1
|
Kurç Ö, Rähse N, Gohlke H, Cramer J. Human chitinases and chitinase-like proteins as emerging drug targets - a medicinal chemistry perspective. RSC Med Chem 2025:d4md01050g. [PMID: 40313579 PMCID: PMC12042104 DOI: 10.1039/d4md01050g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
Human chitinases and chitinase-like proteins (CLPs) provide the immune system with the ability to recognize or process chitin originating from chitinous pathogens. In addition to their role in host defense, most members of this protein family have evolved pleiotropic cellular effector functions broadly related to immune homeostasis, cell proliferation, and tissue remodeling. This wide-ranging ability to modulate crucial cellular processes proceeds via the activation of cellular signal transduction cascades and appears to be fully independent of chitin recognition. Dysregulation of chitinase/CLP functions has been linked to a plethora of inflammatory diseases, such as allergic airway diseases and asthma, fibrosis, as well as cancer. This fact predetermines certain members of this protein family as prime targets for pharmacological intervention. Here, we provide an extensive review of medicinal chemistry efforts targeting the most widely studied members of the human chitinase/CLP family, namely acidic mammalian chitinase (AMCase), chitotriosidase (CHIT1), and chitinase-3-like protein 1 (CHI3L1/YKL-40).
Collapse
Affiliation(s)
- Önder Kurç
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
| | - Nick Rähse
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
| | - Holger Gohlke
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
- Forschungszentrum Jülich, Institute of Bio- and Geosciences (IBG-4: Bioinformatics) Wilhelm-Johnen-Str. 52425 Jülich Germany
| | - Jonathan Cramer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Pharmaceutical and Medicinal Chemistry Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
2
|
Padilha SF, Martins R, Hul LM, Carreño LOD, Freitas MSD, Lopes JS, Ibelli AMG, Peixoto JDO, Zanella Morés MA, Cantão ME, Teixeira RDA, Dias LT, Ledur MC. Genome-wide association analysis reveals insights into the genetic architecture of mesenteric torsion in pigs. Sci Rep 2025; 15:13774. [PMID: 40258920 PMCID: PMC12012111 DOI: 10.1038/s41598-025-98029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/09/2025] [Indexed: 04/23/2025] Open
Abstract
Mesenteric torsion (MT) is a condition that affects several animal species and can lead to the animals' death. However, little is known about its etiology. Therefore, this study aimed to identify genomic regions and candidate genes associated with MT. Phenotypic and genotypic data from 405 pigs, including MT records and genealogy were used. In the model, contemporary group (sex, year, and week of weaning) was considered fixed effect, the linear effect of weaning weight as a covariate, while direct additive genetic effect was random. In the genome-wide association study, genomic windows explaining more than 0.3% of the genetic variance were considered significant. Fifty-two significant windows were identified, covering 299 genes located on 15 chromosomes. The HSD17B4, TNFAIP8, TENM4, CHD2, RGMA, OPRM1, PPARGC1A, CHIA, KCNJ2, KCNJ16, KCNJ15, ELN, SGO1, IL17A, IL17F, GATA4, OVOL2, GLI3, and RAP1A genes were considered candidates to MT since they are related to intestinal morphogenesis, feeding behavior, intestinal barrier, digestion, and intestinal motility. These processes could induce intestinal malformations, dysbiosis, excessive fermentation, delay intestinal transit, and obstruction. Our findings contribute to understanding the mechanisms involved in the occurrence of MT in pigs and may help to elucidate the etiology of intestinal torsion/volvulus in other mammals, including humans.
Collapse
Affiliation(s)
- Suelen Fernandes Padilha
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR, 80035-050, Brazil
| | - Rafaela Martins
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR, 80035-050, Brazil
| | - Ludmila Mudri Hul
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR, 85040-080, Brazil
- Faculdade de Ensino Superior do Centro do Paraná, Guarapuava, PR, 85200-000, Brazil
| | | | | | | | - Adriana Mércia Guaratini Ibelli
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR, 85040-080, Brazil
- Embrapa Suínos e Aves, Concórdia, 89715-899, SC, Brazil
- Embrapa Pecuária Sudeste, São Carlos, SP, 13560-970, Brazil
| | - Jane de Oliveira Peixoto
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR, 85040-080, Brazil
- Embrapa Suínos e Aves, Concórdia, 89715-899, SC, Brazil
| | | | | | | | - Laila Talarico Dias
- Programa de Pós-Graduação em Zootecnia, Universidade Federal do Paraná, Curitiba, PR, 80035-050, Brazil
| | | |
Collapse
|
3
|
Ma Z, Mu R, Zhou Z, Hu Z, Shen M, Lu C, Wang H, Zhang C, Zhang M, Yi Z, Deng Z, Zhao Y, Zhu J, Wen G, Jin H, An J, Tuo B, Liu X, Li T. The mammalian acid chitinase promotes oncogenic properties of thyroid cancer cells through the JAK2/STAT3 pathway. Eur Thyroid J 2025; 14:e240311. [PMID: 40198658 PMCID: PMC12053917 DOI: 10.1530/etj-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/07/2025] [Accepted: 04/08/2025] [Indexed: 04/10/2025] Open
Abstract
Objective Mammalian acid chitinase (AMCase; CHIA) has potential as a biomarker and drug target in the fields of medicine and pharmacology, and its role in inhibiting tumor growth and Th2 cell-mediated asthma-related inflammation has become a research hotspot. However, the role of CHIA in thyroid cancer is unclear. Methods Tissue microarrays and thyroid cancer cell lines were used to detect CHIA expression and determine its clinical relevance. CHIA gene expression was altered in thyroid cancer cells to examine the effects of CHIA expression on the biological behavior of thyroid cancer cells, and the related molecular mechanisms involved were explored. Results We first examined CHIA expression in a thyroid tissue microarray using immunohistochemistry. We found that CHIA was significantly upregulated in thyroid cancer tissues relative to paired thyroid cancer adjacent tissues. After correlation analysis, we found that upregulated CHIA expression correlated with the tumor-node-metastasis (TNM) stage of patients with thyroid cancer. Similarly, CHIA expression was significantly higher in the thyroid cancer cell lines BCPAP, TPC-1, KTC-1 and FTC133 than in the human normal thyroid epithelial cell line Nthy-ori-3-1. CHIA promotes proliferation, migration and invasion; inhibits thyroid cancer cell apoptosis; and regulates markers of proliferation and epithelial-mesenchymal transition. Mechanistically, CHIA activated the JAK2/STAT3 signaling pathway in thyroid cancer cells. Conclusions CHIA upregulation promoted the proliferation, migration and invasion of thyroid cancer cells through JAK2/STAT3 signaling pathway activation. Therefore, CHIA could represent a potential new oncoprotein for patients with thyroid cancer.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Renmin Mu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhengxing Zhou
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zilai Hu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mimi Shen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengli Lu
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengmin Zhang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Minglin Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingying Zhao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Hellmann MJ, Marongiu GL, Gorzelanny C, Moerschbacher BM, Cord-Landwehr S. Hydrolysis of chitin and chitosans by the human chitinolytic enzymes: chitotriosidase, acidic mammalian chitinase, and lysozyme. Int J Biol Macromol 2025; 297:139789. [PMID: 39805453 DOI: 10.1016/j.ijbiomac.2025.139789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Human chitinolytic enzymes trigger growing interest, not only because a wide range of diseases and allergic responses are linked to chitinous components of pathogens, including their interplay with human enzymes, but also due to the increasing use of chitosans in biomedical applications. Here, we present a detailed side-by-side analysis of the only two human chitinases, chitotriosidase and acidic mammalian chitinase, as well as human lysozyme. By analyzing the cleavage of well-characterized chitosan polymers and defined chitin and chitosan oligomers, we report mild processivity and a quantitative subsite preference typical for GH18 chitinases for chitotriosidase and acidic mammalian chitinase. In contrast, lysozyme is negligibly processive and preferentially binds acetylated units at subsites -2, -1, and +1, thus exhibiting an even higher overall preference for acetylated units. A common feature of all three enzymes is their endo-chitinase behavior. For efficient hydrolysis, chitotriosidase or lysozyme require substrates of ≥4 or ≥5 units, respectively, and we identified defined chitosan oligomers which can competitively inhibit chitotriosidase. Knowledge about the enzymes' actions provides insight into the metabolic fate of chitin and chitosans in the human body, which is crucial to develop and approve chitosan applications, and to elucidate molecular mechanisms in chitin-associated diseases.
Collapse
Affiliation(s)
- Margareta J Hellmann
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Gian Luca Marongiu
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Christian Gorzelanny
- Experimental Dermatology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
5
|
Mikitova V, Jopcik M, Rajninec M, Libantova J. Complex transcription regulation of acidic chitinase suggests fine-tuning of digestive processes in Drosera binata. PLANTA 2025; 261:32. [PMID: 39799526 PMCID: PMC11725546 DOI: 10.1007/s00425-025-04607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
MAIN CONCLUSION DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation. Here, we characterised a novel chitinase gene (DbChitI-3) isolated from the carnivorous plant species Drosera binata with strong homology to other Drosera species' extracellular class I chitinases with a role in digestive processes. The capability to cleave different forms of chitin was tested using recombinantly produced chitinase in Escherichia coli (rDbChitI-3S-His) and subsequent purification. The recombinant protein did not cleave chitin powder, the mono-, di- and tri- N-acetyl-D-glucosamine substrates, but cleaved acetic acid-swollen chitin. Fluorometric assay with acetic acid-swollen FITC-chitin as a substrate revealed the maximum enzyme activity at pH 2.5, spanning from 15 °C to 30 °C. Comparing enzymatic parameters with commercial chitinase from Streptomyces griseus showed rDbChitI-3S-His efficiency reaching 64.3% of S. griseus chitinase under optimal conditions. The highest basal expression of DbChitI-3 was detected in leaf blades. In other organs, the expression was either fivefold lower (petioles) or almost nondetectable (stems, roots and flowers). Application of gelatin, chitin, and pachyman resulted in a 3.9-, 4.6- and 5.7-fold increase in the mRNA transcript abundance of DbChitI-3 in leaves. In contrast, monosaccharides and laminarin decreased transcription of the DbChitI-3 gene by at least 70%, 5 h after treatment. The simultaneous application of suppressor and inducer (glucose and pachyman) indicated the predominant effect of the suppressor, implying that sufficient monosaccharide nutrients prioritize absorption processes in D. binata leaves over further digestion of the potential substrate.
