1
|
Zdradzinski MD, Vaughn LS, Matoo S, Trumbull K, Loomis A, Thames E, Lee SJ, Perrone-Bizzozero N, Lu Q, Larsen JM, Twiss JL. KHSRP-mediated Decay of Axonally Localized Prenyl-Cdc42 mRNA Slows Nerve Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636857. [PMID: 39975228 PMCID: PMC11839134 DOI: 10.1101/2025.02.06.636857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The small GTPase CDC42 promotes axon growth through actin filament polymerization and this growth is driven by axonal localization of the mRNA encoding the prenylated CDC42 isoform (Prenyl-Cdc42). Here, we show that axonal Prenyl-Cdc42 mRNA transport and translation are decreased by growth-inhibiting stimulation and increased by growth-promoting stimulation. In contrast, axonal RhoA mRNA transport and translation are increased by growth inhibition but unaffected by growth promotion. Localized increase in KHSRP in response to growth inhibitory stimulation, through elevation of intracellular Ca2+, promotes decay of axonal Prenyl-Cdc42 mRNA. Distinct 3'UTR motifs regulate transport and stability of axonal Prenyl-Cdc42 mRNA. KHSRP protein binds to a Prenyl-Cdc42 mRNA motif within nt 801-875 and the mRNA is remarkably increased in axons of Khsrp -/- mice. Selective depletion of Prenyl-Cdc42 mRNA from axons reverses the accelerated axon regeneration seen in Khsrp -/- mice.
Collapse
Affiliation(s)
- M D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Samaneh Matoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Kayleigh Trumbull
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA 29634
| | - Ashley Loomis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
- Genomic Medicine, Biogen, Cambridge, MA, 02142 USA
| | | | - Qun Lu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
- South Carolina SmartState Centers for Neurotherapeutics, University of South Carolina, Columbia, SC 29208 USA
| | - Jessica M Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA 29634
| | - J L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
- South Carolina SmartState Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC 29208 USA
- Carolina Autism and Neurodevelopment Center, University of South Carolina, Columbia, SC 29208 USA
| |
Collapse
|
2
|
Topley M, Sparks P, Crotty A, Kawaja M, Hendry JM. The epidermal growth factor receptor inhibitor gefitinib enhances in vitro and in vivo sensory axon regeneration and functional recovery following transection in a mouse median nerve injury model. Muscle Nerve 2025; 71:113-123. [PMID: 39529451 PMCID: PMC11632577 DOI: 10.1002/mus.28291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The epidermal growth factor receptor (EGFR; ErbB1), a membrane bound receptor tyrosine kinase, is hypothesized to have an inhibitory influence on peripheral nerve regeneration. This study examines the impact of EGFR inhibition on nerve regeneration using the commercially available small molecule inhibitor gefitinib. METHOD In vitro assays included neurite outgrowth of cultured dorsal root ganglion (DRG) neurons from adult C57Bl/6 wildtype mice on immobilized chondroitin sulfate proteoglycans (CSPG). Following forelimb median nerve injury, EGFR expression, number of regenerated neurons (using retrograde labeling) and myelination of motor and sensory neurons were compared between mice that received either gefitinib or vehicle. Functional recovery was assessed using grip strength. RESULTS EGFR expression on DRG and spinal motor neurons was confirmed. Gefitinib significantly increased neurite outgrowth in medium sized (30-50 μm) DRG neurons, resulting in longer neurites (183 ± 36 μm) compared with CSPG alone (49 ± 9 μm). After median nerve injury, significantly greater numbers of sensory neurons (638 ± 112 vs. 301 ± 81), but not motor neurons (31 ± 12 vs. 42 ± 13) regenerated in animals treated with gefitinib compared with controls. Regenerated axons in gefitinib treated animals displayed significantly greater diameter and increased g-ratio compared with controls. Grip strength recovered more quickly in animals receiving gefitinib compared with controls (27.6 vs. 19.1 g 18 days post-injury). DISCUSSION This study provides data supporting the role of EGFR as a negative regulator of sensory but not motor neuron regeneration. Further, it demonstrates versatile potential uses of existing pharmaceuticals.
Collapse
Affiliation(s)
- Maxwell Topley
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | - Payton Sparks
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Marian University College of Osteopathic MedicineIndianapolisIndianaUSA
| | - Anne‐Marie Crotty
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | - Michael Kawaja
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - J. Michael Hendry
- Department of SurgeryQueen's UniversityKingstonOntarioCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
- Kingston Health Sciences CenterKingstonOntarioCanada
| |
Collapse
|
3
|
Du S, Zhang XX, Gao X, He YB. Structure-based screening of FDA-approved drugs and molecular dynamics simulation to identify potential leukocyte antigen related protein (PTP-LAR) inhibitors. Comput Biol Chem 2024; 113:108264. [PMID: 39488935 DOI: 10.1016/j.compbiolchem.2024.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Leukocyte antigen related protein (LAR), a member of the PTP family, has become a potential target for exploring therapeutic interventions for various complex diseases, including neurodegenerative diseases. The reuse of FDA-approved drugs offers a promising approach for rapidly identifying potential LAR inhibitors. In this study, we conducted a structure-based virtual screening of FDA-approved drugs from ZINC database and selected candidate compounds based on their binding affinity and interactions with LAR. Our research revealed that the candidate compound ZINC6716957 exhibited excellent binding affinity to the binding pocket of LAR, formed interactions with key residues at the active site, and demonstrated low toxicity. To further understand the binding dynamics and interaction mechanisms, the 100-ns molecular dynamics simulations were performed. Post-dynamics analyses (RMSD, RMSF, SASA, hydrogen bond, binding free energy and free energy landscape) indicated that the compound ZINC6716957 stabilized the structure of LAR and the residues (Tyr1355, Arg1431, Lys1433, Arg1528, Tyr1563 and Thr1567) played a vital role in stabilizing the conformational changes of protein. In conclusion, the identified compound ZINC6716957 possessed robust inhibitory activity on LAR and merited extensive research, potentially unleashing its significant therapeutic potential in the treatment of complex diseases, particularly neurodegenerative disorders.
Collapse
Affiliation(s)
- Shan Du
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China
| | - Xin-Xin Zhang
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China
| | - Xiang Gao
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China
| | - Yan-Bin He
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China.
| |
Collapse
|
4
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Hu J, Zhang G, Rodemer W, Jin LQ, Selzer ME. Combined RhoA morpholino and ChABC treatment protects identified lamprey neurons from retrograde apoptosis after spinal cord injury. Front Cell Neurosci 2023; 17:1292012. [PMID: 38179205 PMCID: PMC10764559 DOI: 10.3389/fncel.2023.1292012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Previously, we reported that RhoA knockdown by morpholino antisense oligonucleotides (MOs), and enzymatic digestion of chondroitin sulfate proteoglycans (CSPGs) at the site of injury with chondroitinase ABC (ChABC), each can reduce retrograde neuronal apoptosis after spinal cord transection in the lamprey. To elucidate the mechanisms in neuronal survival and axon regeneration, we have investigated whether these two effects are additive in vivo. We used lampreys as a spinal cord injury model. MOs were used to knockdown RhoA and Chondroitinase ABC (ChABC) was used to digest CSPGs in vivo. Retrograde labeling, fluorochrome-labeled inhibitor of caspase activity (FLICA), immunohistochemistry, and western blots were performed to assess axonal regeneration, neuronal apoptotic signaling and Akt activation. Four treatment combinations were evaluated at 2-, 4-, and 10-weeks post-transection: (1) Control MO plus enzyme buffer (Ctrl); (2) control MO plus ChABC; (3) RhoA MO plus enzyme buffer (RhoA MO); and (4) RhoA MO plus ChABC (RhoA MO + ChABC). Consistent with our previous findings, at 4-weeks post-transection, there was less caspase activation in the ChABC and RhoA MO groups than in the Ctrl group. Moreover, the RhoA MO plus ChABC group had the best protective effect on identified reticulospinal (RS) neurons among the four treatment combinations. At 2 weeks post-transection, when axons have retracted maximally in the rostral stump and are beginning to regenerate back toward the lesion, the axon tips in the three treatment groups each were closer to the transection than those in the Ctr MO plus enzyme buffer group. Long-term axon regeneration also was evaluated for the large, individually identified RS neurons at 10 weeks post-transection by retrograde labeling. The percent regenerated axons in the RhoA MO plus ChABC group was greater than that in any of the other groups. Akt phosphorylation levels at threonine 308 was quantified in the identified RS neurons by western blots and immunofluorescence. The RhoA MO plus ChABC treatment enhanced pAkt-308 phosphorylation more than any of the other treatment groups. Although some of the effects of CSPGs are mediated through RhoA activation, some growth-inhibiting mechanisms of RhoA and CSPGs are independent of each other, so combinatorial therapies may be warranted.
