1
|
Leonardi A, Di Zazzo A, Cutrupi F, Iaccarino L. Dry eye and systemic diseases. Saudi J Ophthalmol 2025; 39:5-13. [PMID: 40182960 PMCID: PMC11964355 DOI: 10.4103/sjopt.sjopt_182_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/20/2024] [Indexed: 04/05/2025] Open
Abstract
Tear film instability and reduced tear production initiate a vicious circle where hyperosmolarity, ocular inflammation, and apoptosis may induce a damage of the ocular surface including keratitis which is all included in a common condition called dry eye disease (DED). DED can be apparently an isolated ocular surface condition; however, multiple ocular and systemic risk factors have been identified. The association with systemic diseases such as autoimmune diseases, hormonal imbalance, dietary imbalance, metabolic diseases, infections, psychological conditions, and aging together with external causative factors may act independently or interacting each other to initiate and/or perpetuate signs and symptoms typical of this very common ocular surface disease. Rheumatological disorders are most typically associated with dry eye; therefore, strict interaction with rheumatologists is important for the diagnosis and management of DED patients. In the present narrative review, we highlight associations between DED and some of the systemic disorders that may be implicated in the development of the disease.
Collapse
Affiliation(s)
- Andrea Leonardi
- Department of Neurosciences, Ophthalmology Unit, University of Padua, Padua, Italy
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University, Rome, Italy
- Corneal Rare Disease Center, Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Francesco Cutrupi
- Department of Ophthalmology, Campus Bio-Medico University, Rome, Italy
| | - Luca Iaccarino
- Department of Medicine, Rheumatology Unit, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Blanco T, Nakagawa H, Musayeva A, Krauthammer M, Singh RB, Narimatsu A, Ge H, Shoushtari SI, Dana R. Acquired immunostimulatory phenotype of migratory CD103+ DCs promotes alloimmunity following corneal transplantation. JCI Insight 2024; 9:e182469. [PMID: 39235864 PMCID: PMC11530131 DOI: 10.1172/jci.insight.182469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024] Open
Abstract
After transplantation, Th1-mediated immune rejection is the predominant cause of graft failure. Th1 cell sensitization occurs through complex and context-dependent interaction among antigen-presenting cell subsets, particularly CD11b+ DCs (DC2) and CD103+ DCs (DC1). This interaction necessitates further investigation in the context of transplant immunity. We used well-established preclinical models of corneal transplantation and identified distinct roles of migratory CD103+ DC1 in influencing the outcomes of the grafted tissue. In recipients with uninflamed corneal beds, migratory CD103+ DC1 demonstrate a tolerogenic phenotype that modulates the immunogenic capacity of CD11b+ DC2 primarily mediated by IL-10, suppressing alloreactive CD4+ Th1 cells via the PD-L1/PD-1 pathway and enhancing Treg-mediated tolerance via αvβ8 integrin-activated TGF-β1, thus facilitating graft survival. Conversely, in recipients with inflamed and vascularized corneal beds, IFN-γ produced by CD4+ Th1 cells induced migratory CD103+ DC1 to adopt an immunostimulatory phenotype, characterized by the downregulation of regulatory markers, including αvβ8 integrin and IL-10, and the upregulation of IL-12 and costimulatory molecules CD80/86, resulting in graft failure. The adoptive transfer of ex vivo induced tolerogenic CD103+ DC1 (iDC1) effectively inhibited Th1 polarization and preserved the tolerogenic phenotype of their physiological counterparts. Collectively, our findings underscore the essential role played by CD103+ DC1 in modulating host alloimmune responses.
Collapse
|
3
|
Ortiz G, Blanco T, Singh RB, Kahale F, Wang S, Chen Y, Dana R. IL-6 induces Treg dysfunction in desiccating stress-induced dry eye disease. Exp Eye Res 2024; 246:110006. [PMID: 39009059 PMCID: PMC11332651 DOI: 10.1016/j.exer.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Regulatory T cells (Tregs) play a critical role in maintaining immune homeostasis, and their dysfunction is implicated in the pathogenesis of various autoimmune disorders, including dry eye disease (DED). Treg dysfunction in DED allows T-helper cell 17 (Th17) mediated chronic inflammation at the ocular surface. In this study, the factors causing Treg dysfunction in DED were investigated. We observed reduced expression of Treg functional markers - FoxP3, CD25, and CTLA-4 in the cells isolated from DED mice (DED Tregs). Additionally, DED Tregs showed increased expression levels of receptors for pro-inflammatory cytokine receptors, namely IL-6R, IL-17RA, and IL-23R. An increased expression level of pro-inflammatory cytokine receptors was observed on exposing Tregs isolated from naïve mice (NTregs) to IL-6 or IL-17, but not IL-23, with a concomitant downregulation of FoxP3, CD25, and CTLA-4 in these cells. Furthermore, among these cytokines, IL-6 induced the most pronounced loss of Treg mediated suppression of Th17 proliferation and IL-10 secretion. In vitro and in vivo blockade of IL-6 effectively restored function in DED Tregs, leading to enhanced suppressive function against proliferating Th17 cells and ameliorating disease severity. In conclusion, this study provides insights into mechanisms of Treg dysregulation in DED, specifically delineating the effect of Th17-associated cytokines, with IL-6 emerging as the critical factor inducing Treg dysfunctionality. These findings highlight the potential for developing novel therapeutic interventions for DED through restoration of immunosuppressive function of Tregs.
Collapse
Affiliation(s)
- Gustavo Ortiz
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rohan Bir Singh
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Francesca Kahale
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shudan Wang
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yihe Chen
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Lee S, Blanco T, Musayeva A, Dehghani S, Narimatsu A, Forouzanfar K, Ortiz G, Kahale F, Wang S, Chen Y, Dohlman TH, Chauhan SK, Dana R. Myeloid-derived suppressor cells promote allograft survival by suppressing regulatory T cell dysfunction in high-risk corneal transplantation. Am J Transplant 2024; 24:1597-1609. [PMID: 38514014 PMCID: PMC11390336 DOI: 10.1016/j.ajt.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Highly inflamed and neovascularized corneal graft beds are known as high-risk (HR) environments for transplant survival. One of the primary factors leading to this rejection is reduction in the suppressive function of regulatory T cells (Treg). Our results show that myeloid-derived suppressor cells (MDSC) counteract interleukin-6-mediated Treg dysfunction by expressing interleukin-10. Additionally, MDSC maintain forkhead box P3 stability and their ability to suppress IFN-γ+ Th1 cells. Administering MDSC to HR corneal transplant recipients demonstrates prolonged graft survival via promotion of Treg while concurrently suppressing IFN-γ+ Th1 cells. Moreover, MDSC-mediated donor-specific immune tolerance leads to long-term corneal graft survival as evidenced by the higher survival rate or delayed survival of a second-party C57BL/7 (B6) graft compared to those of third-party C3H grafts observed in contralateral low-risk or HR corneal transplantation of BALB/c recipient mice, respectively. Our study provides compelling preliminary evidence demonstrating the effectiveness of MDSC in preventing Treg dysfunction, significantly improving graft survival in HR corneal transplantation, and showing promising potential for immune tolerance induction.