Collapse
Affiliation(s)
- Veronika Mikitova
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Martin Jopcik
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Miroslav Rajninec
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Libantova
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.
| |
Collapse
|
6
|
Okawa K, Kijima M, Ishii M, Maeda N, Yasumura Y, Sakaguchi M, Kimura M, Uehara M, Tabata E, Bauer PO, Oyama F. Hyperactivation of human acidic chitinase (Chia) for potential medical use. J Biol Chem 2025; 301:108100. [PMID: 39706263 PMCID: PMC11773036 DOI: 10.1016/j.jbc.2024.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Accumulation of environmental chitin in the lungs can lead to pulmonary fibrosis, characterized by inflammatory infiltration and fibrosis in acidic chitinase (Chia)-deficient mice. Transgenic expression of Chia in these mice ameliorated the symptoms, indicating the potential of enzyme supplementation as a promising therapeutic strategy for related lung diseases. This study focuses on utilizing hyperactivated human Chia, which exhibits low activity. We achieved significant activation of human Chia by incorporating nine amino acids derived from the crab-eating monkey (Macaca fascicularis) Chia, known for its robust chitin-degrading activity. The modified human Chia retained high activity across a broad pH spectrum and exhibited enhanced thermal stability. The amino acid substitutions associated with hyperactivation of human Chia activity occurred species specifically in monkey Chia. This discovery highlights the potential of hyperactivated Chia in treating pulmonary diseases resulting from chitin accumulation in human lungs.
Collapse
Affiliation(s)
- Kazuaki Okawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masashi Kijima
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Mana Ishii
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Nanako Maeda
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Yudai Yasumura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan; Japan Society for the Promotion of Science (PD), Tokyo, Japan
| | | | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, Japan.
| |
Collapse
|
7
|
Balastegui-Alarcón M, Moros-Nicolás C, Ballesta J, Izquierdo-Rico MJ, Chevret P, Avilés M. Molecular Evolution of the Ovgp1 Gene in the Subfamily Murinae. Animals (Basel) 2024; 15:55. [PMID: 39794998 PMCID: PMC11719014 DOI: 10.3390/ani15010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
OGP, encoded by the Ovgp1 gene, is the major non-serum oviductal protein in most mammals. In the genome of Rattus norvegicus, Ovgp1 has been identified as a pseudogene. However, Mus musculus presents a functional gene. As the rat and the mouse belong to the subfamily Murinae, Ovgp1 has probably been lost after their divergence. This study aims to determine when the pseudogenization event occurred and which proteins could replace its function. To attain that, the potential expression of members belonging to the GH18 family is investigated in the rat oviduct by means of molecular and proteomic analyses. Specific Ovgp1 regions are sequenced in different murine rodent species. The analysis reveals the presence of stop codons only in some species of the Rattini tribe, suggesting that the majority of the murine species present a functional gene. Thus, the pseudogenization of Ovgp1 could be dated back to around 10 Mya, after the divergence of the Rattini tribe. The expression of several genes and proteins of the GH18 family, such as Chia, Chit1, Chi3l1, and Chid1, are detected in the rat oviduct. This study opens the door for further research on GH18 family proteins that mimic the OGP functions in species where Ovgp1 is pseudogenized.
Collapse
Affiliation(s)
- Miriam Balastegui-Alarcón
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Carla Moros-Nicolás
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - José Ballesta
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Mª José Izquierdo-Rico
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Facultad de Medicina y de Enfermería, Universidad de Murcia, 30120 Murcia, Spain; (M.B.-A.); (C.M.-N.); (J.B.); (M.J.I.-R.)
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB), 30120 Murcia, Spain
| |
Collapse
|
8
|
Chaulagain D, Shamabadi NS, Leslie SA, Karig DK. From Natural Microbe Screening to Sustained Chitinase Activity in Exogenous Hosts. ACS Synth Biol 2024; 13:1165-1176. [PMID: 38587290 PMCID: PMC11838836 DOI: 10.1021/acssynbio.3c00637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Genetic parts and hosts can be sourced from nature to realize new functions for synthetic biology or to improve performance in a particular application environment. Here, we proceed from the discovery and characterization of new parts to stable expression in new hosts with a particular focus on achieving sustained chitinase activity. Chitinase is a key enzyme for various industrial applications that require the breakdown of chitin, the second most abundant biopolymer on the earth. Diverse microbes exhibit chitinase activity, but for applications, the environmental conditions for optimal enzyme activity and microbe fitness must align with the application context. Achieving sustained chitinase activity under broad conditions in heterologous hosts has also proven difficult due to toxic side effects. Toward addressing these challenges, we first screen ocean water samples to identify microbes with chitinase activity. Next, we perform whole genome sequencing and analysis and select a chitinase gene for heterologous expression. Then, we optimize transformation methods for target hosts and introduce chitinase. Finally, to achieve robust function, we optimize ribosome binding sites and discover a beneficial promoter that upregulates chitinase expression in the presence of colloidal chitin in a sense-and-respond fashion. We demonstrate chitinase activity for >21 days in standard (Escherichia coli) and nonstandard (Roseobacter denitrificans) hosts. Besides enhancing chitinase applications, our pipeline is extendable to other functions, identifies natural microbes that can be used directly in non-GMO contexts, generates new parts for synthetic biology, and achieves weeks of stable activity in heterologous hosts.
Collapse
Affiliation(s)
- Diptee Chaulagain
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Narges S Shamabadi
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Skylar A Leslie
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| | - David K Karig
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
9
|
Wu Y, Adeniyi-Ipadeola G, Adkins-Threats M, Seasock M, Suarez-Reyes C, Fujiwara R, Bottazzi ME, Song L, Mills JC, Weatherhead JE. Host gastric corpus microenvironment facilitates Ascaris suum larval hatching and infection in a murine model. PLoS Negl Trop Dis 2024; 18:e0011930. [PMID: 38324590 PMCID: PMC10878500 DOI: 10.1371/journal.pntd.0011930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/20/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Ascariasis (roundworm) is the most common parasitic helminth infection globally and can lead to significant morbidity in children including chronic lung disease. Children become infected with Ascaris spp. via oral ingestion of eggs. It has long been assumed that Ascaris egg hatching and larval translocation across the gastrointestinal mucosa to initiate infection occurs in the small intestine. Here, we show that A. suum larvae hatched in the host stomach in a murine model. Larvae utilize acidic mammalian chitinase (AMCase; acid chitinase; Chia) from chief cells and acid pumped by parietal cells to emerge from eggs on the surface of gastric epithelium. Furthermore, antagonizing AMCase and gastric acid in the stomach decreases parasitic burden in the liver and lungs and attenuates lung disease. Given Ascaris eggs are chitin-coated, the gastric corpus would logically be the most likely organ for egg hatching, though this is the first study directly evincing the essential role of the host gastric corpus microenvironment. These findings point towards potential novel mechanisms for therapeutic targets to prevent ascariasis and identify a new biomedical significance of AMCase in mammals.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Pediatrics, Division of Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Grace Adeniyi-Ipadeola
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mahliyah Adkins-Threats
- Department of Medicine, Section of Gastroenterology, Baylor College of Medicine, Houston, Texas, United States of America
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Matthew Seasock
- Department of Medicine, Immunology, Pathology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charlie Suarez-Reyes
- Department of Pediatrics, Division of Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ricardo Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Elena Bottazzi
- Department of Pediatrics, Division of Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lizhen Song
- Department of Medicine, Immunology, Pathology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jason C. Mills
- Department of Medicine, Section of Gastroenterology, Baylor College of Medicine, Houston, Texas, United States of America
- Departments of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jill E. Weatherhead
- Department of Pediatrics, Division of Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
10
|
Mengkrog Holen M, Tuveng TR, Kent MP, Vaaje‐Kolstad G. The gastric mucosa of Atlantic salmon (Salmo salar) is abundant in highly active chitinases. FEBS Open Bio 2024; 14:23-36. [PMID: 37581908 PMCID: PMC10761930 DOI: 10.1002/2211-5463.13694] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Atlantic salmon (Salmo salar) possesses a genome containing 10 genes encoding chitinases, yet their functional roles remain poorly understood. In other fish species, chitinases have been primarily linked to digestion, but also to other functions, as chitinase-encoding genes are transcribed in a variety of non-digestive organs. In this study, we investigated the properties of two chitinases belonging to the family 18 glycoside hydrolase group, namely Chia.3 and Chia.4, both isolated from the stomach mucosa. Chia.3 and Chia.4, exhibiting 95% sequence identity, proved inseparable using conventional chromatographic methods, necessitating their purification as a chitinase pair. Biochemical analysis revealed sustained chitinolytic activity against β-chitin for up to 24 h, spanning a pH range of 2 to 6. Moreover, subsequent in vitro investigations established that this chitinase pair efficiently degrades diverse chitin-containing substrates into chitobiose, highlighting the potential of Atlantic salmon to utilize novel chitin-containing feed sources. Analysis of the gastric matrix proteome demonstrates that the chitinases are secreted and rank among the most abundant proteins in the gastric matrix. This finding correlates well with the previously observed high transcription of the corresponding chitinase genes in Atlantic salmon stomach tissue. By shedding light on the secreted chitinases in the Atlantic salmon's stomach mucosa and elucidating their functional characteristics, this study enhances our understanding of chitinase biology in this species. Moreover, the observed capacity to effectively degrade chitin-containing materials implies the potential utilization of alternative feed sources rich in chitin, offering promising prospects for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Matilde Mengkrog Holen
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Tina Rise Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Matthew Peter Kent
- Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
| | - Gustav Vaaje‐Kolstad
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| |
Collapse
|
11
|
Kim DH, Wang Y, Jung H, Field RL, Zhang X, Liu TC, Ma C, Fraser JS, Brestoff JR, Van Dyken SJ. A type 2 immune circuit in the stomach controls mammalian adaptation to dietary chitin. Science 2023; 381:1092-1098. [PMID: 37676935 PMCID: PMC10865997 DOI: 10.1126/science.add5649] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Dietary fiber improves metabolic health, but host-encoded mechanisms for digesting fibrous polysaccharides are unclear. In this work, we describe a mammalian adaptation to dietary chitin that is coordinated by gastric innate immune activation and acidic mammalian chitinase (AMCase). Chitin consumption causes gastric distension and cytokine production by stomach tuft cells and group 2 innate lymphoid cells (ILC2s) in mice, which drives the expansion of AMCase-expressing zymogenic chief cells that facilitate chitin digestion. Although chitin influences gut microbial composition, ILC2-mediated tissue adaptation and gastrointestinal responses are preserved in germ-free mice. In the absence of AMCase, sustained chitin intake leads to heightened basal type 2 immunity, reduced adiposity, and resistance to obesity. These data define an endogenous metabolic circuit that enables nutrient extraction from an insoluble dietary constituent by enhancing digestive function.