Collapse
Affiliation(s)
- Jianli Hu
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, LKSOM, Philadelphia, PA, United States
| | - Guixin Zhang
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, LKSOM, Philadelphia, PA, United States
| | - William Rodemer
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-Qing Jin
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, LKSOM, Philadelphia, PA, United States
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine (LKSOM) at Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, LKSOM, Philadelphia, PA, United States
- Department of Neurology, LKSOM, Philadelphia, PA, United States
| |
Collapse
|
6
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Mohammed Butt A, Rupareliya V, Hariharan A, Kumar H. Building a pathway to recovery: Targeting ECM remodeling in CNS injuries. Brain Res 2023; 1819:148533. [PMID: 37586675 DOI: 10.1016/j.brainres.2023.148533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Extracellular matrix (ECM) is a complex and dynamic network of proteoglycans, proteins, and other macromolecules that surrounds cells in tissues. The ECM provides structural support to cells and plays a critical role in regulating various cellular functions. ECM remodeling is a dynamic process involving the breakdown and reconstruction of the ECM. This process occurs naturally during tissue growth, wound healing, and tissue repair. However, in the context of central nervous system (CNS) injuries, dysregulated ECM remodeling can lead to the formation of fibrotic and glial scars. CNS injuries encompass various traumatic events, including concussions and fractures. Following CNS trauma, the formation of glial and fibrotic scars becomes prominent. Glial scars primarily consist of reactive astrocytes, while fibrotic scars are characterized by an abundance of ECM proteins. ECM remodeling plays a pivotal and tightly regulated role in the development of these scars after spinal cord and brain injuries. Various factors like ECM components, ECM remodeling enzymes, cell surface receptors of ECM molecules, and downstream pathways of ECM molecules are responsible for the remodeling of the ECM. The aim of this review article is to explore the changes in ECM during normal physiological conditions and following CNS injuries. Additionally, we discuss various approaches that target various factors responsible for ECM remodeling, with a focus on promoting axon regeneration and functional recovery after CNS injuries. By targeting ECM remodeling, it may be possible to enhance axonal regeneration and facilitate functional recovery after CNS injuries.
Collapse
Affiliation(s)
- Ayub Mohammed Butt
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Vimal Rupareliya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - A Hariharan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
8
|
Michel-Flutot P, Lane MA, Lepore AC, Vinit S. Therapeutic Strategies Targeting Respiratory Recovery after Spinal Cord Injury: From Preclinical Development to Clinical Translation. Cells 2023; 12:1519. [PMID: 37296640 PMCID: PMC10252981 DOI: 10.3390/cells12111519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
High spinal cord injuries (SCIs) lead to permanent functional deficits, including respiratory dysfunction. Patients living with such conditions often rely on ventilatory assistance to survive, and even those that can be weaned continue to suffer life-threatening impairments. There is currently no treatment for SCI that is capable of providing complete recovery of diaphragm activity and respiratory function. The diaphragm is the main inspiratory muscle, and its activity is controlled by phrenic motoneurons (phMNs) located in the cervical (C3-C5) spinal cord. Preserving and/or restoring phMN activity following a high SCI is essential for achieving voluntary control of breathing. In this review, we will highlight (1) the current knowledge of inflammatory and spontaneous pro-regenerative processes occurring after SCI, (2) key therapeutics developed to date, and (3) how these can be harnessed to drive respiratory recovery following SCIs. These therapeutic approaches are typically first developed and tested in relevant preclinical models, with some of them having been translated into clinical studies. A better understanding of inflammatory and pro-regenerative processes, as well as how they can be therapeutically manipulated, will be the key to achieving optimal functional recovery following SCIs.
Collapse
Affiliation(s)
- Pauline Michel-Flutot
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Michael A. Lane
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
| | - Angelo C. Lepore
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Stéphane Vinit
- END-ICAP, UVSQ, Inserm, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
9
|
Li S, Liu H, Qian Y, Jiang L, Liu S, Liu Y, Liu C, Gu X. IL-33/ST2 axis promotes remodeling of the extracellular matrix and drives protective microglial responses in the mouse model of perioperative neurocognitive disorders. Int Immunopharmacol 2023; 114:109479. [PMID: 36446234 DOI: 10.1016/j.intimp.2022.109479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Anesthesia and surgery induce cognitive impairment via uncertain mechanisms. Increasing evidence has suggested that microglial activity mediated by IL-33 /ST2 plays a critical role in immune regulation and inflammatory responses. Yet, the implications for microglia activity mediated by IL-33 in perioperative neurocognitive disorders (PND) are not well established. We showed that IL-33 and ST2 were downregulated in the hippocampus after anesthesia and surgery, and the expression of aggrecan, remodeling by microglia, was upregulated. Meanwhile, the expression of pro-inflammatory cytokines (IL-6 and IL-1β) and M1-like microglia marker (iNOS) increased, and the expression of M2-like microglia marker (CD206) decreased. Notably, the administration of IL-33 attenuated neuroinflammation and shifted the polarization of microglia in the hippocampus after anesthesia and surgery. Furthermore, IL-33 treatment rescued the increase of aggrecan, loss of dendritic spines, and impairment of LTP, improving cognitive performance. In conclusion, our study suggests that microglia activity mediated by IL-33/ST2 plays a vital role in cognitive impairments after anesthesia and surgery, which may serve as a therapeutic target for PND.
Collapse
Affiliation(s)
- Shuming Li
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Huan Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yue Qian
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Linhao Jiang
- Medical School, Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yanling Liu
- Medical School, Southeast University, Nanjing, China
| | - Cihang Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Huang E, Li S. Liver Kinase B1 Functions as a Regulator for Neural Development and a Therapeutic Target for Neural Repair. Cells 2022; 11:cells11182861. [PMID: 36139438 PMCID: PMC9496952 DOI: 10.3390/cells11182861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
The liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11) and Par-4 in C. elegans, has been identified as a master kinase of AMPKs and AMPK-related kinases. LKB1 plays a crucial role in cell growth, metabolism, polarity, and tumor suppression. By interacting with the downstream signals of SAD, NUAK, MARK, and other kinases, LKB1 is critical to regulating neuronal polarization and axon branching during development. It also regulates Schwann cell function and the myelination of peripheral axons. Regulating LKB1 activity has become an attractive strategy for repairing an injured nervous system. LKB1 upregulation enhances the regenerative capacity of adult CNS neurons and the recovery of locomotor function in adult rodents with CNS axon injury. Here, we update the major cellular and molecular mechanisms of LKB1 in regulating neuronal polarization and neural development, and the implications thereof for promoting neural repair, axon regeneration, and functional recovery in adult mammals.
Collapse
|
11
|
Luo F, Wang J, Zhang Z, You Z, Bedolla A, Okwubido-Williams F, Huang LF, Silver J, Luo Y. Inhibition of CSPG receptor PTPσ promotes migration of newly born neuroblasts, axonal sprouting, and recovery from stroke. Cell Rep 2022; 40:111137. [PMID: 35905716 PMCID: PMC9677607 DOI: 10.1016/j.celrep.2022.111137] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
In addition to neuroprotective strategies, neuroregenerative processes could provide targets for stroke recovery. However, the upregulation of inhibitory chondroitin sulfate proteoglycans (CSPGs) impedes innate regenerative efforts. Here, we examine the regulatory role of PTPσ (a major proteoglycan receptor) in dampening post-stroke recovery. Use of a receptor modulatory peptide (ISP) or Ptprs gene deletion leads to increased neurite outgrowth and enhanced NSCs migration upon inhibitory CSPG substrates. Post-stroke ISP treatment results in increased axonal sprouting as well as neuroblast migration deeply into the lesion scar with a transcriptional signature reflective of repair. Lastly, peptide treatment post-stroke (initiated acutely or more chronically at 7 days) results in improved behavioral recovery in both motor and cognitive functions. Therefore, we propose that CSPGs induced by stroke play a predominant role in the regulation of neural repair and that blocking CSPG signaling pathways will lead to enhanced neurorepair and functional recovery in stroke.
