1
|
Cheng Y, Yu Q, Zhang W, Liu Z, Ding J, Pan H, Li Y, Wu D, Zhu M, Xie X, Zhu N. Diet dependent trophic transfer of nanoparticles (ZnO and TiO 2) along the "photic biofilm-snail" food chain. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137657. [PMID: 40010214 DOI: 10.1016/j.jhazmat.2025.137657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Multispecies biofilm exhibited high resistance to nanotoxicity by secreting extracellular polymeric substances (EPS) and undergoing alterations in the community composition. Scarce information was available to assess how these changes could further influence the transfer of nanoparticles (NPs) through the biofilm-based food chain. Photic biofilm was exposed to two distinct NPs (ZnO and TiO2) and subsequently grazed by snails. Exposure to different NPs led to variations in biomass, chlorophyll content, EPS productivity, alpha diversity, and community composition of the photic biofilm. The presence of ZnO NPs facilitated the growth of phylum Cyanobacteria while TiO2 promoted EPS productivity of photic biofilm. EPS were capable of embedding NPs (TiO2 and ZnO) within its matrix, thereby mitigating their aggregation within the biofilm matrix. These alterations were subsequently confirmed to have an impact on the trophic transfer factors (TTF) of NPs through the constructed biofilm-snail food chain. The TTF of ZnO was lower than that of TiO2 in feeding scenario 1 (only fed on TiO2 or ZnO biofilm) but higher than that of TiO2 in feeding scenario 2 (fed on TiO2 and ZnO biofilm simultaneously), which was attributed to the shifts in the algae composition and a smaller size of ZnO NPs in EPS. This study demonstrated that the response of photic biofilm to NPs further affected the TTFs of NPs through the food chain.
Collapse
Affiliation(s)
- Yu Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Quanbo Yu
- Shanghai Engineering Research Center of Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
| | - Weihua Zhang
- Management Service Center of Yuncheng Chemical Industry Park, Heze 274700, China
| | - Zhiqiang Liu
- Jiangsu Changhuan Environment Technology Co. Ltd., Changzhou 213002, China
| | - Jue Ding
- School of Geographical Sciences, Jiangsu Second Normal University, Nanjing 211200, China
| | - Hongzhe Pan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dan Wu
- State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Jiangsu Provincial Academy of Environmental Science, Nanjing, China
| | - Minghua Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
2
|
Abbasi M, Aghamollaei H, Vaez A, Amani AM, Kamyab H, Chelliapan S, Jamalpour S, Zambrano-Dávila R. Bringing ophthalmology into the scientific world: Novel nanoparticle-based strategies for ocular drug delivery. Ocul Surf 2025; 37:140-172. [PMID: 40147816 DOI: 10.1016/j.jtos.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The distinctive benefits and drawbacks of various drug delivery strategies to supply corneal tissue improvement for sense organs have been the attention of studies worldwide in recent decades. Static and dynamic barriers of ocular tissue prevent foreign chemicals from entering and inhibit the active absorption of therapeutic medicines. The distribution of different medications to ocular tissue is one of the most appealing and demanding tasks for investigators in pharmacology, biomaterials, and ophthalmology, and it is critical for cornea wound healing due to the controlled release rate and increased drug bioavailability. It should be mentioned that the transport of various types of medications into the different sections of the eye, particularly the cornea, is exceedingly challenging because of its distinctive structure and various barriers throughout the eye. Nanoparticles are being studied to improve medicine delivery strategies for ocular disease. Repetitive corneal drug delivery using biodegradable nanocarriers allows a medicine to remain in different parts