Collapse
Affiliation(s)
- Do-Hyun Kim
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yilin Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haerin Jung
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachael L. Field
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xinya Zhang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ta-Chiang Liu
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Changqing Ma
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan R. Brestoff
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven J. Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Loudon JE, Smith BK, Bianchi S, Howells ME, Krowka MA, Gomez AM, Davison S, Paine OCC, Sponheimer M. Variable digestibility of captive northern greater galagos (Otolemur garnettii) fed experimental "frugivorous" and "invertebrate" diets. Zoo Biol 2023; 42:644-650. [PMID: 37218303 DOI: 10.1002/zoo.21773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 12/05/2022] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Few studies have addressed the nutritional ecology of galagos. Observations of galagos in the wild reveal that they rely on fruits and invertebrates to varying degrees depending on their availability. We conducted a 6-week comparative dietary analysis of a colony of captive-housed northern greater galagos (Otolemur garnettii), which included five females and six males with known life histories. We compared two experimental diets. The first was fruit dominated and the second was invertebrate dominated. For each diet, we examined dietary intake and apparent dry matter digestibility over the course of 6 weeks. We found significant differences between the apparent digestibility of the diets, with the "invertebrate" diet being more digestible than the "frugivorous" diet. The lower apparent digestibility of the "frugivorous" diet was driven by the higher fiber contents of the fruits provided to the colony. However, variation in apparent digestibility of both diets was found among individual galagos. The experimental design used in this study may provide useful dietary data for the management of captive colonies of galagos and other strepsirrhine primates. This study may also be helpful for understanding the nutritional challenges faced by free-ranging galagos through time and across geographic space.
Collapse
Affiliation(s)
- James E Loudon
- Department of Anthropology, East Carolina University, Greenville, North Carolina, USA
| | - B Katherine Smith
- School of Social Science and Global Studies, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Sydnie Bianchi
- School of Social Science and Global Studies, The University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Michaela E Howells
- Department of Anthropology, University of North Carolina-Wilmington, Wilmington, North Carolina, USA
| | - Mead A Krowka
- Department of Anthropology, University of North Carolina-Wilmington, Wilmington, North Carolina, USA
| | - Andres M Gomez
- Department of Animal Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Samuel Davison
- Department of Animal Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Oliver C C Paine
- Department of Anthropology, San Diego State University, San Diego, California, USA
- Department of Anthropology, University of Colorado, Boulder, Colorado, USA
| | - Matt Sponheimer
- Department of Anthropology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
13
|
Tabata E, Kobayashi I, Morikawa T, Kashimura A, Bauer PO, Oyama F. Evolutionary activation of acidic chitinase in herbivores through the H128R mutation in ruminant livestock. iScience 2023; 26:107254. [PMID: 37502259 PMCID: PMC10368815 DOI: 10.1016/j.isci.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/04/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Placental mammals' ancestors were insectivores, suggesting that modern mammals may have inherited the ability to digest insects. Acidic chitinase (Chia) is a crucial enzyme hydrolyzing significant component of insects' exoskeleton in many species. On the other hand, herbivorous animal groups, such as cattle, have extremely low chitinase activity compared to omnivorous species, e.g., mice. The low activity of cattle Chia has been attributed to R128H mutation. The presence of either of these amino acids correlates with the feeding behavior of different bovid species with R and H determining the high and low enzymatic activity, respectively. Evolutionary analysis indicated that selective constraints were relaxed in 67 herbivorous Chia in Cetartiodactyla. Despite searching for another Chia paralog that could compensate for the reduced chitinase activity, no active paralogs were found in this order. Herbivorous animals' Chia underwent genetic alterations and evolved into a molecule with low activity due to the chitin-free diet.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
- Research Fellow of Japan Society for the Promotion of Science (PD), Koujimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Ikuto Kobayashi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Takuya Morikawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| | - Peter O. Bauer
- Bioinova a.s., Videnska 1083, 142 00 Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan
| |
Collapse
|
14
|
Kiernan DP, O'Doherty JV, Connolly KR, Ryan M, Sweeney T. Exploring the Differential Expression of a Set of Key Genes Involved in the Regulation and Functioning of the Stomach in the Post-Weaned Pig. Vet Sci 2023; 10:473. [PMID: 37505877 PMCID: PMC10386345 DOI: 10.3390/vetsci10070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Despite playing a key role in digestion, there is only a broad characterization of the spatiotemporal development of the three glandular regions of the stomach (cardiac, fundic and pyloric) in the weaned pig. Hence, the objective of this experiment was to explore the differential expression (DE) of a panel of key genes within the three glandular regions of the stomach. Eight pigs were sacrificed at d 8 post-weaning, and three mucosal samples were collected from each stomach's glandular regions. The expression of a panel of genes were measured using QPCR. The true cardiac gland region was characterized by increased expression of PIGR, OLFM4, CXCL8 and MUC2 relative to the two other regions (p < 0.05). The fundic gland region was characterized by increased expression of ATP4A, CLIC6, KCNQ1, HRH2, AQP4, HDC, CCKBR, CHIA, PGA5, GHRL and MBOAT4 compared to the two other regions (p < 0.05). The pyloric gland region was characterized by exclusive expression of GAST (p < 0.05). A transition region between the cardiac and fundic region (cardiac-to-oxyntic transition) was observed with a gene expression signature that resembles a cross of the signatures found in the two regions. In conclusion, unique gene expression signatures were identifiable in each of the glandular regions, with a cardiac-to-oxyntic transition region clearly identifiable in the post-weaned pigs' stomachs.
Collapse
Affiliation(s)
- Dillon P Kiernan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Kathryn Ruth Connolly
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Marion Ryan
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland
| |
Collapse
|
15
|
Li KL, Nakashima K, Hisata K, Satoh N. Expression and possible functions of a horizontally transferred glycosyl hydrolase gene, GH6-1, in Ciona embryogenesis. EvoDevo 2023; 14:11. [PMID: 37434168 DOI: 10.1186/s13227-023-00215-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The Tunicata or Urochordata is the only animal group with the ability to synthesize cellulose directly and cellulose is a component of the tunic that covers the entire tunicate body. The genome of Ciona intestinalis type A contains a cellulose synthase gene, CesA, that it acquired via an ancient, horizontal gene transfer. CesA is expressed in embryonic epidermal cells and functions in cellulose production. Ciona CesA is composed of both a glycosyltransferase domain, GT2, and a glycosyl hydrolase domain, GH6, which shows a mutation at a key position and seems functionless. Interestingly, the Ciona genome contains a glycosyl hydrolase gene, GH6-1, in which the GH6 domain seems intact. This suggests expression and possible functions of GH6-1 during Ciona embryogenesis. Is GH6-1 expressed during embryogenesis? If so, in what tissues is the gene expressed? Does GH6-1 serve a function? If so, what is it? Answers to these questions may advance our understanding of evolution of this unique animal group. RESULTS Quantitative reverse transcription PCR and in situ hybridization revealed that GH6-1 is expressed in epidermis of tailbud embryos and in early swimming larvae, a pattern similar to that of CesA. Expression is downregulated at later stages and becomes undetectable in metamorphosed juveniles. The GH6-1 expression level is higher in the anterior-trunk region and caudal-tip regions of late embryos. Single-cell RNA sequencing analysis of the late tailbud stage showed that cells of three clusters with epidermal identity express GH6-1, and that some of them co-express CesA. TALEN-mediated genome editing was used to generate GH6-1 knockout Ciona larvae. Around half of TALEN-electroporated larvae showed abnormal development of adhesive papillae and altered distribution of surface cellulose. In addition, three-fourths of TALEN-electroporated animals failed to complete larval metamorphosis. CONCLUSIONS This study showed that tunicate GH6-1, a gene that originated by horizontal gene transfer of a prokaryote gene, is recruited into the ascidian genome, and that it is expressed and functions in epidermal cells of ascidian embryos. Although further research is required, this observation demonstrates that both CesA and GH6-1 are involved in tunicate cellulose metabolism, impacting tunicate morphology and ecology.
Collapse
Affiliation(s)
- Kun-Lung Li
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, 115, Taiwan.
| | - Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
16
|
Holen MM, Vaaje-Kolstad G, Kent MP, Sandve SR. Gene family expansion and functional diversification of chitinase and chitin synthase genes in Atlantic salmon (Salmo salar). G3 (BETHESDA, MD.) 2023; 13:jkad069. [PMID: 36972305 PMCID: PMC10234404 DOI: 10.1093/g3journal/jkad069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/16/2023] [Indexed: 12/07/2023]
Abstract
Chitin is one of the most abundant polysaccharides in nature, forming important structures in insects, crustaceans, and fungal cell walls. Vertebrates on the other hand are generally considered "nonchitinous" organisms, despite having highly conserved chitin metabolism-associated genes. Recent work has revealed that the largest group of vertebrates, the teleosts, have the potential to both synthesize and degrade endogenous chitin. Yet, little is known about the genes and proteins responsible for these dynamic processes. Here, we used comparative genomics, transcriptomics, and chromatin accessibility data to characterize the repertoire, evolution, and regulation of genes involved in chitin metabolism in teleosts, with a particular focus on Atlantic salmon. Reconstruction of gene family phylogenies provides evidence for an expansion of teleost and salmonid chitinase and chitin synthase genes after multiple whole-genome duplications. Analyses of multi-tissue gene expression data demonstrated a strong bias of gastrointestinal tract expression for chitin metabolism genes, but with different spatial and temporal tissue specificities. Finally, we integrated transcriptomes from a developmental time series of the gastrointestinal tract with chromatin accessibility data to identify putative transcription factors responsible for regulating chitin metabolism gene expression (CDX1 and CDX2) as well as tissue-specific divergence in the regulation of gene duplicates (FOXJ2). The findings presented here support the hypothesis that chitin metabolism genes in teleosts play a role in developing and maintaining a chitin-based barrier in the teleost gut and provide a basis for further investigations into the molecular basis of this barrier.