Collapse
Affiliation(s)
- Seokjoo Lee
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytan Musayeva
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shima Dehghani
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Akitomo Narimatsu
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katayoon Forouzanfar
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gustavo Ortiz
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Kahale
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shudan Wang
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yihe Chen
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil K Chauhan
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Barone V, Scirocco L, Surico PL, Micera A, Cutrupi F, Coassin M, Di Zazzo A. Mast cells and ocular surface: An update review. Exp Eye Res 2024; 245:109982. [PMID: 38942134 DOI: 10.1016/j.exer.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Mast cells (MCs), traditionally viewed as key players in IgE-mediated allergic responses, are increasingly recognized for their versatile roles. Situated at critical barrier sites such as the ocular surface, these sentinel cells participate in a broad array of physiological and pathological processes. This review presents a comprehensive update on the immune pathophysiology of MCs, with a particular focus on the mechanisms underlying innate immunity. It highlights their roles at the ocular surface, emphasizing their participation in allergic reactions, maintenance of corneal homeostasis, neovascularization, wound healing, and immune responses in corneal grafts. The review also explores the potential of MCs as therapeutic targets, given their significant contributions to disease pathogenesis and their capacity to modulate immunity. Through a thorough examination of current literature, we aim to elucidate the immune pathophysiology and multifaceted roles of MCs in ocular surface health and disease, suggesting directions for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Vincenzo Barone
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Laura Scirocco
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Pier Luigi Surico
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS - Fondazione Bietti, Rome, Italy
| | - Francesco Cutrupi
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Marco Coassin
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology Campus Bio-Medico University, Rome, Italy; Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, Rome, Italy; Rare Corneal Diseases Center, Campus Bio-Medico University Hospital Foundation, Rome, Italy.
| |
Collapse
|
6
|
Blanco T, Singh RB, Nakagawa H, Taketani Y, Dohlman TH, Chen Y, Chauhan SK, Yin J, Dana R. Conventional type I migratory CD103 + dendritic cells are required for corneal allograft survival. Mucosal Immunol 2023; 16:711-726. [PMID: 36642378 PMCID: PMC10413378 DOI: 10.1016/j.mucimm.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Corneal transplant rejection primarily occurs because of the T helper 1 (Th1) effector cell-mediated immune response of the host towards allogeneic tissue. The evidence suggests that type 1 migratory conventional CD103+ dendritic cells (CD103+DC1) acquire an immunosuppressive phenotype in the tumor environment; however, the involvement of CD103+DC1 in allograft survival continues to be an elusive question of great clinical significance in tissue transplantation. In this study, we assess the role of CD103+DC1 in suppressing Th1 alloreactivity against transplanted corneal allografts. The immunosuppressive function of CD103+DC1 has been extensively studied in non-transplantation settings. We found that host CD103+DC1 infiltrates the corneal graft and migrates to the draining lymph nodes to suppress alloreactive CD4+ Th1 cells via the programmed death-ligand 1 axis. The systemic depletion of CD103+ DC1 in allograft recipients leads to amplified Th1 activation, impaired Treg function, and increased rate of allograft rejection. Although allograft recipient Rag1 null mice reconstituted with naïve CD4+CD25- T cells efficiently generated peripheral Treg cells (pTreg), the CD103+DC1-depleted mice failed to generate pTreg. Furthermore, adoptive transfer of pTreg failed to rescue allografts in CD103+DC1-depleted recipients from rejection. These data demonstrate the critical role of CD103+DC1 in regulating host alloimmune responses.
Collapse
Affiliation(s)
- Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Rohan Bir Singh
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Hayate Nakagawa
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Yukako Taketani
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Yihe Chen
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Sunil K Chauhan
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Jia Yin
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, USA.
| |
Collapse
|
7
|
Blanco T, Musayeva A, Singh RB, Nakagawa H, Lee S, Alemi H, Gonzalez-Nolasco B, Ortiz G, Wang S, Kahale F, Dohlman TH, Chen Y, Dana R. The impact of donor diabetes on corneal transplant immunity. Am J Transplant 2023; 23:1345-1358. [PMID: 37245642 PMCID: PMC10527508 DOI: 10.1016/j.ajt.2023.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Corneal transplantation is the most common form of solid tissue grafting, with an approximately 80% to 90% success rate. However, success rates may decline when donor tissues are derived from patients with a history of diabetes mellitus (DM). To evaluate the underlying immunopathologic processes that cause graft rejection, we used streptozotocin-induced type 1 DM (DM1) and transgenic Lepob/ob type 2 DM (DM2) diabetic murine models as donors and nondiabetic BALB/c as recipients. DM resulted in an increased frequency of corneal antigen-presenting cells (APCs) with an acquired immunostimulatory phenotype. Following transplantation, recipients that received either type of diabetic graft showed increased APC migration and T helper type 1 alloreactive cells, impaired functional regulatory T cells, and graft survival. Insulin treatment in streptozotocin-induced diabetic mice led to an increased tolerogenic profile of graft APC, lower T helper type 1 sensitization, and a higher frequency of functional regulatory T cells with high suppressive capacity, reflected in increased graft survival. We conclude that both DM1 and DM2 in donors can impact corneal APC functional phenotype, rendering the tissue more immunogenic and thereby increasing the risk of graft failure.
Collapse
Affiliation(s)
- Tomás Blanco
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytan Musayeva
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rohan Bir Singh
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hayate Nakagawa
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Seokjoo Lee
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hamid Alemi
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruno Gonzalez-Nolasco
- Transplant Research Center, Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gustavo Ortiz
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shudan Wang
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Kahale
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yihe Chen
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
8
|
Sakowska J, Glasner P, Dukat-Mazurek A, Rydz A, Zieliński M, Pellowska I, Biernat W, Glasner L, Michalska-Małecka K, Trzonkowski P. Local T cell infiltrates are predominantly associated with corneal allograft rejection. Transpl Immunol 2023; 79:101852. [PMID: 37196866 DOI: 10.1016/j.trim.2023.101852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Corneal transplantations (CTXs) are a vision-saving procedure. Routinely, while CTXs' survival rates remain high, the risk of graft failure increases significantly for repeated CTXs. The reason is an alloimmunization following previous CTXs and development of memory T (Tm) and B (Bm) cells. METHODS We characterized populations of cells present in explanted human corneas from patients receiving the first CTX and marked as a primary CTX (PCTX) or the second or more CTXs and marked as a repeated CTX (RCTX). Cells extracted from resected corneas and from peripheral blood mononuclear cells (PBMCs) were analyzed by the flow cytometry method using multiple surface and intracellular markers. RESULTS Overall, the number of cells was similar in PCTX and RCTX patients. Extracted infiltrates from PCTXs and RCTXs contained similar numbers of T cell subsets, namely CD4+, CD8+, CD4+ Tm, CD8+ Tm, CD4+Foxp3+ T regulatory (Tregs), CD8+ Treg cells, while very few B cells (all p = NS). However, when compared to peripheral blood, PCTX and RCTX corneas contained significantly higher percentages of effector memory CD4+ and CD8+ T cells (both p < 0,05). In comparison to PCTX, RCTX group had the highest levels of Foxp3 in T CD4+ Tregs (p = 0,04) but decreased percentage of Helios-positive CD4+ Tregs. CONCLUSION PCTXs and especially RCTXs are rejected mainly by local T cells. The accumulation of effector CD4+ and CD8+ T cells, as well as CD4+ and CD8+ Tm cells is associated with the final rejection. Furthermore, local CD4+ and CD8+ Tregs expressing Foxp3 and Helios are probably insufficient to impose the acceptance of CTX.
