1
|
Almarmouri C, El-Gamal MI, Haider M, Hamad M, Qumar S, Sebastian M, Ghemrawi R, Muhammad JS, Burucoa C, Khoder G. Anti-urease therapy: a targeted approach to mitigating antibiotic resistance in Helicobacter pylori while preserving the gut microflora. Gut Pathog 2025; 17:37. [PMID: 40437630 PMCID: PMC12121022 DOI: 10.1186/s13099-025-00708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 05/07/2025] [Indexed: 06/01/2025] Open
Abstract
The global rise in antibiotic resistance has posed significant challenges to the effective management of Helicobacter pylori (H. pylori), a gastric pathogen linked to chronic gastritis, peptic ulcers, and gastric cancer. Conventional antibiotic therapies, while effective, face significant challenges, such as increasing antibiotic resistance, high recurrence rates, and adverse effects such as gut microflora dysbiosis. These limitations have driven the exploration of alternative antibiotic-free therapies, including the use of plant-based compounds, probiotics, nanoparticles, phage therapy, antimicrobial peptides, and H. pylori vaccines. Among these, urease-targeted therapy has shown particular promise. Urease enables the survival and colonization of H. pylori by neutralizing stomach acidity. Targeting this urease without disrupting beneficial gut microflora offers a selective mechanism to impair H. pylori, due to the absence of this enzyme in most of the human gut microbiome. In this review, we highlight advancements and limitations in the field of antibiotic-free therapies, with a particular focus on anti-urease strategies. We explore the structural and functional characteristics of urease, its role in H. pylori pathogenesis, and its potential as a therapeutic target. For the first time, we provide a comprehensive analysis of natural, semisynthetic, and synthetic anti-urease compounds, emphasizing their mechanisms of action, efficacy, and safety profiles. Advances in silico, in vitro, and in vivo studies have identified several promising anti-urease compounds with high specificity and minimal toxicity. By focusing on urease inhibition as a targeted strategy, this review underscores its potential to overcome antibiotic resistance while minimizing gut dysbiosis and improving the outcomes of H. pylori infection treatment.
Collapse
Affiliation(s)
- Christina Almarmouri
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamad Hamad
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Shamsul Qumar
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Merylin Sebastian
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Biomedical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Christophe Burucoa
- Laboratoire de Bactériologie, U1070 INSERM, CHU de Poitiers, Université de Poitiers, 86000, Poitiers, France
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
- Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Zheng X, Wang X, Li P, Zhou Y, Zhu X, Hu Z, Wang H, Chen M, Huo X, Liu Y, Zhang W. The change of long tail fibers expanded the host range of a T5-like Salmonella phage and its application in milk. BMC Microbiol 2025; 25:169. [PMID: 40133802 PMCID: PMC11938639 DOI: 10.1186/s12866-025-03895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
We engineered novel T5-like bacteriophage (phage) with extended host ranges by editing the long-tail fibers (PB3 and PB4) to combat Salmonella Enteritidis. By replacing the long-tail fibers PB3 and PB4 regions of phage PH204 with those from phage SP76, we created phages RPA1 - 3 and RPB1 - 3, which exhibited expanded host ranges, lysing 54 strains compared to the original 30 strains. These phages retained the biological characteristics of PH204, including temperature, pH stability and adsorption rate. In milk, RPA1 - 3 and RPB1 - 3 inhibited Salmonella ZWSA605 growth, reducing bacterial counts to 1.51 log10 CFU/mL and 2.18 log10 CFU/mL after 8 h, respectively. Although the bacteriolytic activity of recombinant phages is lower than that of the parent phage, our findings suggest that these phages hold promise as candidates for future phage biocontrol applications in food.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Yu Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xihui Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Zimeng Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Hui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Mianmian Chen
- College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Xiang Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Nanjing, 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, 210009, China
| | - Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
3
|
Chanthavong V, Vigad N, Pelyuntha W, Yamik DY, Vongkamjan K, Yingkajorn M, Chaisowwong W, Tippaya K, Tadee P, Chukiatsiri K. Effectiveness of a single-dose phage cocktail on the reduction of multidrug-resistant Escherichia coli in suckling piglets. Vet Microbiol 2025; 302:110395. [PMID: 39837021 DOI: 10.1016/j.vetmic.2025.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Antibiotics are commonly used in pig farming to control infections caused by diarrhea-causing Escherichia coli (E. coli). However, improper or excessive use of antibiotics in pigs can enhance antibiotic resistance (ABR). This study used bacteriophage (phage) treatment to control ABR E. coli in diarrheal suckling piglets. Fifty E. coli isolates were previously isolated from suckling pigs, which showed resistance to amoxicillin (100 %), oxytetracycline and neomycin (94 %), sulfamethoxazole-trimethoprim (70 %), gentamicin (56 %), cephalexin (54 %), enrofloxacin (42 %), and colistin (28 %). Five phages (WPEC1, WPEC2, WPEC3, WPEC4, and WPEC5) were included in this study. These phages showed a diverse lytic profile ranging from 46.0 % to 64.0 % on the tested ABR E. coli isolates. The phage cocktail reduced the count of five representative E. coli by showing up to 8 log-units reduction (p < 0.05) after phage treatment for 6-24 h. From the in vivo study, a single dose of the phage cocktail (9 log PFU/mL) reduced the number of E. coli present in the gastrointestinal tract of suckling piglets by showing a 1.33 log-units reduction on day 7 (p < 0.05). In addition, the fecal score of the phage treatment group was lower than that of the control group (p < 0.05). However, body weight gain (BWG) and average daily gain (ADG) were not significantly different in both groups (p > 0.05). These findings suggest that a developed phage cocktail could be used as a potential biocontrol to fight ABR E. coli, reduce the chance of piglet mortality, and increase safety during pig production.
Collapse
Affiliation(s)
- Viphavanh Chanthavong
- Department of Animal Science, Faculty of Agriculture and Environment, Savannakhet University, Savannakhet, Laos
| | - Nattha Vigad
- Faculty of Animal Science and Technology, Maejo University, Sansai, Chiang Mai 50290, Thailand
| | - Wattana Pelyuntha
- Futuristic Science Research Center, School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand; Research Center for Theoretical Simulation and Applied Research in Bioscience and Sensing, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - David Yembilla Yamik
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Warangkhana Chaisowwong
- Department of Veterinary Bioscience and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittiphong Tippaya
- Faculty of Animal Science and Technology, Maejo University, Sansai, Chiang Mai 50290, Thailand
| | - Phacharaporn Tadee
- Faculty of Animal Science and Technology, Maejo University, Sansai, Chiang Mai 50290, Thailand
| | - Kridda Chukiatsiri
- Faculty of Animal Science and Technology, Maejo University, Sansai, Chiang Mai 50290, Thailand.
| |
Collapse
|
4
|
Li A, Chen C, Li Y, Wang Y, Li X, Zhu Q, Zhang Y, Tian S, Xia Q. Characterisation of a new virulent phage isolated from Hainan Island with potential against multidrug-resistant Pseudomonas aeruginosa infections. Res Microbiol 2025; 176:104250. [PMID: 39477080 DOI: 10.1016/j.resmic.2024.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa is a serious life-threatening pathogen. The rise in P. aeruginosa resistance rates has renewed interest in phages as an alternative therapeutic approach for treating bacterial infections. In this study, we investigated the characteristics of the first Pseudomonas phage, vB_PaP_HN01, isolated from Hainan, the only tropical island in China. The lytic rate of this phage against P. aeruginosa reached 64.3 % (27/42). Under the optimal multiplicity of infection (MOI) of 0.1, more than 90 % of phage particles absorb onto the host cell within 10 min, with an eclipse period of around 15 min, and a high titer phage production (1011 PFU/ml) within 90 min was demonstrated. vB_PaP_HN01 maintains a robust titer after 1 h exposure to pH values and temperatures (up to 50 °C). Genome annotation revealed that vB_PaP_HN01 did not contain drug-resistance or lysogeny-associated genes. It can effectively inhibit the formation of biofilms of MDR P. aeruginosa and eliminated aggressive biofilms (removal rate about 70 %). In the in vivo infection models, it was demonstrated that the survival rate and lifespan of Galleria mellonella larvae were increased alongside the injection of vB_PaP_HN01. These data revealed the potential of vB_PaP_HN01 against P. aeruginosa in clinic.
Collapse
Affiliation(s)
- Anyang Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Chen Chen
- Medical Laboratory Department, Traditional Chinese Medicine Hospital of Yaan, Sichuan, China
| | - Yanmei Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Yanshuang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xuemiao Li
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Qiao Zhu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Yue Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Shen Tian
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
5
|
Chaudhary V, Kajla P, Lather D, Chaudhary N, Dangi P, Singh P, Pandiselvam R. Bacteriophages: a potential game changer in food processing industry. Crit Rev Biotechnol 2024; 44:1325-1349. [PMID: 38228500 DOI: 10.1080/07388551.2023.2299768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.