Collapse
Affiliation(s)
- Matilde Mengkrog Holen
- Section for Genome Biology, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science (IKBM), Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Matthew Peter Kent
- Section for Genome Biology, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Simen Rød Sandve
- Section for Genome Biology, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås NO-1432, Norway
| |
Collapse
|
17
|
Okawa K, Tabata E, Kida Y, Uno K, Suzuki H, Kamaya M, Bauer PO, Oyama F. Irreversible evolutionary loss of chitin-degrading ability in the chitinase-like protein Ym1 under positive selection in rodents. Protein Sci 2023; 32:e4620. [PMID: 36883357 PMCID: PMC10031810 DOI: 10.1002/pro.4620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ym1 (chitinase-like 3, Chil3) expressed in mice is a nonenzymatic chitinase-like protein, which shows 67% identity with mouse acidic chitinase (Chia). Similar to Chia, Ym1 is overexpressed in asthma and parasitic infections in mouse lungs. Due to the lack of chitin-degrading activity, the biomedical role of Ym1 under these pathophysiological conditions remains to be determined. In this study, we investigated what region and amino acid changes in Ym1 resulted in the loss of enzymatic activity. Replacing two amino acids at the catalytic motif to obtain a Chia-like sequence (N136D and Q140E; MT-Ym1) did not activate the protein. We conducted a comparative study of Ym1 and Chia. We found that three protein segments-(i) the catalytic motif residues, (ii) exons 6 and 7, and (iii) exon 10-are responsible for chitinase activity loss in Ym1. We show that replacing each of these three segments in Chia that are also involved in substrate recognition and binding by the Ym1 sequence can fully abolish the enzymatic activity. In addition, we show that there have been extensive gene duplication events at the Ym1 locus specific to the rodent lineages. Consistent with this result, Ym1 orthologs from the rodent genome were under positive selection when analyzed through the CODEML program. These data suggest that numerous amino acid substitutions in the regions involved in the chitin recognition, binding, and degradation ability of the ancestor Ym1 molecule lead to the irreversible inactivation of the protein.
Collapse
Affiliation(s)
- Kazuaki Okawa
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Eri Tabata
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
- Japan Society for the Promotion of Science (PD)TokyoJapan
| | - Yuta Kida
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Kyohei Uno
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Hidetoshi Suzuki
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| | - Minori Kamaya
- Department of Applied ChemistryKogakuin UniversityTokyoJapan
| | | | - Fumitaka Oyama
- Department of Chemistry and Life ScienceKogakuin UniversityTokyoJapan
| |
Collapse
|
18
|
Taokaew S, Kriangkrai W. Chitinase-Assisted Bioconversion of Chitinous Waste for Development of Value-Added Chito-Oligosaccharides Products. BIOLOGY 2023; 12:87. [PMID: 36671779 PMCID: PMC9855443 DOI: 10.3390/biology12010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
Chito-oligosaccharides (COSs) are the partially hydrolyzed products of chitin, which is abundant in the shells of crustaceans, the cuticles of insects, and the cell walls of fungi. These oligosaccharides have received immense interest in the last few decades due to their highly promising bioactivities, such as their anti-microbial, anti-tumor, and anti-inflammatory properties. Regarding environmental concerns, COSs are obtained by enzymatic hydrolysis by chitinase under milder conditions compared to the typical chemical degradation. This review provides updated information about research on new chitinase derived from various sources, including bacteria, fungi, plants, and animals, employed for the efficient production of COSs. The route to industrialization of these chitinases and COS products is also described.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
19
|
Di Francesco AM, Verrecchia E, Manna S, Urbani A, Manna R. The chitinases as biomarkers in immune-mediate diseases. Clin Chem Lab Med 2022:cclm-2022-0767. [DOI: 10.1515/cclm-2022-0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Abstract
The role of chitinases has been focused as potential biomarkers in a wide number of inflammatory diseases, in monitoring active disease state, and predicting prognosis and response to therapies. The main chitinases, CHIT1 and YKL-40, are derived from 18 glycosyl hydrolases macrophage activation and play important roles in defense against chitin-containing pathogens and in food processing. Moreover, chitinases may have organ- as well as cell-specific effects in the context of infectious diseases and inflammatory disorders and able to induce tissue remodelling. The CHIT1 measurement is an easy, reproducible, reliable, and cost-effective affordable assay. The clinical use of CHIT1 for the screening of lysosomal storage disorders is quite practical, when proper cut-off values are determined for each laboratory. The potential of CHIT1 and chitinases has not been fully explored yet and future studies will produce many surprising discoveries in the immunology and allergology fields of research. However, since the presence of a null CHIT1 gene in a subpopulation would be responsible of false-negative values, the assay should be completed with the other markers such ACE and, if necessary, by genetic analysis when CHIT1 is unexpected low.
Collapse
Affiliation(s)
- Angela Maria Di Francesco
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
| | - Elena Verrecchia
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
| | - Stefano Manna
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
| | - Andrea Urbani
- Institute of Internal Medicine, Policlinico A. Gemelli Foundation IRCCS , Rome , Italy
- Department of Chemistry, Biochemistry and Molecular Biology , Policlinico A. Gemelli Foundation IRCCS , Rome , Italy
| | - Raffaele Manna
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
- Institute of Internal Medicine, Policlinico A. Gemelli Foundation IRCCS , Rome , Italy
| |
Collapse
|
20
|
Russo C, Morello G, Mannino G, Russo A, Malaguarnera L. Immunoregulation of Ghrelin in neurocognitive sequelae associated with COVID-19: an in silico investigation. Gene 2022; 834:146647. [PMID: 35680023 PMCID: PMC9169425 DOI: 10.1016/j.gene.2022.146647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/08/2023]
Abstract
Some patients suffering from the new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) develop an exaggerated inflammatory response triggered by a “cytokine storm” resulting in acute respiratory distress syndrome (ARDS) with the concomitant activation of non-specific inflammatory reactivity in the circulatory system and other organs, leading to multiorgan failure, leaky vasculature, coagulopathies and stroke. Impairment of brain functions may also occur as dysregulations in immune function resulting from neuroendocrine interactions. In this study, we explored, by bioinformatics approaches, the interaction between the multiple inflammatory agents involved in SARS-CoV-2 and Ghrelin (Ghre) together with its receptor GHSR-1A, which are described as anti-inflammatory mediators, in order to investigate what could trigger the hyper-inflammatory response in some SARS-CoV-2 patients. In our analysis, we found several interactions of Ghre and GHSR-1A with SARS-CoV-2 interacting human genes. We observed a correlation between Ghre, angiotensin-converting enzyme 2 ACE2, toll-like receptors 9 (TLR9), and Acidic chitinase (CHIA), whereas its receptor GHSR-1A interacts with chemokine receptor 3 (CXCR3), CCR3, CCR5, CCR7, coagulation factor II (thrombin) receptor-like 1 (F2RL1), vitamin D receptor (VDR), Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and DDP4 in receptor dipeptidyl peptidase-4. To our knowledge, our findings show, for the first time, that Ghre and GHSR-1A may exert an immunomodulatory function in the course of SARS-Cov-2 infection.
Collapse
Affiliation(s)
- Cristina Russo
- Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanna Morello
- Department of Biomedical Science, Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Catania, Italy
| | - Giuliana Mannino
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Physiology section, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
21
|
Cheng L, Wang W, Fan MZ. Characterization of in vitro stability for two processive endoglucanases as exogenous fibre biocatalysts in pig nutrition. Sci Rep 2022; 12:9135. [PMID: 35650308 PMCID: PMC9160044 DOI: 10.1038/s41598-022-13124-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Development of highly efficacious exogenous fibre degradation enzymes can enhance efficiency of dietary fibre utilization and sustainability of global pork production. The objectives of this study were to investigate in vitro stability for two processive endoglucanases, referred to as GH5-tCel5A1 and GH5-p4818Cel5_2A that were overexpressed in CLEARCOLIBL21(DE3). Three-dimensional models predicted presence of Cys residues on the catalytic site surfaces of GH5-tCel5A1 and GH5-p4818Cel5_2A; and time course experimental results shown that both cellulases were susceptible to auto-oxidation by airborne O2 and were unstable. Furthermore, we examined these endoglucanases' stability under the mimicked in vitro porcine gastric and the small intestinal pH and proteases' conditions. Eadie-Hofstee inhibition kinetic analyses showed that GH5-tCel5A1 and GH5-p4818Cel5_2A respectively lost 18 and 68% of their initial activities after 2-h incubations under the gastric conditions and then lost more than 90% of their initial activities after 2-3 h of incubations under the small intestinal conditions. Therefore, further enzyme protein engineering to improve resistance and alternatively post-fermentation enzyme processing such as coating to bypass the gastric-small intestinal environment will be required to enable these two processive endoglucanases as efficacious exogenous fibre enzymes in pig nutrition application.