Collapse
Affiliation(s)
- Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland.
| | - Paulina Glasner
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Anna Dukat-Mazurek
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| | - Anna Rydz
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| | - Irena Pellowska
- Department of Clinical Pathomorphology, University Clinical Centre in Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | - Leopold Glasner
- Department of Ophthalmology, Medical University of Gdańsk, Smoluchowskiego Street 17, Gdańsk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Dębinki Street 7, Building 27, Gdańsk, Poland
| |
Collapse
|
9
|
Chandran S, Tang Q. Impact of interleukin-6 on T cells in kidney transplant recipients. Am J Transplant 2022; 22 Suppl 4:18-27. [PMID: 36453710 DOI: 10.1111/ajt.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
Interleukin-6 (IL-6), a multifunctional proinflammatory cytokine, plays a key role in T cell activation, survival, and differentiation. Acting as a switch that induces the differentiation of naïve T cells into Th17 cells and inhibits their development into regulatory T cells, IL-6 promotes rejection and abrogates tolerance. Therapies that target IL-6 signaling include antibodies to IL-6 and the IL-6 receptor and inhibitors of janus kinases; several of these therapeutics have demonstrated robust clinical efficacy in autoimmune and inflammatory diseases. Clinical trials of IL-6 inhibition in kidney transplantation have focused primarily on its effects on B cells, plasma cells, and HLA antibodies. In this review, we summarize the impact of IL-6 on T cells in experimental models of transplant and describe the effects of IL-6 inhibition on the T cell compartment in kidney transplant recipients.
Collapse
Affiliation(s)
- Sindhu Chandran
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Qizhi Tang
- Department of Surgery, Diabetes Center, Gladstone-UCSF Institute of Genome Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Effect of regulatory T cells on short-term graft outcome in kidney transplant recipients, a prospective observational, single-center study. Transpl Immunol 2022; 73:101630. [DOI: 10.1016/j.trim.2022.101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
|
11
|
Changing Medical Paradigm on Inflammatory Eye Disease: Technology and Its Implications for P4 Medicine. J Clin Med 2022; 11:jcm11112964. [PMID: 35683352 PMCID: PMC9181649 DOI: 10.3390/jcm11112964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
|
12
|
Zhu J, Inomata T, Nakamura M, Fujimoto K, Akasaki Y, Fujio K, Yanagawa A, Uchida K, Sung J, Negishi N, Nagino K, Okumura Y, Miura M, Shokirova H, Kuwahara M, Hirosawa K, Midorikawa-Inomata A, Eguchi A, Huang T, Yagita H, Habu S, Okumura K, Murakami A. Anti-CD80/86 antibodies inhibit inflammatory reaction and improve graft survival in a high-risk murine corneal transplantation rejection model. Sci Rep 2022; 12:4853. [PMID: 35318419 PMCID: PMC8941080 DOI: 10.1038/s41598-022-08949-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/15/2022] [Indexed: 12/27/2022] Open
Abstract
We investigated the effects of anti-CD80/86 antibodies in a murine high-risk corneal transplantation rejection model. A mixed lymphocyte reaction (MLR) assay was conducted with anti-CD80/86 antibodies. Inflammatory cytokine levels in the culture supernatant were measured using an enzyme-linked immunosorbent assay. Interferon (IFN)-γ-producing CD4+ T cell frequencies in the MLR were assessed using flow cytometry. In vivo, high-risk corneal allograft survival and IFN-γ-producing CD4+ T cell frequencies in corneal grafts were assessed with intraperitoneal injection of anti-CD80/86 antibodies compared to phosphate-buffered saline (PBS). RNA-sequencing was performed on corneal grafts 2 weeks post-transplantation. Anti-CD80/86 antibodies significantly decreased T-cell proliferation, IFN-γ+-producing CD4+ T cell frequencies, and IFN-γ, interleukin (IL)-1β, IL-2, IL-10, and tumor necrosis factor-α production in the MLR compared to PBS injection. Intraperitoneal injection of anti-CD80/86 antibodies significantly prolonged corneal graft survival and decreased IFN-γ+-producing CD4+ T cell frequencies compared to PBS injection. Gene set enrichment analysis showed that the gene sets mainly enriched in the control group were related to allograft rejection and inflammatory response compared to PBS injection. Anti-CD80/86 antibodies significantly prolonged corneal graft survival by inhibiting T-cell proliferation and inflammatory response.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Subei People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Masahiro Nakamura
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichiro Uchida
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo, Japan
| | - Jaemyoung Sung
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Naoko Negishi
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Indoor Environment Neurophysiological Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sonoko Habu
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Chen Y, Wang S, Alemi H, Dohlman T, Dana R. Immune regulation of the ocular surface. Exp Eye Res 2022; 218:109007. [PMID: 35257715 PMCID: PMC9050918 DOI: 10.1016/j.exer.2022.109007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 01/01/2023]
Abstract
Despite constant exposure to various environmental stimuli, the ocular surface remains intact and uninflamed while maintaining the transparency of the cornea and its visual function. This 'immune privilege' of the ocular surface is not simply a result of the physical barrier function of the mucosal lining but, more importantly, is actively maintained through a variety of immunoregulatory mechanisms that prevent the disruption of immune homeostasis. In this review, we focus on essential molecular and cellular players that promote immune quiescence in steady-state conditions and suppress inflammation in disease-states. Specifically, we examine the interactions between the ocular surface and its local draining lymphoid compartment, by encompassing the corneal epithelium, corneal nerves and cornea-resident myeloid cells, conjunctival goblet cells, and regulatory T cells (Treg) in the context of ocular surface autoimmune inflammation (dry eye disease) and alloimmunity (corneal transplantation). A better understanding of the immunoregulatory mechanisms will facilitate the development of novel, targeted immunomodulatory strategies for a broad range of ocular surface inflammatory disorders.
Collapse
Affiliation(s)
- Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Hamid Alemi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
14
|
Lužnik Marzidovšek Z, Blanco T, Sun Z, Alemi H, Ortiz G, Nakagawa H, Chauhan SK, Taylor AW, Jurkunas UV, Yin J, Dana R. The Neuropeptide Alpha-Melanocyte-Stimulating Hormone Is Critical for Corneal Endothelial Cell Protection and Graft Survival after Transplantation. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:270-280. [PMID: 34774519 PMCID: PMC8908049 DOI: 10.1016/j.ajpath.2021.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
Corneal transplantation is the most common form of tissue transplantation. The success of corneal transplantation mainly relies on the integrity of corneal endothelial cells (CEnCs), which maintain tissue transparency by pumping out excess water from the cornea. After transplantation, the rate of CEnC loss far exceeds that seen with normal aging, which can threaten sight. The underlying mechanisms are poorly understood. Alpha-melanocyte-stimulating hormone (α-MSH) is a neuropeptide that is constitutively found in the aqueous humor with both cytoprotective and immunomodulatory effects. The curent study found high expression of melanocortin 1 receptor (MC1R), the receptor for α-MSH, on CEnCs. The effect of α-MSH/MC1R signaling on endothelial function and allograft survival in vitro and in vivo was investigated using MC1R signaling-deficient mice (Mc1re/e mice with a nonfunctional MC1R). Herein, the results indicate that in addition to its well-known immunomodulatory effect, α-MSH has cytoprotective effects on CEnCs after corneal transplantation, and the loss of MC1R signaling significantly decreases long-term graft survival in vivo. In conclusion, α-MSH/MC1R signaling is critical for CEnC function and graft survival after corneal transplantation.
Collapse
Affiliation(s)
- Zala Lužnik Marzidovšek
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts,Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Tomas Blanco
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Zhongmou Sun
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Hamid Alemi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Gustavo Ortiz
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Hayate Nakagawa
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sunil K. Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Andrew W. Taylor
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Ula V. Jurkunas
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts,Address correspondence to Reza Dana, M.D., M.P.H., M.Sc., or Jia Yin, M.D., Ph.D., M.P.H., Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114.
