1
|
Sudaraka Tennakoon MSBWTMN, Park JY, Lee HM, Ryu JH, Shin HJ. Ferritin nanoparticle complex with porcine epidemic diarrhea virus spike protein induces neutralizing antibody response against PEDV in mouse models. Microb Pathog 2025; 203:107509. [PMID: 40147557 DOI: 10.1016/j.micpath.2025.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
As the spike protein is the major antigen that contains various neutralizing epitopes against porcine epidemic diarrhea virus (PEDV), numerous vaccine trials employing the spike protein have been established. In this study, we developed a ferritin-based nanoparticle vaccine for PEDV by combining gene delivery functions of recombinant adenoviruses. To generate nanoparticles, the S1 subunit of the spike protein was genetically linked to the N-terminus of the human ferritin heavy chain (hFTHC), and recombinant adenoviruses were generated to deliver the genetic material. The efficacy of S1 conjugated human ferritin heavy chain (S1-hFTHC) adenoviruses against S1 adenoviruses was evaluated in BALB/c mice immunized intramuscularly without adjuvant. Two weeks after the final boost, we observed a significantly higher IgG response in S1-hFTHC immunized mice compared with the S1 immunized mice, and results from the virus neutralization assay revealed robust virus neutralization activity in the S1-hFTHC immunized group compared to the S1 immunized group. Furthermore, analysis of the serum based on IgG and neutralizing titers 40 days after the last vaccination revealed the significance and longevity of the immune response induced by S1-hFTCH compared to S1 only. This strategy elucidates the efficacy of combined vaccine strategies for developing promising vaccine candidates against PEDV.
Collapse
Affiliation(s)
| | - Jae-Yeon Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hye-Mi Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | | | - Hyun-Jin Shin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Zhang R, Yin G, Wang Y, Li Y, Wang X, Bi J, Yang G, Qu K, Gao L. Whole-Genome Analysis of Porcine Epidemic Diarrhea Virus from Yunnan, China. Vet Sci 2024; 11:548. [PMID: 39591322 PMCID: PMC11599152 DOI: 10.3390/vetsci11110548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a member of the genus α-coronavirus and causes severe diarrhea in piglets, leading to enormous economic losses in the pig industry. To understand the epidemic variation of PEDV strains in Yunnan province, three PEDV strains (YN2021, YNLP 2022, and YNBS 2022) and one commercially available attenuated vaccine strain (Attenuated AJ1102-R) that were previously isolated were sequenced and compared with the representative PEDV strains. NJ phylogenetic analysis showed that YN2021 strain and Attenuated CV777 strain were clustered into GI-b subtype, while YNLP 2022 and YNBS 2022 belong to GII-b subtype, accompanying ZJCZ4 and Attenuated AJ1102-R. RDP analysis revealed that YNLP 2022 was a genome recombination from both GII-b strain PEDV-7C and GII-a strain YN1, of which the recombination region is in the range nt4994-7605. YNBS 2022 strain was another recombination originated from GII-b subtype strain 17GXZC-1ORF3c and GII-a subtype strain PEDV-CHZ, of which the counterpart is in the range nt16399-22326. The Yunnan strain of PEDV was analyzed for the first time from the whole-genome perspective, and comprehensive analysis showed that the Yunnan strains have high genetic variation. This study may shed new light on the current PEDV infections in Yunnan and pave the way toward further control of PEDV infections.
Collapse
Affiliation(s)
- Runting Zhang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (G.Y.); (Y.W.); (Y.L.); (X.W.); (J.B.); (G.Y.)
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (G.Y.); (Y.W.); (Y.L.); (X.W.); (J.B.); (G.Y.)
| | - Yunhua Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (G.Y.); (Y.W.); (Y.L.); (X.W.); (J.B.); (G.Y.)
| | - Yongneng Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (G.Y.); (Y.W.); (Y.L.); (X.W.); (J.B.); (G.Y.)
| | - Xinxian Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (G.Y.); (Y.W.); (Y.L.); (X.W.); (J.B.); (G.Y.)
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (G.Y.); (Y.W.); (Y.L.); (X.W.); (J.B.); (G.Y.)
| | - Guishu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (G.Y.); (Y.W.); (Y.L.); (X.W.); (J.B.); (G.Y.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China
| | - Libo Gao
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (G.Y.); (Y.W.); (Y.L.); (X.W.); (J.B.); (G.Y.)
| |
Collapse
|
3
|
Tian X, Tang Y, Gan J, Ye J. A novel linear B cell epitope of the canine coronavirus nucleocapsid protein identified by a monoclonal antibody. Vet Microbiol 2024; 293:110098. [PMID: 38677126 DOI: 10.1016/j.vetmic.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
The infection of canine coronavirus (CCoV) causes a highly contagious disease in dogs with acute gastroenteritis. The efficient serological diagnostics is critical for controlling the disease caused by CCoV. Nucleocapsid (N) protein of CCoV is an important target for developing serological approaches. However, little is known about the antigenic sites in the N protein of CCoV. In this study, we generated a monoclonal antibody (mAb) against the N protein of CCoV, designated as 13E8, through the fusion of the sp2/0 cells with the spleen cells from a mouse immunized with the purified recombinant GST-N protein. Epitope mapping revealed that mAb 13E8 recognized a novel linear B cell epitope in N protein at 294-314aa (named as EP-13E8) by using a serial of truncated N protein through Western blot and ELISA. Sequence analysis showed that the sequence of EP-13E8 was highly conserved (100 %) among different CCoV strains analyzed, but exhibited a low similarity (31.8-63.6 %) with the responding sequence in other coronaviruses of the same genus such as FCoV, PEDV and HCoV except for TGEV (95.5 % identity). Structural assay suggested that the epitope of EP-13E8 were located in the close proximity on the surface of the N protein. Overall, the mAb 13E8 against N protein generated and its epitope EP-13E8 identified here paid the way for further developing epitope-based serological diagnostics for CCoV.
Collapse
Affiliation(s)
- Xiaoyan Tian
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ye Tang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Junji Gan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
4
|
Wei MZ, Chen L, Zhang R, Chen Z, Shen YJ, Zhou BJ, Wang KG, Shan CL, Zhu EP, Cheng ZT. Overview of the recent advances in porcine epidemic diarrhea vaccines. Vet J 2024; 304:106097. [PMID: 38479492 DOI: 10.1016/j.tvjl.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Vaccination is the most effective means of preventing and controlling porcine epidemic diarrhea (PED). Conventional vaccines developed from porcine epidemic diarrhea virus (PEDV) GI-a subtypes (CV777 and SM98) have played a vital role in preventing classical PED. However, with the emergence of PEDV mutants in 2010, conventional PEDV GI-a subtype-targeting vaccines no longer provide adequate protection against PEDV GII mutants, thereby making novel-type PED vaccine development an urgent concern to be addressed. Novel vaccines, including nucleic acid vaccines, genetically engineered subunit vaccines, and live vector vaccines, are associated with several advantages, such as high safety and stability, clear targeting, high yield, low cost, and convenient usage. These vaccines can be combined with corresponding ELISA kits to differentiate infected from vaccinated animals, which is beneficial for disease confirmation. This review provides a detailed overview of the recent advancements in PED vaccines, emphasizing on the research and application evaluation of novel PED vaccines. It also considers the future directions and challenges in advancing these vaccines to widespread use in clinics.