Collapse
Affiliation(s)
- Laurence Cheng
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Weijun Wang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Canadian Food Inspection Agency (CFIA) - Ontario Operation, Guelph, ON, N1G 2W1, Canada
| | - Ming Z Fan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- One Health Institute, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
22
|
Uehara M, Takasaki C, Wakita S, Sugahara Y, Tabata E, Matoska V, Bauer PO, Oyama F. Crab-Eating Monkey Acidic Chitinase (CHIA) Efficiently Degrades Chitin and Chitosan under Acidic and High-Temperature Conditions. Molecules 2022; 27:409. [PMID: 35056724 PMCID: PMC8781735 DOI: 10.3390/molecules27020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chitooligosaccharides, the degradation products of chitin and chitosan, possess anti-bacterial, anti-tumor, and anti-inflammatory activities. The enzymatic production of chitooligosaccharides may increase the interest in their potential biomedical or agricultural usability in terms of the safety and simplicity of the manufacturing process. Crab-eating monkey acidic chitinase (CHIA) is an enzyme with robust activity in various environments. Here, we report the efficient degradation of chitin and chitosan by monkey CHIA under acidic and high-temperature conditions. Monkey CHIA hydrolyzed α-chitin at 50 °C, producing N-acetyl-d-glucosamine (GlcNAc) dimers more efficiently than at 37 °C. Moreover, the degradation rate increased with a longer incubation time (up to 72 h) without the inactivation of the enzyme. Five substrates (α-chitin, colloidal chitin, P-chitin, block-type, and random-type chitosan substrates) were exposed to monkey CHIS at pH 2.0 or pH 5.0 at 50 °C. P-chitin and random-type chitosan appeared to be the best sources of GlcNAc dimers and broad-scale chitooligosaccharides, respectively. In addition, the pattern of the products from the block-type chitosan was different between pH conditions (pH 2.0 and pH 5.0). Thus, monkey CHIA can degrade chitin and chitosan efficiently without inactivation under high-temperature or low pH conditions. Our results show that certain chitooligosaccharides are enriched by using different substrates under different conditions. Therefore, the reaction conditions can be adjusted to obtain desired oligomers. Crab-eating monkey CHIA can potentially become an efficient tool in producing chitooligosaccharide sets for agricultural and biomedical purposes.
Collapse
Affiliation(s)
- Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Chinatsu Takasaki
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
- Japan Society for the Promotion of Science (PD), Tokyo 102-0083, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
| | - Peter O. Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
- Bioinova JSC, Videnska 1083, 142 20 Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| |
Collapse
|
23
|
Lv J, Li R, Su Z, Gao B, Ti X, Yan D, Liu G, Liu P, Wang C, Li J. A chromosome-level genome of Portunus trituberculatus provides insights into its evolution, salinity adaptation and sex determination. Mol Ecol Resour 2021; 22:1606-1625. [PMID: 34854556 DOI: 10.1111/1755-0998.13564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023]
Abstract
Portunus trituberculatus (Crustacea: Decapoda: Brachyura), commonly known as the swimming crab, is of major ecological importance, as well as being important to the fisheries industry. P. trituberculatus is also an important farmed species in China due to its rapid growth rate and high economic value. Here, we report the genome sequence of the swimming crab, which was assembled at the chromosome scale, covering ~1.2 Gb, with 79.99% of the scaffold sequences assembled into 53 chromosomes. The contig and scaffold N50 values were 108.7 kb and 15.6 Mb, respectively, with 19,981 protein-coding genes. Based on comparative genomic analyses of crabs and shrimps, the C2H2 zinc finger protein family was found to be the only gene family expanded in crab genomes, suggesting it was closely related to the evolution of crabs. The combination of transcriptome and bulked segregant analysis provided insights into the genetic basis of salinity adaptation and rapid growth in P. trituberculatus. In addition, the specific region of the Y chromosome was located for the first time in the genome of P. trituberculatus, and three genes were preliminarily identified as candidate genes for sex determination in this region. Decoding the swimming crab genome not only provides a valuable genomic resource for further biological and evolutionary studies, but is also useful for molecular breeding of swimming crabs.
Collapse
Affiliation(s)
- Jianjian Lv
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Aoshanwei Town, Jimo, Qingdao, China
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Zhencheng Su
- Novogene Bioinformatics Institute, Beijing, China
| | - Baoquan Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Aoshanwei Town, Jimo, Qingdao, China
| | - Xingbin Ti
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Deping Yan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Aoshanwei Town, Jimo, Qingdao, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Aoshanwei Town, Jimo, Qingdao, China
| |
Collapse
|
24
|
Tabata E, Itoigawa A, Koinuma T, Tayama H, Kashimura A, Sakaguchi M, Matoska V, Bauer PO, Oyama F. Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora. Mol Biol Evol 2021; 39:6432054. [PMID: 34897517 PMCID: PMC8789059 DOI: 10.1093/molbev/msab331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science (PD), Tokyo, Japan
| | - Akihiro Itoigawa
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Takumi Koinuma
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | - Hiroshi Tayama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | | | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
- Bioinova JSC, Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
- Corresponding author: E-mail:
| |
Collapse
|
25
|
Wakita S, Sugahara Y, Nakamura M, Kobayashi S, Matsuda K, Takasaki C, Kimura M, Kida Y, Uehara M, Tabata E, Hiraoka K, Seki S, Matoska V, Bauer PO, Oyama F. Mouse Acidic Chitinase Effectively Degrades Random-Type Chitosan to Chitooligosaccharides of Variable Lengths under Stomach and Lung Tissue pH Conditions. Molecules 2021; 26:molecules26216706. [PMID: 34771117 PMCID: PMC8587675 DOI: 10.3390/molecules26216706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Chitooligosaccharides exhibit several biomedical activities, such as inflammation and tumorigenesis reduction in mammals. The mechanism of the chitooligosaccharides’ formation in vivo has been, however, poorly understood. Here we report that mouse acidic chitinase (Chia), which is widely expressed in mouse tissues, can produce chitooligosaccharides from deacetylated chitin (chitosan) at pH levels corresponding to stomach and lung tissues. Chia degraded chitin to produce N-acetyl-d-glucosamine (GlcNAc) dimers. The block-type chitosan (heterogenous deacetylation) is soluble at pH 2.0 (optimal condition for mouse Chia) and was degraded into chitooligosaccharides with various sizes ranging from di- to nonamers. The random-type chitosan (homogenous deacetylation) is soluble in water that enables us to examine its degradation at pH 2.0, 5.0, and 7.0. Incubation of these substrates with Chia resulted in the more efficient production of chitooligosaccharides with more variable sizes was from random-type chitosan than from the block-type form of the molecule. The data presented here indicate that Chia digests chitosan acquired by homogenous deacetylation of chitin in vitro and in vivo. The degradation products may then influence different physiological or pathological processes. Our results also suggest that bioactive chitooligosaccharides can be obtained conveniently using homogenously deacetylated chitosan and Chia for various biomedical applications.
Collapse
Affiliation(s)
- Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Masayuki Nakamura
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Syunsuke Kobayashi
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Kazuhisa Matsuda
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Chinatsu Takasaki
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
- Japan Society for the Promotion of Science (PD), Tokyo 102-0083, Japan
| | - Yuta Kida
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
- Japan Society for the Promotion of Science (PD), Tokyo 102-0083, Japan
| | - Koji Hiraoka
- Department of Environmental Chemistry, Kogakuin University, Tokyo 192-0015, Japan; (K.H.); (S.S.)
| | - Shiro Seki
- Department of Environmental Chemistry, Kogakuin University, Tokyo 192-0015, Japan; (K.H.); (S.S.)
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
| | - Peter O. Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
- Bioinova JSC, Videnska 1083, 142 20 Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (S.W.); (Y.S.); (M.N.); (S.K.); (K.M.); (C.T.); (M.K.); (Y.K.); (M.U.); (E.T.)
- Correspondence:
| |
Collapse
|
26
|
Khokhani D, Carrera Carriel C, Vayla S, Irving TB, Stonoha-Arther C, Keller NP, Ané JM. Deciphering the Chitin Code in Plant Symbiosis, Defense, and Microbial Networks. Annu Rev Microbiol 2021; 75:583-607. [PMID: 34623896 DOI: 10.1146/annurev-micro-051921-114809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chitin is a structural polymer in many eukaryotes. Many organisms can degrade chitin to defend against chitinous pathogens or use chitin oligomers as food. Beneficial microorganisms like nitrogen-fixing symbiotic rhizobia and mycorrhizal fungi produce chitin-based signal molecules called lipo-chitooligosaccharides (LCOs) and short chitin oligomers to initiate a symbiotic relationship with their compatible hosts and exchange nutrients. A recent study revealed that a broad range of fungi produce LCOs and chitooligosaccharides (COs), suggesting that these signaling molecules are not limited to beneficial microbes. The fungal LCOs also affect fungal growth and development, indicating that the roles of LCOs beyond symbiosis and LCO production may predate mycorrhizal symbiosis. This review describes the diverse structures of chitin; their perception by eukaryotes and prokaryotes; and their roles in symbiotic interactions, defense, and microbe-microbe interactions. We also discuss potential strategies of fungi to synthesize LCOs and their roles in fungi with different lifestyles.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Current affiliation: Department of Plant Pathology, University of Minnesota, Saint Paul, Minnesota 55108, USA;
| | - Cristobal Carrera Carriel
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Shivangi Vayla
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Thomas B Irving
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , ,
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , , , , .,Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
27
|
Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci Rep 2021; 11:15470. [PMID: 34326426 PMCID: PMC8322401 DOI: 10.1038/s41598-021-95010-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Diet of the crab-eating monkey (Macaca fascicularis) consists of both plants and animals, including chitin-containing organisms such as crabs and insects. This omnivorous monkey has a high expression of acidic chitinase (CHIA) in the stomach and here, we report on its enzymatic properties under different conditions. When we compared with Mus musculus CHIA (Mm-CHIA), Macaca fascicularis CHIA (Mf-CHIA) exhibits higher chitinolytic activity at broad pH (1.0–7.0) and temperature (30–70 ℃) range. Interestingly, at its optimum pH (5.0), Mf-CHIA showed the highest activity at 65 °C while maintaining it at robust levels between 50 and 70 °C. The degradation efficiency of Mf-CHIA was superior to Mm-CHIA toward both polymeric chitin as well as an artificial chromogenic substrate. Our results show that unique features of Mf-CHIA including its thermostability warrant the nomination of this enzyme for potential agricultural and biomedical applications.