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts,Address correspondence to Reza Dana, M.D., M.P.H., M.Sc., or Jia Yin, M.D., Ph.D., M.P.H., Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114.
| |
Collapse
|
15
|
Nabe T, Matsuda M. [Anti-inflammatory Strategies by Focusing on the Particularity of Ocular Immunity]. YAKUGAKU ZASSHI 2021; 141:1327-1332. [PMID: 34853205 DOI: 10.1248/yakushi.21-00158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Particularity of ocular immunity is manifested by "Immune privilege". For example, it has been generally known that corneal transplantation is a typically successful organ transplantation compared with other organs. This immune privilege can be explained by "immune-suppressive ocular microenvironment" and "anterior chamber-associated immune deviation, ACAID". This review focused on molecular mechanisms of the "immune-suppressive ocular microenvironment" and "ACAID", so that possible anti-inflammatory strategies could be raised. Especially, in murine ACAID model, anti-inflammatory actions were induced probably through induction of Treg cells. As an anti-inflammatory strategy, anti-inflammatory Treg cells could be induced in vitro. Treg cells that are specifically responsive for a specific antigen can be induced by culturing spleen cells with the antigen and transforming growth factor-β (TGF-β). The induced Treg cells were activated by stimulation with the specific antigen. When the induced Treg cells were adoptively transferred to recipient mice, antigen-induced inflammation was effectively suppressed. The Treg cells may be able to be efficiently induced by eye-based mechanisms. Further analyses of mechanisms underlying the ocular immune privilege can be useful for development of new anti-inflammatory strategies on the eye basis.
Collapse
Affiliation(s)
- Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
16
|
Corneal Allografts: Factors for and against Acceptance. J Immunol Res 2021; 2021:5372090. [PMID: 34642632 PMCID: PMC8502534 DOI: 10.1155/2021/5372090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Cornea is one of the most commonly transplanted tissues worldwide. However, it is usually omitted in the field of transplantology. Transplantation of the cornea is performed to treat many ocular diseases. It restores eyesight significantly improving the quality of life. Advancements in banking of explanted corneas and progressive surgical techniques increased availability and outcomes of transplantation. Despite the vast growth in the field of transplantation laboratory testing, standards for corneal transplantation still do not include HLA typing or alloantibody detection. This standard practice is based on immune privilege dogma that accounts for high success rates of corneal transplantation. However, the increasing need for retransplantation in high-risk patients with markedly higher risk of rejection causes ophthalmology transplantation centers to reevaluate their standard algorithms. In this review we discuss immune privilege mechanisms influencing the allograft acceptance and factors disrupting the natural immunosuppressive environment of the eye. Current developments in testing and immunosuppressive treatments (including cell therapies), when applied in corneal transplantation, may give very good results, decrease the possibility of rejection, and reduce the need for retransplantation, which is fairly frequent nowadays.
Collapse
|
17
|
Zhu J, Inomata T, Di Zazzo A, Kitazawa K, Okumura Y, Coassin M, Surico PL, Fujio K, Yanagawa A, Miura M, Akasaki Y, Fujimoto K, Nagino K, Midorikawa-Inomata A, Hirosawa K, Kuwahara M, Huang T, Shokirova H, Eguchi A, Murakami A. Role of Immune Cell Diversity and Heterogeneity in Corneal Graft Survival: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10204667. [PMID: 34682792 PMCID: PMC8537034 DOI: 10.3390/jcm10204667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Corneal transplantation is one of the most successful forms of solid organ transplantation; however, immune rejection is still a major cause of corneal graft failure. Both innate and adaptive immunity play a significant role in allograft tolerance. Therefore, immune cells, cytokines, and signal-transduction pathways are critical therapeutic targets. In this analysis, we aimed to review the current literature on various immunotherapeutic approaches for corneal-allograft rejection using the PubMed, EMBASE, Web of Science, Cochrane, and China National Knowledge Infrastructure. Retrievable data for meta-analysis were screened and assessed. The review, which evaluated multiple immunotherapeutic approaches to prevent corneal allograft rejection, showed extensive involvement of innate and adaptive immunity components. Understanding the contribution of this immune diversity to the ocular surface is critical for ensuring corneal allograft survival.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Ophthalmology, Subei People’s Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
- Correspondence: ; Tel.: +81-3-5802-1228
| | - Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Koji Kitazawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 6020841, Japan;
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Pier Luigi Surico
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Keiichi Fujimoto
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
| |
Collapse
|
18
|
Saxena V, Lakhan R, Iyyathurai J, Bromberg JS. Mechanisms of exTreg induction. Eur J Immunol 2021; 51:1956-1967. [PMID: 33975379 PMCID: PMC8338747 DOI: 10.1002/eji.202049123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022]
Abstract
CD4+ CD25+ Foxp3+ Tregs play an important role in the maintenance of the immune system by regulating immune responses and resolving inflammation. Tregs exert their function by suppressing other immune cells and mediating peripheral self-tolerance. Under homeostatic conditions, Tregs are stable T-cell populations. However, under inflammatory environments, Tregs are converted to CD4+ CD25low Foxp3low cells. These cells are termed "exTreg" or "exFoxp3" cells. The molecular mechanism of Treg transition to exTregs remains incompletely understood. Uncertainties might be explained by a lack of consensus of biological markers to define Treg subsets in general and exTregs in particular. In this review, we summarize known markers of Tregs and factors responsible for exTreg generation including cytokines, signaling pathways, transcription factors, and epigenetic mechanisms. We also identify studies demonstrating the presence of exTregs in various diseases and sources of exTregs. Understanding the biology of Treg transition to exTregs will help in designing Treg-based therapeutic approaches.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ram Lakhan
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jegan Iyyathurai
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Zhu J, Inomata T, Fujimoto K, Uchida K, Fujio K, Nagino K, Miura M, Negishi N, Okumura Y, Akasaki Y, Hirosawa K, Kuwahara M, Eguchi A, Shokirova H, Yanagawa A, Midorikawa-Inomata A, Murakami A. Ex Vivo-Induced Bone Marrow-Derived Myeloid Suppressor Cells Prevent Corneal Allograft Rejection in Mice. Invest Ophthalmol Vis Sci 2021; 62:3. [PMID: 34061951 PMCID: PMC8185403 DOI: 10.1167/iovs.62.7.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To investigate the effects of ex vivo-induced bone marrow myeloid-derived suppressor cells (BM-MDSCs) on allogeneic immune responses in corneal transplantation. Methods Bone marrow cells from C57BL/6J (B6) mice were cultured with IL-6 and GM-CSF for four days. The ex vivo induction of the BM-MDSCs was assessed using flow cytometry, inducible nitric oxide synthase (iNOS) mRNA expression using reverse transcription-quantitative polymerase chain reaction, and nitric oxide (NO) production in allogeneic stimulation. T-cell proliferation and regulatory T-cell (Treg) expansion were investigated on allogeneic stimulation in the presence of ex vivo-induced BM-MDSCs. IFN-γ, IL-2, IL-10, and TGF-β1 protein levels were measured using enzyme-linked immunosorbent assays. After subconjunctival injection of ex vivo-induced BM-MDSCs, the migration of the BM-MDSCs into corneal grafts, allogeneic corneal graft survival, neovascularization, and lymphangiogenesis were assessed using flow cytometry, slit-lamp microscopy, and immunohistochemistry. Results The combination of GM-CSF and IL-6 significantly induced BM-MDSCs with increased iNos mRNA expression. The ex vivo-induced BM-MDSCs promoted NO release in allogeneic stimulation in vitro. The ex vivo-induced BM-MDSCs inhibited T-cell proliferation and promoted Treg expansion. Decreased IFN-γ and increased IL-2, IL-10, and TGF-β1 production was observed in coculture of ex vivo-induced BM-MDSCs. Injected ex vivo-induced BM-MDSCs were confirmed to migrate into the grafts. The injected BM-MDSCs also prolonged corneal graft survival and prevented angiogenesis and lymphangiogenesis. Conclusions The ex vivo-induced BM-MDSCs have suppressive effects on allogeneic immune responses and prolong corneal allograft survival via the iNOS pathway, indicating that they may be a potential therapeutic tool for corneal transplantation.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Subei People's Hospital Affiliated to Yangzhou University, Jiangsu Province, China
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichiro Uchida