Collapse
Affiliation(s)
- Miao-Zhan Wei
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Lan Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Rong Zhang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ze Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yan-Juan Shen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bi-Jun Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Kai-Gong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chun-Lan Shan
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Er-Peng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Zhen-Tao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Ye M, Zhu H, Yang Z, Gao Y, Bai J, Jiang P, Liu X, Wang X. Identification of Three Novel Linear B-Cell Epitopes in Non-Structural Protein 3 of Porcine Epidemic Diarrhea Virus Using Monoclonal Antibodies. Viruses 2024; 16:424. [PMID: 38543789 PMCID: PMC10975687 DOI: 10.3390/v16030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 05/23/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic swine coronavirus that causes diarrhea and high mortality in piglets, resulting in significant economic losses within the global swine industry. Nonstructural protein 3 (Nsp3) is the largest in coronavirus, playing critical roles in viral replication, such as the processing of polyproteins and the formation of replication-transcription complexes (RTCs). In this study, three monoclonal antibodies (mAbs), 7G4, 5A3, and 2D7, targeting PEDV Nsp3 were successfully generated, and three distinct linear B-cell epitopes were identified within these mAbs by using Western blotting analysis with 24 truncations of Nsp3. The epitope against 7G4 was located on amino acids 31-TISQDLLDVE-40, the epitope against 5A3 was found on amino acids 141-LGIVDDPAMG-150, and the epitope against 2D7 was situated on amino acids 282-FYDAAMAIDG-291. Intriguingly, the epitope 31-TISQDLLDVE-40 recognized by the mAb 7G4 appears to be a critical B-cell linear epitope due to its high antigenic index and exposed location on the surface of Nsp3 protein. In addition, bioinformatics analysis unveiled that these three epitopes were highly conserved in most genotypes of PEDV. These findings present the first characterization of three novel linear B-cell epitopes in the Nsp3 protein of PEDV and provide potential tools of mAbs for identifying host proteins that may facilitate viral infection.
Collapse
Affiliation(s)
- Mingjun Ye
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.Y.); (H.Z.); (Z.Y.); (Y.G.); (J.B.); (P.J.); (X.L.)
| | - Huixin Zhu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.Y.); (H.Z.); (Z.Y.); (Y.G.); (J.B.); (P.J.); (X.L.)
| | - Zhen Yang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.Y.); (H.Z.); (Z.Y.); (Y.G.); (J.B.); (P.J.); (X.L.)
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.Y.); (H.Z.); (Z.Y.); (Y.G.); (J.B.); (P.J.); (X.L.)
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.Y.); (H.Z.); (Z.Y.); (Y.G.); (J.B.); (P.J.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.Y.); (H.Z.); (Z.Y.); (Y.G.); (J.B.); (P.J.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.Y.); (H.Z.); (Z.Y.); (Y.G.); (J.B.); (P.J.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.Y.); (H.Z.); (Z.Y.); (Y.G.); (J.B.); (P.J.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Park JE. Porcine Epidemic Diarrhea: Insights and Progress on Vaccines. Vaccines (Basel) 2024; 12:212. [PMID: 38400195 PMCID: PMC10892315 DOI: 10.3390/vaccines12020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) is a swine-wasting disease caused by coronavirus infection. It causes great economic damage to the swine industry worldwide. Despite the continued use of vaccines, PED outbreaks continue, highlighting the need to review the effectiveness of current vaccines and develop additional vaccines based on new platforms. Here, we review existing vaccine technologies for preventing PED and highlight promising technologies that may help control PED virus in the future.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
Huang ZX, Zhou ST, Wang J, Yang ZB, Wang Z. Remdesivir inhibits Porcine epidemic diarrhea virus infection in vitro. Heliyon 2023; 9:e21468. [PMID: 38027806 PMCID: PMC10663732 DOI: 10.1016/j.heliyon.2023.e21468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) is a highly contagious and pathogenic virus that causes symptoms such as diarrhea, vomiting, weight loss, and even death in piglets. Due to its high transmission rate, PEDV has resulted in significant global losses. Although some vaccines have been developed and utilized to prevent PEDV, their effectiveness is limited due to the virus's mutations. Therefore, it is imperative to investigate new strategies to combat PEDV. Remdesivir, a classic antiviral drug for coronaviruses, has been proven in our experiment to effectively suppress PEDV replication in Vero and LLC-PK1 cells. Additionally, the cell experiment demonstrated its direct inhibition of PEDV RNA-dependent RNA polymerase (RdRp) enzyme activity. Molecular docking simulations were employed to predict the binding site of remdesivir and PEDV RdRp. Moreover, we observed that remdesivir does not impact the production of inflammatory factors and exhibits antagonistic effects with exogenous nucleosides. Furthermore, we conducted RNA-Seq analysis to investigate the global changes in transcriptome of infected cells treated with remdesivir. Overall, our findings indicate that remdesivir holds promise as a potential candidate for the treatment of PEDV infection.
Collapse
Affiliation(s)
- Zi-Xin Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Ting Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yang ling, Xianyang 712100, China
| | - Zhi-Biao Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds / School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Pang J, Tian X, Han X, Yuan J, Li L, You Y, Zhou Y, Xing G, Li R, Wang Z. Computationally-driven epitope identification of PEDV N-protein and its application in development of immunoassay for PEDV detection. J Pharm Biomed Anal 2023; 235:115660. [PMID: 37598469 DOI: 10.1016/j.jpba.2023.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
The nucleocapsid (N) protein is a suitable candidate for early diagnosis of porcine epidemic diarrhea virus (PEDV). Here, we identified the linear B-cell epitopes of the PEDV N-protein by integrating a computational-experimental framework and constructed three-dimensional (3D) structure model of the N protein using the ColabFold program in Google Colaboratory. Furthermore, we prepared the monoclonal antibodies against the predicted epitopes and recombinant N protein, respectively, and selected pairing mAbs (named 9C4 and 3C5) to develop a double-antibody sandwich immunochromatographic test strip using CdSe/ZnS quantum dots (QDs)-labelled 9C4 and 3C5 as capture and detection antibodies, respectively. This strip can specifically detect PEDV within 10 min with a detection limit of less than 6.25 × 103 TCID50/mL. In comparison with RT-PCR for testing 90 clinical samples, the relative sensitivity and specificity of the strip were found to be 98.0% and 100%, respectively, with a concordance rate of 98.9% and a kappa value of 0.978, indicating that QDs-ICTS is a reliable method for the application of PEDV detection in clinical samples.
Collapse
Affiliation(s)
- Junzeng Pang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiao Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiakang Yuan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Linyue Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yonghe You
- Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Yanlin Zhou
- Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Ziliang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
9
|
Song X, Qian J, Wang C, Wang D, Zhou J, Zhao Y, Wang W, Li J, Guo R, Li Y, Zhu X, Yang S, Zhang X, Fan B, Li B. Correlation between the IgG/IgA Antibody Response against PEDV Structural Protein and Virus Neutralization. Microbiol Spectr 2023; 11:e0523322. [PMID: 37022185 PMCID: PMC10269706 DOI: 10.1128/spectrum.05233-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV). Large-scale outbreaks of PEDV have caused huge economic losses to the pig industry since 2010. Neutralizing antibodies play a pivotal role in protecting piglets from enteric infections. However, there has been no systematic report on the correlations between neutralizing antibody titers (NTs) and absorbance values of IgG or IgA to all PEDV individual structural proteins in clinical serum, fecal, and colostrum samples. In this study, the spike protein S1 domain (S1), membrane protein (M), envelope protein (E), and nucleocapsid protein (N) of the variant PEDV strain AH2012/12 were expressed and purified by using the human embryonic kidney (HEK) 293F expression system. A total of 92 clinical serum samples, 46 fecal samples, and 33 colostrum samples were collected, and the correlations between IgG or IgA absorbance values and NTs were analyzed. R2 values revealed that anti-S1 IgA absorbance values show the highest agreement with NTs in all serum, fecal, and colostrum samples, followed by the N protein. The correlations between anti-E or M IgA and NTs were very low. However, in the colostrum samples, both IgG and IgA to S1 showed high correlations with NTs. In addition, compared with E and M, the highest correlations of IgA absorbance values were with N and S1 in serum and fecal samples. Overall, this study revealed the highest correlation between NTs and IgA to PEDV S1 protein. Therefore, the diagnostic method with anti-S1 IgA can be used as a powerful tool for assessing the immune status of pigs. IMPORTANCE The humoral immune response plays an important role in virus neutralization. Against PEDV, both IgG and the mucosal immune component IgA play roles in virus neutralization. However, which plays a more prominent role and whether there are differences in different tissue samples are not clearly reported. Additionally, the relationship between IgG and IgA against individual structural proteins and viral neutralization remains unclear. In this study, we systematically determined the relationship between IgG and IgA against all PEDV structural proteins and viral neutralization in different clinical samples and found the highest correlation between neutralization activity and IgA to PEDV S1 protein. Our data have important guiding implications in the evaluation of immune protection.