of the cornea for extended periods of time and thus improve administration route effectiveness. In this review, we discussed eye anatomy, ocular delivery barriers, as well as the emphasis on the biodegradable nanomaterials ranging from organic nanostructures, such as nanomicelles, polymers, liposomes, niosomes, nanowafers, nanoemulsions, nanosuspensions, nanocrystals, cubosomes, olaminosomes, hybridized NPs, dendrimers, bilosomes, solid lipid NPs, nanostructured lipid carriers, and nanofiber to organic nanomaterials like silver, gold, and mesoporous silica nanoparticles. In addition, we describe the nanotechnology-based ophthalmic medications that are presently on the market or in clinical studies. Finally, drawing on current trends and therapeutic approaches, we discuss the challenges that innovative optical drug delivery systems confront and propose future research routes. We hope that this review will serve as a source of motivation and inspiration for developing innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Milad Abbasi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea; Universidad UTE, Quito, 170527, Ecuador.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sajad Jamalpour
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Renato Zambrano-Dávila
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito, 170527, Ecuador
| |
Collapse
|
3
|
Das I, Borah D. Microbial biosurfactant-mediated green synthesis of zinc oxide nanoparticles (ZnO NPs) and exploring their role in enhancing chickpea and rice seed germination. DISCOVER NANO 2024; 19:174. [PMID: 39487377 PMCID: PMC11530582 DOI: 10.1186/s11671-024-04134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Malnutrition is one of the greatest challenges faced by humanity, which may be addressed by improving crop productivity to ensure food security. However, extensive use of synthetic fertilizers can lead to soil fertility degradation. This study highlights the potential of combining nanotechnology with biotechnology to enhance the germination rates of commercially important crop seeds. Bacterial biosurfactant extracted from a newly isolated Klebsiella sp. strain RGUDBI03 was used as a reducing and capping agent for the synthesis of zinc oxide nanoparticles (ZnO NPs) through a simple method. Extensive characterization of ZnO NPs through electron microscopic analysis showed well-dispersed, homogeneous NPs with a size range of 2-10 nm. High-resolution transmission electron microscopy (HR-TEM) images also revealed molecular fringes of 0.26 nm in single crystal ZnO NPs, with approximately 50% of the NPs exhibiting a size range of 2-4 nm. X-ray diffraction (XRD) results of ZnO NPs indicated the presence of (100), (002), (101), (102), (200), and (112) planes, confirming their crystalline nature. The presence of C = C-H, C = C, C-H, and C = C groups in both the bacterial biosurfactant and ZnO NPs, as depicted by Fourier-transform infrared spectroscopy (FTIR) spectra, confirmed the function of the biosurfactant as a reducing and capping agent. The nano-primed chickpea (Cicer arietinum) and rice (Oryza sativa) seeds showed an increase in water uptake rate, 89% and 92% respectively, compared to the control (73% and 44%), leading to an enhanced germination rate of 98% and 76%, compared to their respective controls (80% and 30%) under optimized conditions. Additionally, the nano-primed seeds exhibited higher levels of α-amylase activity in both seeds (0.37 mg/g for chickpea and 2.49 mg/g for rice) compared to the control. Notably, the ZnO NP priming solution exhibited no cytotoxicity on red blood cells and earthworms (Eudrilus eugeniae), indicating their non-cytotoxic and eco-friendly nature for future field trials.
Collapse
Affiliation(s)
- Indukalpa Das
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035, India
| | - Debajit Borah
- Department of Biotechnology, The Assam Royal Global University, Guwahati, 781035, India.