Collapse
Affiliation(s)
- Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Priyanka Kajla
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Deepika Lather
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Priya Dangi
- Department of Food and Nutrition and Food Technology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Punit Singh
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University Mathura, Mathura, Uttar Pradesh, India
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| |
Collapse
|
6
|
Liu S, Quek SY, Huang K. An Ecofriendly Nature-Inspired Microcarrier for Enhancing Delivery, Stability, and Biocidal Efficacy of Phage-Based Biopesticides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403465. [PMID: 38940376 DOI: 10.1002/smll.202403465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Indexed: 06/29/2024]
Abstract
In pursuit of sustainable agricultural production, the development of environmentally friendly and effective biopesticides is essential to improve food security and environmental sustainability. Bacteriophages, as emerging biocontrol agents, offer an alternative to conventional antibiotics and synthetic chemical pesticides. The primary challenges in applying phage-based biopesticides in agricultural settings are their inherent fragility and low biocidal efficacy, particularly the susceptibility to sunlight exposure. This study addresses the aforementioned challenges by innovatively encapsulating phages in sporopollenin exine capsules (SECs), which are derived from plant pollen grains. The size of the apertures on SECs could be controlled through a non-thermal and rapid process, combining reinflation and vacuum infusion techniques. This unique feature facilitates the high-efficiency encapsulation and controlled release of phages under various conditions. The proposed SECs could encapsulate over 9 log PFU g-1 of phages and significantly enhance the ultraviolet (UV) resistance of phages, thereby ensuring their enhanced survivability and antimicrobial efficacy. The effectiveness of SECs encapsulated phages (T7@SECs) in preventing and treating bacterial contamination on lettuce leaves is further demonstrated, highlighting the practical applicability of this novel biopesticide in field applications. Overall, this study exploits the potential of SECs in the development of phage-based biopesticides, presenting a promising strategy to enhancing agricultural sustainability.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Kang Huang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
7
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
8
|
Reyneke B, Havenga B, Waso-Reyneke M, Khan S, Khan W. Benefits and Challenges of Applying Bacteriophage Biocontrol in the Consumer Water Cycle. Microorganisms 2024; 12:1163. [PMID: 38930545 PMCID: PMC11205630 DOI: 10.3390/microorganisms12061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteria (including disinfection- and antibiotic-resistant bacteria) are abundant in the consumer water cycle, where they may cause disease, and lead to biofouling and infrastructure damage in distributions systems, subsequently resulting in significant economic losses. Bacteriophages and their associated enzymes may then offer a biological control solution for application within the water sector. Lytic bacteriophages are of particular interest as biocontrol agents as their narrow host range can be exploited for the targeted removal of specific bacteria in a designated environment. Bacteriophages can also be used to improve processes such as wastewater treatment, while bacteriophage-derived enzymes can be applied to combat biofouling based on their effectiveness against preformed biofilms. However, the host range, environmental stability, bacteriophage resistance and biosafety risks are some of the factors that need to be considered prior to the large-scale application of these bacterial viruses. Characteristics of bacteriophages that highlight their potential as biocontrol agents are thus outlined in this review, as well as the potential application of bacteriophage biocontrol throughout the consumer water cycle. Additionally, the limitations of bacteriophage biocontrol and corresponding mitigation strategies are outlined, including the use of engineered bacteriophages for improved host ranges, environmental stability and the antimicrobial re-sensitisation of bacteria. Finally, the potential public and environmental risks associated with large-scale bacteriophage biocontrol application are considered, and alternative applications of bacteriophages to enhance the functioning of the consumer water cycle, including their use as water quality or treatment indicators and microbial source tracking markers, are discussed.
Collapse
Affiliation(s)
- Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Monique Waso-Reyneke
- Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
9
|
Jhandai P, Mittal D, Gupta R, Kumar M, Khurana R. Therapeutics and prophylactic efficacy of novel lytic Escherichia phage vB_EcoS_PJ16 against multidrug-resistant avian pathogenic E. coli using in vivo study. Int Microbiol 2024; 27:673-687. [PMID: 37632591 DOI: 10.1007/s10123-023-00420-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis, which causes significant economic losses to the poultry industry. The growing resistance of bacteria to antibiotics is a major global public health concern. However, there is limited data on the efficacy of phage therapy in effectively controlling and treating APEC infections. In this study, a novel lytic Escherichia phage, vB_EcoS_PJ16, was isolated from poultry farm wastewater and characterized in both in vitro and in vivo conditions. Transmission electron microscopy analysis revealed the presence of an icosahedral head and a long non-contractile tail, classifying the phage under the Caudoviricetes class. Host range determination showed that Escherichia phage vB_EcoS_PJ16 exhibited lytic activity against multiple strains of pathogenic E. coli, while no significant signs of lysis for Klebsiella pneumoniae, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. Biophysical characterization revealed that the isolated phage was sturdy, as it remained viable for up to 300 days at temperatures of 30 °C, 37 °C, and 42 °C and for up to 24 h at pH 5 to 11, with only minor changes in titer. Kinetic analysis at multiplicity of infection (MOI) 0.1 showed a latency period of about 20 min and a burst size of 26.5 phage particles per infected cell for phage vB_EcoS_PJ16. Whole genome sequencing unveiled that the phage vB_EcoS_PJ16 genome consists of a double-stranded linear DNA molecule with 57,756 bp and a GC content of 43.58%. The Escherichia phage vB_EcoS_PJ16 genome consisted of 98 predicted putative ORFs, with no transfer RNA identified in the genome. Among these 98 genes, 34 genes were predicted to have known functions. A significant reduction in APEC viability was observed at MOI 100 during in vitro bacterial challenge tests conducted at different MOIs (0.01, 1, and 100). In vivo oral evaluation of the isolated phage to limit E. coli infections in day-old chicks indicated a decrease in mortality within both the therapeutic (20%) and prophylactic (30%) groups, when compared to the control group. The findings of this study contribute to our current knowledge of Escherichia phages and suggest a potentially effective role of phages in the therapeutic and prophylactic control of antibiotic-resistant APEC strains.
Collapse
Affiliation(s)
- Punit Jhandai
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India.
| | - Renu Gupta
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Manesh Kumar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Rajesh Khurana
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| |
Collapse
|
10
|
Pelyuntha W, Ngasaman R, Yingkajorn M, Chukiatsiri K, Guyonnet V, Vongkamjan K. Phage cocktail administration to reduce Salmonella load in broilers. Res Vet Sci 2024; 169:105163. [PMID: 38295630 DOI: 10.1016/j.rvsc.2024.105163] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Salmonella is a serious foodborne pathogen that can cause gastrointestinal disease through the consumption of contaminated foods; including poultry meat. Salmonella is commonly present in the intestinal tract of poultry and farm environments, posing a potential risk of contamination during the processing of poultry meat. This study was a continuation in evaluating the effects of our previously developed phage cocktail targeting Salmonella at large-scale trials in commercial broiler farms, in which this cocktail considerably lowered Salmonella colonization in the gut of broilers. The phage cocktail given to broilers showed resistance to temperatures of up to 65 °C (> 60% survivability), pH ranging from 2 to 12 (> 96% survivability), 0.5 to 15% (w/v) NaCl (> 98% survivability), chlorine up to 0.5% (v/v) (53% survivability), and chlorine neutralizer (100% survivability). In the animal challenge study, phage treatments, designed as "prevention" and "exclusion" programs, could control Salmonella on day 20 and 32 of the experiment, respectively; as indicated by the absence of Salmonella detection in cloacal swabs from broilers (0% prevalence). In the commercial-scale trial I, Salmonella was not detected in the phage-treated group from cloacal swabs, boot cover swabs, and bedding material samples after 16 days (0% prevalence) of phage administration. In the commercial-scale trial II, phage treatment extended the Salmonella control period in broilers during a 40-day growout period. In summary, a phage cocktail demonstrated high efficiency in controlling various serovars of Salmonella historically linked to contamination on these broiler farms. Phage cocktail application offers an effective, alternative to enhance food safety within the poultry value chain, protecting consumers and as well as the economic sustainability of the poultry sector.