Collapse
|
28
|
Vogt G. Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion. ZOOLOGY 2021; 147:125945. [PMID: 34217027 DOI: 10.1016/j.zool.2021.125945] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/09/2023]
Abstract
The ∼15.000 decapod crustaceans that are mostly omnivorous have evolved a structurally and functionally complex digestive system. They have highly effective cuticular chewing and filtering structures in the stomach, which are regularly renewed by moulting. Decapods produce a broad range of digestive enzymes including chitinases, cellulases, and collagenases with unique properties. These enzymes are synthesized in the F-cells of the hepatopancreas and are encoded in the genome as pre-pro-proteins. In contrast to mammals, they are stored in a mature form in the lumen of the stomach to await the next meal, and therefore, the enzymes are particularly stable. The fat emulsifiers are fatty acyl-dipeptides rather than bile salts. After mechanical and chemical processing of the food in the cardiac stomach, the chyme is filtered by two unique filter systems of different mesh-size. The filtrate is then transferred to the hepatopancreas where the nutrients are absorbed by the R-cells, mostly via carriers, resembling nutrient absorption in the small intestine of mammals. The absorbed nutrients are used to fuel the metabolism of the hepatopancreas, are supplied to other organs, and are stored in the R-cells as glycogen and lipid reserves. Export lipids are secreted from the R-cells into the haemolymph as high density lipoproteins that mainly consist of phospholipids. In contrast to mammals, the midgut tube and hindgut contribute only little to food processing and nutrient absorption. The oesophagus, stomach and hindgut are well innervated but the hepatopancreas lacks nerves. Hormone cells are abundant in the midgut and hepatopancreas epithelia. Microorganisms are often present in the intestine of decapods, but they are apparently not essential for digestion and nutrition.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| |
Collapse
|
29
|
Hu C, Ma Z, Zhu J, Fan Y, Tuo B, Li T, Liu X. Physiological and pathophysiological roles of acidic mammalian chitinase (CHIA) in multiple organs. Biomed Pharmacother 2021; 138:111465. [PMID: 34311522 DOI: 10.1016/j.biopha.2021.111465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Acidic mammalian chitinase (CHIA) belongs to the 18-glycosidase family and is expressed in epithelial cells and certain immune cells (such as neutrophils and macrophages) in various organs. Under physiological conditions, as a hydrolase, CHIA can degrade chitin-containing pathogens, participate in Type 2 helper T (Th2)-mediated inflammation, and enhance innate and adaptive immunity to pathogen invasion. Under pathological conditions, such as rhinitis, ocular conjunctivitis, asthma, chronic atrophic gastritis, type 2 diabetes, and pulmonary interstitial fibrosis, CHIA expression is significantly changed. In addition, studies have shown that CHIA has an anti-apoptotic effect, promotes epithelial cell proliferation and maintains organ integrity, and these effects are not related to chitinase degradation. CHIA can also be used as a biomolecular marker in diseases such as chronic atrophic gastritis, dry eye, and acute kidney damage caused by sepsis. Analysis of the authoritative TCGA database shows that CHIA expression in gastric adenocarcinoma, liver cancer, renal clear cell carcinoma and other tumors is significantly downregulated compared with that in normal tissues, but the specific mechanism is unclear. This review is based on all surveys conducted to date and summarizes the expression patterns and functional diversity of CHIA in various organs. Understanding the physiological and pathophysiological relevance of CHIA in multiple organs opens new possibilities for disease treatment.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China
| | - Yi Fan
- Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Taolang Li
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China.
| |
Collapse
|
30
|
El-Naccache DW, Haskó G, Gause WC. Early Events Triggering the Initiation of a Type 2 Immune Response. Trends Immunol 2021; 42:151-164. [PMID: 33386241 PMCID: PMC9813923 DOI: 10.1016/j.it.2020.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/11/2023]
Abstract
Type 2 immune responses are typically associated with protection against helminth infections and also with harmful inflammation in response to allergens. Recent advances have revealed that type 2 immunity also contributes to sterile inflammation, cancer, and microbial infections. However, the early events that initiate type 2 immune responses remain poorly defined. New insights reveal major contributions from danger-associated molecular patterns (DAMPs) in the initiation of type 2 immune responses. In this review, we examine the molecules released by the host and pathogens and the role they play in mediating the initiation of mammalian innate type 2 immune responses under a variety of conditions.
Collapse
Affiliation(s)
- Darine W El-Naccache
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ, USA; Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - William C Gause
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ, USA; Department of Medicine, Rutgers - New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
31
|
Cristófalo AE, Uhrig ML. Synthetic Studies on the Incorporation of N-Acetylallosamine in Hyaluronic Acid-Inspired Thiodisaccharides. Molecules 2021; 26:E180. [PMID: 33401465 PMCID: PMC7796257 DOI: 10.3390/molecules26010180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Two approaches for the synthesis of the thiodisaccharide β-S-GlcA(1→3)β-S-AllNAc are described here. The target disaccharide was a C-3 epimer and thio-analogue of the hyaluronic acid repetitive unit, tuned with a thiopropargyl anomeric group for further click conjugation. Thus, we analysed and tested two convenient sequences, combining the two key steps required to introduce the thioglycosidic bonds and consequently reach the target molecule: the SN2 substitution of a good leaving group (triflate) present at C-3 of a GlcNAc derivative and the introduction of the anomeric thiopropargyl substituent. The use of a 2-azido precursor showed to be a convenient substrate for the SN2 step. Nevertheless, further protecting group manipulation and the introduction of the thiopropargyl anomeric residue were then required. This approach showed to provide access to a variety of thiodisaccharide derivatives as interesting building blocks for the construction of neoglycoconjugates.
Collapse
Affiliation(s)
- Alejandro E. Cristófalo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina;
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina;
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
32
|
Lim YK, Cheung K, Dang X, Roberts SB, Wang X, Thiyagarajan V. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105217. [PMID: 33276167 DOI: 10.1016/j.marenvres.2020.105217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/12/2023]
Abstract
Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.
Collapse
Affiliation(s)
- Yong-Kian Lim
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xin Dang
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122, NE Boat Street, Seattle, WA, USA
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
33
|
Lim YK, Cheung K, Dang X, Roberts SB, Wang X, Thiyagarajan V. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105214. [PMID: 33221553 DOI: 10.1016/j.marenvres.2020.105214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.
Collapse
Affiliation(s)
- Yong-Kian Lim
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Xin Dang
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA, USA
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
34
|
Ohno M, Miyazaki M, Kimura M, Minowa Y, Sakaguchi M, Oyama F, Yamashita T. Characterization of mouse di- N-acetylchitobiase that can degrade chitin-oligosaccharides. Biosci Biotechnol Biochem 2020; 84:2499-2507. [PMID: 32799730 DOI: 10.1080/09168451.2020.1805584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Di-N-acetylchitobiase (Ctbs) degrades β-1,4 glycoside bonds of the chitobiose core of free asparagine-linked glycan. This study examined whether Ctbs degrades chitin-oligosaccharides to GlcNAc in mammals. We analyzed Ctbs mRNA and protein expression in mouse tissues and characterized enzymatic activity using recombinant mouse Ctbs expressed in Escherichia coli. Ctbs mRNA and protein were expressed in various tissues of mouse, including the stomach. Optimal conditions for recombinant Ctbs were pH 3.0 and 45°C, and the recombinant enzyme was retained more than 94% activity after incubation at pH 3.0-7.0 and below 37°C. The recombinant Ctbs hydrolyzed (GlcNAc)3 and (GlcNAc)6 at pH 3.0 and produced GlcNAc. The K m of Ctbs was lowest with (GlcNAc)3 as a substrate. k cat/K m was fourfold as high with (GlcNAc)3 and (GlcNAc)4 as substrates than with (GlcNAc)2. These results suggest that Ctbs digests chitin-oligosaccharides or (GlcNAc)2 of reducing-end residues of oligosaccharides and produces GlcNAc in mouse tissues.
Collapse
Affiliation(s)
- Misa Ohno
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University , Morioka, Iwate, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University , Morioka, Iwate, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University , Hachioji, Tokyo, Japan
| | - Yusaku Minowa
- Department of Chemistry and Life Science, Kogakuin University , Hachioji, Tokyo, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University , Hachioji, Tokyo, Japan
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University , Hachioji, Tokyo, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University , Morioka, Iwate, Japan
| |
Collapse
|
35
|
Reszka M, Serdiuk IE, Kozakiewicz K, Nowacki A, Myszka H, Bojarski P, Liberek B. Influence of a 4'-substituent on the efficiency of flavonol-based fluorescent indicators of β-glycosidase activity. Org Biomol Chem 2020; 18:7635-7648. [PMID: 32960207 DOI: 10.1039/d0ob01505a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article presents novel fluorescent probes, based on the excited-state intramolecular proton transfer (ESIPT) phenomenon and flavonols, sensitive to the action of specific glycosidases. 4'-Substituted flavonols were synthesized, using various approaches, and glycosylated with d-glucose, N-acetyl-d-glucosamine and d-glucuronic acid. Evaluation of the β-glycosidase activities was performed in neutral and acidic pH. In all the cases examined, an acidic environment accelerated enzymatic hydrolysis. It was demonstrated that the 4'-chloroflavonyl glycosides of all sugars tested, both in neutral and acidic pH, are the ones most sensitive to the presence of hydrolase. In turn, 4'-dimethylaminoflavonyl glucoside is not sensitive to glucosidase action at all. Generally, the rate of enzymatic hydrolysis increases as the electron-withdrawing nature of the 4'-substituent increases. An exception is the trifluoromethyl group which, in spite of having the most favourable Hammett constant, does not contribute enough to increase the rate of hydrolysis of its glucoside. The presented experimental results are supported by the electrostatic potential (ESP) analysis and related to the mechanisms of glycoside bond enzymatic hydrolysis.