| |
Collapse
|
4
|
Azarin K, Usatov A, Minkina T, Duplii N, Fedorenko A, Plotnikov A, Mandzhieva S, Kumar R, Yong JWH, Sehar S, Rajput VD. Evaluating the phytotoxicological effects of bulk and nano forms of zinc oxide on cellular respiration-related indices and differential gene expression in Hordeum vulgare L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116670. [PMID: 38981388 DOI: 10.1016/j.ecoenv.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The increasing use of nanoparticles is driving the growth of research on their effects on living organisms. However, studies on the effects of nanoparticles on cellular respiration are still limited. The remodeling of cellular-respiration-related indices in plants induced by zinc oxide nanoparticles (nnZnO) and its bulk form (blZnO) was investigated for the first time. For this purpose, barley (Hordeum vulgare L.) seedlings were grown hydroponically for one week with the addition of test compounds at concentrations of 0, 0.3, 2, and 10 mg mL-1. The results showed that a low concentration (0.3 mg mL-1) of blZnO did not cause significant changes in the respiration efficiency, ATP content, and total reactive oxygen species (ROS) content in leaf tissues. Moreover, a dose of 0.3 mg mL-1 nnZnO increased respiration efficiency in both leaves (17 %) and roots (38 %). Under the influence of blZnO and nnZnO at medium (2 mg mL-1) and high (10 mg mL-1) concentrations, a dose-dependent decrease in respiration efficiency from 28 % to 87 % was observed. Moreover, the negative effect was greater under the influence of nnZnO. The gene transcription of the subunits of the mitochondria electron transport chain (ETC) changed mainly only under the influence of nnZnO in high concentration. Expression of the ATPase subunit gene, atp1, increased slightly (by 36 %) in leaf tissue under the influence of medium and high concentrations of test compounds, whereas in the root tissues, the atp1 mRNA level decreased significantly (1.6-2.9 times) in all treatments. A dramatic decrease (1.5-2.4 times) in ATP content was also detected in the roots. Against the background of overexpression of the AOX1d1 gene, an isoform of alternative oxidase (AOX), the total ROS content in leaves decreased (with the exception of 10 mg mL-1 nnZnO). However, in the roots, where the pressure of the stress factor is higher, there was a significant increase in ROS levels, with a maximum six-fold increase under 10 mg mL-1 nnZnO. A significant decrease in transcript levels of the pentose phosphate pathway and glycolytic enzymes was also shown in the root tissues compared to leaves. Thus, the disruption of oxidative phosphorylation leads to a decrease in ATP synthesis and an increase in ROS production; concomitantly reducing the efficiency of cellular respiration.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Alexander Usatov
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Nadezhda Duplii
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Aleksei Fedorenko
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Andrey Plotnikov
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Saglara Mandzhieva
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation.
| |
Collapse
|
5
|
Nawaz M, Shahzadi E, Yaseen A, Khalid MR, Saleem MH, Alalawy AI, Omran AME, Khalil FMA, Alsuwat MA, Ercisli S, Malik T, Ali B. Selenium improved arsenic toxicity tolerance in two bell pepper (Capsicum annuum L.) varieties by modulating growth, ion uptake, photosynthesis, and antioxidant profile. BMC PLANT BIOLOGY 2024; 24:799. [PMID: 39179967 PMCID: PMC11344407 DOI: 10.1186/s12870-024-05509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Bell pepper (Capsicum annuum L.); an important spice crop of the region is a rich source of vitamins and antioxidants having many health benefits. Many biotic and abiotic factors contribute towards growth and yield losses of this crop. Arsenic (As) toxicity is a global issue, but it is particularly critical in developing countries. The current study was designed to evaluate the efficacy of selenium (Se) in mitigating the toxic effects of As in two varieties (HSP-181 A and PS09979325) of Capsicum annuum L. Different concentrations of As (0, 50, and 100 µM) and Se (0, 5, and 10 µM) were tested using 14 days old seedlings of C. annuum L. The As stress caused a significant (P ≤ 0.001) reduction in growth, uptake of nutrients, and eco-physiological attributes in both varieties however, the response was specific. While the overproduction of osmo-protectants and antioxidants intensified the symptoms of oxidative stress. The maximum reduction in shoot length (45%), fresh weight (29%), and dry weight (36%) was observed in under 100 µM As stress. The organic acids exudation from the roots of both cultivars were significantly increased with the increase in As toxicity. The Se treatment significantly (p ≤ 0.001) improved growth, nutrient uptake, gas exchange attributes, antioxidant production, while decreased oxidative stress indicators, and As uptake in the roots and shoots of all the subjects under investigation. It is concluded from the results of this study that Se application increased photosynthetic efficiency and antioxidant activity while decreasing As levels, organic acid exudation, and oxidative stress indicators in plants. Overall, the var. PS09979325 performed better and may be a good candidate for future pepper breeding program.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Eram Shahzadi
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aqsa Yaseen
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rehan Khalid
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha, 2713, Qatar
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Awatif M E Omran
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | | | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, 378, Ethiopia.