Collapse
Affiliation(s)
- Wattana Pelyuntha
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ruttayaporn Ngasaman
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Mingkwan Yingkajorn
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Kridda Chukiatsiri
- Faculty of Animal Science and Technology, Maejo University, Nongharn, Sansai, Chiang Mai 50290, Thailand
| | | | - Kitiya Vongkamjan
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
11
|
Costa AR, Azeredo J, Pires DP. Synthetic Biology to Engineer Bacteriophage Genomes. Methods Mol Biol 2024; 2734:261-277. [PMID: 38066375 DOI: 10.1007/978-1-0716-3523-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered toward a wide range of applications, including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes will be addressed: the bacteriophage recombineering of electroporated DNA (BRED) and the yeast-based phage-engineering platform.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Priscila Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
12
|
Raza S, Wdowiak M, Paczesny J. An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages. EcoSal Plus 2023; 11:eesp00192022. [PMID: 36651738 PMCID: PMC10729933 DOI: 10.1128/ecosalplus.esp-0019-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Lv S, Wang Y, Jiang K, Guo X, Zhang J, Zhou F, Li Q, Jiang Y, Yang C, Teng T. Genetic Engineering and Biosynthesis Technology: Keys to Unlocking the Chains of Phage Therapy. Viruses 2023; 15:1736. [PMID: 37632078 PMCID: PMC10457950 DOI: 10.3390/v15081736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Phages possess the ability to selectively eliminate pathogenic bacteria by recognizing bacterial surface receptors. Since their discovery, phages have been recognized for their potent bactericidal properties, making them a promising alternative to antibiotics in the context of rising antibiotic resistance. However, the rapid emergence of phage-resistant strains (generally involving temperature phage) and the limited host range of most phage strains have hindered their antibacterial efficacy, impeding their full potential. In recent years, advancements in genetic engineering and biosynthesis technology have facilitated the precise engineering of phages, thereby unleashing their potential as a novel source of antibacterial agents. In this review, we present a comprehensive overview of the diverse strategies employed for phage genetic engineering, as well as discuss their benefits and drawbacks in terms of bactericidal effect.
Collapse
Affiliation(s)
- Sixuan Lv
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Kaixin Jiang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinge Guo
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jing Zhang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fang Zhou
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qiming Li
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuan Jiang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Changyong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Arora P, Jain A, Kumar A. Phage design and directed evolution to evolve phage for therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:103-126. [PMID: 37739551 DOI: 10.1016/bs.pmbts.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Phage therapy or Phage treatment is the use of bacteriolysing phage in treating bacterial infections by using the viruses that infects and kills bacteria. This technique has been studied and practiced very long ago, but with the advent of antibiotics, it has been neglected. This foregone technique is now witnessing a revival due to development of bacterial resistance. Nowadays, with the awareness of genetic sequence of organisms, it is required that informed choices of phages have to be made for the most efficacious results. Furthermore, phages with the evolving genes are taken into consideration for the subsequent improvement in treating the patients for bacterial diseases. In addition, direct evolution methods are increasingly developing, since these are capable of creating new biological molecules having changed or unique activities, such as, improved target specificity, evolution of novel proteins with new catalytic properties or creation of nucleic acids that are capable of recognizing required pathogenic bacteria. This system is incorporates continuous evolution such as protein or genes are put under continuous evolution by providing continuous mutagenesis with least human intervention. Although, this system providing continuous directed evolution is very effective, it imposes some challenges due to requirement of heavy investment of time and resources. This chapter focuses on development of phage as a therapeutic agent against various bacteria causing diseases and it improvement using direct evolution of proteins and nucleic acids such that they target specific organisms.
Collapse
Affiliation(s)
- Priyancka Arora
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Avni Jain
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
15
|
Luo Q, Liu N, Pu S, Zhuang Z, Gong H, Zhang D. A review on the research progress on non-pharmacological therapy of Helicobacter pylori. Front Microbiol 2023; 14:1134254. [PMID: 37007498 PMCID: PMC10063898 DOI: 10.3389/fmicb.2023.1134254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Helicobacter pylori is a pathogenic microorganism that mainly resides in the human stomach and is the major cause of chronic gastritis, peptic ulcer and gastric cancer. Up to now, the treatment of Helicobacter pylori has been predominantly based on a combination of antibiotics and proton pump inhibitors. However, the increasing antibiotic resistance greatly limits the efficacy of anti-Helicobacter pylori treatment. Turning to non-antibiotic or non-pharmacological treatment is expected to solve this problem and may become a new strategy for treating Helicobacter pylori. In this review, we outline Helicobacter pylori's colonization and virulence mechanisms. Moreover, a series of non-pharmacological treatment methods for Helicobacter pylori and their mechanisms are carefully summarized, including probiotics, oxygen-rich environment or hyperbaric oxygen therapy, antibacterial photodynamic therapy, nanomaterials, antimicrobial peptide therapy, phage therapy and modified lysins. Finally, we provide a comprehensive overview of the challenges and perspectives in developing new medical technologies for treating Helicobacter pylori without drugs.
Collapse
Affiliation(s)
- Qian Luo
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Na Liu
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Sugui Pu
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Ze Zhuang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Hang Gong
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Clinical Medical College of Lanzhou University, LanZhou University Second Hospital, Lanzhou, China
- Key Laboratory of Digestive Diseases, LanZhou University Second Hospital, Lanzhou, China
| |
Collapse
|
16
|
Śliwka P, Weber-Dąbrowska B, Żaczek M, Kuźmińska-Bajor M, Dusza I, Skaradzińska A. Characterization and Comparative Genomic Analysis of Three Virulent E. coli Bacteriophages with the Potential to Reduce Antibiotic-Resistant Bacteria in the Environment. Int J Mol Sci 2023; 24:ijms24065696. [PMID: 36982770 PMCID: PMC10059673 DOI: 10.3390/ijms24065696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The emerging global crisis of antibiotic resistance demands new alternative antibacterial solutions. Although bacteriophages have been used to combat bacterial infections for over a century, a dramatic boost in phage studies has recently been observed. In the development of modern phage applications, a scientific rationale is strongly required and newly isolated phages need to be examined in detail. In this study, we present the full characterization of bacteriophages BF9, BF15, and BF17, with lytic activity against extended-spectrum β-lactamases (ESBLs)- and AmpC β-lactamases (AmpC)-producing Escherichia coli, the prevalence of which has increased significantly in livestock in recent decades, representing a great hazard to food safety and a public health risk. Comparative genomic and phylogenetic analysis indicated that BF9, BF15, and BF17 represent the genera Dhillonvirus, Tequatrovirus, and Asteriusvirus, respectively. All three phages significantly reduced in vitro growth of their bacterial host and retained the ability to lyse bacteria after preincubation at wide ranges of temperature (−20–40 °C) and pH (5–9). The results described herein indicate the lytic nature of BF9, BF15, and BF17, which, along with the absence of genes encoding toxins and bacterial virulence factors, represents an undoubted asset in terms of future phage application.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Izabela Dusza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-320-7791
| |
Collapse
|
17
|
Durr HA, Leipzig ND. Advancements in bacteriophage therapies and delivery for bacterial infection. MATERIALS ADVANCES 2023; 4:1249-1257. [PMID: 36895585 PMCID: PMC9987412 DOI: 10.1039/d2ma00980c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/25/2023] [Indexed: 06/02/2023]
Abstract
Having co-evolved with bacteria over hundreds of millions of years, bacteriophage are effective killers of specific bacterial hosts. Therefore, phage therapies for infection are a promising treatment avenue, can provide a solution for antibiotic resistant bacterial infections, and have specified targeting of infectious bacteria while allowing the natural microbiome to survive which systemic antibiotics often wipe out. Many phages have well studied genomes that can be modified to change target, widen target range, or change mode of action of killing bacterial hosts. Phage delivery can also be designed to increase efficacy of treatment, including encapsulation and delivery via biopolymers. Increased research into phage potential for therapies can allow new avenues to develop to treat a larger range of infections.