Collapse
Affiliation(s)
- Xu Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jiali Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chuanhong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Shanshan Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- School of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
10
|
Huang ZX, Zhou ST, Yang ZB, Wang Z. Molnupiravir Inhibits Porcine Epidemic Diarrhea Virus Infection In Vitro. Viruses 2023; 15:1317. [PMID: 37376616 DOI: 10.3390/v15061317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a swine coronavirus that is highly infectious and prone to variation. Vaccines derived from traditional PEDV strains provide less protection against PEDV-variant strains. Furthermore; there is a complex diversity of sequences among various PEDV-variant strains. Therefore; there is an urgent need to develop alternative antiviral strategies to defend against PEDV. Molnupiravir is a nucleotide analogue that could replace natural nucleosides to restrain viral RNA replication. Our study provided evidence for the dose-dependent inhibition of PEDV replication by molnupiravir in Vero cells. Molnupiravir also exhibited a strong inhibitory effect on viral RNA and protein production. Our results demonstrated that molnupiravir inhibits PEDV RNA-dependent RNA polymerase (RdRp) activity and induces a high frequency of mutations in the PEDV genome. Further studies revealed that molnupiravir can reverse changes in the transcriptome caused by viral infection. In conclusion, our results indicated that molnupiravir has the potential to be an effective treatment for PEDV infection.
Collapse
Affiliation(s)
- Zi-Xin Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-Ting Zhou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Biao Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Su M, Zheng G, Xu X, Song H. Antigen epitopes of animal coronaviruses: a mini-review. ANIMAL DISEASES 2023; 3:14. [PMID: 37220551 PMCID: PMC10189233 DOI: 10.1186/s44149-023-00080-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Coronaviruses are widespread in nature and can infect mammals and poultry, making them a public health concern. Globally, prevention and control of emerging and re-emerging animal coronaviruses is a great challenge. The mechanisms of virus-mediated immune responses have important implications for research on virus prevention and control. The antigenic epitope is a chemical group capable of stimulating the production of antibodies or sensitized lymphocytes, playing an important role in antiviral immune responses. Thus, it can shed light on the development of diagnostic methods and novel vaccines. Here, we have reviewed advances in animal coronavirus antigenic epitope research, aiming to provide a reference for the prevention and control of animal and human coronaviruses. Supplementary Information The online version contains supplementary material available at 10.1186/s44149-023-00080-0.
Collapse
Affiliation(s)
- Mingjun Su
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| | - Guanghui Zheng
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| | - Houhui Song
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| |
Collapse
|
12
|
Characterization and epitope mapping of monoclonal antibodies against PEDV N protein. Virology 2023; 579:29-37. [PMID: 36592554 DOI: 10.1016/j.virol.2022.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration and high mortality in neonatal piglets. The nucleocapsid (N) protein of PEDV is a highly conserved protein with strong immunogenicity and palys an important role in PEDV diagnosis. However, epitopes on the PEDV N protein have not yet been well characterized. Here, 32 monoclonal antibodies (mAbs) against the PEDV N protein were produced and identified. Six new epitopes were first identified by using a high-throughput epitope mapping method named AbMap. Sequence analysis revealed that among the six epitopes five epitopes were highly conserved among different PEDV strains. We also confirmed that the mAbs derived from the six epitopes of PEDV N protein, have no cross-reactivity with transmissible gastro enteritis virus or porcine delta coronavirus. These mAbs and their defined epitopes will help to understand the N protein structure and immunological characteristics, and to develop a rapid, accurate PEDV diagnosis method.
Collapse
|
13
|
Qian X, Shen Y, Yuan J, Yang CT, Zhou X. Visual and Ultrasensitive Detection of a Coronavirus Using a Gold Nanorod Probe under Dark Field. BIOSENSORS 2022; 12:1146. [PMID: 36551113 PMCID: PMC9775988 DOI: 10.3390/bios12121146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), a coronavirus that causes highly infectious intestinal diarrhea in piglets, has led to severe economic losses worldwide. Rapid diagnosis and timely supervision are significant in the prophylaxis of PEDV. Herein, we proposed a gold-nanorod (GNR) probe-assisted counting method using dark field microscopy (DFM). The antibody-functionalized silicon chips were prepared to capture PEDV to form sandwich structures with GNR probes for imaging under DFM. Results show that our DFM-based assay for PEDV has a sensitivity of 23.80 copies/μL for simulated real samples, which is very close to that of qPCR in this study. This method of GNR probes combined with DFM for quantitative detection of PEDV not only has strong specificity, good repeatability, and a low detection limit, but it also can be implemented for rapid on-site detection of the pathogens.
Collapse
Affiliation(s)
- Xuejia Qian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuanzhao Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jiasheng Yuan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chih-Tsung Yang
- Future Industries Institute, Mawson Lakes Campas, University of South Australia, Adelaide, SW 5095, Australia
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Characterisation of ORF3, M, N and E gene sequences of porcine epidemic diarrhoea virus from domestic pigs in Poland. J Vet Res 2022; 66:317-324. [PMID: 36349131 PMCID: PMC9597932 DOI: 10.2478/jvetres-2022-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Introduction
Porcine epidemic diarrhoea virus (PEDV) is an enteric pathogen causing porcine epidemic diarrhoea and acute gastroenteritis in pigs of all ages. Previous analysis of the viral genome of PEDV in Poland was only based on the spike protein (S) gene sequences and no analysis of other genes has been performed. The aim of this study was to analyse the envelope (E), membrane (M) and nucleocapsid (N) protein and open reading frame 3 (ORF3) gene sequences.
Material and Methods
Viral RNA from 18 Polish pig faecal samples that were quantitative reverse transcription PCR-positive for PEDV was analysed in four genomic regions (E, M, N and ORF3).
Results
Phylogenetic analysis based on these regions’ sequences revealed that Polish PEDV isolates were highly related and were clustered into group G2a across the four genes compared. Moreover, the Polish strains were located in distinct subclusters on the phylogenetic trees, which suggests the presence of at least three independently evolving PEDV genetic lines circulating in Poland. The occurrence of unique mutations in the sequences of Polish PEDV strains suggests that PEDV continues to undergo evolutionary processes, accumulating the mutations necessary for viral fitness in its natural hosts. The Polish PEDV strains differed genetically from the CV777 vaccine strain, suggesting the risk of relatively low vaccine efficacy if this strain is used.
Conclusion
Our results promote a better understanding of the genetic diversity of PEDV field isolates in Poland and highlight the importance of molecular characterisation of PEDV field strains for the development of an effective vaccine against PEDV.