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoko Negishi
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Indoor Environment Neurophysiology Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Shokirova H, Inomata T, Saitoh T, Zhu J, Fujio K, Okumura Y, Yanagawa A, Fujimoto K, Sung J, Eguchi A, Miura M, Nagino K, Hirosawa K, Kuwahara M, Akasaki Y, Nagase H, Murakami A. Topical administration of the kappa opioid receptor agonist nalfurafine suppresses corneal neovascularization and inflammation. Sci Rep 2021; 11:8647. [PMID: 33883646 PMCID: PMC8060258 DOI: 10.1038/s41598-021-88118-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Corneal neovascularization (CNV) causes higher-order aberrations, corneal edema, ocular inflammation, and corneal transplant rejection, thereby decreasing visual acuity. In this study, we investigated the effects of topical administration of the kappa opioid receptor agonist nalfurafine (TRK-820) on CNV. To induce CNV, intrastromal corneal sutures were placed on the corneal stroma of BALB/c mice for 2 weeks. Nalfurafine (0.1 µg/2 μL/eye) was topically administered to the cornea once or twice daily after CNV induction. The CNV score, immune cell infiltration, and mRNA levels of angiogenic and pro-inflammatory factors in neovascularized corneas were evaluated using slit-lamp microscopy, immunohistochemistry, flow cytometry, and polymerase chain reaction. The mRNA expression of the kappa opioid receptor gene Oprk1 was significantly upregulated following CNV induction. Topical administration of nalfurafine twice daily significantly suppressed CNV and lymphangiogenesis, as well as reduced the mRNA levels of angiogenic and pro-inflammatory factors in the neovascularized corneas. Moreover, nalfurafine administration twice daily reduced the numbers of infiltrating leukocytes, neutrophils, macrophages, and interferon-γ-producing CD4+ T cells in the neovascularized corneas. In this study, we demonstrated that topical administration of nalfurafine suppressed local CNV in a mouse model along with the activation of KOR, suggesting that nalfurafine may prevent and control CNV in humans.
Collapse
Affiliation(s)
- Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan. .,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Japan
| | - Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Subei People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jaemyoung Sung
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Lightbourn CO, Wolf D, Copsel SN, Wang Y, Pfeiffer BJ, Barreras H, Bader CS, Komanduri KV, Perez VL, Levy RB. Use of Post-transplant Cyclophosphamide Treatment to Build a Tolerance Platform to Prevent Liquid and Solid Organ Allograft Rejection. Front Immunol 2021; 12:636789. [PMID: 33737937 PMCID: PMC7962410 DOI: 10.3389/fimmu.2021.636789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Corneal transplantation (CT) is the most frequent type of solid organ transplant (SOT) performed worldwide. Unfortunately, immunological rejection is the primary cause of graft failure for CT and therefore advances in immune regulation to induce tolerance remains an unmet medical need. Recently, our work and others in pre-clinical studies found that cyclophosphamide (Cy) administered after (“post-transplant,” PTCy) hematopoietic stem cell transplantation (HSCT), i.e., liquid transplants is effective for graft vs. host disease prophylaxis and enhances overall survival. Importantly, within the past 10 years, PTCy has been widely adopted for clinical HSCT and the results at many centers have been extremely encouraging. The present studies found that Cy can be effectively employed to prolong the survival of SOT, specifically mouse corneal allografts. The results demonstrated that the timing of PTCy administration is critical for these CT and distinct from the kinetics employed following allogeneic HSCT. PTCy was observed to interfere with neovascularization, a process critically associated with immune rejection of corneal tissue that ensues following the loss of ocular “immune privilege.” PTCy has the potential to delete or directly suppress allo-reactive T cells and treatment here was shown to diminish T cell rejection responses. These PTCy doses were observed to spare significant levels of CD4+ FoxP3+ (Tregs) which were found to be functional and could readily receive stimulating signals leading to their in vivo expansion via TNFRSF25 and CD25 agonists. In total, we posit future studies can take advantage of Cy based platforms to generate combinatorial strategies for long-term tolerance induction.
Collapse
Affiliation(s)
- Casey O Lightbourn
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Dietlinde Wolf
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sabrina N Copsel
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ying Wang
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Brent J Pfeiffer
- Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Henry Barreras
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Cameron S Bader
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Krishna V Komanduri
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Victor L Perez
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Foster Center for Ocular Immunology at Duke Eye Center, Duke University, Durham, NC, United States
| | - Robert B Levy
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, United States.,Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
22
|
INOMATA TAKENORI, SUNG JAEMYOUNG, NAKAMURA MASAHIRO, IWAGAMI MASAO, OKUMURA YUICHI, FUJIO KENTA, AKASAKI YASUTSUGU, FUJIMOTO KEIICHI, YANAGAWA AI, MIDORIKAWA-INOMATA AKIE, NAGINO KEN, EGUCHI ATSUKO, SHOKIROVA HURRRAMHON, ZHU JUN, MIURA MARIA, KUWAHARA MIZU, HIROSAWA KUNIHIKO, HUANG TIANXING, MOROOKA YUKI, MURAKAMI AKIRA. Cross-hierarchical Integrative Research Network for Heterogenetic Eye Disease Toward P4 Medicine: A Narrative Review. JUNTENDO MEDICAL JOURNAL 2021. [DOI: 10.14789/jmj.jmj21-0023-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- TAKENORI INOMATA
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - JAEMYOUNG SUNG
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - MASAHIRO NAKAMURA
- Department of Digital Medicine, Juntendo University Graduate School of Medicine
| | - MASAO IWAGAMI
- Department of Health Services Research, Faculty of Medicine, University of Tsukuba
| | - YUICHI OKUMURA
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - KENTA FUJIO
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - YASUTSUGU AKASAKI
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - KEIICHI FUJIMOTO
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - AI YANAGAWA
- Department of Digital Medicine, Juntendo University Graduate School of Medicine
| | | | - KEN NAGINO
- Department of Hospital Administration, Juntendo University Graduate School of Medicine
| | - ATSUKO EGUCHI
- Department of Hospital Administration, Juntendo University Graduate School of Medicine
| | | | - JUN ZHU
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - MARIA MIURA
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - MIZU KUWAHARA
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - KUNIHIKO HIROSAWA
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - TIANXING HUANG
- Department of Ophthalmology, Juntendo University Graduate School of Medicine
| | - YUKI MOROOKA
- Department of Digital Medicine, Juntendo University Graduate School of Medicine
| | - AKIRA MURAKAMI
- Department of Digital Medicine, Juntendo University Graduate School of Medicine
| |
Collapse
|
23
|
Inomata T, Fujimoto K, Okumura Y, Zhu J, Fujio K, Shokirova H, Miura M, Okano M, Funaki T, Sung J, Negishi N, Murakami A. Novel immunotherapeutic effects of topically administered ripasudil (K-115) on corneal allograft survival. Sci Rep 2020; 10:19817. [PMID: 33188243 PMCID: PMC7666179 DOI: 10.1038/s41598-020-76882-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Corneal allograft survival is mediated by the variety of immunological reactions and wound healing process. Our aim was to explore the effects of topical administration of ripasudil, a selective Rho-associated coiled-coil protein kinase inhibitor, on corneal allograft survival. Ripasudil was administered to mice thrice a day after allogeneic corneal transplantation. Corneal graft survival, opacity, neovascularization, re-epithelization, immune cell infiltration, and mRNA levels of angiogenic and pro-inflammatory factors in the grafted cornea and draining lymph nodes (dLNs) were evaluated with slit-lamp microscopy, immunohistochemistry, flow cytometry, and polymerase chain reaction. Graft survival was significantly prolonged with lower graft opacity and neovascularization scores in 0.4% and 2.0% ripasudil-treated groups, and mRNA levels of angiogenic and pro-inflammatory factors in ripasudil-treated grafted corneas were reduced. Moreover, 0.4% and 2.0% ripasudil reduced CD45+-infiltrated leukocyte frequency, Cd11b and Cd11c mRNA levels, and the frequencies of mature dendritic cells, IFNγ-, and IL-17- producing CD4+T cells in the dLNs of recipients. Re-epithelization rate of the grafted cornea was significantly higher in the 0.4% and 2.0% ripasudil groups than in the control. Topically applied ripasudil prolonged graft survival by downregulating neovascularization and inflammation factors, while promoting corneal re-epithelization, suggesting that ripasudil may be useful for suppressing immunological rejection in corneal transplantation.