Collapse
Affiliation(s)
- Fucheng Luo
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jiapeng Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Zhen Zhang
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Zhen You
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alicia Bedolla
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - FearGod Okwubido-Williams
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - L Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yu Luo
- Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
12
|
Hu J, Jin LQ, Selzer ME. Inhibition of central axon regeneration: perspective from chondroitin sulfate proteoglycans in lamprey spinal cord injury. Neural Regen Res 2022; 17:1955-1956. [PMID: 35142672 PMCID: PMC8848628 DOI: 10.4103/1673-5374.335144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Li-Qing Jin
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation); Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Li C, Sahu S, Kou G, Jagadeesan N, Joseph TP, Li Lin S, Schachner M. Chondroitin 6-sulfate-binding peptides improve recovery in spinal cord-injured mice. Eur J Pharmacol 2021; 910:174421. [PMID: 34391768 DOI: 10.1016/j.ejphar.2021.174421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
The role of glycosaminoglycan sulfation patterns, particularly in regard to scar formation and inhibition of neuritogenesis, has been mainly studied in cell culture with a focus on chondroitin 4-sulfate. In this study, we investigated chondroitin 6-sulfate (C6S) and found that it also inhibits neurite outgrowth of mouse cerebellar granule neurons in vitro. To examine whether the inhibitory activity of C6S could be neutralized, seven previously characterized high-affinity C6S-binding peptides were tested, among which three peptides neutralized the inhibitory functions of C6S. We further investigated these peptides in a mouse model of spinal cord injury, since upregulation of C6S expression in the glial scar following injury has been associated with reduced axonal regrowth and functional recovery. We here subjected mice to severe compression injury at thoracic levels T7-T9, immediately followed by inserting gelfoam patches soaked in C6S-binding peptides or in a control peptide. Application of C6S-binding peptides led to functional recovery after injury and prevented fibrotic glial scar formation, as seen by decreased activation of astrocytes and microglia/macrophages. Decreased expression of several lecticans and deposition of fibronectin at the site of injury were also observed. Application of C6S-binding peptides led to axonal regrowth and inhibited the C6S-mediated activation of RhoA/ROCK and decrease of PI3K-Akt-mTOR signaling pathways. Taken together, these results indicate that treatment with C6S-binding peptides improves functional recovery in a mouse model of spinal cord injury.
Collapse
Affiliation(s)
- Caijie Li
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Sudhanshu Sahu
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Guanhua Kou
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Nataraj Jagadeesan
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Thomson Patrick Joseph
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Stanley Li Lin
- Department of Cell Biology, Shantou University Medical College, Shantou, China; Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, China; Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
14
|
Crapser JD, Arreola MA, Tsourmas KI, Green KN. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell Mol Immunol 2021; 18:2472-2488. [PMID: 34413489 PMCID: PMC8546068 DOI: 10.1038/s41423-021-00751-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia shape the synaptic environment in health and disease, but synapses do not exist in a vacuum. Instead, pre- and postsynaptic terminals are surrounded by extracellular matrix (ECM), which together with glia comprise the four elements of the contemporary tetrapartite synapse model. While research in this area is still just beginning, accumulating evidence points toward a novel role for microglia in regulating the ECM during normal brain homeostasis, and such processes may, in turn, become dysfunctional in disease. As it relates to synapses, microglia are reported to modify the perisynaptic matrix, which is the diffuse matrix that surrounds dendritic and axonal terminals, as well as perineuronal nets (PNNs), specialized reticular formations of compact ECM that enwrap neuronal subsets and stabilize proximal synapses. The interconnected relationship between synapses and the ECM in which they are embedded suggests that alterations in one structure necessarily affect the dynamics of the other, and microglia may need to sculpt the matrix to modify the synapses within. Here, we provide an overview of the microglial regulation of synapses, perisynaptic matrix, and PNNs, propose candidate mechanisms by which these structures may be modified, and present the implications of such modifications in normal brain homeostasis and in disease.
Collapse
Affiliation(s)
- Joshua D. Crapser
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Miguel A. Arreola
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kate I. Tsourmas
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kim N. Green
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| |
Collapse
|
15
|
Ma C, Teng L, Lin G, Guo B, Zhuo R, Qian X, Guan T, Wu R, Liu Y, Liu M. L-leucine promotes axonal outgrowth and regeneration via mTOR activation. FASEB J 2021; 35:e21526. [PMID: 33813773 DOI: 10.1096/fj.202001798rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/11/2022]
Abstract
Discovering safe and effective drugs that promote neuron regeneration is an essential strategy for the recovery of central nervous system injuries. In this study, we found that L-leucine, an essential amino acid obtained from both supplements and food sources, could dramatically boost axonal outgrowth and regeneration. First, the effects of L-leucine on neurons were evaluated by cell apoptosis, survival, and death assays, and the results showed no changes in these processes after treatment. By live cell imaging, L-leucine was found to remarkably increase axonal length and growth velocity after axotomy. We also verified that L-leucine enhanced p-mTOR/p-S6K activation in neurons by testing with an mTOR inhibitor, rapamycin. Thereafter, we investigated the effects of L-leucine on the spinal cord injury in vivo. A mouse model of spinal cord hemi-section was established, and L-leucine was administered by tail intravenous injection. Basso mouse scale values revealed that L-leucine could improve functional recovery after injury. It was also notable that L-leucine treatment promoted axon growth across chondroitin sulfate proteoglycan (CSPG) areas. Furthermore, we used CSPGs as inhibitory environmental cues and clarified that L-leucine significantly enhanced axonal outgrowth and regeneration by promoting p-mTOR and p-S6K activation. Therefore, our study is the first to report that L-leucine promotes axonal regeneration in vitro and in vivo and could be candidate drug for axonal re-growth and nervous functional recovery.
Collapse
Affiliation(s)
- Chao Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Long Teng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
16
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
17
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
18
|
Bhowmick S, Abdul-Muneer PM. PTEN Blocking Stimulates Corticospinal and Raphespinal Axonal Regeneration and Promotes Functional Recovery After Spinal Cord Injury. J Neuropathol Exp Neurol 2021; 80:169-181. [PMID: 33367790 DOI: 10.1093/jnen/nlaa147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The long-term disabilities associated with spinal cord injury (SCI) are primarily due to the absence of robust neuronal regeneration and functional plasticity. The inability of the axon to regenerate after SCI is contributed by several intrinsic factors that trigger a cascade of molecular growth program and modulates axonal sprouting. Phosphatase and tensin homolog (PTEN) is one of the intrinsic factors contributing to growth failure after SCI, however, the underlying mechanism is not well known. Here, we developed a novel therapeutic approach for treating SCI by suppressing the action of PTEN in a mouse model of hemisection SCI. We have used a novel peptide, PTEN antagonistic peptide (PAP) to block the critical domains of PTEN to demonstrate its ability to potentially promote axon growth. PAP treatment not only enhanced regeneration of corticospinal axons into the caudal spinal cord but also promoted the regrowth of descending serotonergic axons in SCI mice. Furthermore, expression levels of p-mTOR, p-S6, p-Akt, p-Erk, p-GSK, p-PI3K downstream of PTEN signaling pathway were increased significantly in the spinal cord of SCI mice systemically treated with PAP than control TAT peptide-treated mice. Our novel strategy of administering deliverable compounds postinjury may facilitate translational feasibility for central nervous system injury.
Collapse
Affiliation(s)
- Saurav Bhowmick
- From the Laboratory of CNS Injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey
| | - P M Abdul-Muneer
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, New Jersey
| |
Collapse
|
19
|
Agbaegbu Iweka C, Hussein RK, Yu P, Katagiri Y, Geller HM. The lipid phosphatase-like protein PLPPR1 associates with RhoGDI1 to modulate RhoA activation in response to axon growth inhibitory molecules. J Neurochem 2021; 157:494-507. [PMID: 33320336 DOI: 10.1111/jnc.15271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
Phospholipid Phosphatase-Related Protein Type 1 (PLPPR1) is a member of a family of lipid phosphatase related proteins, integral membrane proteins characterized by six transmembrane domains. This family of proteins is enriched in the brain and recent data indicate potential pleiotropic functions in several different contexts. An inherent ability of this family of proteins is to induce morphological changes, and we have previously reported that members of this family interact with each other and may function co-operatively. However, the function of PLPPR1 is not yet understood. Here we show that the expression of PLPPR1 reduces the inhibition of neurite outgrowth of cultured mouse hippocampal neurons by chondroitin sulfate proteoglycans and the retraction of neurites of Neuro-2a cells by lysophosphatidic acid (LPA). Further, we show that PLPPR1 reduces the activation of Ras homolog family member A (RhoA) by LPA in Neuro-2a cells, and that this is because of an association of PLPPR1with the Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI1). These results establish a novel signaling pathway for the PLPPR1 protein.
Collapse
Affiliation(s)
- Chinyere Agbaegbu Iweka
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA.,Department of Neuroscience, Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Rowan K Hussein
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
20
|
Mencio CP, Hussein RK, Yu P, Geller HM. The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development. J Histochem Cytochem 2021; 69:61-80. [PMID: 32936033 PMCID: PMC7780190 DOI: 10.1369/0022155420959147] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
The orderly development of the nervous system is characterized by phases of cell proliferation and differentiation, neural migration, axonal outgrowth and synapse formation, and stabilization. Each of these processes is a result of the modulation of genetic programs by extracellular cues. In particular, chondroitin sulfate proteoglycans (CSPGs) have been found to be involved in almost every aspect of this well-orchestrated yet delicate process. The evidence of their involvement is complex, often contradictory, and lacking in mechanistic clarity; however, it remains obvious that CSPGs are key cogs in building a functional brain. This review focuses on current knowledge of the role of CSPGs in each of the major stages of neural development with emphasis on areas requiring further investigation.