Collapse
|
15
|
Olech M. Current State of Molecular and Serological Methods for Detection of Porcine Epidemic Diarrhea Virus. Pathogens 2022; 11:pathogens11101074. [PMID: 36297131 PMCID: PMC9612268 DOI: 10.3390/pathogens11101074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, is the etiological agent of an acute and devastating enteric disease that causes moderate-to-high mortality in suckling piglets. The accurate and early detection of PEDV infection is essential for the prevention and control of the spread of the disease. Many molecular assays have been developed for the detection of PEDV, including reverse-transcription polymerase chain reaction (RT-PCR), real-time RT-PCR (qRT-PCR) and loop-mediated isothermal amplification assays. Additionally, several serological methods have been developed and are widely used for the detection of antibodies against PEDV. Some of them, such as the immunochromatography assay, can generate results very quickly and in field conditions. Molecular assays detect viral RNA in clinical samples rapidly, and with high sensitivity and specificity. Serological assays can determine prior immune exposure to PEDV, can be used to monitor the efficacy of vaccination strategies and may help to predict the duration of immunity in piglets. However, they are less sensitive than nucleic acid-based detection methods. Sanger and next-generation sequencing (NGS) allow the analysis of PEDV cDNA or RNA sequences, and thus, provide highly specific results. Furthermore, NGS based on nonspecific DNA cleavage in clustered regularly interspaced short palindromic repeats (CRISPR)–Cas systems promise major advances in the diagnosis of PEDV infection. The objective of this paper was to summarize the current serological and molecular PEDV assays, highlight their diagnostic performance and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
16
|
Chen P, Zhu J, Yu J, Liu R, Lao M, Yu L, Gao F, Jiang Y, Liu C, Tong W, Liu H, Tong G, Zhou Y. Porcine epidemic diarrhea virus strain FJzz1 infection induces type I/III IFNs production through RLRs and TLRs-mediated signaling. Front Immunol 2022; 13:984448. [PMID: 35958569 PMCID: PMC9357978 DOI: 10.3389/fimmu.2022.984448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) including type I/III IFNs are the major components of the host innate immune response against porcine epidemic diarrhea virus (PEDV) infection, and several viral proteins have been identified to antagonize type I/III IFNs productions through diverse strategies. However, the modulation of PEDV infection upon the activation of the host’s innate immune response has not been fully characterized. In this study, we observed that various IFN-stimulated genes (ISGs) were upregulated significantly in a time- and dose-dependent manner in LLC-PK1 cells infected with the PEDV G2 strain FJzz1. The transcriptions of IRF9 and STAT1 were increased markedly in the late stage of FJzz1 infection and the promotion of the phosphorylation and nuclear translocation of STAT1, implicating the activation of the JAK-STAT signaling pathway during FJzz1 infection. In addition, abundant type I/III IFNs were produced after FJzz1 infection. However, type I/III IFNs and ISGs decreased greatly in FJzz1-infected LLC-PK1 cells following the silencing of the RIG-I-like receptors (RLRs), including RIG-I and MDA5, and the Toll-like receptors (TLRs) adaptors, MyD88 and TRIF. Altogether, FJzz1 infection induces the production of type-I/III IFNs in LLC-PK1 cells, in which RLRs and TLRs signaling pathways are involved, followed by the activation of the JAK-STAT signaling cascade, triggering the production of numerous ISGs to exert antiviral effects of innate immunity.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Junrui Zhu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jiarong Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ruilin Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mengqin Lao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Guangzhi Tong, ; Yanjun Zhou,
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Guangzhi Tong, ; Yanjun Zhou,
| |
Collapse
|
17
|
Wang F, Wang M, Zhang L, Cheng M, Li M, Zhu J. Generation and functional analysis of single chain variable fragments (scFvs) targeting the nucleocapsid protein of Porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2022; 106:995-1009. [PMID: 35024918 PMCID: PMC8755980 DOI: 10.1007/s00253-021-11722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022]
Abstract
Abstract Porcine epidemic diarrhea virus (PEDV) is the causative agent of porcine epidemic diarrhea, which can cause death in suckling piglets. Vaccines confer only partial protection against new mutant strains, whereas antibodies targeting virus-encoded proteins may be effective prophylactics. In this study, we constructed a recombinant single chain variable fragment (scFv) library from the spleens of two pigs immunized with a recombinant PEDV nucleocapsid (N) protein. Among the positive clones directed against PEDV N protein isolated from the library, four scFvs that showed higher affinity for N were functionally analyzed. These scFvs specifically bound to the PEDV N protein, but not to the transmissible gastroenteritis virus (TGEV) N protein. Their framework regions were highly conserved, whereas their complementarity-determining regions displayed clear diversity. An immunofluorescence assay showed the co-localization of the four scFvs with PEDV N protein in cells. They significantly suppressed PEDV replication, detected with reverse transcription (RT)-quantitative PCR (qPCR; P < 0.01). Two of them significantly reduced the viral titer at 48 hpi and 72 hpi (P < 0.05). In addition, they observably suppressed the production of viral protein at 72 hpi. The expression of interferons, interferon regulatory factor 3 (IRF3), and IRF7 was assessed with RT-qPCR, which indicated that PEDV dramatically suppressed the transcription of interferon-λ1 and IRF7 and that the scFvs significantly upregulated their expression (P < 0.05). These findings facilitated the investigation of the mechanism by which PEDV evaded the host immune response and suggested that these porcine scFvs were potential candidate agents for the prevention and treatment of porcine diarrhea caused by PEDV. Key points • Four scFvs targeting PEDV N protein were generated from porcine spleens • These scFvs co-localized with PEDV N protein and suppressed PEDV replication • These scFvs significantly upregulated IFN-λ1 expression Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11722-z.
Collapse
Affiliation(s)
- Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Man Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Manling Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mei Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
18
|
Tran TX, Lien NTK, Thu HT, Duy ND, Duong BTT, Quyen DV. Changes in the spike and nucleocapsid protein of porcine epidemic diarrhea virus strain in Vietnam-a molecular potential for the vaccine development? PeerJ 2021; 9:e12329. [PMID: 34721997 PMCID: PMC8530102 DOI: 10.7717/peerj.12329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) is a dangerous virus causing large piglet losses. PEDV spread rapidly between pig farms and caused the death of up to 90% of infected piglets. Current vaccines are only partially effective in providing immunity to suckling due to the rapid dissemination and ongoing evolution of PEDV. Methods In this study, the complete genome of a PEDV strain in Vietnam 2018 (IBT/VN/2018 strain) has been sequenced. The nucleotide sequence of each fragment was assembled to build a continuous complete sequence using the DNASTAR program. The complete nucleotide sequences and amino acid sequences of S, N, and ORF3 genes were aligned and analyzed to detect the mutations. Results The full-length genome was determined with 28,031 nucleotides in length which consisted of the 5'UTR, ORF1ab, S protein, ORF3, E protein, M protein, N protein, and 3'UTR region. The phylogenetic analysis showed that the IBT/VN/2018 strain was highly virulent belonged to the G2b subgroup along with the Northern American and Asian S-INDEL strains. Multiple sequence alignment of deduced amino acids revealed numerous mutations in the S, N, and ORF3 regions including one substitution 766P > L766 in the epitope SS6; two in the S0subdomain (135DN136 > 135SI136 and N144> D144); two in subdomain SHR1 at aa 1009L > M1009 and 1089S > L1089; one at aa 1279P > S1279 in subdomain SHR2 of the S protein; two at aa 364N > I364 and 378N > S378 in the N protein; four at aa 25L > S25, 70I > V70, 107C > F107, and 168D > N168 in the ORF3 protein. We identified two insertions (at aa 59NQGV62 and aa 145N) and one deletion (at aa 168DI169) in S protein. Remarkable, eight amino acid substitutions (294I > M294, 318A > S318, 335V > I335, 361A > T361, 497R > T497, 501SH502 > 501IY502, 506I > T506, 682V > I682, and 777P > L777) were found in SA subdomain. Besides, N- and O-glycosylation analysis of S, N, and ORF3 protein reveals three known sites (25G+, 123N+, and 62V+) and three novel sites (144D+, 1009M+, and 1279L+) in the IBT/VN/2018 strain compared with the vaccine strains. Taken together, the results showed that mutations in the S, N, and ORF3 genes can affect receptor specificity, viral pathogenicity, and the ability to evade the host immune system of the IBT/VN/2018 strain. Our results highlight the importance of molecular characterization of field strains of PEDV for the development of an effective vaccine to control PEDV infections in Vietnam.
