing macrophages Digestion of hyaluronan with intranasal hyaluronidase restores lung function but upon cessation of treatment post-viral complications return
Collapse
Affiliation(s)
- Thomas J Bell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK; Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Samira Salek-Ardakani
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Toshifumi Fujimori
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Lauren Cholewa
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Viranga Tilakaratna
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Jörgen Östling
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Matt Thomas
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Robert J Snelgrove
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK.
| |
Collapse
|
48
|
The survival of fetal and bone marrow monocyte-derived alveolar macrophages is promoted by CD44 and its interaction with hyaluronan. Mucosal Immunol 2018; 11:601-614. [PMID: 29067996 DOI: 10.1038/mi.2017.83] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 02/04/2023]
Abstract
Alveolar macrophages maintain lung homeostasis by performing important roles in immunosurveillance and lung surfactant catabolism. They express high levels of CD44 and are one of the few macrophage populations that constitutively bind hyaluronan, a ligand for CD44 and component of pericellular and extracellular matrices. Using adoptive transfer experiments and a mouse model of inflammation, we found that alveolar macrophages are initially depleted after an inflammatory insult then rapidly self-renew and return to original numbers after the resolution phase. Monocytes recruited to an inflamed lung differentiate and contribute to the alveolar macrophage pool, but this occurs over a much slower time frame than alveolar macrophage self-renewal. CD44 expression on both fetal and bone marrow-derived alveolar macrophages promoted their survival and provided a competitive advantage over CD44-deficient alveolar macrophages at homeostasis and after inflammation. CD44-mediated hyaluronan binding was induced by the alveolar environment, and this interaction promoted alveolar macrophage survival both ex vivo and in vivo. Without CD44, alveolar macrophages lacked a hyaluronan coat, were more susceptible to death, and were present at lower numbers in the alveolar space. This demonstrates a new role for CD44 and hyaluronan in promoting alveolar macrophage survival.
Collapse
|
49
|
Srivastava T, Diba P, Dean JM, Banine F, Shaver D, Hagen M, Gong X, Su W, Emery B, Marks DL, Harris EN, Baggenstoss B, Weigel PH, Sherman LS, Back SA. A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors. J Clin Invest 2018; 128:2025-2041. [PMID: 29664021 DOI: 10.1172/jci94158] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Cerebral white matter injury (WMI) persistently disrupts myelin regeneration by oligodendrocyte progenitor cells (OPCs). We identified a specific bioactive hyaluronan fragment (bHAf) that downregulates myelin gene expression and chronically blocks OPC maturation and myelination via a tolerance-like mechanism that dysregulates pro-myelination signaling via AKT. Desensitization of AKT occurs via TLR4 but not TLR2 or CD44. OPC differentiation was selectively blocked by bHAf in a maturation-dependent fashion at the late OPC (preOL) stage by a noncanonical TLR4/TRIF pathway that induced persistent activation of the FoxO3 transcription factor downstream of AKT. Activated FoxO3 selectively localized to oligodendrocyte lineage cells in white matter lesions from human preterm neonates and adults with multiple sclerosis. FoxO3 constraint of OPC maturation was bHAf dependent, and involved interactions at the FoxO3 and MBP promoters with the chromatin remodeling factor Brg1 and the transcription factor Olig2, which regulate OPC differentiation. WMI has adapted an immune tolerance-like mechanism whereby persistent engagement of TLR4 by bHAf promotes an OPC niche at the expense of myelination by engaging a FoxO3 signaling pathway that chronically constrains OPC differentiation.
Collapse
Affiliation(s)
- Taasin Srivastava
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Parham Diba
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Justin M Dean
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Fatima Banine
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Daniel Shaver
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Matthew Hagen
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Xi Gong
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Ben Emery
- Department of Neurology, OHSU, Portland, Oregon, USA
| | - Daniel L Marks
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Bruce Baggenstoss
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Paul H Weigel
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Cell, Developmental and Cancer Biology, OHSU, Portland, Oregon, USA
| | - Stephen A Back
- Department of Pediatrics, Oregon Health & Science University (OHSU), Portland, Oregon, USA.,Department of Neurology, OHSU, Portland, Oregon, USA
| |
Collapse
|
50
|
Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 2018; 78-79:292-313. [PMID: 29625181 DOI: 10.1016/j.matbio.2018.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
The tissue microenvironment contributes to local immunity and to the pathogenesis of autoimmune diseases - a diverse set of conditions characterized by sterile inflammation, immunity against self-antigens, and destruction of tissues. However, the specific factors within the tissue microenvironment that contribute to local immune dysregulation in autoimmunity are poorly understood. One particular tissue component implicated in multiple autoimmune diseases is hyaluronan (HA), an extracellular matrix (ECM) polymer. HA is abundant in settings of chronic inflammation and contributes to lymphocyte activation, polarization, and migration. Here, we first describe what is known about the size, amount, and distribution of HA at sites of autoimmunity and in associated lymphoid structures in type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. Next, we examine the recent literature on HA and its impact on adaptive immunity, particularly in regards to the biology of lymphocytes and Foxp3+ regulatory T-cells (Treg), a T-cell subset that maintains immune tolerance in healthy individuals. We propose that HA accumulation at sites of chronic inflammation creates a permissive environment for autoimmunity, characterized by CD44-mediated inhibition of Treg expansion. Finally, we address potential tools and strategies for targeting HA and its receptor CD44 in chronic inflammation and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Wang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|