Collapse
Affiliation(s)
- Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| |
Collapse
|
21
|
Cheng L, Sami A, Ghosh B, Urban MW, Heinsinger NM, Liang SS, Smith GM, Wright MC, Li S, Lepore AC. LAR inhibitory peptide promotes recovery of diaphragm function and multiple forms of respiratory neural circuit plasticity after cervical spinal cord injury. Neurobiol Dis 2020; 147:105153. [PMID: 33127470 PMCID: PMC7726004 DOI: 10.1016/j.nbd.2020.105153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs), up-regulated in and around the lesion after traumatic spinal cord injury (SCI), are key extracellular matrix inhibitory molecules that limit axon growth and consequent recovery of function. CSPG-mediated inhibition occurs via interactions with axonal receptors, including leukocyte common antigen- related (LAR) phosphatase. We tested the effects of a novel LAR inhibitory peptide in rats after hemisection at cervical level 2, a SCI model in which bulbospinal inspiratory neural circuitry originating in the medullary rostral ventral respiratory group (rVRG) becomes disconnected from phrenic motor neuron (PhMN) targets in cervical spinal cord, resulting in persistent partial-to-complete diaphragm paralysis. LAR peptide was delivered by a soaked gelfoam, which was placed directly over the injury site immediately after C2 hemisection and replaced at 1 week post-injury. Axotomized rVRG axons originating in ipsilateral medulla or spared rVRG fibers originating in contralateral medulla were separately assessed by anterograde tracing via AAV2-mCherry injection into rVRG. At 8 weeks post-hemisection, LAR peptide significantly improved ipsilateral hemidiaphragm function, as assessed in vivo with electromyography recordings. LAR peptide promoted robust regeneration of ipsilateral-originating rVRG axons into and through the lesion site and into intact caudal spinal cord to reach PhMNs located at C3-C5 levels. Furthermore, regenerating rVRG axons re-established putative monosynaptic connections with their PhMNs targets. In addition, LAR peptide stimulated robust sprouting of both modulatory serotonergic axons and contralateral-originating rVRG fibers within the PhMN pool ipsilateral/ caudal to the hemisection. Our study demonstrates that targeting LAR-based axon growth inhibition promotes multiple forms of respiratory neural circuit plasticity and provides a new peptide-based therapeutic strategy to ameliorate the devastating respiratory consequences of SCI.
Collapse
Affiliation(s)
- Lan Cheng
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Armin Sami
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Nicolette M Heinsinger
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Sophia S Liang
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, United States of America
| | - Megan C Wright
- Department of Biology, Arcadia University, Glenside, PA 19038, United States of America
| | - Shuxin Li
- Department of Anatomy and Cell Biology, Shriners Hospitals for Pediatric Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140-5104, United States of America
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, United States of America.
| |
Collapse
|
22
|
Crapser JD, Ochaba J, Soni N, Reidling JC, Thompson LM, Green KN. Microglial depletion prevents extracellular matrix changes and striatal volume reduction in a model of Huntington's disease. Brain 2020; 143:266-288. [PMID: 31848580 DOI: 10.1093/brain/awz363] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/22/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease is associated with a reactive microglial response and consequent inflammation. To address the role of these cells in disease pathogenesis, we depleted microglia from R6/2 mice, a rapidly progressing model of Huntington's disease marked by behavioural impairment, mutant huntingtin (mHTT) accumulation, and early death, through colony-stimulating factor 1 receptor inhibition (CSF1Ri) with pexidartinib (PLX3397) for the duration of disease. Although we observed an interferon gene signature in addition to downregulated neuritogenic and synaptic gene pathways with disease, overt inflammation was not evident by microglial morphology or cytokine transcript levels in R6/2 mice. Nonetheless, CSF1Ri-induced microglial elimination reduced or prevented disease-related grip strength and object recognition deficits, mHTT accumulation, astrogliosis, and striatal volume loss, the latter of which was not associated with reductions in cell number but with the extracellular accumulation of chondroitin sulphate proteoglycans (CSPGs)-a primary component of glial scars. A concurrent loss of proteoglycan-containing perineuronal nets was also evident in R6/2 mice, and microglial elimination not only prevented this but also strikingly increased perineuronal nets in the brains of naïve littermates, suggesting a new role for microglia as homeostatic regulators of perineuronal net formation and integrity.
Collapse
Affiliation(s)
- Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jack C Reidling
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine (UCI), Irvine, CA, USA.,Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
23
|
Fatoba O, Itokazu T, Yamashita T. Microglia as therapeutic target in central nervous system disorders. J Pharmacol Sci 2020; 144:102-118. [PMID: 32921391 DOI: 10.1016/j.jphs.2020.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic microglial activation is associated with the pathogenesis of several CNS disorders. Microglia show phenotypic diversity and functional complexity in diseased CNS. Thus, understanding the pathology-specific heterogeneity of microglial behavior is crucial for the future development of microglia-modulating therapy for variety of CNS disorders. This review summarizes up-to-date knowledge on how microglia contribute to CNS homeostasis during development and throughout adulthood. We discuss the heterogeneity of microglial phenotypes in the context of CNS disorders with an emphasis on neurodegenerative diseases, demyelinating diseases, CNS trauma, and epilepsy. We conclude this review with a discussion about the disease-specific heterogeneity of microglial function and how it could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
24
|
Hussein RK, Mencio CP, Katagiri Y, Brake AM, Geller HM. Role of Chondroitin Sulfation Following Spinal Cord Injury. Front Cell Neurosci 2020; 14:208. [PMID: 32848612 PMCID: PMC7419623 DOI: 10.3389/fncel.2020.00208] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Traumatic spinal cord injury produces long-term neurological damage, and presents a significant public health problem with nearly 18,000 new cases per year in the U.S. The injury results in both acute and chronic changes in the spinal cord, ultimately resulting in the production of a glial scar, consisting of multiple cells including fibroblasts, macrophages, microglia, and reactive astrocytes. Within the scar, there is an accumulation of extracellular matrix (ECM) molecules—primarily tenascins and chondroitin sulfate proteoglycans (CSPGs)—which are considered to be inhibitory to axonal regeneration. In this review article, we discuss the role of CSPGs in the injury response, especially how sulfated glycosaminoglycan (GAG) chains act to inhibit plasticity and regeneration. This includes how sulfation of GAG chains influences their biological activity and interactions with potential receptors. Comprehending the role of CSPGs in the inhibitory properties of the glial scar provides critical knowledge in the much-needed production of new therapies.
Collapse
Affiliation(s)
- Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Alexis M Brake
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Reelin Counteracts Chondroitin Sulfate Proteoglycan-Mediated Cortical Dendrite Growth Inhibition. eNeuro 2020; 7:ENEURO.0168-20.2020. [PMID: 32641498 PMCID: PMC7393641 DOI: 10.1523/eneuro.0168-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022] Open
Abstract
Disruptions in neuronal dendrite development alter brain circuitry and are associated with debilitating neurological disorders. Nascent apical dendrites of cortical excitatory neurons project into the marginal zone (MZ), a cell-sparse layer characterized by intense chondroitin sulfate proteoglycan (CSPG) expression. Paradoxically, CSPGs are known to broadly inhibit neurite growth and regeneration. This raises the possibility that the growing apical dendrite is somehow insensitive to CSPG-mediated neurite growth inhibition. To test this, developing cortical neurons were challenged with both soluble CSPGs and CSPG-positive stripe substrates in vitro. Soluble CSPGs inhibited dendritic growth and cortical dendrites respected CSPG stripe boundaries, effects that could be counteracted by prior CSPG inactivation by chondroitinase. Importantly, addition of Reelin, an extracellular signaling protein highly expressed in the MZ, partially rescued dendritic growth in the presence of CSPGs. High-resolution confocal imaging revealed that the CSPG-enriched areas of the MZ spatially correspond with the areas of reduced dendritic density in the Reelin null (reeler) cortex compared with controls. Chondroitinase injections into reeler explants resulted in increased dendritic growth into the MZ, recovering to near wild-type levels. Activation of the serine threonine kinase Akt is required for Reelin-dependent dendritic growth and we find that CSPGs induce Akt dephosphorylation, an effect that can be counteracted by Reelin addition. In contrast, CSPG application had no effect on the cytoplasmic adaptor Dab1, which is rapidly phosphorylated in response to Reelin and is upstream of Akt. These findings suggest CSPGs do inhibit cortical dendritic growth, but this effect can be counteracted by Reelin signaling.