Collapse
Affiliation(s)
- Thach Xuan Tran
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Nguyen T K Lien
- Functional of Genomics Lab, Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha T Thu
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Nguyen Dinh Duy
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Bui T T Duong
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam
| | - Dong Van Quyen
- Dept of Molecular Microbiology, Institute of Biotechnology, Hanoi, Vietnam.,University of Science and Technology of Ha Noi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
19
|
Wei S, Shi D, Wu H, Sun H, Chen J, Feng L, Su M, Sun D. Identification of a novel B cell epitope on the nucleocapsid protein of porcine deltacoronavirus. Virus Res 2021; 302:198497. [PMID: 34217778 PMCID: PMC8481650 DOI: 10.1016/j.virusres.2021.198497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes vomiting, diarrhea, dehydration, and even death of piglets, resulting in significant losses to the pig industry worldwide. However, the epitopes of PDCoV remain largely unknown. In this study, a monoclonal antibody (mAb) against the PDCoV nucleocapsid (N) protein, termed 9G1, was prepared using the lymphocyte hybridoma technique, and was identified as a type IgG1 with a κ light chain and reacted with the native N protein of PDCoV. Furthermore, the epitope recognized by the 9G1 mAb was subjected to western blot and an ELISA using truncated recombinant proteins and synthetic polypeptides of the PDCoV N protein. The results indicate that 9G1 mAb recognized the epitope, G59TPIPPSYAFYY70 (EP-9G1), a novel linear B cell epitope of the PDCoV N protein. A comparison analysis revealed that the EP-9G1 epitope was highly conserved among PDCoV strains, in which four residues (G59-F68YY70) were observed among different coronavirus genera. These data demonstrate that the EP-9G1 epitope identified in this study provides some basic information for further characterization of the antigenic structure of the PDCoV N protein and has potential use for developing diagnostic reagents for PDCoV.
Collapse
Affiliation(s)
- Shan Wei
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Haoyang Wu
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Haibo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Mingjun Su
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
20
|
A Virulent PEDV Strain FJzz1 with Genomic Mutations and Deletions at the High Passage Level Was Attenuated in Piglets via Serial Passage In Vitro. Virol Sin 2021; 36:1052-1065. [PMID: 33909220 PMCID: PMC8080196 DOI: 10.1007/s12250-021-00368-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/28/2020] [Indexed: 01/06/2023] Open
Abstract
Highly virulent porcine epidemic diarrhea virus (PEDV) strains re-emerged and circulated in China at the end of 2010, causing significant economic losses in the pork industry worldwide. To understand the genetic dynamics of PEDV during its passage in vitro, the PEDV G2 strain FJzz1 was serially propagated in Vero cells for up to 200 passages. The susceptibility and adaptability of the FJzz1 strain increased gradually as it was serially passaged in vitro. Sequence analysis revealed that amino acid (aa) changes were mainly concentrated in the S glycoprotein, which accounted for 72.22%–85.71% of all aa changes. A continuous aa deletion (55I56G57E → 55K56Δ57Δ) occurred in the N-terminal domain of S1 (S1-NTD). To examine how the aa changes affected its virulence, FJzz1-F20 and FJzz1-F200 were selected to simultaneously evaluate their pathogenicity in suckling piglets. All the piglets in the FJzz1-F20-infected group showed typical diarrhea at 24 h postinfection, and the piglets died successively by 48 h postinfection. However, the clinical signs of the piglets in the FJzz1-F200-infected group were significantly weaker, and no deaths occurred. The FJzz1-F200-infected group also showed a lower level of fecal viral shedding and lower viral loads in the intestinal tissues, and no obvious histopathological lesions. Type I and III interferon were induced in the FJzz1-F200 infection group, together with pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-8. These results indicate that the identified genetic changes may contribute to the attenuation of FJzz1 strain, and the attenuated FJzz1-F200 may have the potential for developing PEDV live-attenuated vaccines.
Collapse
|
21
|
Srijangwad A, Tripipat T, Saeng-Chuto K, Jermsujarit P, Tantituvanont A, Okabayashi T, Nilubol D. Development and validation of indirect ELISA for antibody detection against different protein antigens of porcine epidemic diarrhea virus in the colostrum and milk of sows. J Immunol Methods 2021; 494:113045. [PMID: 33781786 DOI: 10.1016/j.jim.2021.113045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 11/29/2022]
Abstract
The objectives of this study are to develop and optimize indirect ELISA based on three coating antigens of porcine epidemic diarrhea virus (PEDV), recombinant spike (S12), nucleocapsid (N), and whole viral (WV) proteins, for the detection of IgG and IgA antibodies in colostrum and milk and to evaluate the diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of the assay as a diagnostic method. Colostrum (n = 347) and milk (n = 272) samples from sows were employed in this assay. Indirect ELISA based on three coating antigens was assessed by receiver operating characteristic (ROC) curve analysis with a virus neutralization (VN) test as a reference method, and the cutoff value for calculating DSe and DSp was determined. S12-ELISA showed higher DSe and DSp of IgG and IgA detection compared to N- and WV-ELISA in both colostrum and milk samples. Moreover, S12-ELISA showed perfect agreement and a high correlation with the VN test, which was better than the N- and WV-ELISA for both IgG and IgA detection in colostrum and milk. In contrast, N-ELISA showed lower DSe and DSp compared to S12- and WV-ELISA, along with a correlation with VN and substantial agreement with the VN test. Nevertheless, our developed ELISAs have accuracy for repeatability in both inter- and intra-assay variation. Overall, this research demonstrates that S12-ELISA is more suitable than WV- and N-ELISA to detect IgG and IgA antibodies against PEDV from both colostrum and milk samples.
Collapse
Affiliation(s)
- Anchalee Srijangwad
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitima Tripipat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kepalee Saeng-Chuto
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patumporn Jermsujarit
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
22
|
Qi M, Zambrano-Moreno C, Pineda P, Calderón C, Rincón-Monroy MA, Diaz A, Marthaler DG. Several lineages of porcine epidemic diarrhea virus in Colombia during the 2014 and 2016 epidemic. Transbound Emerg Dis 2020; 68:2465-2476. [PMID: 33155439 DOI: 10.1111/tbed.13914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a significant global, enteric coronavirus in pigs and was first reported in Colombia in 2014. However, the epidemiology, genetic and antigenic characteristics of the virus have yet to be investigated. In this study, we investigated the dissemination of PEDV by testing 536 samples by RT-PCR over a 33-month period. The 35.8% of positive samples (n = 192) was significantly different (p < .01) between months over time, with a higher number of positives samples occurring at the beginning of the epidemic and during the second epidemic wave within the main pork producing region. The complete PEDV genomes were generated for 21 strains, which shared a high nucleotide and amino acid sequence identity, except for the spike (S) gene. Recombinant regions were identified within the Colombian strains and between Colombian and Asian PEDV strains. Phylogenetic analysis of the 21 Colombian strains demonstrated the presence of 7 lineages that shared common ancestors with PEDV strains from the United States. Moreover, the antigenic analysis demonstrated residue differences in the neutralizing epitopes in the spike and nucleocapsid proteins. Our results illustrated the simultaneous introduction of the two PEDV genotypes (GIIa American pandemic and S-INDEL) into the Colombian swine industry during the 2014 PEDV epidemic and enhanced our understanding of the epidemiology and molecular diversity of PEDV in Colombia.