- Adjunct Faculty, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144401, India.
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- School of Science, Western Sydney University, Penrith 2751, Australia.
| |
Collapse
|
6
|
Singh M, Chadha P. Assessment of synthetic food dye erythrosine induced cytotoxicity, genotoxicity, biochemical and molecular alterations in Allium cepa root meristematic cells: insights from in silico study. Toxicol Res (Camb) 2024; 13:tfae126. [PMID: 39132191 PMCID: PMC11311706 DOI: 10.1093/toxres/tfae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024] Open
Abstract
Background Synthetic food dyes are being exponentially used in food products and scarce studies regarding their toxicities and safety raise concern. Erythrosine is one of the synthetic food dyes being used in jams, fig, pineapple marmalades, dairy products, soft drinks, pickles, relishes, smoked fish, cheese, ketchup, maraschino cherries and a variety of other foods. Methodology In this study the cyto-genotoxic effect of erythrosine was evaluated, using root meristematic cells of Allium cepa for the cellular and molecular alternations at concentrations 0.1, 0.25, 0.5 and 1 mg/mL. Results The results revealed a significant decrease of 57.81% in the mitotic index after 96 h at the 0.1 mg/mL concentration. In biochemical analysis, the malondialdehyde content increased significantly (5.47-fold), while proline content, catalase activity and superoxide dismutase activity decreased gradually in a concentration-dependent manner showing a maximum decrease of 78.11%, 64.68% and 61.73% respectively at the highest concentration after 96 h duration. The comet assay revealed increased DNA damage with increasing concentration and attenuated total reflectance- Fourier transform infrared spectroscopy (ATR-FTIR) analysis showed significant alterations in biomolecules as indicated by multivariate analysis, i.e. Principal Component Analysis (PCA). Furthermore, molecular docking demonstrated a strong binding energy (Gbest = -11.46 kcal/mol) and an inhibition constant (Ki) of 3.96 nM between erythrosine and the DNA minor groove. Conclusion The present study's findings revealed the cytotoxic and genotoxic potential of erythrosine on A. cepa root cells. Further, the study also proposed the usefulness of A. cepa as a model system for studying the toxicity of food additives.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
7
|
Kang M, Bai X, Liu Y, Weng Y, Wang H, Ye Z. Driving Role of Zinc Oxide Nanoparticles with Different Sizes and Hydrophobicity in Metabolic Response and Eco-Corona Formation in Sprouts ( Vigna radiata). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9875-9886. [PMID: 38722770 DOI: 10.1021/acs.est.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Zinc oxide nanoparticles (ZnO NPs) cause biotoxicity and pose a potential ecological threat; however, their effects on plant metabolism and eco-corona evolution between NPs and organisms remain unclear. This study clarified the molecular mechanisms underlying physiological and metabolic responses induced by three different ZnO NPs with different sizes and hydrophobicity in sprouts (Vigna radiata) and explored the critical regulation of eco-corona formation in root-nano systems. Results indicated that smaller-sized ZnO inhibited root elongation by up to 37.14% and triggered oxidative burst and apoptosis. Metabolomics confirmed that physiological maintenance after n-ZnO exposure was mainly attributed to the effective stabilization of nitrogen fixation and defense systems by biotransformation of the flavonoid pathway. Larger-sized or hydrophobic group-modified ZnO exhibited low toxicity in sprouts, with 0.89-fold upregulation of citrate in central carbon metabolism. This contributed to providing energy for resistance to NP stress through amino acid and carbon/nitrogen metabolism, accompanied by changes in membrane properties. Notably, smaller-sized and hydrophobic NPs intensely stimulated the release of root metabolites, forming corona complexes with exudates. The hydrogen-bonded wrapping mechanism in protein secondary structure and hydrophobic interactions of heterogeneous functional groups drove eco-corona formation, along with the corona evolution intensity of n-ZnO > s-ZnO > b-ZnO based on higher (α-helix + 3-turn helix)/β-sheet ratios. This study provides crucial insight into metabolic and eco-corona evolution in bionano fates.