Collapse
Affiliation(s)
- Hannah A Durr
- Department of Integrated Biosciences, University of Akron Ohio 44325 USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron Ohio 44325 USA
- Department of Integrated Biosciences, University of Akron Ohio 44325 USA
| |
Collapse
|
18
|
Sriprasong P, Imklin N, Nasanit R. Selection and characterization of bacteriophages specific to Salmonella Choleraesuis in swine. Vet World 2022; 15:2856-2869. [PMID: 36718326 PMCID: PMC9880823 DOI: 10.14202/vetworld.2022.2856-2869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background and Aim Salmonella Choleraesuis is the most common serotype that causes salmonellosis in swine. Recently, the use of bacteriophages as a potential biocontrol strategy has increased. Therefore, this study aimed to isolate and characterize bacteriophages specific to S. Choleraesuis associated with swine infection and to evaluate the efficacy of individual phages and a phage cocktail against S. Choleraesuis strains in simulated intestinal fluid (SIF). Materials and Methods Three strains of S. Choleraesuis isolated from pig intestines served as host strains for phage isolation. The other 10 Salmonella serovars were also used for the phage host range test. The antibiotic susceptibility of the bacterial strains was investigated. Water samples from natural sources and drain liquid from slaughterhouses were collected for phage isolation. The isolated phages were characterized by determining the efficiency of plating against all Salmonella strains and the stability at a temperature range (4°C-65°C) and at low pH (2.5-4.0) in simulated gastric fluids (SGFs). Furthermore, morphology and genomic restriction analyses were performed for phage classification phages. Finally, S. Choleraesuis reduction in the SIF by the selected individual phages and a phage cocktail was investigated. Results The antibiotic susceptibility results revealed that most Salmonella strains were sensitive to all tested drugs. Salmonella Choleraesuis KPS615 was multidrug-resistant, showing resistance to three antibiotics. Nine phages were isolated. Most of them could infect four Salmonella strains. Phages vB_SCh-RP5i3B and vB_SCh-RP61i4 showed high efficiency in infecting S. Choleraesuis and Salmonella Rissen. The phages were stable for 1 h at 4°C-45°C. However, their viability decreased when the temperature increased to 65°C. In addition, most phages remained viable at a low pH (pH 2.5-4.0) for 2 h in SGF. The efficiency of phage treatment against S. Choleraesuis in SIF showed that individual phages and a phage cocktail with three phages effectively reduced S. Choleraesuis in SIF. However, the phage cocktails were more effective than the individual phages. Conclusion These results suggest that the newly isolated phages could be promising biocontrol agents against S. Choleraesuis infection in pigs and could be orally administered. However, further in vivo studies should be conducted.
Collapse
Affiliation(s)
- Pattaraporn Sriprasong
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Napakhwan Imklin
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Rujikan Nasanit
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand,Corresponding author: Rujikan Nasanit, e-mail: Co-authors: PS: , NI:
| |
Collapse
|
19
|
An in vitro fermentation model to study the impact of bacteriophages targeting Shiga toxin-encoding Escherichia coli on the colonic microbiota. NPJ Biofilms Microbiomes 2022; 8:74. [PMID: 36163472 PMCID: PMC9512901 DOI: 10.1038/s41522-022-00334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Lytic bacteriophages are considered safe for human consumption as biocontrol agents against foodborne pathogens, in particular in ready-to-eat foodstuffs. Phages could, however, evolve to infect different hosts when passing through the gastrointestinal tract (GIT). This underlines the importance of understanding the impact of phages towards colonic microbiota, particularly towards bacterial families usually found in the colon such as the Enterobacteriaceae. Here we propose in vitro batch fermentation as model for initial safety screening of lytic phages targeting Shiga toxin-producing Escherichia coli (STEC). As inoculum we used faecal material of three healthy donors. To assess phage safety, we monitored fermentation parameters, including short chain fatty acid production and gas production/intake by colonic microbiota. We performed shotgun metagenomic analysis to evaluate the outcome of phage interference with colonic microbiota composition and functional potential. During the 24 h incubation, concentrations of phage and its host were also evaluated. We found the phage used in this study, named E. coli phage vB_EcoS_Ace (Ace), to be safe towards human colonic microbiota, independently of the donors’ faecal content used. This suggests that individuality of donor faecal microbiota did not interfere with phage effect on the fermentations. However, the model revealed that the attenuated STEC strain used as phage host perturbed the faecal microbiota as based on metagenomic analysis, with potential differences in metabolic output. We conclude that the in vitro batch fermentation model used in this study is a reliable safety screening for lytic phages intended to be used as biocontrol agents.
Collapse
|
20
|
Martins WMBS, Cino J, Lenzi MH, Sands K, Portal E, Hassan B, Dantas PP, Migliavacca R, Medeiros EA, Gales AC, Toleman MA. Diversity of lytic bacteriophages against XDR Klebsiella pneumoniae sequence type 16 recovered from sewage samples in different parts of the world. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156074. [PMID: 35623509 DOI: 10.1016/j.scitotenv.2022.156074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages (phages) are viruses considered to be natural bacterial predators and widely detected in aquatic environments. Sewage samples are an important source of phage isolation since high density and diversity of bacterial cells are present, due to human, animal and household fluids. This study aims to investigate and characterise phages against an extremely drug-resistant (XDR) lineage, Klebsiella pneumoniae ST16, using sewage samples from different parts of the World. Sewage samples from Brazil, Bangladesh, Saudi Arabia, Thailand and the United Kingdom were collected and used to investigate phages against ten K. pneumoniae ST16 (hosts) recovered from infection sites. The phages were microbiological and genetically characterised by double-agar overlay (DLA), transmission electron microscopy and Illumina WGS. The host range against K. pneumoniae belonging to different sequence types was evaluated at different temperatures by spot test. Further phage characterisation, such as efficiency of plating, optimal phage temperature, and pH/temperature susceptibility, were conducted. Fourteen lytic phages were isolated, belonging to Autographiviridae, Ackermannviridae, Demerecviridae, Drexlerviridae, and Myoviridae families, from Brazil, Bangladesh, Saudi Arabia and Thailand and demonstrated a great genetic diversity. The viruses had good activity against our collection of clinical K. pneumoniae ST16 at room temperature and 37 °C, but also against other important Klebsiella clones such as ST11, ST15, and ST258. Temperature assays showed lytic activity in different temperatures, except for PWKp18 which only had activity at room temperature. Phages were stable between pH 5 and 10 with minor changes in phage activity, and 70 °C was the temperature able to kill all phages in this study. Using sewage from different parts of the World allowed us to have a set of highly efficient phages against an K. pneumoniae ST16 that can be used in the future to develop new tools to combat infections in humans or animals caused by this pathogen.
Collapse
Affiliation(s)
- Willames M B S Martins
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil.
| | - Juliana Cino
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Michael H Lenzi
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Kirsty Sands
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom; Department of Zoology, University of Oxford, United Kingdom
| | - Edward Portal
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Brekhna Hassan
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Priscila P Dantas
- Universidade Federal de São Paulo, Hospital Epidemiology Committee, Hospital São Paulo, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Microbiology and Clinical Microbiology, University of Pavia, 27100 Pavia, Italy
| | - Eduardo A Medeiros
- Universidade Federal de São Paulo, Hospital Epidemiology Committee, Hospital São Paulo, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, São Paulo, Brazil
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
| | - Mark A Toleman
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
21
|
Wdowiak M, Paczesny J, Raza S. Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics 2022; 14:1936. [PMID: 36145682 PMCID: PMC9502844 DOI: 10.3390/pharmaceutics14091936] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Phages are efficient in diagnosing, treating, and preventing various diseases, and as sensing elements in biosensors. Phage display alone has gained attention over the past decade, especially in pharmaceuticals. Bacteriophages have also found importance in research aiming to fight viruses and in the consequent formulation of antiviral agents and vaccines. All these applications require control over the stability of virions. Phages are considered resistant to various harsh conditions. However, stability-determining parameters are usually the only additional factors in phage-related applications. Phages face instability and activity loss when preserved for extended periods. Sudden environmental changes, including exposure to UV light, temperature, pH, and salt concentration, also lead to a phage titer fall. This review describes various formulations that impart stability to phage stocks, mainly focusing on polymer-based stabilization, encapsulation, lyophilization, and nano-assisted solutions.
Collapse
|
22
|
Yu T, Sun Z, Cao X, Pang Q, Deng H. Recent trends in T7 phage application in diagnosis and treatment of various diseases. Int Immunopharmacol 2022; 110:109071. [DOI: 10.1016/j.intimp.2022.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
|
23
|
Mhone AL, Makumi A, Odaba J, Guantai L, Gunathilake KMD, Loignon S, Ngugi CW, Akhwale JK, Moineau S, Svitek N. Salmonella Enteritidis Bacteriophages Isolated from Kenyan Poultry Farms Demonstrate Time-Dependent Stability in Environments Mimicking the Chicken Gastrointestinal Tract. Viruses 2022; 14:v14081788. [PMID: 36016410 PMCID: PMC9416366 DOI: 10.3390/v14081788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Multi-drug resistant (MDR) Salmonella enterica Enteritidis is one of the major causes of foodborne illnesses worldwide. This non-typhoidal Salmonella (NTS) serovar is mainly transmitted to humans through poultry products. Bacteriophages (phages) offer an alternative to antibiotics for reducing the incidence of MDR NTS in poultry farms. Phages that survive the harsh environment of the chicken gastrointestinal tract (cGIT), which have low pH, high temperatures, and several enzymes, may have a higher therapeutic or prophylactic potential. In this study, we analysed the stability of 10 different S. Enteritidis phages isolated from Kenyan poultry farms in different pH-adjusted media, incubation temperatures, as well as simulated gastric and intestinal fluids (SGF and SIF, respectively). Furthermore, their ability to persist in water sources available in Kenya, including river, borehole, rain and tap water, was assessed. All phages were relatively stable for 12 h at pHs ranging from 5 to 9 and at temperatures ranging from 25 °C to 42 °C. At pH 3, a loss in viral titre of up to three logs was observed after 3 h of incubation. In SGF, phages were stable for 20 min, after which they started losing infectivity. Phages were relatively stable in SIF for up to 2 h. The efficacy of phages to control Salmonella growth was highly reduced in pH 2- and pH 3-adjusted media and in SGF at pH 2.5, but less affected in SIF at pH 8. River water had the most significant detrimental effect on phages, while the other tested waters had a limited impact on the phages. Our data suggest that these phages may be administered to chickens through drinking water and may survive cGIT to prevent salmonellosis in poultry.