Collapse
|
26
|
Sami A, Selzer ME, Li S. Advances in the Signaling Pathways Downstream of Glial-Scar Axon Growth Inhibitors. Front Cell Neurosci 2020; 14:174. [PMID: 32714150 PMCID: PMC7346763 DOI: 10.3389/fncel.2020.00174] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Axon growth inhibitors generated by reactive glial scars play an important role in failure of axon regeneration after CNS injury in mature mammals. Among the inhibitory factors, chondroitin sulfate proteoglycans (CSPGs) are potent suppressors of axon regeneration and are important molecular targets for designing effective therapies for traumatic brain injury or spinal cord injury (SCI). CSPGs bind with high affinity to several transmembrane receptors, including two members of the leukocyte common antigen related (LAR) subfamily of receptor protein tyrosine phosphatases (RPTPs). Recent studies demonstrate that multiple intracellular signaling pathways downstream of these two RPTPs mediate the growth-inhibitory actions of CSPGs. A better understanding of these signaling pathways may facilitate development of new and effective therapies for CNS disorders characterized by axonal disconnections. This review will focus on recent advances in the downstream signaling pathways of scar-mediated inhibition and their potential as the molecular targets for CNS repair.
Collapse
Affiliation(s)
- Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
27
|
Rodemer W, Zhang G, Sinitsa I, Hu J, Jin LQ, Li S, Selzer ME. PTPσ Knockdown in Lampreys Impairs Reticulospinal Axon Regeneration and Neuronal Survival After Spinal Cord Injury. Front Cell Neurosci 2020; 14:61. [PMID: 32265663 PMCID: PMC7096546 DOI: 10.3389/fncel.2020.00061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in persistent functional deficits due to the lack of axon regeneration within the mammalian CNS. After SCI, chondroitin sulfate proteoglycans (CSPGs) inhibit axon regrowth via putative interactions with the LAR-family protein tyrosine phosphatases, PTPσ and LAR, localized on the injured axon tips. Unlike mammals, the sea lamprey, Petromyzon marinus, robustly recovers locomotion after complete spinal cord transection (TX). Behavioral recovery is accompanied by heterogeneous yet predictable anatomical regeneration of the lamprey's reticulospinal (RS) system. The identified RS neurons can be categorized as "good" or "bad" regenerators based on the likelihood that their axons will regenerate. Those neurons that fail to regenerate their axons undergo a delayed form of caspase-mediated cell death. Previously, this lab reported that lamprey PTPσ mRNA is selectively expressed in "bad regenerator" RS neurons, preceding SCI-induced caspase activation. Consequently, we hypothesized that PTPσ deletion would reduce retrograde cell death and promote axon regeneration. Using antisense morpholino oligomers (MOs), we knocked down PTPσ expression after TX and assessed the effects on axon regeneration, caspase activation, intracellular signaling, and behavioral recovery. Unexpectedly, PTPσ knockdown significantly impaired RS axon regeneration at 10 weeks post-TX, primarily due to reduced long-term neuron survival. Interestingly, cell loss was not preceded by an increase in caspase or p53 activation. Behavioral recovery was largely unaffected, although PTPσ knockdowns showed mild deficits in the recovery of swimming distance and latency to immobility during open field swim assays. Although the mechanism underlying the cell death following TX and PTPσ knockdown remains unknown, this study suggests that PTPσ is not a net negative regulator of long tract axon regeneration in lampreys.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Isabelle Sinitsa
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Li-qing Jin
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
28
|
Hatano S, Watanabe H. Regulation of Macrophage and Dendritic Cell Function by Chondroitin Sulfate in Innate to Antigen-Specific Adaptive Immunity. Front Immunol 2020; 11:232. [PMID: 32194548 PMCID: PMC7063991 DOI: 10.3389/fimmu.2020.00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a linear acidic polysaccharide comprised of repeating disaccharides, modified with sulfate groups at various positions. Except for hyaluronan (HA), GAGs are covalently bound to core proteins, forming proteoglycans (PGs). With highly negative charges, GAGs interact with a variety of physiologically active molecules, including cytokines, chemokines, and growth factors, and control cell behavior during development and in the progression of diseases, including cancer, infections, and inflammation. Heparan sulfate (HS), another type of GAG, and HA are well reported as regulators for leukocyte migration at sites of inflammation. There have been many reports on the regulation of immune cell function by HS and HA; however, regulation of immune cells by CS has not yet been fully understood. This article focuses on the regulatory function of CS in antigen-presenting cells, including macrophages and dendritic cells, and refers to CSPGs, such as versican and biglycan, and the cell surface proteoglycan, syndecan.
Collapse
Affiliation(s)
- Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
29
|
Hart CG, Dyck SM, Kataria H, Alizadeh A, Nagakannan P, Thliveris JA, Eftekharpour E, Karimi-Abdolrezaee S. Acute upregulation of bone morphogenetic protein-4 regulates endogenous cell response and promotes cell death in spinal cord injury. Exp Neurol 2019; 325:113163. [PMID: 31881217 DOI: 10.1016/j.expneurol.2019.113163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 12/24/2019] [Indexed: 01/11/2023]
Abstract
Traumatic spinal cord injury (SCI) elicits a cascade of secondary injury mechanisms that induce profound changes in glia and neurons resulting in their activation, injury or cell death. The resultant imbalanced microenvironment of acute SCI also negatively impacts regenerative processes in the injured spinal cord. Thus, it is imperative to uncover endogenous mechanisms that drive these acute injury events. Here, we demonstrate that the active form of bone morphogenetic protein-4 (BMP4) is robustly and transiently upregulated in acute SCI in rats. BMP4 is a key morphogen in neurodevelopment; however, its role in SCI is not fully defined. Thus, we elucidated the ramification of BMP4 upregulation in a preclinical model of compressive/contusive SCI in the rat by employing noggin, an endogenous antagonist of BMP ligands, and LDN193189, an intracellular inhibitor of BMP signaling. In parallel, we studied cell-specific effects of BMP4 on neural precursor cells (NPCs), oligodendrocyte precursor cells (OPCs), neurons and astrocytes in vitro. We demonstrate that activation of BMP4 inhibits differentiation of spinal cord NPCs and OPCs into mature myelin-expressing oligodendrocytes, and acute blockade of BMPs promotes oligodendrogenesis, oligodendrocyte preservation and remyelination after SCI. Importantly, we report for the first time that BMP4 directly induces caspase-3 mediated apoptosis in neurons and oligodendrocytes in vitro, and noggin and LDN193189 remarkably attenuate caspase-3 activation and lipid peroxidation in acute SCI. BMP4 also enhances the production of inhibitory chondroitin sulfate proteoglycans (CSPGs) in activated astrocytes in vitro and after SCI. Interestingly, our work reveals that despite the beneficial effects of BMP inhibition in acute SCI, neither noggin nor LDN193189 treatment resulted in long-term functional recovery. Collectively, our findings suggest a role for BMP4 in regulating acute secondary injury mechanisms following SCI, and a potential target for combinatorial approaches to improve endogenous cell response and remyelination.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Scott M Dyck
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
30
|
Zhou L, Ma YC, Tang X, Li WY, Ma Y, Wang RL. Identification of the potential dual inhibitor of protein tyrosine phosphatase sigma and leukocyte common antigen-related phosphatase by virtual screen, molecular dynamic simulations and post-analysis. J Biomol Struct Dyn 2019; 39:45-62. [PMID: 31842717 DOI: 10.1080/07391102.2019.1705913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Owing to their inhibitory role in regulating oligodendrocyte differentiation and apoptosis, protein tyrosine phosphatase sigma (PTPσ) and leukocyte common antigen-related phosphatase (LAR) play a crucial potential role in treating spinal cord injury (SCI) disease. In this research, the computer aided drug design (CADD) methods were applied to discover the potential dual-target drug involving virtual screen, molecular docking and molecular dynamic simulation. Initially, the top 20 compounds with higher docking score than the positive controls (ZINC13749892, ZINC14516161) were virtually screened out from NCI and ZINC databases, and then were submitted in ADMET to predict their drug properties. Among these potential compounds, ZINC72417086 showed a higher docking score and satisfied Lipinski's rule of five. In addition, the post-analysis demonstrated that when ZINC72417086 bound to PTPσ and LAR, it could stable proteins conformations and destroy the residues interactions between P-loop and other loop regions in active pocket. Meanwhile, residue ARG1595 and ARG1528 could play a crucial role in in the inhibition of PTPσ and LAR, respectively. This research offered a novel approach for rapid discovery of dual-target leads compounds to treat SCI.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Liang Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yang-Chun Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xue Tang
- Tasly Research Institute, Tasly Holding Group Co., Ltd, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Sakamoto K, Ozaki T, Ko YC, Tsai CF, Gong Y, Morozumi M, Ishikawa Y, Uchimura K, Nadanaka S, Kitagawa H, Zulueta MML, Bandaru A, Tamura JI, Hung SC, Kadomatsu K. Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis. Nat Chem Biol 2019; 15:699-709. [PMID: 31061498 DOI: 10.1038/s41589-019-0274-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
Chondroitin sulfate (CS) and heparan sulfate (HS) are glycosaminoglycans that both bind the receptor-type protein tyrosine phosphatase PTPRσ, affecting axonal regeneration. CS inhibits axonal growth, while HS promotes it. Here, we have prepared a library of HS octasaccharides and, together with synthetic CS oligomers, we found that PTPRσ preferentially interacts with CS-E-a rare sulfation pattern in natural CS-and most HS oligomers bearing sulfate and sulfamate groups. Consequently, short and long stretches of natural CS and HS, respectively, bind to PTPRσ. CS activates PTPRσ, which dephosphorylates cortactin-herein identified as a new PTPRσ substrate-and disrupts autophagy flux at the autophagosome-lysosome fusion step. Such disruption is required and sufficient for dystrophic endball formation and inhibition of axonal regeneration. Therefore, sulfation patterns determine the length of the glycosaminoglycan segment that bind to PTPRσ and define the fate of axonal regeneration through a mechanism involving PTPRσ, cortactin and autophagy.