Collapse
Affiliation(s)
- Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Pilar Pineda
- Asociación Colombiana de Porcicultores - PorkColombia, Bogotá, Colombia
| | - Claudia Calderón
- Laboratorio Nacional de Diagnóstico Veterinario, Instituto Colombiano Agropecuario ICA, Bogotá, Colombia
| | - María A Rincón-Monroy
- Laboratorio Nacional de Diagnóstico Veterinario, Instituto Colombiano Agropecuario ICA, Bogotá, Colombia
| | - Andres Diaz
- Asociación Colombiana de Porcicultores - PorkColombia, Bogotá, Colombia.,Pig Improvement Company LATAM, Santiago de Querétaro, Querétaro, Mexico
| | - Douglas G Marthaler
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
23
|
Li Z, Ma Z, Li Y, Gao S, Xiao S. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microb Pathog 2020; 149:104553. [PMID: 33011361 PMCID: PMC7527827 DOI: 10.1016/j.micpath.2020.104553] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes an emerging and re-emerging coronavirus disease characterized by vomiting, acute diarrhea, dehydration, and up to 100% mortality in neonatal suckling piglets, leading to huge economic losses in the global swine industry. Vaccination remains the most promising and effective way to prevent and control PEDV. However, effective vaccines for PEDV are still under development. Understanding the genomic structure and function of PEDV and the influence of the viral components on innate immunity is essential for developing effective vaccines. In the current review, we systematically describe the recent developments in vaccine against PEDV and the roles of structural proteins, non-structural proteins and accessory proteins of PEDV in affecting viral virulence and regulating innate immunity, which will provide insight into the rational design of effective and safe vaccines for PEDV or other coronaviruses. Advances in vaccines of PEDV, such as inactivated and attenuated live vaccines, subunit vaccines, and nucleic acid vaccines. The application of reverse genetics in the development of live attenuated PEDV vaccines. The roles of PEDV proteins in affecting viral virulence and regulating innate immunity.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqian Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
24
|
Molecular Characterization of Porcine Epidemic Diarrhea Virus and Its New Genetic Classification Based on the Nucleocapsid Gene. Viruses 2020; 12:v12080790. [PMID: 32717934 PMCID: PMC7472284 DOI: 10.3390/v12080790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes continuous, significant damage to the swine industry worldwide. By RT-PCR-based methods, this study demonstrated the ongoing presence of PEDV in pigs of all ages in Korea at the average detection rate of 9.92%. By the application of Bayesian phylogenetic analysis, it was found that the nucleocapsid (N) gene of PEDV could evolve at similar rates to the spike (S) gene at the order of 10-4 substitutions/site/year. Based on branching patterns of PEDV strains, three main N gene-base genogroups (N1, N2, and N3) and two sub-genogroups (N3a, N3b) were proposed in this study. By analyzing the antigenic index, possible antigenic differences also emerged in both the spike and nucleocapsid proteins between the three genogroups. The antigenic indexes of genogroup N3 strains were significantly lower compared with those of genogroups N1 and N2 strains in the B-cell epitope of the nucleocapsid protein. Similarly, significantly lower antigenic indexes in some parts of the B-cell epitope sequences of the spike protein (COE, S1D, and 2C10) were also identified. PEDV mutants derived from genetic mutations of the S and N genes may cause severe damage to swine farms by evading established host immunities.
Collapse
|
25
|
Identification and characterization of linear B cell epitopes on the nucleocapsid protein of porcine epidemic diarrhea virus using monoclonal antibodies. Virus Res 2020; 281:197912. [PMID: 32142743 PMCID: PMC7114562 DOI: 10.1016/j.virusres.2020.197912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/19/2023]
Abstract
The nucleocapsid (N) protein of porcine epidemic diarrhea virus (PEDV), the most important pathogen causing severe diarrhea in piglets, is a highly conserved structural protein. In this study, 5 monoclonal antibodies (McAbs) against the PEDV N-protein were prepared and identified. Three new epitopes, 56QIRWRMRRGERI67, 318GYAQIASLAPNVAALLFGGNVA VRE342 and 398HEEAIYDDV406, were firstly identified in the viral N-protein, by using McAbs 3F10, 6A11, and 1C9. The epitope 398HEEAIYDDV406 was deleted in SH strain (isolated by our lab) and different between CV777 and YZ strain (isolated by our lab). To study the characters of this epitope, four peptides were synthesized according to the sequence of SH and CV777 and used in the study. The result showed that the 398th amino acid maybe an important amino acid of the epitope. Biological information analysis showed that the three B cell linear epitopes are highly conserved among different PEDV isolates. In addition, McAb 1C9, which attached to the epitope 398HEEAIYDDV406, showed variant reactivity with PEDV CV777, SH, YZ and MS strains. McAb 1C9 reacted with PEDV strains CV777 and YZ, but not with SH which had a deletion from 399 to 410 amino acids in N-protein (No. MK841494). Among the three McAbs, 6A11, 3F10 and 1C9, only 6A11 reacted with porcine transmissible gastroenteritis virus (TGEV) in immunofluorescence assay, therefore the other two could be used to distinguish TGEV and PEDV. These mAbs and their defined epitopes may provide useful tool for the study of the PEDV N-protein structure and function, and facilitate the development of diagnostic methods for PEDV.
Collapse
|
26
|
Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus. Int J Mol Sci 2020; 21:ijms21020648. [PMID: 31963776 PMCID: PMC7013544 DOI: 10.3390/ijms21020648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV), first identified in 2012, is a swine enteropathogen now found in many countries. The nucleocapsid (N) protein, a core component of PDCoV, is essential for virus replication and is a significant candidate in the development of diagnostics for PDCoV. In this study, monoclonal antibodies (mAbs) were generated and tested for reactivity with three truncations of the full protein (N1, N2, N3) that contained partial overlaps; of the five monoclonals chosen tested, each reacted with only the N3 truncation. The antibody designated 4E88 had highest binding affinity with the N protein and was chosen for in-depth examination. The 4E88 epitope was located to amino acids 308-AKPKQQKKPKK-318 by testing the 4E88 monoclonal for reactivity with a series of N3 truncations, then the minimal epitope, 309-KPKQQKKPK-317 (designated EP-4E88), was pinpointed by testing the 4E88 monoclonal for reactivity with a series of synthetic peptides of this region. Homology analysis showed that the EP-4E88 sequence is highly conserved among PDCoV strains, and also shares high similarity with sparrow coronavirus (HKU17), Asian leopard cat coronavirus (ALCCoV), quail coronavirus (UAE-HKU30), and sparrow deltacoronavirus (SpDCoV). Of note, the PDCoV EP-4E88 sequence shared very low similarity (<22.2%) with other porcine coronaviruses (PEDV, TGEV, PRCV, SADS-CoV, PHEV), demonstrating that it is an epitope that can be used for distinguishing PDCoV and other porcine coronavirus. 3D structural analysis revealed that amino acids of EP-4E88 were in close proximity and may be exposed on the surface of the N protein.