Collapse
Affiliation(s)
- Amos Lucky Mhone
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
- Department of Zoology, School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Angela Makumi
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Josiah Odaba
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Linda Guantai
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - K. M. Damitha Gunathilake
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Stéphanie Loignon
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Wangari Ngugi
- Department of Zoology, School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Juliah Khayeli Akhwale
- Department of Zoology, School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicholas Svitek
- International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
- Correspondence:
| |
Collapse
|
24
|
Mutai IJ, Juma AA, Inyimili MI, Nyachieo A, Nyamache AK. Efficacy of diversely isolated lytic phages against multi-drug resistant Enterobacter cloacae isolates in Kenya. Afr J Lab Med 2022; 11:1673. [PMID: 36091354 PMCID: PMC9453119 DOI: 10.4102/ajlm.v11i1.1673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/04/2022] [Indexed: 11/07/2022] Open
Abstract
Background Enterobacter cloacae causes nosocomial infections in 15% of patients in low- and middle-income countries with emergence of carbapenem resistance. The utilisation of bacteriophages for therapeutic purposes is crucial for eradicating these resistant bacterial strains. Objective This study evaluated the efficacy of lytic phages on bacterial isolates of E. cloacae and determined their stability in various physicochemical conditions. Methods Twenty-nine lytic phages were isolated from the waste water of six informal settlements in Nairobi County, Kenya, from July 2019 to December 2020 and cross-reacted with 30 anonymised clinical isolates of E. cloacae. Six phages were then selected for physicochemical property studies. Phages were described as potent upon lysing any bacterial strain in the panel. Results Selected phages were stable at 4 °C – 50 °C with a 5.1% decrease in titre in four of six phages and a 1.8% increase in titre in two of six phages at 50 °C. The phages were efficient following two weeks incubation at 4 °C with optimal activity at human body temperature (37 °C) and an optimal pH of 7.5. Phages were active at 0.002 M and 0.015 M concentrations of Ca2+ ions. The efficiency of all phages decreased with increased exposure to ultraviolet light. All phages (n = 29) showed cross-reactivity against anonymised clinical isolates of E. cloacae strains (n = 30). The most potent phage lysed 67.0% of bacterial strains; the least potent phage lysed 27.0%. Conclusion This study reveals the existence of therapeutic phages in Kenya that are potent enough for treatment of multi-drug resistant E. cloacae.
Collapse
Affiliation(s)
- Ivy J Mutai
- Phage Biology Laboratory, Institute of Primate Research, Nairobi, Kenya
- Department of Biochemistry, Biotechnology and Microbiology, Faculty of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Angela A Juma
- Phage Biology Laboratory, Institute of Primate Research, Nairobi, Kenya
| | | | - Atunga Nyachieo
- Phage Biology Laboratory, Institute of Primate Research, Nairobi, Kenya
| | - Anthony K Nyamache
- Department of Biochemistry, Biotechnology and Microbiology, Faculty of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
25
|
Wang Y, Li X, Dance DAB, Xia H, Chen C, Luo N, Li A, Li Y, Zhu Q, Sun Q, Wu X, Zeng Y, Chen L, Tian S, Xia Q. A novel lytic phage potentially effective for phage therapy against Burkholderia pseudomallei in the tropics. Infect Dis Poverty 2022; 11:87. [PMID: 35927751 PMCID: PMC9351088 DOI: 10.1186/s40249-022-01012-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background Burkholderia pseudomallei is a tropical pathogen that causes melioidosis. Its intrinsic drug-resistance is a leading cause of treatment failure, and the few available antibiotics require prolonged use to be effective. This study aimed to assess the clinical potential of B. pseudomallei phages isolated from Hainan, China.
Methods Burkholderia pseudomallei strain (HNBP001) was used as the isolation host, and phages were recovered from domestic environmental sources, which were submitted to the host range determination, lytic property assays, and stability tests. The best candidate was examined via the transmission electron microscope for classification. With its genome sequenced and analyzed, its protective efficacy against B. pseudomallei infection in A549 cells and Caenorhabditis elegans was evaluated, in which cell viability and survival rates were compared using the one-way ANOVA method and the log-rank test. Results A phage able to lyse 24/25 clinical isolates was recovered. It was classified in the Podoviridae family and was found to be amenable to propagation. Under the optimal multiplicity of infection (MOI) of 0.1, an eclipse period of around 20 min and a high titer (1012 PFU/ml) produced within 1 h were demonstrated. This phage was found stabile at a wide range of temperatures (24, 37, 40, 50, and 60 °C) and pH values (3–12). After being designated as vB_BpP_HN01, it was fully sequenced, and the 71,398 bp linear genome, containing 93 open reading frames and a tRNA-Asn, displayed a low sequence similarity with known viruses. Additionally, protective effects of applications of vB_BpP_HN01 (MOI = 0.1 and MOI = 1) alone or in combination with antibiotics were found to improve viability of infected cells (70.6 ± 6.8%, 85.8 ± 5.7%, 91.9 ± 1.8%, and 96.8 ± 1.8%, respectively). A significantly reduced mortality (10%) and a decreased pathogen load were demonstrated in infected C. elegans following the addition of this phage. Conclusions As the first B. pseudomallei phage was isolated in Hainan, China, phage vB_BpP_HN01 was characterized by promising lytic property, stability, and efficiency of bacterial elimination during the in vitro/vivo experiments. Therefore, we can conclude that it is a potential alternative agent for combating melioidosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-01012-9.
Collapse
Affiliation(s)
- Yanshuang Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xuemiao Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - David A B Dance
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Nini Luo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Anyang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Yanmei Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Qiao Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Qinghui Sun
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Xingyong Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Yingfei Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China
| | - Lin Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shen Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and The Second Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
26
|
Ferreira R, Sousa C, Gonçalves RFS, Pinheiro AC, Oleastro M, Wagemans J, Lavigne R, Figueiredo C, Azeredo J, Melo LDR. Characterization and Genomic Analysis of a New Phage Infecting Helicobacter pylori. Int J Mol Sci 2022; 23:ijms23147885. [PMID: 35887231 PMCID: PMC9319048 DOI: 10.3390/ijms23147885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori, a significant human gastric pathogen, has been demonstrating increased antibiotic resistance, causing difficulties in infection treatment. It is therefore important to develop alternatives or complementary approaches to antibiotics to tackle H. pylori infections, and (bacterio)phages have proven to be effective antibacterial agents. In this work, prophage isolation was attempted using H. pylori strains and UV radiation. One phage was isolated and further characterized to assess potential phage-inspired therapeutic alternatives to H. pylori infections. HPy1R is a new podovirus prophage with a genome length of 31,162 bp, 37.1% GC, encoding 36 predicted proteins, of which 17 were identified as structural. Phage particles remained stable at 37 °C, from pH 3 to 11, for 24 h in standard assays. Moreover, when submitted to an in vitro gastric digestion model, only a small decrease was observed in the gastric phase, suggesting that it is adapted to the gastric tract environment. Together with its other characteristics, its capability to suppress H. pylori population levels for up to 24 h post-infection at multiplicities of infection of 0.01, 0.1, and 1 suggests that this newly isolated phage is a potential candidate for phage therapy in the absence of strictly lytic phages.
Collapse
Affiliation(s)
- Rute Ferreira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal;
| | - Cláudia Sousa
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel F. S. Gonçalves
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Cristina Pinheiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Doctor Ricardo Jorge (INSA), 1649-016 Lisbon, Portugal;
| | - Jeroen Wagemans
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (J.W.); (R.L.)