Collapse
Affiliation(s)
- Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| | - Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haoke Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
8
|
Alipour-Khezri E, Moqadami A, Barzegar A, Mahdavi M, Skurnik M, Zarrini G. Bacteriophages and Green Synthesized Zinc Oxide Nanoparticles in Combination Are Efficient against Biofilm Formation of Pseudomonas aeruginosa. Viruses 2024; 16:897. [PMID: 38932188 PMCID: PMC11209622 DOI: 10.3390/v16060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteriophages (phages) are viruses that infect the bacteria within which their reproduction cycle takes place, a process that ends in the lysis and death of the bacterial cell. Some phages are also able to destroy bacterial biofilms. Due to increased antibiotics resistance, Pseudomonas aeruginosa, another biofilm-forming pathogen, is a problem in many parts of the world. Zinc oxide (ZnO) and other metal nanoparticles (NPs) are biologically active and also possess anti-biofilm properties. ZnO-NPs were prepared by the green synthesis method using orange peels. The vibrational peaks of the ZnO-NPs were analyzed using FTIR analysis, and their size and morphological properties were determined using scanning electron microscopy (SEM). The ability of the ZnO-NPs to reduce or eliminate P. aeruginosa biofilm alone or in combination with phages PB10 and PA19 was investigated. The P. aeruginosa cells were effectively killed in the preformed 48 h biofilms during a 24 h incubation with the ZnO-NP-phage combination, in comparison with the control or ZnO-NPs alone. The treatments on growing biofilms were most efficient in the final stages of biofilm development. All five treatment groups showed a significant biofilm reduction compared to the control group (p < 0.0001) at 48 h of incubation. The influence of the ZnO-NPs and phages on the quorum sensing system of P. aeruginosa was monitored by quantitative real-time PCR (qRT-PCR) of the autoinducer biosynthesis gene lasI. While the ZnO-NPs repressed the lasI gene transcription, the phages slightly activated it at 24 and 48 h of incubation. Also, the effect of the ZnO-NPs and phage PA19 on the viability of HFF2 cells was investigated and the results showed that the combination of NPs with PA19 reduced the toxic effect of ZnO-NPs and also stimulated the growth in normal cells.
Collapse
Affiliation(s)
- Elaheh Alipour-Khezri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
| | - Amin Moqadami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
| | - Abolfazl Barzegar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
- Microbial Biotechnology Research Group, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
9
|
Al-Momani H, Massadeh MI, Almasri M, Al Balawi D, Aolymat I, Hamed S, Albiss BA, Ibrahim L, Balawi HA, Al Haj Mahmoud S. Anti-Bacterial Activity of Green Synthesised Silver and Zinc Oxide Nanoparticles against Propionibacterium acnes. Pharmaceuticals (Basel) 2024; 17:255. [PMID: 38399471 PMCID: PMC10891609 DOI: 10.3390/ph17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Propionibacterium acnes plays a critical role in the development of acne vulgaris. There has been a rise in the number of patients carrying P. acnes strains that are resistant to antibiotics. Thus, alternative anti-microbial agents are required. Zinc oxide (ZnO-NPs) and silver (Ag-NPs) nanoparticles can be used against several antibiotic-resistant bacteria. The impact of Ag-NPs and ZnO-NPs against two clinical strains of P. acnes, P1 and P2, and a reference strain, NCTC747, were investigated in this research. A chemical approach for the green synthesis of Ag-NPs and ZnO-NPs from Peganum harmala was employed. The microtiter plate method was used to examine the effects of NPs on bacterial growth, biofilm development, and biofilm eradication. A broth