Collapse
Affiliation(s)
- Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan. .,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan. .,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mikiko Okano
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshinari Funaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Jaemyoung Sung
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Naoko Negishi
- Atopy (Allergic) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Indoor Environment Neurophysiology Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Abstract
Dry eye disease (DED) is a chronic, multifactorial ocular surface disorder with multiple etiologies that results in tear film instability. Globally, the prevalence of DED is expected to increase with an aging society and daily use of digital devices. Unfortunately, the medical field is currently unprepared to meet the medical needs of patients with DED. Noninvasive, reliable, and readily reproducible biomarkers have not yet been identified, and the current mainstay treatment for DED relies on symptom alleviation using eye drops with no effective preventative therapies available. Medical big data analyses, mining information from multiomics studies and mobile health applications, may offer a solution for managing chronic conditions such as DED. Omics-based data on individual physiologic status may be leveraged to prevent high-risk diseases, accurately diagnose illness, and improve patient prognosis. Mobile health applications enable the portable collection of real-world medical data and biosignals through personal devices. Together, these data lay a robust foundation for personalized treatments for various ocular surface diseases and other pathologies that currently lack the components of precision medicine. To fully implement personalized and precision medicine, traditional aggregate medical data should not be applied directly to individuals without adjustments for personal etiology, phenotype, presentation, and symptoms.
Collapse
|
25
|
Di Zazzo A, Lee SM, Sung J, Niutta M, Coassin M, Mashaghi A, Inomata T. Variable Responses to Corneal Grafts: Insights from Immunology and Systems Biology. J Clin Med 2020; 9:E586. [PMID: 32098130 PMCID: PMC7074162 DOI: 10.3390/jcm9020586] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Corneal grafts interact with their hosts via complex immunobiological processes that sometimes lead to graft failure. Prediction of graft failure is often a tedious task due to the genetic and nongenetic heterogeneity of patients. As in other areas of medicine, a reliable prediction method would impact therapeutic decision-making in corneal transplantation. Valuable insights into the clinically observed heterogeneity of host responses to corneal grafts have emerged from multidisciplinary approaches, including genomics analyses, mechanical studies, immunobiology, and theoretical modeling. Here, we review the emerging concepts, tools, and new biomarkers that may allow for the prediction of graft survival.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Sang-Mok Lee
- Department of Ophthalmology, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Korea;
- Department of Cornea, External Disease & Refractive Surgery, HanGil Eye Hospital, Incheon 21388, Korea
| | - Jaemyoung Sung
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA;
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| | - Matteo Niutta
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Alireza Mashaghi
- Systems Biomedicine and Pharmacology Division, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| |
Collapse
|
26
|
Coco G, Foulsham W, Nakao T, Yin J, Amouzegar A, Taketani Y, Chauhan SK, Dana R. Regulatory T cells promote corneal endothelial cell survival following transplantation via interleukin-10. Am J Transplant 2020; 20:389-398. [PMID: 31587452 PMCID: PMC6984989 DOI: 10.1111/ajt.15631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/25/2023]
Abstract
The functional competence of corneal endothelial cells (CEnCs) is critical for survival of corneal allografts, but these cells are often targets of the immune response mediated by graft-attacking effector T cells. Although regulatory T cells (Tregs) have been studied for their role in regulating the host's alloimmune response towards the graft, the cytoprotective function of these cells on CEnCs has not been investigated. The aim of this study was to determine whether Tregs suppress effector T cell-mediated and inflammatory cytokine-induced CEnC death, and to elucidate the mechanism by which this cytoprotection occurs. Using 2 well-established models of corneal transplantation (low-risk and high-risk models), we show that Tregs derived from low-risk graft recipients have a superior capacity in protecting CEnCs against effector T cell-mediated and interferon-γ and tumor necrosis factor-α-induced cell death compared to Tregs derived from high-risk hosts. We further demonstrate that the cytoprotective function of Tregs derived from low-risk hosts occurs independently of direct cell-cell contact and is mediated by the immunoregulatory cytokine IL-10. Our study is the first to report that Tregs provide cytoprotection for CEnCs through secretion of IL-10, indicating potentially novel therapeutic targets for enhancing CEnC survival following corneal transplantation.
Collapse
Affiliation(s)
- Giulia Coco
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts,Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts,Institute of Ophthalmology, University College London, London, UK
| | - Takeshi Nakao
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jia Yin
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Yukako Taketani
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Kyaw T, Bobik A. Low Tregs: A targetable risk factor for life-threatening cardiovascular complications after major noncardiac surgery. J Leukoc Biol 2019; 107:713-715. [PMID: 31608500 DOI: 10.1002/jlb.3ce0919-318r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/25/2019] [Indexed: 11/05/2022] Open
Abstract
Discussion on Tregs that have anti-inflammatory and anti-atherogenic properties as an ideal therapeutic target to reduce fatal cardiovascular deaths following major noncardiac surgery.
Collapse
Affiliation(s)
- Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia.,Department of Immunology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Heidari M, Noorizadeh F, Wu K, Inomata T, Mashaghi A. Dry Eye Disease: Emerging Approaches to Disease Analysis and Therapy. J Clin Med 2019; 8:jcm8091439. [PMID: 31514344 PMCID: PMC6780511 DOI: 10.3390/jcm8091439] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Dry eye disease (DED) is among the most common ocular disorders affecting tens of millions of individuals worldwide; however, the condition remains incompletely understood and treated. Valuable insights have emerged from multidisciplinary approaches, including immunometabolic analyses, microbiome analyses, and bioengineering. Furthermore, we have seen new developments in clinical assessment approaches and treatment strategies in the recent past. Here, we review the emerging frontiers in the pathobiology and clinical management of DED.
Collapse
Affiliation(s)
- Mostafa Heidari
- Basir Eye Health Research Center, Tehran 1418643561, Iran.
- Farabi Eye Hospital, Department of Ophthalmology and Eye Research Center, Tehran University of Medical Sciences, Tehran 133661635, Iran.
| | | | - Kevin Wu
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, Ophthalmic Consultation Service, New York, NY 10029, USA
- New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan.
- Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan.
| | - Alireza Mashaghi
- Systems Biomedicine and Pharmacology Division, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
- Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai 200000, China.
| |
Collapse
|
29
|
Hori J, Yamaguchi T, Keino H, Hamrah P, Maruyama K. Immune privilege in corneal transplantation. Prog Retin Eye Res 2019; 72:100758. [PMID: 31014973 DOI: 10.1016/j.preteyeres.2019.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Corneal transplantation is the most successful solid organ transplantation performed in humans. The extraordinary success of orthotopic corneal allografts, in both humans and experimental animals, is related to the phenomenon of "immune privilege". Inflammation is self-regulated to preserve ocular functions because the eye has immune privilege. At present, three major mechanisms are considered to provide immune privilege in corneal transplantation: 1) anatomical, cellular, and molecular barriers in the cornea; 2) tolerance related to anterior chamber-associated immune deviation and regulatory T cells; and 3) an immunosuppressive intraocular microenvironment. This review describes the mechanisms of immune privilege that have been elucidated from animal models of ocular inflammation, especially those involving corneal transplantation, and its relevance for the clinic. An update on molecular, cellular, and neural interactions in local and systemic immune regulation is provided. Therapeutic strategies for restoring immune privilege are also discussed.
Collapse
Affiliation(s)
- Junko Hori
- Department of Ophthalmology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan; Department of Ophthalmology, Nippon Medical School, Tama-Nagayama Hospital, 1-7-1 Nagayama, Tama, Tokyo, 206-8512, Japan.
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa-shi, Chiba, 272-8513, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, 800 Washington St, Boston, MA, 02111, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, 800 Washington St, Boston, MA, 02111, USA
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Yoon CH, Choi SH, Lee HJ, Kang HJ, Kim MK. Predictive biomarkers for graft rejection in pig-to-non-human primate corneal xenotransplantation. Xenotransplantation 2019; 26:e12515. [PMID: 30983050 DOI: 10.1111/xen.12515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Abstract
We investigated the predictive biomarkers for graft rejection in pig-to-non-human primate (NHP) full-thickness corneal xenotransplantation (n = 34). The graft score (0-12) was calculated based on opacity, edema, and vascularization. Scores ≥ 6 were defined as rejection. NHPs were divided into two groups: (a) graft rejection within 6 months; and (b) graft survival until 6 months. In the evaluation of 2-week biomarkers, none of the NHPs showed rejection within 2 weeks and the 34 NHPs were divided into two groups: (a) entire rejection group (n = 16); and (b) survival group (n = 18). In the evaluation of 4-week biomarkers, four NHPs showing rejection within 4 weeks were excluded and the remaining 30 NHPs were divided into two groups: (a) late rejection group (n = 12); and (b) survival group (n = 18). Analysis of biomarker candidates included T/B-cell subsets, levels of anti-αGal IgG/M, donor-specific IgG/M from blood, and C3a from plasma and aqueous humor (AH). CD8+ IFNγ+ cells at week 2 and AH C3a at week 4 were significantly elevated in the rejection group. Receiver operating characteristic areas under the curve was highest for AH C3a (0.847) followed by CD8+ IFNγ+ cells (both the concentration and percentage: 0.715), indicating excellent or acceptable discrimination ability, which suggests that CD8+ IFNγ+ cells at week 2 and AH C3a at week 4 are reliable biomarkers for predicting rejection in pig-to-NHP corneal xenotransplantation.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Se Hyun Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Anyang-si, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
31
|
Different phenotypes of CD4 +CD25 +Foxp3 + regulatory T cells in recipients post liver transplantation. Int Immunopharmacol 2019; 69:194-201. [PMID: 30735938 DOI: 10.1016/j.intimp.2019.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 11/20/2022]
Abstract
CD4+ regulatory T cells (Tregs) play an important role in inducing immune tolerance in organ transplantation, which can be divided into CD45RA+Tregs (resting Tregs, rTregs) and CD45RO+Tregs (activated Tregs, aTregs). Currently, the expressions and phenotypic changes of Tregs in recipients after liver transplantation (LT) is unknown. We therefore investigated the expression and transformation of rTregs and aTregs in 83 cases of recipients with normal status post-LT. The percentages of CD45RA, CD45RO, CD31 in CD4+Tregs were detected by flow cytometry and the effective factors were analyzed. In LT recipients, the percentage of CD45RO+Tregs in CD4+Tregs was higher than that of CD45RA+Tregs. There was significant difference in the ratio of positive Foxp3 between CD45RA+Tregs and CD45RO+Tregs. Percentage of CD45RA+Tregs was higher in pediatric group than that in adult group, whereas percentage of CD45RO+Tregs was lower in the pediatric group. However, it was different only in CD45RO+Tregs in various survival periods post-LT. In conclusion, Tregs pool in human was heterogeneous post-LT and contained different subsets in phenotypes. Upon stimulation by donor graft, percentages of CD4+Tregs and CD45RO+Tregs were increased post-LT and most of rTregs was transformed into aTregs in peripheral blood, and rTregs and aTregs were both related to recipients' ages.
Collapse
|
32
|
Tahvildari M, Inomata T, Amouzegar A, Dana R. Regulatory T cell modulation of cytokine and cellular networks in corneal graft rejection. CURRENT OPHTHALMOLOGY REPORTS 2018; 6:266-274. [PMID: 31807370 PMCID: PMC6894425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Corneal allografts placed in vascularized or inflamed host beds are at increased risk of graft rejection due to the preponderance of activated immune cells in the host bed. Regulatory T cells (Tregs) are master regulators of the adaptive immune response and play a key role in the induction of immune tolerance. The aim of this review is to discuss mechanisms through which Tregs mediate tolerance in corneal transplantation and the novel therapeutic approaches that target Tregs to promote transplant survival. RECENT FINDINGS The inflammatory environment of high-risk allografts not only promotes activation of effector T cells and their infiltration to graft site, but also impairs Treg immunomodulatory function. Recent studies have shown that expansion of Tregs and enhancing their modulatory function significantly improve graft survival. SUMMARY As our understanding of the cellular and molecular pathways in corneal transplantation has deepened, novel therapeutic strategies have been developed to improve allograft survival. In this review, we discuss therapeutic approaches that focus on Tregs to promote corneal allograft survival.
Collapse
Affiliation(s)
- Maryam Tahvildari
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
- Kresge Eye Institute, Department of ophthalmology, Wayne State University, Detroit, MI
| | - Takenori Inomata
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
- Juntendo University Faculty of Medicine, Department of Ophthalmology, Tokyo, Japan
- Juntendo University Faculty of Medicine, Department of Strategic Operative Room, Management and Improvement, Tokyo, Japan
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Ogawa M, Inomata T, Shiang T, Tsubota K, Murakami A. Method for selective quantification of immune and inflammatory cells in the cornea using flow cytometry. J Biol Methods 2018; 5:e102. [PMID: 31453252 PMCID: PMC6706157 DOI: 10.14440/jbm.2018.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 01/19/2023] Open
Abstract
The cornea serves as a protective surface against the environment (i.e., allergens, pollutants, desiccation and microorganisms) and promotes vision, made possible by corneal transparency. This protocol describes corneal preparation for flow cytometry to assess cells localized in the cornea. Our model details the process, from determining how many corneas are needed in the experiment to corneal excision to digestion and staining of the cornea cells. The simplicity of the model allows for systematic analysis of different corneal mechanisms of immunity, inflammation, angiogenesis and wound healing. In corneal transplantation, residential immune and inflammatory cells are key to the mechanisms that underlie angiogenesis, opacity, and graft rejection. In addition, this model can also elucidate cellular mechanisms mediating corneal graft outcomes and wound healing. Lastly, this model can be used to analyze the efficacy of new medications such as instillation and subconjunctival injections and assess the potential of therapeutic molecules to enhance graft survival and wound healing in vivo.