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (J.W.); (R.L.)
| | - Ceu Figueiredo
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal;
- Ipatimup—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Azeredo
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís D. R. Melo
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.F.); (C.S.); (R.F.S.G.); (A.C.P.); (J.A.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
27
|
Raza S, Folga M, Łoś M, Foltynowicz Z, Paczesny J. The Effect of Zero-Valent Iron Nanoparticles (nZVI) on Bacteriophages. Viruses 2022; 14:867. [PMID: 35632609 PMCID: PMC9144403 DOI: 10.3390/v14050867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/05/2022] Open
Abstract
Bacteriophages are viruses that attack and usually kill bacteria. Their appearance in the industrial facilities using bacteria to produce active compounds (e.g., drugs, food, cosmetics, etc.) causes considerable financial losses. Instances of bacteriophage resistance towards disinfectants and decontamination procedures (such as thermal inactivation and photocatalysis) have been reported. There is a pressing need to explore new ways of phage inactivation that are environmentally neutral, inexpensive, and more efficient. Here, we study the effect of zero-valent iron nanoparticles (nZVI) on four different bacteriophages (T4, T7, MS2, M13). The reduction of plaque-forming units (PFU) per mL varies from greater than 7log to around 0.5log depending on bacteriophages (M13 and T7, respectively). A comparison of the importance of oxidation of nZVI versus the release of Fe2+/Fe3+ ions is shown. The mechanism of action is proposed in connection to redox reactions, adsorption of virions on nZVI, and the effect of released iron ions. The nZVI constitutes a critical addition to available antiphagents (i.e., anti-bacteriophage agents).
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (M.F.)
| | - Michał Folga
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (M.F.)
| | - Marcin Łoś
- Department of Molecular Genetics of Bacteria, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
- Phage Consultants, Partyzantów 10/18, 80-254 Gdańsk, Poland
| | - Zenon Foltynowicz
- Department of Non-Food Products Quality and Packaging Development, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (S.R.); (M.F.)
| |
Collapse
|
28
|
Schwarz C, Mathieu J, Laverde Gomez JA, Yu P, Alvarez PJJ. Renaissance for Phage-Based Bacterial Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4691-4701. [PMID: 34793127 DOI: 10.1021/acs.est.1c06232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacteriophages (phages) are an underutilized biological resource with vast potential for pathogen control and microbiome editing. Phage research and commercialization have increased rapidly in biomedical and agricultural industries, but adoption has been limited elsewhere. Nevertheless, converging advances in DNA sequencing, bioinformatics, microbial ecology, and synthetic biology are now poised to broaden phage applications beyond pathogen control toward the manipulation of microbial communities for defined functional improvements. Enhancements in sequencing combined with network analysis make it now feasible to identify and disrupt microbial associations to elicit desirable shifts in community structure or function, indirectly modulate species abundance, and target hub or keystone species to achieve broad functional shifts. Sequencing and bioinformatic advancements are also facilitating the use of temperate phages for safe gene delivery applications. Finally, integration of synthetic biology stands to create novel phage chassis and modular genetic components. While some fundamental, regulatory, and commercialization barriers to widespread phage use remain, many major challenges that have impeded the field now have workable solutions. Thus, a new dawn for phage-based (chemical-free) precise biocontrol and microbiome editing is on the horizon to enhance, suppress, or modulate microbial activities important for public health, food security, and more sustainable energy production and water reuse.
Collapse
Affiliation(s)
- Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| | - Jenny A Laverde Gomez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Sentinel Environmental, Houston, Texas 77082, United States
| |
Collapse
|
29
|
Mutalik VK, Arkin AP. A Phage Foundry Framework to Systematically Develop Viral Countermeasures to Combat Antibiotic-Resistant Bacterial Pathogens. iScience 2022; 25:104121. [PMID: 35402883 PMCID: PMC8983348 DOI: 10.1016/j.isci.2022.104121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
At its current rate, the rise of antimicrobial-resistant (AMR) infections is predicted to paralyze our industries and healthcare facilities while becoming the leading global cause of loss of human life. With limited new antibiotics on the horizon, we need to invest in alternative solutions. Bacteriophages (phages)-viruses targeting bacteria-offer a powerful alternative approach to tackle bacterial infections. Despite recent advances in using phages to treat recalcitrant AMR infections, the field lacks systematic development of phage therapies scalable to different applications. We propose a Phage Foundry framework to establish metrics for phage characterization and to fill the knowledge and technological gaps in phage therapeutics. Coordinated investment in AMR surveillance, sampling, characterization, and data sharing procedures will enable rational exploitation of phages for treatments. A fully realized Phage Foundry will enhance the sharing of knowledge, technology, and viral reagents in an equitable manner and will accelerate the biobased economy.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| |
Collapse
|
30
|
Pelyuntha W, Vongkamjan K. Combined effects of Salmonella phage cocktail and organic acid for controlling Salmonella Enteritidis in chicken meat. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Milho C, Sillankorva S. Implication of a gene deletion on a Salmonella Enteritidis phage growth parameters. Virus Res 2022; 308:198654. [PMID: 34902446 DOI: 10.1016/j.virusres.2021.198654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 01/21/2023]
Abstract
Synthetic biology has been applied countless times for the modification and improvement of bacterial strains and for the synthesis of products that do not exist in nature. Phages are natural predators of bacteria controlling their population levels; however, their genomes carry several genes with unknown functions. In this work, Bacteriophage Recombineering of Electroporated DNA was used to assess the influence of deletion of a single gene with unknown function in the overall replication parameters of Salmonella phage PVP-SE2. Deletion of ORF_01, transcribed immediately after infection, reduced both the latent and rise periods by 5 min in PVP-SE2ΔORF_01 compared to the wild-type phage. A direct consequence of the deletion led to a smaller progeny release per infected cell by the mutant compared to the wild-type phage. Despite the difference in growth characteristics, the mutant phage remained infective towards exponentially growing cells. The mutation engineered endured for at least ten passages, showing that there is no reversion back to the wild-type sequence. This study provides proof of concept that methodologies used for phage engineering should always be complemented by phage growth characterization to assess whether a mutation can trigger undesirable characteristics.
Collapse
Affiliation(s)
- C Milho
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - S Sillankorva
- INL- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
32
|
Rogovski P, Cadamuro RD, da Silva R, de Souza EB, Bonatto C, Viancelli A, Michelon W, Elmahdy EM, Treichel H, Rodríguez-Lázaro D, Fongaro G. Uses of Bacteriophages as Bacterial Control Tools and Environmental Safety Indicators. Front Microbiol 2021; 12:793135. [PMID: 34917066 PMCID: PMC8670004 DOI: 10.3389/fmicb.2021.793135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteriophages are bacterial-specific viruses and the most abundant biological form on Earth. Each bacterial species possesses one or multiple bacteriophages and the specificity of infection makes them a promising alternative for bacterial control and environmental safety, as a biotechnological tool against pathogenic bacteria, including those resistant to antibiotics. This application can be either directly into foods and food-related environments as biocontrol agents of biofilm formation. In addition, bacteriophages are used for microbial source-tracking and as fecal indicators. The present review will focus on the uses of bacteriophages like bacterial control tools, environmental safety indicators as well as on their contribution to bacterial control in human, animal, and environmental health.
Collapse
Affiliation(s)
- Paula Rogovski
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Estêvão Brasiliense de Souza
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Charline Bonatto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | | | | | - Elmahdy M. Elmahdy
- Laboratory of Environmental Virology, Environmental Research Division, Department of Water Pollution Research, National Research Centre, Giza, Egypt
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | - David Rodríguez-Lázaro
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
- Centre for Emerging Pathogens and Global Health, Universidad de Burgos, Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
33
|
Improved bactericidal efficacy and thermostability of Staphylococcus aureus-specific bacteriophage SA3821 by repeated sodium pyrophosphate challenges. Sci Rep 2021; 11:22951. [PMID: 34824363 PMCID: PMC8616913 DOI: 10.1038/s41598-021-02446-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
As antibiotic resistance is being a threat to public health worldwide, bacteriophages are re-highlighted as alternative antimicrobials to fight with pathogens. Various wild-type phages isolated from diverse sources have been tested, but potential mutant phages generated by genome engineering or random mutagenesis are drawing increasing attention. Here, we applied a chelating agent, sodium pyrophosphate, to the staphylococcal temperate Siphoviridae phage SA3821 to introduce random mutations. Through 30 sequential sodium pyrophosphate challenges and random selections, the suspected mutant phage SA3821M was isolated. SA3821M maintained an intact virion morphology, but exhibited better bactericidal activity against its host Staphylococcous aureus CCARM 3821 for up to 17 h and thermostability than its parent, SA3821. Sodium pyrophosphate-mediated mutations in SA3821M were absent in lysogenic development genes but concentrated (83.9%) in genes related to the phage tail, particularly in the tail tape measure protein, indicating that changes in the tail module might have been responsible for the altered traits. This intentional random mutagenesis through controlled treatments with sodium pyrophosphate could be applied to other phages as a simple but potent method to improve their traits as alternative antimicrobials.