microdilution process was performed in order to determine minimal inhibitory (MIC) concentrations. Ag-NPs and ZnO-NPs had a spherical shape and average dimensions of 10 and 50 nm, respectively. MIC values for all P. acnes strains for Ag-NPs and ZnO-NPs were 125 µg/mL and 250 µg/mL, respectively. Ag-NP and ZnO-NP concentrations of 3.9- 62.5 µg/mL and 15-62.5 µg/mL significantly inhibited the growth and biofilm formation of all P. acnes strains, respectively. ZnO-NP concentrations of 15-62.5 μg/mL significantly inhibited the growth of NCTC747 and P2 strains. The growth of P1 was impacted by concentrations of 31.25 μg/mL and 62.5 μg/mL. Biofilm formation in the NCTC747 strain was diminished by a ZnO-NP concentration of 15 μg/mL. The clinical strains of P. acnes were only affected by ZnO-NP titres of more than 31.25 μg/mL. Established P. acne biofilm biomass was significantly reduced in all strains at a Ag-NP and ZnO-NP concentration of 62.5 µg/mL. The findings demonstrated that Ag-NPs and ZnO-NPs exert an anti-bacterial effect against P. acnes. Further research is required to determine their potential utility as a treatment option for acne.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Muhannad I. Massadeh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan; (M.I.M.); (M.A.)
| | - Muna Almasri
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan; (M.I.M.); (M.A.)
| | - Dua’a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Saja Hamed
- Department of Pharmaceutical & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, Irbid 22110, Jordan;
| | - Lugain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Hadeel Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Science, Faculty of Medicine, Al-Balqa’ Applied University, AL-Salt 19117, Jordan;
| |
Collapse
|
10
|
Sasidhar N, Vidya YS, Manjunatha HC, Soundar R, Munirathnam R, Seenappa L, Sridhar KN, Manjunatha S, Krishnakanth E. Progress towards blue emitting MgO-ZnO-Ga 2O 3 nanocomposites synthesized by bio mediated route. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123901. [PMID: 38262295 DOI: 10.1016/j.saa.2024.123901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/28/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
MgO-ZnO-Ga2O3 nanocomposites are synthesized by solution combustion method using Aloe Vera gel as a reducing agent to increase the efficiency of blue emission. The appearance of Bragg reflections corresponding to MgO, ZnO and Ga2O3 clearly indicates the formation of nanocomposites. The surface morphology consists irregular shape and sized NPs. The Energy dispersive X-ray analysis confirms the purity of the sample. The band energy gap was tuned to 3.1 eV. The Photoluminescence excitation and emission spectra was discussed and compared it with emission spectra of individual oxides as well as with other reported blue emitted nanophosphors. Further, the chromaticity coordinates and Color correlated temperature coordinates clearly confirms their warm blue emission. Further, the powder dusting method was employed to collect the latent fingerprints on the pores and non-pores surfaces. The synthesized MgO-ZnO-Ga2O3 nanocomposites exhibits well-resolved ridge patterns that can be used to identify latent finger prints with clarity. From all these results, the present synthesized MgO-ZnO-Ga2O3 nanocomposite might find an application in display technology as a blue nanophosphor material and for latent finger print detection in crime investigation.
Collapse
Affiliation(s)
- N Sasidhar
- Department of Physics, Government science college, Chithradurga 577501, Karnataka, India
| | - Y S Vidya
- Department of Physics, Lal Bahadur Shastri Government First Grade College, RT Nagar, Bangalore 560032, Karnataka, India.
| | - H C Manjunatha
- Department of Physics, Government First Grade College, Devanahalli 562110, Karnataka, India.