Collapse
Affiliation(s)
- Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Ozaki
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yen-Chun Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yuanhao Gong
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masayoshi Morozumi
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshimoto Ishikawa
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Orthopedics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Unite de Glycobiologie Structurale et Foncitonnelle, Univesite des Science et Technologies de Lille 1, Villeneuve d'Ascq cedex, France
| | - Satomi Nadanaka
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe, Japan
| | - Medel Manuel L Zulueta
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Chemistry, College of Science, University of the Philippines, Diliman, Quezon City, Philippines
| | | | - Jun-Ichi Tamura
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan. .,Department of Applied Science, National Taitung University, Taitung, Taiwan.
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
32
|
Li Q, Wu X, Na X, Ge B, Wu Q, Guo X, Ntim M, Zhang Y, Sun Y, Yang J, Xiao Z, Zhao J, Li S. Impaired Cognitive Function and Altered Hippocampal Synaptic Plasticity in Mice Lacking Dermatan Sulfotransferase Chst14/D4st1. Front Mol Neurosci 2019; 12:26. [PMID: 30853887 PMCID: PMC6396735 DOI: 10.3389/fnmol.2019.00026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) proteoglycans (PGs) are major extracellular matrix (ECM) components of the central nervous system (CNS). A large body of evidence has shown that CSPGs/DSPGs play critical roles in neuronal growth, axon guidance, and plasticity in the developing and mature CNS. It has been proposed that these PGs exert their function through specific interaction of CS/DS chains with its binding partners in a manner that depends on the sulfation patterns of CS/DS. It has been reported that dermatan 4-O-sulfotransferase-1 (Chst14/D4st1) specific for DS, but not chondroitin 4-O-sulfotransferase-1 (Chst11/C4st1) specific for CS, regulates proliferation and neurogenesis of neural stem cells (NSCs), indicating that CS and DS play distinct roles in the self-renewal and differentiation of NSCs. However, it remains unknown whether specific sulfation profiles of DS has any effect on CNS plasticity. In the present study, Chst14/D4st1-deficient (Chst14−/−) mice was employed to investigate the involvement of DS in synaptic plasticity. First, behavior study using Morris Water Maze (MWM) showed that the spatial learning and memory of Chst14−/− mice was impaired when compared to their wild type (WT) littermates. Corroborating the behavior result, long-term potentiation (LTP) at the hippocampal CA3-CA1 connection was reduced in Chst14−/− mice compared to the WT mice. Finally, the protein levels of N-Methyl-D-aspartate (NMDA) receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, postsynaptic density 95 (PSD95), growth associated protein 43 (GAP-43), synaptophysin (SYN) and N-ethylmaleimide sensitive factor (NSF) which are important in synaptic plasticity were examined and Chst14/D4st1 deficiency was shown to significantly reduce the expression of these proteins in the hippocampus. Further studies revealed that Akt/mammalian target rapamycin (mTOR) pathway proteins, including protein kinase B (p-Akt), p-mTOR and p-S6, were significantly lower in Chst14−/− mice, which might contribute to the decreased protein expression. Together, this study reveals that specific sulfation of DS is critical in synaptic plasticity of the hippocampus and learning and memory, which might be associated with the changes in the expression of glutamate receptors and other synaptic proteins though Akt/mTOR pathway.
Collapse
Affiliation(s)
- Qifa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Xuefei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Xueyan Na
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Biying Ge
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Qiong Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Xuewen Guo
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Michael Ntim
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Yiping Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Jinyi Yang
- Department of Urology, Dalian Friendship Hospital, Dalian, China
| | - Zhicheng Xiao
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Melrose J. Keratan sulfate (KS)-proteoglycans and neuronal regulation in health and disease: the importance of KS-glycodynamics and interactive capability with neuroregulatory ligands. J Neurochem 2019; 149:170-194. [PMID: 30578672 DOI: 10.1111/jnc.14652] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022]
Abstract
Compared to the other classes of glycosaminoglycans (GAGs), that is, chondroitin/dermatan sulfate, heparin/heparan sulfate and hyaluronan, keratan sulfate (KS), have the least known of its interactive properties. In the human body, the cornea and the brain are the two most abundant tissue sources of KS. Embryonic KS is synthesized as a linear poly-N-acetyllactosamine chain of d-galactose-GlcNAc repeat disaccharides which become progressively sulfated with development, sulfation of GlcNAc is more predominant than galactose. KS contains multi-sulfated high-charge density, monosulfated and non-sulfated poly-N-acetyllactosamine regions and thus is a heterogeneous molecule in terms of chain length and charge distribution. A recent proteomics study on corneal KS demonstrated its interactivity with members of the Slit-Robbo and Ephrin-Ephrin receptor families and proteins which regulate Rho GTPase signaling and actin polymerization/depolymerization in neural development and differentiation. KS decorates a number of peripheral nervous system/CNS proteoglycan (PG) core proteins. The astrocyte KS-PG abakan defines functional margins of the brain and is up-regulated following trauma. The chondroitin sulfate/KS PG aggrecan forms perineuronal nets which are dynamic neuroprotective structures with anti-oxidant properties and roles in neural differentiation, development and synaptic plasticity. Brain phosphacan a chondroitin sulfate, KS, HNK-1 PG have roles in neural development and repair. The intracellular microtubule and synaptic vesicle KS-PGs MAP1B and SV2 have roles in metabolite transport, storage, and export of neurotransmitters and cytoskeletal assembly. MAP1B has binding sites for tubulin and actin through which it promotes cytoskeletal development in growth cones and is highly expressed during neurite extension. The interactive capability of KS with neuroregulatory ligands indicate varied roles for KS-PGs in development and regenerative neural processes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, St. Leonards, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Sydney Medical School, Northern Campus, Royal North Shore Hospital, The University of Sydney, New South Wales, Australia.,Faculty of Medicine and Health, Royal North Shore Hospital, The University of Sydney, St. Leonards, New South Wales, Australia
| |
Collapse
|
34
|
Yao M, Sun H, Yuan Q, Li N, Li H, Tang Y, Leung GK, Wu W. Targeting proteoglycan receptor PTPσ restores sensory function after spinal cord dorsal root injury by activation of Erks/CREB signaling pathway. Neuropharmacology 2019; 144:208-218. [PMID: 30393073 DOI: 10.1016/j.neuropharm.2018.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022]
Abstract
Dorsal root injury commonly results in irreversible loss of sensory functions because of the limited intrinsic regenerative capacity of adult sensory axons and the growth-inhibitory environment at the dorsal root entry zone (DREZ) between the dorsal root and the spinal cord. Chondroitin sulfate proteoglycans (CSPGs) are the dominant suppressors of axonal regeneration, acting via neuronal receptors including protein tyrosine phosphatase-σ (PTPσ). ISP (Intracellular Sigma Peptide) is a small peptide mimetic of the PTPσ wedge region that has been developed to target PTPσ and relieve CSPG inhibition. Extracellular regulated kinases (Erks) and cAMP response element binding protein (CREB) are signaling molecules downstream of CSPGs and PTPσ; they are expressed in neurons and essential for axon growth. In this study, we observed that ISP administration could promote sensory function restoration in adult rats after dorsal spinal root crush injury. Our results show that systemic ISP administration would not only significantly increase sensory axon regeneration and functional recovery, but also activate Erk and CREB signaling pathway. Furthermore, ISP has also been verified to increase dorsal root ganglion axonal remyelination in vitro. These results suggest that modulation of PTPσ by ISP represents a promising therapeutic strategy for sensory neuronal injuries.