Collapse
|
34
|
Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
35
|
Neil K, Allard N, Roy P, Grenier F, Menendez A, Burrus V, Rodrigue S. High-efficiency delivery of CRISPR-Cas9 by engineered probiotics enables precise microbiome editing. Mol Syst Biol 2021; 17:e10335. [PMID: 34665940 PMCID: PMC8527022 DOI: 10.15252/msb.202110335] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Antibiotic resistance threatens our ability to treat infectious diseases, spurring interest in alternative antimicrobial technologies. The use of bacterial conjugation to deliver CRISPR-cas systems programmed to precisely eliminate antibiotic-resistant bacteria represents a promising approach but requires high in situ DNA transfer rates. We have optimized the transfer efficiency of conjugative plasmid TP114 using accelerated laboratory evolution. We hence generated a potent conjugative delivery vehicle for CRISPR-cas9 that can eliminate > 99.9% of targeted antibiotic-resistant Escherichia coli in the mouse gut microbiota using a single dose. We then applied this system to a Citrobacter rodentium infection model, achieving full clearance within four consecutive days of treatment.
Collapse
Affiliation(s)
- Kevin Neil
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | - Nancy Allard
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | - Patricia Roy
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | - Frédéric Grenier
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | - Alfredo Menendez
- Département de Microbiologie et d'InfectiologieUniversité de SherbrookeSherbrookeQCCanada
| | - Vincent Burrus
- Département de biologieUniversité de SherbrookeSherbrookeQCCanada
| | | |
Collapse
|
36
|
Goodarzi F, Hallajzadeh M, Sholeh M, Talebi M, Mahabadi VP, Amirmozafari N. Biological characteristics and anti-biofilm activity of a lytic phage against vancomycin-resistant Enterococcus faecium. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:691-702. [PMID: 34900167 PMCID: PMC8629820 DOI: 10.18502/ijm.v13i5.7436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES An important leading cause of the emergence of vancomycin-resistant enterococci, especially Enterococcus faecium, is the inefficiency of antibiotics in the elimination of drug-resistant pathogens. Consequently, the need for alternative treatments is more necessary than ever. MATERIALS AND METHODS A highly effective bacteriophage against vancomycin-resistant E. faecium called vB-EfmS-S2 was isolated from hospital sewage. The biological properties of phage S2 and its effect on biofilm structures were determined. RESULTS Phage S2 was specifically capable of lysing a wide range of clinical E. faecium isolates. According to Electron microscopy observations, the phage S2 belonged to the Siphoviridea family. Suitable pH spectra for phage survival was 5-11, at which the phage showed 100% activity. The optimal temperature for phage growth was 30-45°C, with the highest growth at 37°C. Based on one-step growth curve results, the latent period of phage S2 was 14 min with a burst size of 200 PFU/ml. The phage S2 was also able to tolerate bile at concentrations of 1 and 2% and required Mg2+ for an effective infection cycle. Biofilms were significantly inhibited and disrupted in the presence of the phage. CONCLUSION According to the results, phage S2 could potentially be an alternative for the elimination and control of vancomycin-resistant E. faecium biofilm.
Collapse
Affiliation(s)
- Forough Goodarzi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Hallajzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Mallick B, Mondal P, Dutta M. Morphological, biological, and genomic characterization of a newly isolated lytic phage Sfk20 infecting Shigella flexneri, Shigella sonnei, and Shigella dysenteriae1. Sci Rep 2021; 11:19313. [PMID: 34588569 PMCID: PMC8481304 DOI: 10.1038/s41598-021-98910-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
Shigellosis, caused by Shigella bacterial spp., is one of the leading causes of diarrheal morbidity and mortality. An increasing prevalence of multidrug-resistant Shigella species has revived the importance of bacteriophages as an alternative therapy to antibiotics. In this study, a novel bacteriophage, Sfk20, has been isolated from water bodies of a diarrheal outbreak area in Kolkata (India) with lytic activity against many Shigella spp. Phage Sfk20 showed a latent period of 20 min and a large burst size of 123 pfu per infected cell in a one-step growth analysis. Phage-host interaction and lytic activity confirmed by phage attachment, intracellular phage development, and bacterial cell burst using ultrathin sectioning and TEM analysis. The genomic analysis revealed that the double-stranded DNA genome of Sfk20 contains 164,878 bp with 35.62% G + C content and 241 ORFs. Results suggested phage Sfk20 to include as a member of the T4 myoviridae bacteriophage group. Phage Sfk20 has shown anti-biofilm potential against Shigella species. The results of this study imply that Sfk20 has good possibilities to be used as a biocontrol agent.
Collapse
Affiliation(s)
- Bani Mallick
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, WB, 700010, India
| | - Payel Mondal
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, WB, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata, WB, 700010, India.
| |
Collapse
|
38
|
Li X, He Y, Wang Z, Wei J, Hu T, Si J, Tao G, Zhang L, Xie L, Abdalla AE, Wang G, Li Y, Teng T. A combination therapy of Phages and Antibiotics: Two is better than one. Int J Biol Sci 2021; 17:3573-3582. [PMID: 34512166 PMCID: PMC8416725 DOI: 10.7150/ijbs.60551] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/01/2021] [Indexed: 12/15/2022] Open
Abstract
Emergence of antibiotic resistance presents a major setback to global health, and shortage of antibiotic pipelines has created an urgent need for development of alternative therapeutic strategies. Bacteriophage (phage) therapy is considered as a potential approach for treatment of the increasing number of antibiotic-resistant pathogens. Phage-antibiotic synergy (PAS) refers to sublethal concentrations of certain antibiotics that enhance release of progeny phages from bacterial cells. A combination of phages and antibiotics is a promising strategy to reduce the dose of antibiotics and the development of antibiotic resistance during treatment. In this review, we highlight the state-of-the-art advancements of PAS studies, including the analysis of bacterial-killing enhancement, bacterial resistance reduction, and anti-biofilm effect, at both in vitro and in vivo levels. A comprehensive review of the genetic and molecular mechanisms of phage antibiotic synergy is provided, and synthetic biology approaches used to engineer phages, and design novel therapies and diagnostic tools are discussed. In addition, the role of engineered phages in reducing pathogenicity of bacteria is explored.
Collapse
Affiliation(s)
- Xianghui Li
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhua He
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Zhili Wang
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jiacun Wei
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tongxin Hu
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jiangzhe Si
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Guangzhao Tao
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Lei Zhang
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Longxiang Xie
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 2014, Saudi Arabia
| | - Guoying Wang
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yanzhang Li
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- Institute of Biomedical Informatics, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, school of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
39
|
Wdowiak M, Ochirbat E, Paczesny J. Gold-Polyoxoborates Nanocomposite Prohibits Adsorption of Bacteriophages on Inner Surfaces of Polypropylene Labware and Protects Samples from Bacterial and Yeast Infections. Viruses 2021; 13:1206. [PMID: 34201615 PMCID: PMC8310269 DOI: 10.3390/v13071206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteriophages (phages) are a specific type of viruses that infect bacteria. Because of growing antibiotic resistance among bacterial strains, phage-based therapies are becoming more and more attractive. The critical problem is the storage of bacteriophages. Recently, it was found that bacteriophages might adsorb on the surfaces of plastic containers, effectively decreasing the titer of phage suspensions. Here, we showed that a BOA nanocomposite (gold nanoparticles embedded in polyoxoborate matrix) deposited onto the inner walls of the containers stabilizes phage suspensions against uncontrolled adsorption and titer decrease. Additionally, BOA provides antibacterial and antifungal protection. The application of BOA assures safe and sterile means for the storage of bacteriophages.
Collapse
Affiliation(s)
| | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.W.); (E.O.)
| |
Collapse
|
40
|
Huang Z, Zhang Z, Tong J, Malakar PK, Chen L, Liu H, Pan Y, Zhao Y. Phages and their lysins: Toolkits in the battle against foodborne pathogens in the postantibiotic era. Compr Rev Food Sci Food Saf 2021; 20:3319-3343. [PMID: 33938116 DOI: 10.1111/1541-4337.12757] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Worldwide, foods waste caused by putrefactive organisms and diseases caused by foodborne pathogens persist as public health problems even with a plethora of modern antimicrobials. Our over reliance on antimicrobials use in agriculture, medicine, and other fields will lead to a postantibiotic era where bacterial genotypic resistance, phenotypic adaptation, and other bacterial evolutionary strategies cause antimicrobial resistance (AMR). This AMR is evidenced by the emergence of multiple drug-resistant (MDR) bacteria and pan-resistant (PDR) bacteria, which produces cross-contamination in multiple fields and poses a more serious threat to food safety. A "red queen premise" surmises that the coevolution of phages and bacteria results in an evolutionary arms race that compels phages to adapt and survive bacterial antiphage strategies. Phages and their lysins are therefore useful toolkits in the design of novel antimicrobials in food protection and foodborne pathogens control, and the modality of using phages as a targeted vector against foodborne pathogens is gaining momentum based on many encouraging research outcomes. In this review, we discuss the rationale of using phages and their lysins as weapons against spoilage organisms and foodborne pathogens, and outline the targeted conquest or dodge mechanism of phages and the development of novel phage prospects. We also highlight the implementation of phages and their lysins to control foodborne pathogens in a farm-table-hospital domain in the postantibiotic era.