| | - R Soundar
- Department of Physics, Government First Grade College, Devanahalli 562110, Karnataka, India
| | - R Munirathnam
- Department of Physics, Government First Grade College, Devanahalli 562110, Karnataka, India
| | - L Seenappa
- Department of Physics, Government First Grade College, Mulbagal 563131, Karnataka, India
| | - K N Sridhar
- Department of Physics, Government First Grade College, Malur 563130, Karnataka, India
| | - S Manjunatha
- Department of Chemistry, B.M.S College of Engineering, Bengaluru 560019, Karnataka, India
| | - E Krishnakanth
- Department of Physics, Government First Grade College, Devanahalli 562110, Karnataka, India
| |
Collapse
|
11
|
Pokharel BR, Sheri V, Kumar M, Zhang Z, Zhang B. The update and transport of aluminum nanoparticles in plants and their biochemical and molecular phototoxicity on plant growth and development: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122875. [PMID: 37931678 DOI: 10.1016/j.envpol.2023.122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
As aluminum nanoparticles (Al-NPs) are widely used in our daily life and various industries, Al-NPs has been becoming an emerging pollution in the environment. The impact of this NP has been attracting more and more attention from the scientific communities. In this review, we systematically summarized the interactions, uptake, and transport of Al-NPs in the plant system. Al-NPs can enter plants through different pathways and accumulate in various tissues, leading to alter plant growth and development. Al-NPs also affected root, shoot, and leaf characteristics as well as changing nutrient uptake and distribution and inducing oxidative stress via excess reactive radical generation, thereby impairing plant defense systems. Additionally, Al-NPs altered gene expression, which involved in various signaling pathways and metabolic processes in plants, that further altered plants susceptible or tolerant to stressors. The review also emphasized the effects of Al-NP size, surface charge, concentration, and exposure duration on plant growth and development. In the future, more research should be focused on mechanisms underlying Al-NPs phytotoxicity and potential risk to humans and off-target species.
Collapse
Affiliation(s)
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Zhiyong Zhang
- College of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
12
|
Chandrasekaran R, Krishnan M, Chacko S, Gawade O, Hasan S, Joseph J, George E, Ali N, AlAsmari AF, Patil S, Jiang H. Assessment of anticancer properties of cumin seed ( Cuminum cyminum) against bone cancer. Front Oncol 2023; 13:1322875. [PMID: 38125945 PMCID: PMC10730939 DOI: 10.3389/fonc.2023.1322875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Early-life osteosarcoma is associated with severe morbidity and mortality, particularly affecting young children and adults. The present cancer treatment regimen is exceedingly costly, and medications like ifosfamide, doxorubicin, and cisplatin have unneeded negative effects on the body. With the introduction of hyphenated technology to create medications based on plant molecules, the application of ayurvedic medicine as a new dimension (formulation, active ingredients, and nanoparticles) in the modern period is rapidly growing. The primary source of lead compounds for the development of medications for avariety of ailments is plants and their products. Traditionally, Cuminum cyminum (cumin) has been used as medication to treat a variety of illnesses and conditions. Methods The cumin seed was successfully extracted with solvents Hexane, Chloroform, Methanol, Ethanol and Acetone. Following the solvent extraction, the extract residue was assayed in MG63 cells for their anti-proliferative properties. Results First, we used the [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] (MTT) assay to test the extracted residue's cytotoxicity. The results show that hexane extract Half-maximal inhibitory concentration (IC50 86 µG/mL) effciently inhibits cells by causing programmed cell death. Furthermore, using the Acridine orange/ethidium bromide (AO/EB) staining method, the lactate dehydrogenase assay, and the reactive oxygen species assay using the Dichloro-dihydro-fluorescein diacetate (DCHFDA) staining method, we have demonstrated that the hexane extract causes apoptosis in MG63 cells. Furthermore, flow cytometry research revealed that the hexane extract stops the cell cycle in the S phase. In addition, the hexane extract limits colony formation and the migration potential as shown by the scratch wound healing assay. Furthermore, the extract from cumin seeds exhibits remarkable bactericidal properties against infections that are resistant to drugs. Gas chromatography analysis was used to quantitatively determine the hexane and methanolic extract based on the experimental data. The primary chemical components of the extract are revealed by the study, and these help the malignant cells heal. The present study finds that there is scientific validity in using cumin seeds as a novel method of anticancer therapy after undergoing both intrinsic and extrinsic research.