Collapse
Affiliation(s)
- Mamoru Ogawa
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama 230-0045, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, 113-0033, Japan.,Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo, 113-0033, Japan
| | - Tina Shiang
- University of Massachusetts Medical School, Department of Radiology, MA 01655, USA
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo, 113-0033, Japan
| |
Collapse
|
34
|
Tahvildari M, Inomata T, Amouzegar A, Dana R. Regulatory T Cell Modulation of Cytokine and Cellular Networks in Corneal Graft Rejection. CURRENT OPHTHALMOLOGY REPORTS 2018. [DOI: 10.1007/s40135-018-0191-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
The Effects of Anti-LAP Monoclonal Antibody Down-regulation of CD4+LAP+ T Cells on Allogeneic Corneal Transplantation in Mice. Sci Rep 2018; 8:8021. [PMID: 29789580 PMCID: PMC5964070 DOI: 10.1038/s41598-018-26235-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/25/2018] [Indexed: 01/28/2023] Open
Abstract
CD4+latency-associated peptide (LAP)+ T cells are a newly discovered T cell subset with suppressive function on immune responses. In this study, we investigate the role of CD4+LAP+ T cells on mice corneal allograft survival by down-regulating their expression using anti-LAP mAb. We show that a blockage of LAP leads to a decrease in the percentage of T cells expressing CD4+Foxp3+, CD4+GARP+, CD4+LAP+ and CD4+IL-10+ in the lymph nodes and spleens of mice undergoing orthotopic penetrating transplantation of corneal allograft, without affecting corneal graft survival. In addition, higher percentages of CD4+IFN-γ+ and CD4+IL-17A+ T cells in the lymph nodes and spleens, as well as TNF, IFN-γ, IL-17A and IL-6 levels in the aqueous humor, significantly increase in mice with rejected corneal grafts. The expression of TGF-β1 decreases in corneal grafts during corneal rejection period. It is therefore possible that anti-LAP mAb can down-regulate the regulatory T cell subsets with its immunosuppressive effects. The rejection of corneal grafts seems to mainly be associated with the up-regulation of Th1 and Th17 cell subsets in peripheral lymph nodes.
Collapse
|
36
|
Immune Privilege and Eye-Derived T-Regulatory Cells. J Immunol Res 2018; 2018:1679197. [PMID: 29888291 PMCID: PMC5985108 DOI: 10.1155/2018/1679197] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/18/2018] [Indexed: 02/08/2023] Open
Abstract
Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF-β), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2α), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.
Collapse
|
37
|
Hua J, Inomata T, Chen Y, Foulsham W, Stevenson W, Shiang T, Bluestone JA, Dana R. Pathological conversion of regulatory T cells is associated with loss of allotolerance. Sci Rep 2018; 8:7059. [PMID: 29728574 PMCID: PMC5935752 DOI: 10.1038/s41598-018-25384-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/11/2018] [Indexed: 01/26/2023] Open
Abstract
CD4+CD25+Foxp3+ Regulatory T cells (Tregs) play a critical role in immune tolerance. The plasticity and functional adaptability of Tregs in an inflammatory microenvironment has been demonstrated in autoimmunity. Here, using a double transgenic mouse model that permits Foxp3 lineage tracing, we investigated the phenotypic plasticity of Foxp3+ Tregs in a well-characterized murine model of corneal transplantation. In order to subvert the normal immune privilege of the cornea and foster an inflammatory milieu, host mice were exposed to desiccating stress prior to transplantation. Treg frequencies and function were decreased following desiccating stress, and this corresponded to decreased graft survival. A fraction of Tregs converted to IL-17+ or IFNγ+ 'exFoxp3' T cells that were phenotypically indistinguishable from effector Th17 or Th1 cells, respectively. We investigated how Foxp3 expression is modulated in different Treg subsets, demonstrating that neuropilin-1- peripherally-derived Tregs are particularly susceptible to conversion to IL-17+/IFNγ+ exFoxp3 cells in response to cues from their microenvironment. Finally, we show that IL-6 and IL-23 are implicated in the conversion of Tregs to exFoxp3 cells. This report demonstrates that the pathological conversion of Tregs contributes to the loss of corneal immune privilege.
Collapse
Affiliation(s)
- Jing Hua
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Takenori Inomata
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - William Stevenson
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tina Shiang
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Foulsham W, Coco G, Amouzegar A, Chauhan SK, Dana R. When Clarity Is Crucial: Regulating Ocular Surface Immunity. Trends Immunol 2018; 39:288-301. [PMID: 29248310 PMCID: PMC5880704 DOI: 10.1016/j.it.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022]
Abstract
The ocular surface is a unique mucosal immune compartment in which anatomical, physiological, and immunological features act in concert to foster a particularly tolerant microenvironment. These mechanisms are vital to the functional competence of the eye, a fact underscored by the devastating toll of excessive inflammation at the cornea - blindness. Recent data have elucidated the contributions of specific anatomical components, immune cells, and soluble immunoregulatory factors in promoting homeostasis at the ocular surface. We highlight research trends at this distinctive mucosal barrier and identify crucial gaps in our current knowledge.
Collapse
Affiliation(s)
- William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; University College London (UCL) Institute of Ophthalmology, University College London, London, UK
| | - Giulia Coco
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Marshall GP, Cserny J, Perry DJ, Yeh WI, Seay HR, Elsayed AG, Posgai AL, Brusko TM. Clinical Applications of Regulatory T cells in Adoptive Cell Therapies. CELL & GENE THERAPY INSIGHTS 2018; 4:405-429. [PMID: 34984106 PMCID: PMC8722436 DOI: 10.18609/cgti.2018.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interest in adoptive T-cell therapies has been ignited by the recent clinical success of genetically-modified T cells in the cancer immunotherapy space. In addition to immune targeting for malignancies, this approach is now being explored for the establishment of immune tolerance with regulatory T cells (Tregs). Herein, we will summarize the basic science and clinical results emanating from trials directed at inducing durable immune regulation through administration of Tregs. We will discuss some of the current challenges facing the field in terms of maximizing cell purity, stability and expansion capacity, while also achieving feasibility and GMP production. Indeed, recent advances in methodologies for Treg isolation, expansion, and optimal source materials represent important strides toward these considerations. Finally, we will review the emerging genetic and biomaterial-based approaches on the horizon for directing Treg specificity to augment tissue-targeting and regenerative medicine.
Collapse
Affiliation(s)
| | - Judit Cserny
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Wen-I Yeh
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Howard R Seay
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Ahmed G Elsayed
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Todd M Brusko
- OneVax LLC, Sid Martin Biotechnology Institute, Alachua, Florida, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
40
|
Foulsham W, Marmalidou A, Amouzegar A, Coco G, Chen Y, Dana R. Review: The function of regulatory T cells at the ocular surface. Ocul Surf 2017; 15:652-659. [PMID: 28576753 DOI: 10.1016/j.jtos.2017.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) are critical modulators of immune homeostasis. Tregs maintain peripheral tolerance to self-antigens, thereby preventing autoimmune disease. Furthermore, Tregs suppress excessive immune responses deleterious to the host. Recent research has deepened our understanding of how Tregs function at the ocular surface. This manuscript describes the classification, the immunosuppressive mechanisms, and the phenotypic plasticity of Tregs. We review the contribution of Tregs to ocular surface autoimmune disease, as well as the function of Tregs in allergy and infection at the ocular surface. Finally, we review the role of Tregs in promoting allotolerance in corneal transplantation.
Collapse
Affiliation(s)
- William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Anna Marmalidou
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Giulia Coco
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yihe Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
INOMATA TAKENORI. A New Immunotherapy Using Regulatory T-Cells for High-Risk Corneal Transplantation. JUNTENDO MEDICAL JOURNAL 2017. [DOI: 10.14789/jmj.63.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- TAKENORI INOMATA
- Department of Ophthalmology, Juntendo University Faculty of Medicine
| |
Collapse
|