Collapse
Affiliation(s)
- Milena Reszka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Fasoli S, Andreani G, Dondi F, Ferlizza E, Bellei E, Isani G. Urinary Reference Values and First Insight into the Urinary Proteome of Captive Giraffes. Animals (Basel) 2020; 10:E1696. [PMID: 32961670 PMCID: PMC7552697 DOI: 10.3390/ani10091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022] Open
Abstract
Urinalysis is widely recognized to be a useful tool in routine health investigations, since it can diagnose numerous pathologies. Considering the paucity of knowledge concerning giraffes, urine from 44 giraffes (Giraffa camelopardalis) (18 males and 26 females, from 3 months of age to 21 years of age) underwent routine urinalysis, 1D-electrophoresis, and protein identification using mass spectrometry, with the aim of identifying the urinary reference values and the urine proteome. The urine specific gravity (USG), urine total proteins (uTP), urine creatinine (uCr), and urine protein:creatinine ratio (UPC) reference values, reported as the median, and lower limit (LL) and upper limit (UL), were 1.030 (1006-1.049), 17.58 (4.54-35.31) mg/dL, 154.62 (39.59-357.95) mg/dL, and 0.11 (0.07-0.16), respectively. Mass spectrometry, together with electrophoresis, revealed a pattern of common urinary proteins; albumin, lysozyme C, and ubiquitin were the most represented proteins in the giraffe urine. It has been hypothesized that these proteins could act as a defense against microbes. Moreover, in giraffes, urinalysis could be a valid tool for gauging renal function and physiological status changes.
Collapse
Affiliation(s)
- Sabrina Fasoli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| | - Giulia Andreani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| | - Enea Ferlizza
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Gloria Isani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (S.F.); (F.D.); (G.I.)
| |
Collapse
|
37
|
Wang Y, Saelao P, Kern C, Jin S, Gallardo RA, Kelly T, Dekkers JM, Lamont SJ, Zhou H. Liver Transcriptome Responses to Heat Stress and Newcastle Disease Virus Infection in Genetically Distinct Chicken Inbred Lines. Genes (Basel) 2020; 11:E1067. [PMID: 32932855 PMCID: PMC7563548 DOI: 10.3390/genes11091067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023] Open
Abstract
Heat stress results in reduced productivity, anorexia, and mortality in chickens. The objective of the study was to identify genes and signal pathways associated with heat stress and Newcastle disease virus (NDV) infection in the liver of chickens through RNA-seq analysis, using two highly inbred chicken lines (Leghorn and Fayoumi). All birds were held in the same environment until 14 days of age. On day 14, half the birds were exposed to 38 °C with 50% relative humidity for 4 h, then 35 °C until the end of the experiment. The remaining birds were kept at 25 °C throughout the experiment. The heat-treated birds were inoculated at 21 days of age with 107 EID50 (One EID50 unit is the amount of virus that will infect 50 percent of inoculated embryos) NDV La Sota strain to investigate the effects of both heat stress and NDV infection. Physiological parameters were recorded as blood phenotypes at three stages: acute heat (AH), chronic heat (CH1), and chronic heat combined with NDV infection (CH&NDV), at 4 h, 7 days, and 10 days post-initiation of heat treatment, respectively. Our previous work revealed that the heat-resilient Fayoumi line maintained a more stable acid-base balance in their blood compared to the Leghorn line. Liver samples were harvested on both AH and CH&NDV to characterize the transcriptome profiles of these two inbred lines. Both genetic lines and treatments had large impact on the liver transcriptome. Fayoumi birds had more differentially expressed genes (DEGs) than Leghorn birds for both treatments. Metabolic and immune-related genes were on the DEG list, with Fayoumi having more immune-related DEGs than Leghorns, which was confirmed by gene functional enrichment analysis. Weighted correlation network analysis (WGCNA) indicated that the driver genes such as Solute Carrier Family genes could be very important for stabilizing the acid-base balance in Fayoumi birds during heat stress. Therefore, candidate genes such solute carrier family genes could be potential genetic targets that are regulated by Fayoumis to maintain physical hemostasis under heat stress. Differential gene expression showed that Leghorns mainly performed metabolic regulation in response to heat stress and NDV infection, while Fayoumis regulated both immune and metabolic functions. This study provides novel insights and enhances our understandings of liver response to heat stress of heat resilient and susceptible inbred chicken lines.
Collapse
Affiliation(s)
- Ying Wang
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| | - Colin Kern
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
| | - Sihua Jin
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
| | - Rodrigo A. Gallardo
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Terra Kelly
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jack M. Dekkers
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Susan J. Lamont
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA; (Y.W.); (P.S.); (C.K.); (S.J.)
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, CA 95616, USA; (R.A.G.); (T.K.); (J.M.D.); (S.J.L.)
| |
Collapse
|
38
|
Mami S, Yeganeh F, Salari AA, Anissian A, Azizi M, Hajimollahoseini M. Oral chitin treatment improved demyelination in murine autoimmune encephalomyelitis model by inhibition of inflammatory responses. Int Immunopharmacol 2020; 84:106536. [PMID: 32361654 DOI: 10.1016/j.intimp.2020.106536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022]
Abstract
This study aimed to determine whether chitin microparticles (CMP), glucosamine-based polymers, have an anti-inflammatory response in a murine model of autoimmune encephalomyelitis. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by immunization with myelin antigens emulsified in complete Freund adjuvant. A standard clinical and histological method (Luxol Fast Blue staining) was used to validate the model and document the impact of CMP treatment. ELISA was used to determine the production of spleen cell cytokines and serum levels of anti-chitin antibodies. Flowcytometry was used to determine the percentage of regulatory lymphocytes. The relative expression of the breast regression protein 39 (BRP-39) gene was examined through real time-PCR amplification. Clinical signs were significantly improved in mice given CMP compared with untreated mice. Histological analysis of the spinal cord revealed that treatment significantly reduced demyelination. The levels of interferon-γ, interleukin-17, and tumor necrosis factor-α were also reduced; conversely, no significant change was detected in interleukin-10 level and regulatory T cell count. The CMP-fed mice showed lower BRP-39 expression compared with the control group. It was ultimately determined that CMP modulates immune responses which could indirectly alter the pathology of an injured central nervous system. The data suggests that CMP may be used as an effective and cheap oral therapeutic agent for multiple sclerosis.
Collapse
Affiliation(s)
- Sanaz Mami
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Yeganeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Alborz, Karaj, Iran
| | - Ali Anissian
- Department of Veterinary Pathology, Islamic Azad University, Abhar Branch, Abhar, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hajimollahoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Tabata E, Wakita S, Kashimura A, Sugahara Y, Matoska V, Bauer PO, Oyama F. Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations. Sci Rep 2019; 9:15609. [PMID: 31666642 PMCID: PMC6821832 DOI: 10.1038/s41598-019-52136-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/14/2019] [Indexed: 02/03/2023] Open
Abstract
Commercially available porcine pepsin preparations have been used for the production of chitooligosaccharides with various biomedical activities. However, the origin of this activity is not well understood. Here we show that the chitosan-degrading activity is conferred by residues with chitinolytic activity of truncated forms of acidic chitinase (Chia) persisting in the pepsin preparation. Chia is an acid-stable and pepsin-resistant enzyme that degrades chitin to produce N-acetyl-D-glucosamine dimer. We found that Chia can be truncated by pepsin under stomach-like conditions while maintaining its enzymatic activity. Similarly to the full-length protein, truncated Chia as well as the pepsin preparations digested chitosan with different degrees of deacetylation (DD: 69-84%) with comparable degradation products. The efficiency was DD-dependent with a marked decrease with higher DD, indicating that the chitosan-degrading activity in the pepsin preparation is due to the chitinolytic activity rather than chitosanolytic activity. We suggest that natural or recombinant porcine Chia are suitable for producing chitooligosaccharides for biomedical purposes.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.,Research Fellow of Japan Society for the Promotion of Science (DC1), Koujimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic.,Bioinova Ltd., Videnska 1083, Prague, 142 20, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
40
|
Kimura M, Umeyama T, Wakita S, Okawa K, Sakaguchi M, Matoska V, Bauer PO, Oyama F. Direct comparison of chitinolytic properties and determination of combinatory effects of mouse chitotriosidase and acidic mammalian chitinase. Int J Biol Macromol 2019; 134:882-890. [DOI: 10.1016/j.ijbiomac.2019.05.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 01/31/2023]
|
41
|
A Bacillus pumilus originated β-N-acetylglucosaminidase for chitin combinatory hydrolysis and exploration of its thermostable mechanism. Int J Biol Macromol 2019; 132:1282-1289. [DOI: 10.1016/j.ijbiomac.2019.04.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/23/2022]
|
42
|
Dietary Chitin Particles Called Mimetic Fungi Ameliorate Colitis in Toll-Like Receptor 2/CD14- and Sex-Dependent Manners. Infect Immun 2019; 87:IAI.00006-19. [PMID: 30782858 DOI: 10.1128/iai.00006-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
Chitin is a natural N-acetylglucosamine polymer and a major structural component of fungal cell walls. Dietary chitin is mucoadhesive; anti-inflammatory effects of chitin microparticles (CMPs; 1- to 10-μm diameters) have been demonstrated in models of inflammatory bowel disease (IBD). The goals of this study were to assess (i) whether CMPs among various chitin preparations are the most effective against colitis in male and female mice and (ii) whether host chitin-binding Toll-like receptor 2 (TLR2) and CD14 are required for the anti-inflammatory effect of chitin. We found that colitis in male mice was ameliorated by CMPs and large chitin beads (LCBs; 40 to 70 μm) but not by chitosan (deacetylated chitin) microparticles, oligosaccharide chitin, or glucosamine. In fact, LCBs were more effective than CMPs. In female colitis, on the other hand, CMPs and LCBs were equally and highly effective. Neither sex of TLR2-deficient mice showed anti-inflammatory effects when treated with LCBs. No anti-inflammatory effect of LCBs was seen in either CD14-deficient males or females. Furthermore, an in vitro study indicated that when LCBs and CMPs were digested with stomach acidic mammalian chitinase (AMC), their size-dependent macrophage activations were modified, at least in part, suggesting reduced particle sizes of dietary chitin in the stomach. Interestingly, stomach AMC activity was greater in males than females. Our results indicated that dietary LCBs were the most effective preparation for treating colitis in both sexes; these anti-inflammatory effects of LCBs were dependent on host TLR2 and CD14.