Collapse
Affiliation(s)
- Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinrong Tong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pradeep K Malakar
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
41
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
42
|
Goswami A, Sharma PR, Agarwal R. Combatting intracellular pathogens using bacteriophage delivery. Crit Rev Microbiol 2021; 47:461-478. [PMID: 33818246 DOI: 10.1080/1040841x.2021.1902266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intracellular pathogens reside in specialised compartments within the host cells restricting the access of antibiotics. Insufficient intracellular delivery of antibiotics along with several other resistance mechanisms weaken the efficacy of current therapies. An alternative to antibiotic therapy could be bacteriophage (phage) therapy. Although phage therapy has been in practice for a century against various bacterial infections, the efficacy of phages against intracellular bacteria is still being explored. In this review, we will discuss the advancement and challenges in phage therapy, particularly against intracellular bacterial pathogens. Finally, we will highlight the uptake mechanisms and approaches to overcome the challenges to phage therapy against intracellular bacteria.
Collapse
Affiliation(s)
- Avijit Goswami
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Pallavi Raj Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
43
|
Alsaadi A, Beamud B, Easwaran M, Abdelrahman F, El-Shibiny A, Alghoribi MF, Domingo-Calap P. Learning From Mistakes: The Role of Phages in Pandemics. Front Microbiol 2021; 12:653107. [PMID: 33815346 PMCID: PMC8010138 DOI: 10.3389/fmicb.2021.653107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
The misuse of antibiotics is leading to the emergence of multidrug-resistant (MDR) bacteria, and in the absence of available treatments, this has become a major global threat. In the middle of the recent severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic, which has challenged the whole world, the emergence of MDR bacteria is increasing due to prophylactic administration of antibiotics to intensive care unit patients to prevent secondary bacterial infections. This is just an example underscoring the need to seek alternative treatments against MDR bacteria. To this end, phage therapy has been proposed as a promising tool. However, further research in the field is mandatory to assure safety protocols and to develop appropriate regulations for its use in clinics. This requires investing more in such non-conventional or alternative therapeutic approaches, to develop new treatment regimens capable of reducing the emergence of MDR and preventing future global public health concerns that could lead to incalculable human and economic losses.
Collapse
Affiliation(s)
- Ahlam Alsaadi
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Beatriz Beamud
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, Paterna, Spain
- FISABIO-Salud Pública, Generalitat Valenciana, Valencia, Spain
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Rajapalayam, India
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Majed F. Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, Paterna, Spain
- Department of Genetics, Universitat de València, Paterna, Spain
| |
Collapse
|
44
|
Yostawonkul J, Nittayasut N, Phasuk A, Junchay R, Boonrungsiman S, Temisak S, Kongsema M, Phoolcharoen W, Yata T. Nano/microstructured hybrid composite particles containing cinnamon oil as an antibiotic alternative against food-borne pathogens. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Comparison of single and multi-host enrichment approach for harnessing lytic phages against antimicrobial-resistant E. coli: Repurposing the enrichment step. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-020-00652-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Nowakiewicz A, Zięba P, Gnat S, Matuszewski Ł. Last Call for Replacement of Antimicrobials in Animal Production: Modern Challenges, Opportunities, and Potential Solutions. Antibiotics (Basel) 2020; 9:antibiotics9120883. [PMID: 33317032 PMCID: PMC7762978 DOI: 10.3390/antibiotics9120883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
The constant market demand for easily available and cheap food of animal origin necessitates an increasing use of antibiotics in animal production. The alarming data provided by organizations monitoring drug resistance in indicator and pathogenic bacteria isolated from humans and animals indicate a possible risk of a return to the preantibiotic era. For this reason, it seems that both preventive and therapeutic measures, taken as an alternative to antimicrobials, seem not only advisable but also necessary. Nevertheless, the results of various studies and market analyses, as well as difficulties in the implementation of alternative substances into veterinary medicine, do not guarantee that the selected alternatives will completely replace antimicrobials in veterinary medicine and animal production on a global scale. This publication is a brief overview of the drug resistance phenomenon and its determinants, the steps taken to solve the problem, including the introduction of alternatives to antimicrobials, and the evaluation of some factors influencing the potential implementation of alternatives in animal production. The review also presents two groups of alternatives, which, given their mechanism of action and spectrum, are most comparable to the effectiveness of antibiotics, as emphasized by the authors.
Collapse
Affiliation(s)
- Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland;
- Correspondence: or
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland;
| | - Sebastian Gnat
- Sub-Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland;
| | - Łukasz Matuszewski
- Department of Pediatric Orthopedics and Rehabilitation, Faculty of Medicine, Medical University, Gębali 6, 20-093 Lublin, Poland;
| |
Collapse
|
47
|
Abstract
The diversity of advanced genetic engineering techniques that have become available in recent years has enabled a more precise manipulation of genes and genomes. Among these, bacteriophage genomes stand out as an interesting target due to their dependence on a host for replication, which previously complicated their manipulation, and due as well to the many possible fields in which they can be used. In this review, we highlight recent applications for which genetically modified bacteriophages are being employed: as phage therapy in medicine, animal industries and agricultural settings; as a source of new antimicrobials; as biosensors for research, health and environmental purposes; and as genetic engineering tools themselves.
Collapse
Affiliation(s)
| | - Hiroki Ando
- Department of Microbiology, Graduate School of Medicine, Gifu University
| |
Collapse
|
48
|
Gambino M, Brøndsted L. Looking into the future of phage-based control of zoonotic pathogens in food and animal production. Curr Opin Biotechnol 2020; 68:96-103. [PMID: 33186799 DOI: 10.1016/j.copbio.2020.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 11/28/2022]
Abstract
Using bacteriophages (phages) to control zoonotic pathogens in food and animal production is a realistic and promising antimicrobial approach. Recent studies have demonstrated their efficacy and safety, yet bringing phage products on the market remains a challenge. Here we summarize the procedure for advancing phage applications from the laboratory to simplified model systems and testing in pilot scale, to farms and food industries. We highlight the most important contributions concerning phages in food matrices and animal guts, and propose directions for future research required to understand interactions in such complex systems. Finally, we propose a holistic approach combining a data repository with modelling, multi-omic techniques and data analysis to modernize phage-based control of zoonotic pathogens.
Collapse
Affiliation(s)
- Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
49
|
Paczesny J, Bielec K. Application of Bacteriophages in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1944. [PMID: 33003494 PMCID: PMC7601235 DOI: 10.3390/nano10101944] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Bacteriophages (phages for short) are viruses, which have bacteria as hosts. The single phage body virion, is a colloidal particle, often possessing a dipole moment. As such, phages were used as perfectly monodisperse systems to study various physicochemical phenomena (e.g., transport or sedimentation in complex fluids), or in the material science (e.g., as scaffolds). Nevertheless, phages also execute the life cycle to multiply and produce progeny virions. Upon completion of the life cycle of phages, the host cells are usually destroyed. Natural abilities to bind to and kill bacteria were a starting point for utilizing phages in phage therapies (i.e., medical treatments that use phages to fight bacterial infections) and for bacteria detection. Numerous applications of phages became possible thanks to phage display-a method connecting the phenotype and genotype, which allows for selecting specific peptides or proteins with affinity to a given target. Here, we review the application of bacteriophages in nanoscience, emphasizing bio-related applications, material science, soft matter research, and physical chemistry.
Collapse
Affiliation(s)
- Jan Paczesny
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | | |
Collapse
|
50
|
Optimizing bacteriophage engineering through an accelerated evolution platform. Sci Rep 2020; 10:13981. [PMID: 32814789 PMCID: PMC7438504 DOI: 10.1038/s41598-020-70841-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of antibiotic resistance has raised serious concerns within scientific and medical communities, and has underlined the importance of developing new antimicrobial agents to combat such infections. Bacteriophages, naturally occurring bacterial viruses, have long been characterized as promising antibiotic alternatives. Although bacteriophages hold great promise as medical tools, clinical applications have been limited by certain characteristics of phage biology, with structural fragility under the high temperatures and acidic environments of therapeutic applications significantly limiting therapeutic effectiveness. This study presents and evaluates the efficacy of a new accelerated evolution platform, chemically accelerated viral evolution (CAVE), which provides an effective and robust method for the rapid enhancement of desired bacteriophage characteristics. Here, our initial use of this methodology demonstrates its ability to confer significant improvements in phage thermal stability. Analysis of the mutation patterns that arise through CAVE iterations elucidates the manner in which specific genetic modifications bring forth desired changes in functionality, thereby providing a roadmap for bacteriophage engineering.
Collapse
|