Collapse
|
27
|
Wang XW, Wang M, Zhan J, Liu QY, Fang LL, Zhao CY, Jiang P, Li YF, Bai J. Pathogenicity and immunogenicity of a new strain of porcine epidemic diarrhea virus containing a novel deletion in the N gene. Vet Microbiol 2019; 240:108511. [PMID: 31902508 PMCID: PMC7173345 DOI: 10.1016/j.vetmic.2019.108511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Since late 2010, highly virulent PEDV G2-genotype strains have emerged globally extracting heavy losses on the pork industries of numerous countries. We investigated the characteristics of a field strain of PEDV (PEDV strain SH) isolated from a piglet with severe diarrhea on a farm in Shanghai China. Whole genome sequencing and analysis revealed that the SH strain belonged to subtype G2b and has a unique 12-aa deletion (aa 399-410) including the antigenic epitope NEP-1C9 (aa 398-406) of the N protein. PEDV SH strain is highly pathogenic to challenged newborn piglets, resulting in 100 % morbidity and mortality. Pathological examination revealed significant villus atrophy in the jejuna of infected piglets. Mice inoculated with inactivated PEDV SH produced antibodies against the N protein, but no antibodies against the deletions. These results illustrated that deletion of the NEP-1C9 epitope had no effect on the immunogenicity or pathogenicity of PEDV, providing evidence of the necessity to monitor the genetic diversity of the virus. Our study also contributes to development of candidate for vaccines and diagnostics that could differentiate pigs seropositive due to vaccination by conventional strains from wild virus infection.
Collapse
Affiliation(s)
- Xian-Wei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Mi Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian-Yu Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin-Lin Fang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen-Yao Zhao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yu-Feng Li
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
28
|
Petrovan V, Yuan F, Li Y, Shang P, Murgia MV, Misra S, Rowland RRR, Fang Y. Development and characterization of monoclonal antibodies against p30 protein of African swine fever virus. Virus Res 2019; 269:197632. [PMID: 31129172 DOI: 10.1016/j.virusres.2019.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Among the structural proteins that compose the virion of African swine fever virus (ASFV), p30 is one of the most immunogenic proteins and is produced during early stage of ASFV infection. These two characteristics make p30 a good target for diagnostic assays to detect ASFV infection. In this study, we describe a panel of newly generated p30-specific monoclonal antibodies (mAbs). The reactivity of these mAbs was confirmed by immunoprecipitation and Western blot analysis in Vero cells infected with alphavirus replicon particles that express p30 (RP-p30). Furthermore, this panel of mAbs recognized ASFV strains BA71 V (Genotype I) and Georgia/2007 (Genotype II) in immunofluorescence assays on virus-infected Vero cells and swine macrophages, respectively. These mAbs also detected p30 expression by immunohistochemistry in tissue samples from ASFV-infected pigs. Epitope mapping revealed that a selected mAb from the panel recognized a linear epitope within the 32-amino acid region, 61-93. In contrast, two of the mAbs recognize the C-terminal region of the protein, which is highly hydrophilic, enriched in glutamic acid residues, and predicted to contain an intrinsically disordered protein region (IDPR). This panel of mAbs and mAb-based diagnostic assays potentially represent valuable tools for ASFV detection, surveillance and disease control.
Collapse
Affiliation(s)
- Vlad Petrovan
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Fangfeng Yuan
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Maria V Murgia
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Saurav Misra
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Road, Manhattan, KS 66506, USA
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
29
|
Chen P, Wang K, Hou Y, Li H, Li X, Yu L, Jiang Y, Gao F, Tong W, Yu H, Yang Z, Tong G, Zhou Y. Genetic evolution analysis and pathogenicity assessment of porcine epidemic diarrhea virus strains circulating in part of China during 2011-2017. INFECTION GENETICS AND EVOLUTION 2019; 69:153-165. [PMID: 30677534 PMCID: PMC7106134 DOI: 10.1016/j.meegid.2019.01.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022]
Abstract
In recent years, the outbreaks of porcine epidemic diarrhea (PED) caused by the highly virulent porcine epidemic diarrhea virus (PEDV) variants occurred frequently in China, resulting in severe economic impacts to the pork industry. In this study, we selected and analyzed the genetic evolution of 15 PEDV representative strains that were identified in fecal samples of diarrheic piglets in 10 provinces and cities during 2011-2017. The phylogenetic analysis indicated that all the 15 PEDV isolates clustered into G2 genotype associated with the current circulating strains. Compared with the genome of the prototype strain CV777, these strains had 103-120 amino acid mutations in their S proteins, most of which were in the N terminal domain of S1 (S1-NTD). We also found 37 common mutations in all these 15 strains, although these strains shared 96.9-99.7% nucleotide homology and 96.3-99.8% amino acid homology in the S protein compared with the other original pandemic strains. Computational analysis showed that these mutations may lead to remarkable changes in the conformational structure and asparagine (N)-linked glycosylation sites of S1-NTD, which may be associated with the altered pathogenicity of these variant PEDV strains. We evaluated the pathogenicity of the PEDV strain FJzz1 in piglets through oral and intramuscular infection routes. Compared with oral infection, intramuscular infection could also cause typical clinical signs but with a slightly delayed onset, confirming that the variant PEDV isolate FJzz1 was highly pathogenic to suckling piglets. In conclusion, we analyzed the genetic variation and pathogenicity of the emerging PEDV isolates of China, indicating that G2 variant PEDV strains as the main prevalent strains that may mutate continually. This study shows the necessity of monitoring the molecular epidemiology and the etiological characteristics of the epidemic PEDV isolates, which may help better control the PED outbreaks.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kang Wang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yixuan Hou
- Shanghai Key laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, China
| | - Huichun Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xianbin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hai Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhibiao Yang
- Shanghai Key laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
30
|
Xie W, Ao C, Yang Y, Liu Y, Liang R, Zeng Z, Ye G, Xiao S, Fu ZF, Dong W, Peng G. Two critical N-terminal epitopes of the nucleocapsid protein contribute to the cross-reactivity between porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus. J Gen Virol 2019; 100:206-216. [PMID: 30652967 DOI: 10.1099/jgv.0.001216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both porcine epidemic diarrhoea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV), which cause high mortality in piglets and produce similar clinical symptoms and histopathological morphology, belong to the genus Alphacoronavirus. Serological diagnosis plays an important role in distinguishing pathogen species. Together with the spike (S) protein, the nucleocapsid (N) protein is one of the immunodominant regions among coronaviruses. In this study, two-way antigenic cross-reactivity between the N proteins of PEDV and TGEV was observed by indirect immunofluorescence assay (IFA) and Western blot analysis. Furthermore, the PEDV N protein harbouring truncations of amino acids (aa) 1 to 170 or aa 125 to 301 was demonstrated to cross-react with the anti-TGEV N polyclonal antibody (PAb), whereas the truncation-expressing aa 302 to 401 resulted in a specific reaction with the anti-PEDV N PAb but not with the anti-TGEV N PAb. Mutants of the PEDV N protein were generated based on sequence alignment and structural analysis; we then confirmed that the N-terminal residues 58-RWRMRRGERIE-68 and 78-LGTGPHAD-85 contributed to the cross-reactivity. All the results provide vital clues for the development of precise diagnostic assays for porcine coronaviruses.