Collapse
|
43
|
Meyer S, Gessner DK, Wen G, Most E, Liebisch G, Zorn H, Ringseis R, Eder K. The Antisteatotic and Hypolipidemic Effect of Insect Meal in Obese Zucker Rats is Accompanied by Profound Changes in Hepatic Phospholipid and 1-Carbon Metabolism. Mol Nutr Food Res 2019; 63:e1801305. [PMID: 30688013 DOI: 10.1002/mnfr.201801305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/18/2019] [Indexed: 12/30/2022]
Abstract
SCOPE The hypothesis is tested that insect meal, which has a low methionine content, reduces the hepatic phosphatidylcholine (PC):phosphatidylethanolamine (PE) ratio, which is a critical determinant of hepatic lipid synthesis, by decreasing availability of the methionine metabolite S-adenosylmethionine (SAM). METHODS AND RESULTS Obese rats (n = 24) are randomly divided into two groups (Obese Casein and Obese Insect) of 12 rats each. In addition, lean rats (n = 12) are used as control group (LC). Groups LC and OC receive a control diet with casein as protein source, whereas in the OI group, casein is replaced isonitrogenously by insect meal, which is found to be less digestible (-12% units). Plasma and liver concentrations of lipids and hepatic expression of lipid synthesizing genes are reduced in the OI group compared to the OC group. Plasma and liver concentration of PC and the PC:PE ratio are decreased in the OI group compared to the OC group, while hepatic concentration of SAM and the hepatic SAM:S-adenosylhomocysteine (SAH) ratio is lower in the OI group than in the OC group. CONCLUSION The decrease of the hepatic PC:PE ratio is probably a key mechanism explaining the pronounced antisteatotic and hypolipidemic action of insect meal in obese rats.
Collapse
Affiliation(s)
- Sandra Meyer
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Str. 2, 35394, Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
44
|
Tabata E, Kashimura A, Uehara M, Wakita S, Sakaguchi M, Sugahara Y, Yurimoto T, Sasaki E, Matoska V, Bauer PO, Oyama F. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci Rep 2019; 9:159. [PMID: 30655565 PMCID: PMC6336882 DOI: 10.1038/s41598-018-36477-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
Chitin is a polymer of N-acetyl-D-glucosamine (GlcNAc) and a main constituent of insects' exoskeleton. Insects are rich in protein with high energy conversion efficiency. Recently, we have reported that acidic chitinases (Chia) act as digestive enzymes in mouse, pig and chicken (omnivorous) but not in dog (carnivorous) and bovine (herbivorous), indicating that feeding behavior affects Chia expression levels, and determines chitin digestibility in the particular animals. Common marmoset (Callithrix jacchus) belongs to New World monkey family and provides a potential bridge between mouse models and human diseases. Common marmoset is an insectivorous nonhuman primate with unknown expression levels and enzymatic functions of the Chia homologue, CHIA. Here, we report that common marmoset highly expresses pepsin-, trypsin- and chymotrypsin-resistant CHIA in the stomach. We show that CHIA is most active at pH 2.0 and degrades chitin and mealworm shells into GlcNAc dimers under gastrointestinal conditions. Although common marmoset and crab-eating monkey (Old World monkey) have two CHIA genes in their genomes, they primarily express one gene in the stomach. Thus, this study is the first to investigate expression levels and enzymatic functions of CHIA in a New World primate, contributing to the understanding of dietary adaptation and digestion in this taxon.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.,Research Fellow of Japan Society for the Promotion of Science (DC1), Koujimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Terumi Yurimoto
- Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic.,Bioinova Ltd., Videnska 1083, Prague, 142 20, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
45
|
Yasuike M, Iwasaki Y, Nishiki I, Nakamura Y, Matsuura A, Yoshida K, Noda T, Andoh T, Fujiwara A. The yellowtail (Seriola quinqueradiata) genome and transcriptome atlas of the digestive tract. DNA Res 2018; 25:547-560. [PMID: 30329019 PMCID: PMC6191305 DOI: 10.1093/dnares/dsy024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Seriola quinqueradiata (yellowtail) is the most widely farmed and economically important fish in aquaculture in Japan. In this study, we used the genome of haploid yellowtail fish larvae for de novo assembly of whole-genome sequences, and built a high-quality draft genome for the yellowtail. The total length of the assembled sequences was 627.3 Mb, consisting of 1,394 scaffold sequences (>2 kb) with an N50 length of 1.43 Mb. A total of 27,693 protein-coding genes were predicted for the draft genome, and among these, 25,832 predicted genes (93.3%) were functionally annotated. Given our lack of knowledge of the yellowtail digestive system, and using the annotated draft genome as a reference, we conducted an RNA-Seq analysis of its three digestive organs (stomach, intestine and rectum). The RNA-Seq results highlighted the importance of certain genes in encoding proteolytic enzymes necessary for digestion and absorption in the yellowtail gastrointestinal tract, and this finding will accelerate development of formulated feeds for this species. Since this study offers comprehensive annotation of predicted protein-coding genes, it has potential broad application to our understanding of yellowtail biology and aquaculture.
Collapse
Affiliation(s)
- Motoshige Yasuike
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Yuki Iwasaki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Issei Nishiki
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Yoji Nakamura
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Aiko Matsuura
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| | - Kazunori Yoshida
- Goto Laboratory, Stock Enhancement and Aquaculture Division, Seikai National Fisheries Research Institute Japan Fisheries Research and Education Agency, Tamanoura-cho, Goto, Nagasaki, Japan
| | - Tsutomu Noda
- Goto Laboratory, Stock Enhancement and Aquaculture Division, Seikai National Fisheries Research Institute Japan Fisheries Research and Education Agency, Tamanoura-cho, Goto, Nagasaki, Japan
| | - Tadashi Andoh
- Stock Enhancement and Aquaculture Division, Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Nagasaki, Japan
| | - Atushi Fujiwara
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Kanagawa, Japan
| |
Collapse
|
46
|
Steven J. VD, Richard M. L. Chitins and chitinase activity in airway diseases. J Allergy Clin Immunol 2018; 142:364-369. [PMID: 29959948 PMCID: PMC6078791 DOI: 10.1016/j.jaci.2018.06.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023]
Abstract
Chitin, one of the most abundant biopolymers on Earth, is bound and degraded by chitinases, specialized enzymes that are similarly widespread in nature. Chitin catabolism affects global carbon and nitrogen cycles through a host of diverse biological processes, but recent work has focused attention on systems of chitin recognition and degradation conserved in mammals, connecting an ancient pathway of polysaccharide processing to human diseases influenced by persistent immune triggering. Here we review current advances in our understanding of how chitin-chitinase interactions affect mucosal immune feedback mechanisms essential to maintaining homeostasis and organ health.
Collapse
Affiliation(s)
- Van Dyken Steven J.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO USA.
| | - Locksley Richard M.
- Howard Hughes Medical Institute, Departments of Medicine and Microbiology / Immuology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Uehara M, Tabata E, Ishii K, Sawa A, Ohno M, Sakaguchi M, Matoska V, Bauer PO, Oyama F. Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase. Genes (Basel) 2018; 9:genes9050244. [PMID: 29747453 PMCID: PMC5977184 DOI: 10.3390/genes9050244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey (Macaca fascicularis) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey–mouse–human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.
Collapse
Affiliation(s)
- Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
- Japan Society for the Promotion of Science (DC1), Koujimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Kazuhiro Ishii
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA.
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287, USA.
| | - Misa Ohno
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Vaclav Matoska
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, 150 00 Prague, Czech Republic.
| | - Peter O Bauer
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, 150 00 Prague, Czech Republic.
- Bioinova Ltd., 142 20 Prague, Czech Republic.
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| |
Collapse
|
48
|
Emerling CA, Delsuc F, Nachman MW. Chitinase genes ( CHIAs) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals. SCIENCE ADVANCES 2018; 4:eaar6478. [PMID: 29774238 PMCID: PMC5955627 DOI: 10.1126/sciadv.aar6478] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/30/2018] [Indexed: 05/21/2023]
Abstract
The end-Cretaceous extinction led to a massive faunal turnover, with placental mammals radiating in the wake of nonavian dinosaurs. Fossils indicate that Cretaceous stem placentals were generally insectivorous, whereas their earliest Cenozoic descendants occupied a variety of dietary niches. It is hypothesized that this dietary radiation resulted from the opening of niche space, following the extinction of dinosaurian carnivores and herbivores. We provide the first genomic evidence for the occurrence and timing of this dietary radiation in placental mammals. By comparing the genomes of 107 placental mammals, we robustly infer that chitinase genes (CHIAs), encoding enzymes capable of digesting insect exoskeletal chitin, were present as five functional copies in the ancestor of all placental mammals, and the number of functional CHIAs in the genomes of extant species positively correlates with the percentage of invertebrates in their diets. The diverse repertoire of CHIAs in early placental mammals corroborates fossil evidence of insectivory in Cretaceous eutherians, with descendant lineages repeatedly losing CHIAs beginning at the Cretaceous/Paleogene (K/Pg) boundary as they radiated into noninsectivorous niches. Furthermore, the timing of gene loss suggests that interordinal diversification of placental mammals in the Cretaceous predates the dietary radiation in the early Cenozoic, helping to reconcile a long-standing debate between molecular timetrees and the fossil record. Our results demonstrate that placental mammal genomes, including humans, retain a molecular record of the post-K/Pg placental adaptive radiation in the form of numerous chitinase pseudogenes.
Collapse
Affiliation(s)
- Christopher A. Emerling
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Institut des Sciences de l’Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Corresponding author.
| | - Frédéric Delsuc
- Institut des Sciences de l’Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Michael W. Nachman
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Janiak MC. No Evidence of Copy Number Variation in Acidic Mammalian Chitinase Genes (CHIA) in New World and Old World Monkeys. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Immunity to gastrointestinal nematode infections. Mucosal Immunol 2018; 11:304-315. [PMID: 29297502 DOI: 10.1038/mi.2017.113] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
Abstract
Numerous species of nematodes have evolved to inhabit the gastrointestinal tract of animals and humans, with over a billion of the world's population infected with at least one species. These large multicellular pathogens present a considerable and complex challenge to the host immune system given that individuals are continually exposed to infective stages, as well as the high prevalence in endemic areas. This review summarizes our current understanding of host-parasite interactions, detailing induction of protective immunity, mechanisms of resistance, and resolution of the response. It is clear from studies of well-defined laboratory model systems that these responses are dominated by innate and adaptive type 2 cytokine responses, regulating cellular and soluble effectors that serve to disrupt the niche in which the parasites live by strengthening the physical mucosal barrier and ultimately promoting tissue repair.
Collapse
|