Collapse
Affiliation(s)
- Min Yao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China; Department of Surgery, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Haitao Sun
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China; The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qiuju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ning Li
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Heng Li
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yinjuan Tang
- Department of Basic Medicine Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Gilberto Kk Leung
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, 999077, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, China.
| | - Wutian Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, 510632, China; Re-Stem Biotechnology Co., Ltd, Suzhou, 215300, China.
| |
Collapse
|
35
|
Dyck S, Kataria H, Akbari-Kelachayeh K, Silver J, Karimi-Abdolrezaee S. LAR and PTPσ receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia 2018; 67:125-145. [PMID: 30394599 DOI: 10.1002/glia.23533] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
Abstract
Following spinal cord injury (SCI), the population of mature oligodendrocytes undergoes substantial cell death; promoting their preservation and replacement is a viable strategy for preserving axonal integrity and white matter repair in the injured spinal cord. Dramatic upregulation of matrix chondroitin sulfate proteoglycans (CSPGs) is shown to pose an obstacle to endogenous repair processes, and targeting CSPGs improves functional recovery after SCI. However, the cellular and molecular mechanisms underlying the inhibitory effects of CSPGs remain largely undefined. Modulation of CSPGs specific signaling receptors, leukocyte common antigen-related (LAR), and protein tyrosine phosphatase-sigma (PTPσ) allows us to uncover the role and mechanisms of CSPGs in regulating oligodendrocytes in SCI. Here, utilizing specific functionally blocking peptides in a clinically relevant model of contusive/compressive SCI in the rat, we demonstrate that inhibition of PTPσ and LAR receptors promotes oligodendrogenesis by endogenous precursor cells, attenuates caspase 3-mediated cell death in mature oligodendrocytes, and preserves myelin. In parallel in vitro systems, we have unraveled that CSPGs directly induce apoptosis in populations of neural precursor cells and oligodendrocyte progenitor cells and limit their ability for oligodendrocyte differentiation, maturation, and myelination. These negative effects of CSPGs are mediated through the activation of both LAR and PTPσ receptors and the downstream Rho/ROCK pathway. Thus, we have identified a novel inhibitory role for PTPσ and LAR in regulating oligodendrocyte differentiation and apoptosis in the injured adult spinal cord and a new feasible therapeutic strategy for optimizing endogenous cell replacement following SCI.
Collapse
Affiliation(s)
- Scott Dyck
- Department of Physiology and Pathophysiology, The Regenerative Medicine Program, The Spinal Cord Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, The Regenerative Medicine Program, The Spinal Cord Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Khashayar Akbari-Kelachayeh
- Department of Physiology and Pathophysiology, The Regenerative Medicine Program, The Spinal Cord Research Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jerry Silver
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, The Regenerative Medicine Program, The Spinal Cord Research Center, University of Manitoba, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Ohtake Y, Sami A, Jiang X, Horiuchi M, Slattery K, Ma L, Smith GM, Selzer ME, Muramatsu SI, Li S. Promoting Axon Regeneration in Adult CNS by Targeting Liver Kinase B1. Mol Ther 2018; 27:102-117. [PMID: 30509565 DOI: 10.1016/j.ymthe.2018.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Liver kinase B1 (LKB1), a downstream effector of cyclic AMP (cAMP)/PKA and phosphatidylinositol 3-kinase (PI3K) pathways, is a determinant for migration and differentiation of many cells, but its role in CNS axon regeneration is unknown. Therefore, LKB1 was overexpressed in sensorimotor cortex of adult mice five days after mid-thoracic spinal cord injury, using an AAV2 vector. Regeneration of corticospinal axons was dramatically enhanced. Next, systemic injection of a mutant-AAV9 vector was used to upregulate LKB1 specifically in neurons. This promoted long-distance regeneration of injured corticospinal fibers into caudal spinal cord in adult mice and regrowth of descending serotonergic and tyrosine hydroxylase immunoreactive axons. Either intracortical or systemic viral delivery of LKB1 significantly improved recovery of locomotor functions in adult mice with spinal cord injury. Moreover, we demonstrated that LKB1 used AMPKα, NUAK1, and ERK as the downstream effectors in the cortex of adult mice. Thus, LKB1 may be a critical factor for enhancing the growth capacity of mature neurons and may be an important molecular target in the treatment of CNS injuries.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Armin Sami
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xinpei Jiang
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Makoto Horiuchi
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kieran Slattery
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Lena Ma
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shin-Ichi Muramatsu
- Division of Neurology, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
37
|
Katagiri Y, Morgan AA, Yu P, Bangayan NJ, Junka R, Geller HM. Identification of novel binding sites for heparin in receptor protein-tyrosine phosphatase (RPTPσ): Implications for proteoglycan signaling. J Biol Chem 2018; 293:11639-11647. [PMID: 29880643 DOI: 10.1074/jbc.ra118.003081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/24/2018] [Indexed: 12/31/2022] Open
Abstract
Receptor protein-tyrosine phosphatase RPTPσ has important functions in modulating neural development and regeneration. Compelling evidence suggests that both heparan sulfate (HS) and chondroitin sulfate (CS) glycosaminoglycans (GAGs) bind to a series of Lys residues located in the first Ig domain of RPTPσ. However, HS promotes and CS inhibits axonal growth. Mutation of these Lys residues abolished binding and signal transduction of RPTPσ to CS, whereas HS binding was reduced, and signaling persisted. This activity was mediated through novel heparin-binding sites identified in the juxtamembrane region. Although different functional outcomes of HS and CS have been previously attributed to the differential oligomeric state of RPTPσ upon GAG binding, we found that RPTPσ was clustered by both heparin and CS GAG rich in 4,6-O-disulfated disaccharide units. We propose an additional mechanism by which RPTPσ distinguishes between HS and CS through these novel binding sites.
Collapse
Affiliation(s)
- Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
| | - Ashlea A Morgan
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Panpan Yu
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Nathanael J Bangayan
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Radoslaw Junka
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
38
|
Zhang G, Hu J, Rodemer W, Li S, Selzer ME. RhoA activation in axotomy-induced neuronal death. Exp Neurol 2018; 306:76-91. [PMID: 29715475 DOI: 10.1016/j.expneurol.2018.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023]
Abstract
After spinal cord injury (SCI) in mammals, severed axons fail to regenerate, due to both extrinsic inhibitory factors, e.g., the chondroitin sulfate proteoglycans (CSPGs) and myelin-associated growth inhibitors (MAIs), and a developmental loss of intrinsic growth capacity. The latter is suggested by findings in lamprey that the 18 pairs of individually identified reticulospinal neurons vary greatly in their ability to regenerate their axons through the same spinal cord environment. Moreover, those neurons that are poor regenerators undergo very delayed apoptosis, and express common molecular markers after SCI. Thus the signaling pathways for retrograde cell death might converge with those inhibiting axon regeneration. Many extrinsic growth-inhibitory molecules activate RhoA, whereas inhibiting RhoA enhances axon growth. Whether RhoA also is involved in retrograde neuronal death after axotomy is less clear. Therefore, we cloned lamprey RhoA and correlated its mRNA expression and activation state with apoptosis signaling in identified reticulospinal neurons. RhoA mRNA was expressed widely in normal lamprey brain, and only slightly more in poorly-regenerating neurons than in good regenerators. However, within a day after spinal cord transection, RhoA mRNA was found in severed axon tips. Beginning at 5 days post-SCI RhoA mRNA was upregulated selectively in pre-apoptotic neuronal perikarya, as indicated by labelling with fluorescently labeled inhibitors of caspase activation (FLICA). After 2 weeks post-transection, RhoA expression decreased in the perikarya, and was translocated anterogradely into the axons. More striking than changes in RhoA mRNA levels, RhoA was continuously active selectively in FLICA-positive neurons through 9 weeks post-SCI. At that time, almost no neurons whose axons had regenerated were FLICA-positive. These findings are consistent with a role for RhoA activation in triggering retrograde neuronal death after SCI, and suggest that RhoA may be a point of convergence for inhibition of both axon regeneration and neuronal survival after axotomy.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - Jianli Hu
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - William Rodemer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA; Dept. Anatomy and Cell Biology, The Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), USA; Dept. of Neurology, USA.