Collapse
Affiliation(s)
- Wenting Xie
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chaojie Ao
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yilin Yang
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yinan Liu
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Rui Liang
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Zhe Zeng
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Gang Ye
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shaobo Xiao
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Zhen F Fu
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 4Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Wanyu Dong
- 5National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Guiqing Peng
- 3The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 2College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
- 1State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
31
|
Ding S, Luo Y, Zhou S, Xie C, Wang K, Xie Y, Cui L, Hua X, Yuan C, Zhou Y, Yang Z. Preparation and characterisation of monoclonal antibodies against the N protein of the SHpd/2012 strain of porcine epidemic diarrhoea virus. VET MED-CZECH 2018; 63:468-475. [DOI: 10.17221/23/2018-vetmed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
32
|
Vijayababu P, Samykannu G, Antonyraj CB, Narayanan S, Basheer Ahamed SI, Perumal P, Piramanayagam S. B-cell and T-cell epitope identification with stability analysis of AI-2 import ATP-binding cassette LsrA from S. typhiIn silico approach. Microb Pathog 2018; 123:487-495. [PMID: 30098402 DOI: 10.1016/j.micpath.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
Typhoid fever is a severe illness in humans, caused by Salmonella typhi, a Gram-negative bacterium. Membrane proteins of S. typhi have strong potential for its use in development of subunit vaccine against typhoid. In current study, peptide-based subunit vaccine constructed from AI-2 import ATP-binding cassette transporter protein (LsrA) against S. typhi. B-cell and T-cell epitopes were identified at fold level with validated 3-D theoretical modelled structure. T-cell epitope from LsrA (LELPGSRPQ) has binds to maximum number (82.93%) of MHC class I and class II alleles. LsrA epitope was docked with HLA-DR4 and contact map were constructed to analyze molecular interaction (docking) studies. Simulation search for the binding site for full flexibility of the peptide from CABS-dock shows the stable interactions. MD simulation analysis reveals that LsrA epitope was binding and interacting firmly with the HLA-DR4. Hence, we are proposing that LsrA epitope would be a prominent epitope vaccine for human specific pathogen of S. typhi, which requires further steps to be elevated as a vaccine drug in near future.
Collapse
Affiliation(s)
- Princy Vijayababu
- Structural Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| | - Gopinath Samykannu
- Structural Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - SundaraBaalaji Narayanan
- Structural Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Perumal Perumal
- Membrane Protein Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shanmughavel Piramanayagam
- Computational Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
33
|
Jie T, Benqiang L, Jinghua C, Ying S, Huili L. Preparation and characterization of an attenuated porcine epidemic diarrhea virus strain by serial passaging. Arch Virol 2018; 163:2997-3004. [PMID: 30062639 PMCID: PMC7087004 DOI: 10.1007/s00705-018-3968-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/12/2018] [Indexed: 11/26/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is prevalent in most parts of the world. Owing to its antigenic variation, prevention of the diseases caused by this virus is difficult. In this study, two PEDV isolates with similar growth kinetics were successfully propagated in Vero cells. Complete genome sequence analysis showed that they have a 49nt deletion in the ORF3 gene and were classified into Group 1, the same group that includes the classical CV777 strain. Recombination analysis revealed that the event had occurred in the ORF1a gene, at 3596-6819 nt, among the two PEDV isolates and the CV777 and DR13 strains. During their continuous propagation, 14 nonsynonymous mutations occurred in the spike (S) gene of strain JS-2/2014 between generations G5 and G90, but there were no changes between G90 and G100. We assumed that strain JS-2/2014 might be attenuated by the 90th generation. Piglets orally fed with JS-2/2014 G90 showed no clinical symptoms, and no virus was detected in the feces and nasal fluid. In conclusion, JS-2/2014 was successfully identified by screening, was attenuated after propagation in Vero cells, and may serve as a candidate virus for vaccine preparations.
Collapse
Affiliation(s)
- Tao Jie
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Li Benqiang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Cheng Jinghua
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Shi Ying
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Liu Huili
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China.
- Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China.
| |
Collapse
|
34
|
Van Diep N, Sueyoshi M, Norimine J, Hirai T, Myint O, Teh APP, Izzati UZ, Fuke N, Yamaguchi R. Molecular characterization of US-like and Asian non-S INDEL strains of porcine epidemic diarrhea virus (PEDV) that circulated in Japan during 2013-2016 and PEDVs collected from recurrent outbreaks. BMC Vet Res 2018. [PMID: 29540176 PMCID: PMC5852955 DOI: 10.1186/s12917-018-1409-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Since late 2013, porcine epidemic diarrhea virus (PEDV) has reemerged in Japan and caused severe economic losses to the swine industry. Although PEDV vaccines have been used widely, the disease has swept rapidly across the county, and is commonly observed in PED-vaccinated farms, and has recurred in domestic herds. To better understand PEDVs responsible for the reemerging outbreaks in Japan, full-length spike (S), membrane (M), and nucleocapsid (N) genes of 45 PEDVs collected in Japan during 2013–2016, were sequenced and analyzed. Results Phylogenetic analysis based on S gene sequences revealed that all the recent field PEDVs were genetically distinct from the classical Japanese strains, and were classified into three genotypes: North American (NA), S INDEL, and Asian non-S INDEL. Our data suggested a possibility that multiple parental PEDV strains were introduced into Japan from abroad at the same time or similar times. The newly identified Japanese strains showed the closest relationship to the US strains. Two sublineages of Japanese strains circulating in Japan were similar to two sublineages identified in the US, suggesting common ancestors for these strains. In comparison with two vaccine strains used in Japan, the field strains had various changes in epitope regions, glycosylation sites, and phosphorylation sites. These substitutions, particularly observed in epitope regions of the S (521, 553, 568, and 570), M (5), and N (123, 252, and 255) proteins, may have affected antigenicity and vaccine efficacy, resulting in an unsuccessful PEDV control. Sequence comparisons between PEDVs collected from primary and secondary outbreaks in three herds revealed that the disease has developed to an endemic stage in which PEDV could persist for nearly two years in the herds or local regions, causing subsequent epidemics. Conclusions These results elucidate the genetic characteristics, origin, and molecular epidemiology of PEDVs circulating in Japan, as well as the PEDV strains causing recurrent outbreaks. This study provides a better insight into the PEDVs responsible for recent outbreaks in Japan, and could potentially help to develop measures for controlling and preventing the disease. Electronic supplementary material The online version of this article (10.1186/s12917-018-1409-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyen Van Diep
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Masuo Sueyoshi
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Junzo Norimine
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Takuya Hirai
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Ohnmar Myint
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Angeline Ping Ping Teh
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Uda Zahli Izzati
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Naoyuki Fuke
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan
| | - Ryoji Yamaguchi
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki, 889-2192, Japan.
| |
Collapse
|
35
|
Li Z, Zeng W, Ye S, Lv J, Nie A, Zhang B, Sun Y, Han H, He Q. Cellular hnRNP A1 Interacts with Nucleocapsid Protein of Porcine Epidemic Diarrhea Virus and Impairs Viral Replication. Viruses 2018. [PMID: 29534017 PMCID: PMC5869520 DOI: 10.3390/v10030127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The nucleocapsid (N) protein is a major structural component of porcine epidemic diarrhea virus (PEDV), which is predicted to be a multifunctional protein in viral replication. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a cellular protein participating in the splicing of pre-mRNA in the nucleus and translation regulation in the cytoplasm. According to our previous proteomic study about PEDV infection in vivo, hnRNP A1 was thought to be a cellular factor influencing PEDV replication. In this report, PEDV N protein was discovered to colocalize with cellular hnRNP A1 in perinuclear region of PEDV infected cells. Co-immunoprecipitation (CO-IP) results clearly demonstrated that PEDV N protein could bind to human hnRNP A1. Replication of PEDV was inhibited by silencing the expression of hnRNP A1 in CCL-81 cells, suggesting the positive effect of hnRNP A1 on PEDV infection.
Collapse
Affiliation(s)
- Zhonghua Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiyi Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Lv
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Axiu Nie
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yumei Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|