| |
Collapse
|
39
|
Ohtake Y, Saito A, Li S. Diverse functions of protein tyrosine phosphatase σ in the nervous and immune systems. Exp Neurol 2018; 302:196-204. [PMID: 29374568 PMCID: PMC6275553 DOI: 10.1016/j.expneurol.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Tyrosine phosphorylation is a common means of regulating protein functions and signal transduction in multiple cells. Protein tyrosine phosphatases (PTPs) are a large family of signaling enzymes that remove phosphate groups from tyrosine residues of target proteins and change their functions. Among them, receptor-type PTPs (RPTPs) exhibit a distinct spatial pattern of expression and play essential roles in regulating neurite outgrowth, axon guidance, and synaptic organization in developmental nervous system. Some RPTPs function as essential receptors for chondroitin sulfate proteoglycans that inhibit axon regeneration following CNS injury. Interestingly, certain RPTPs are also important to regulate functions of immune cells and development of autoimmune diseases. PTPσ, a RPTP in the LAR subfamily, is expressed in various immune cells and regulates their differentiation, production of various cytokines and immune responses. In this review, we highlight the physiological and pathological significance of PTPσ and related molecules in both nervous and immune systems.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
40
|
Dyck S, Kataria H, Alizadeh A, Santhosh KT, Lang B, Silver J, Karimi-Abdolrezaee S. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. J Neuroinflammation 2018; 15:90. [PMID: 29558941 PMCID: PMC5861616 DOI: 10.1186/s12974-018-1128-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) results in upregulation of chondroitin sulfate proteoglycans (CSPGs) by reactive glia that impedes repair and regeneration in the spinal cord. Degradation of CSPGs is known to be beneficial in promoting endogenous repair mechanisms including axonal sprouting/regeneration, oligodendrocyte replacement, and remyelination, and is associated with improvements in functional outcomes after SCI. Recent evidence suggests that CSPGs may regulate secondary injury mechanisms by modulating neuroinflammation after SCI. To date, the role of CSPGs in SCI neuroinflammation remains largely unexplored. The recent discovery of CSPG-specific receptors, leukocyte common antigen-related (LAR) and protein tyrosine phosphatase-sigma (PTPσ), allows unraveling the cellular and molecular mechanisms of CSPGs in SCI. In the present study, we have employed parallel in vivo and in vitro approaches to dissect the role of CSPGs and their receptors LAR and PTPσ in modulating the inflammatory processes in the acute and subacute phases of SCI. METHODS In a clinically relevant model of compressive SCI in female Sprague Dawley rats, we targeted LAR and PTPσ by two intracellular functionally blocking peptides, termed ILP and ISP, respectively. We delivered ILP and ISP treatment intrathecally to the injured spinal cord in a sustainable manner by osmotic mini-pumps for various time-points post-SCI. We employed flow cytometry, Western blotting, and immunohistochemistry in rat SCI, as well as complementary in vitro studies in primary microglia cultures to address our questions. RESULTS We provide novel evidence that signifies a key immunomodulatory role for LAR and PTPσ receptors in SCI. We show that blocking LAR and PTPσ reduces the population of classically activated M1 microglia/macrophages, while promoting alternatively activated M2 microglia/macrophages and T regulatory cells. This shift was associated with a remarkable elevation in pro-regenerative immune mediators, interleukin-10 (IL-10), and Arginase-1. Our parallel in vitro studies in microglia identified that while CSPGs do not induce an M1 phenotype per se, they promote a pro-inflammatory phenotype. Interestingly, inhibiting LAR and PTPσ in M1 and M2 microglia positively modulates their inflammatory response in the presence of CSPGs, and harnesses their ability for phagocytosis and mobilization. Interestingly, our findings indicate that CSPGs regulate microglia, at least in part, through the activation of the Rho/ROCK pathway downstream of LAR and PTPσ. CONCLUSIONS We have unveiled a novel role for LAR and PTPσ in regulating neuroinflammation in traumatic SCI. Our findings provide new insights into the mechanisms by which manipulation of CSPG signaling can promote recovery from SCI. More importantly, this work introduces the potential of ILP/ISP as a viable strategy for modulating the immune response following SCI and other neuroinflammatory conditions of the central nervous system.
Collapse
Affiliation(s)
- Scott Dyck
- Department of Physiology and Pathophysiology, the Regenerative Medicine Program, the Spinal Cord Research Center, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, the Regenerative Medicine Program, the Spinal Cord Research Center, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, the Regenerative Medicine Program, the Spinal Cord Research Center, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Kallivalappil T Santhosh
- Department of Physiology and Pathophysiology, the Regenerative Medicine Program, the Spinal Cord Research Center, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Bradley Lang
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jerry Silver
- Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, the Regenerative Medicine Program, the Spinal Cord Research Center, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
41
|
Yu P, Pearson CS, Geller HM. Flexible Roles for Proteoglycan Sulfation and Receptor Signaling. Trends Neurosci 2018; 41:47-61. [PMID: 29150096 PMCID: PMC5748001 DOI: 10.1016/j.tins.2017.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022]
Abstract
Proteoglycans (PGs) in the extracellular matrix (ECM) play vital roles in axon growth and navigation, plasticity, and regeneration of injured neurons. Different classes of PGs may support or inhibit cell growth, and their functions are determined in part by highly specific structural features. Among these, the pattern of sulfation on the PG sugar chains is a paramount determinant of a diverse and flexible set of outcomes. Recent studies of PG sulfation illustrate the challenges of attributing biological actions to specific sulfation patterns, and suggest ways in which highly similar molecules may exert opposing effects on neurons. The receptors for PGs, which have yet to be fully characterized, display a similarly nuanced spectrum of effects. Different classes of PG function via overlapping families of receptors and signaling pathways. This enables them to control axon growth and guidance with remarkable specificity, but it poses challenges for determining the precise binding interactions and downstream effects of different PGs and their assorted sulfated epitopes. This review examines existing and emerging evidence for the roles of PG sulfation and receptor interactions in determining how these complex molecules influence neuronal development, growth, and function.
Collapse
Affiliation(s)
- Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration; Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
42
|
Sainath R, Armijo-Weingart L, Ketscheck A, Xu Z, Li S, Gallo G. Chondroitin sulfate proteoglycans negatively regulate the positioning of mitochondria and endoplasmic reticulum to distal axons. Dev Neurobiol 2017; 77:1351-1370. [PMID: 28901718 DOI: 10.1002/dneu.22535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit the extension and regeneration of axons. However, the underlying mechanism of action remains poorly understood. Mitochondria and endoplasmic reticulum (ER) are functionally inter-linked organelles important to axon development and maintenance. We report that CSPGs impair the targeting of mitochondria and ER to the growth cones of chicken embryonic sensory axons. The effect of CSPGs on the targeting of mitochondria is blocked by inhibition of the LAR receptor for CSPGs. The regulation of the targeting of mitochondria and ER to the growth cone by CSPGs is due to attenuation of PI3K signaling, which is known to be downstream of LAR receptor activation. Dynactin is a required component of the dynein motor complex that drives the normally occurring retrograde evacuation of mitochondria from growth cones. CSPGs elevate the levels of p150Glu dynactin found in distal axons, and inhibition of the interaction of dynactin with dynein increased axon lengths on CSPGs. CSPGs decreased the membrane potential of mitochondria, and pharmacological inhibition of mitochondria respiration at the growth cone independent of manipulation of mitochondria positioning impaired axon extension. Combined inhibition of dynactin and potentiation of mitochondria respiration further increased axon lengths on CSPGs relative to inhibition of dynactin alone. These data reveal that the regulation of the localization of mitochondria and ER to growth cones is a previously unappreciated aspect of the effects of CSPGs on embryonic axons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1351-1370, 2017.
Collapse
Affiliation(s)
- Rajiv Sainath
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Lorena Armijo-Weingart
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Andrea Ketscheck
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Zhuxuan Xu
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Shuxin Li
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Medical Education and Research Building, 3500 North Brad St, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
43
|
Abstract
Paralysis following spinal cord injury (SCI) is due to failure of axonal regeneration. It is believed that the capacities of neurons to regrow their axons are due partly to their intrinsic characteristics, which in turn are greatly influenced by several types of inhibitory molecules that are present, or even increased in the extracellular environment of the injured spinal cord. Many of these inhibitory molecules have been studied extensively in recent years. It has been suggested that the small GTPase RhoA is an intracellular convergence point for signaling by these extracellular inhibitory molecules, but due to the complexity of the central nervous system (CNS) in mammals, and the limitation of pharmacological tools, the specific roles of RhoA are unclear. By exploiting the anatomical and technical advantages of the lamprey CNS, we recently demonstrated that RhoA knockdown promotes true axon regeneration through the lesion site after SCI. In addition, we found that RhoA knockdown protects the large, identified reticulospinal neurons from apoptosis after their axons were axotomized in spinal cord. Therefore, manipulation of the RhoA signaling pathway may be an important approach in the development of treatments that are both neuroprotective and axon regeneration-promoting, to enhance functional recovery after SCI.
Collapse
Affiliation(s)
- Jianli Hu
- Shriners Hospitals for Children, Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Michael E Selzer
- Shriners Hospitals for Children, Pediatric Research Center (Center for Neural Repair and Rehabilitation), Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.,Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|