Collapse
Affiliation(s)
| | - Muthukumar Krishnan
- Department of Petrochemical Technology, Anna University, Tiruchirappalli, India
| | - Sonu Chacko
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Omkar Gawade
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Sheik Hasan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - John Joseph
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| | - Evelin George
- Department of Biochemistry, JSS Academy of Higher Education, Mysuru, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Haoli Jiang
- Department of Orthopedics, the Third People’s Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
13
|
Leimann FV, de Souza LB, de Oliveira BPM, Rossi BF, da Silva PS, Shiraishi CSH, Kaplum V, Abreu RM, Pereira C, Barros L, Peron AP, Ineu RP, Oechsler BF, Sayer C, de Araújo PHH, Gonçalves OH. Evaluation of berberine nanoparticles as a strategy to modulate acetylcholinesterase activity. Food Res Int 2023; 173:113295. [PMID: 37803607 DOI: 10.1016/j.foodres.2023.113295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023]
Abstract
Researchers have concentrated efforts in the search for natural-based reversible inhibitors for cholinesterase enzymes as they may play a key role in the treatment of degenerative diseases. Diverse plant alkaloids can inhibit the action of acetylcholinesterase and, among them, berberine is a promising bioactive. However, berberine has poor water solubility and low bioavailability, which makes it difficult to use in treatment. The solid dispersion technique can improve the water affinity of hydrophobic substances, but berberine solid dispersions have not been extensively studied. Safety testing is also essential to ensure that the berberine-loaded solid dispersions are safe for use. This study investigated the effectiveness of berberine-loaded solid dispersions (SD) as inhibitors of acetylcholinesterase enzyme (AChE). Docking simulation was used to investigate the influence of berberine on AChE, and in vitro assays were conducted to confirm the enzymatic kinetics of AChE in the presence of berberine. Berberine SD also showed improved cytotoxic effects on tumoral cells when dispersed in aqueous media. In vivo assays using Allium cepa were implemented, and no cytotoxicity/genotoxicity was found for the berberine solid dispersion. These results suggest that berberine SD could be a significant step towards safe nanostructures for use in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.
| | - Luma Borges de Souza
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil
| | | | - Bruna Franzon Rossi
- Food and Chemical Engineering Academic Department (DAAEQ), Federal University of Technology - Paraná - UTFPR, Brazil
| | | | - Carlos Seiti Hurtado Shiraishi
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Kaplum
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil
| | - Rui Miguel Abreu
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana Paula Peron
- Biodiversity and Nature Conservation Department, Federal University of Technology - Paraná - UTFPR, Brazil
| | - Rafael Porto Ineu
- Department of Technology and Food Science, Federal University of Santa Maria - UFSM, Brazil
| | - Bruno Francisco Oechsler
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Brazil
| | | | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology - Paraná - UTFPR, Brazil; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.
| |
Collapse
|
14
|
Fernandes C, Jesudoss M N, Nizam A, Krishna SBN, Lakshmaiah VV. Biogenic Synthesis of Zinc Oxide Nanoparticles Mediated by the Extract of Terminalia catappa Fruit Pericarp and Its Multifaceted Applications. ACS OMEGA 2023; 8:39315-39328. [PMID: 37901498 PMCID: PMC10601049 DOI: 10.1021/acsomega.3c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) were biosynthesized by using the pericarp aqueous extract from Terminalia catappa Linn. These NPs were characterized using various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet (UV) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM), and XRD studies of the nanoparticles reported mean size as 12.58 nm nanocrystals with highest purity. Further SEM analysis emphasized the nanoparticles to be spherical in shape. The functional groups responsible for capping and stabilizing the NPs were identified with FTIR studies. DLS studies of the synthesized NPs reported ζ potential as -10.1 mV and exhibited stable colloidal solution. These characterized ZnO-NPs were evaluated for various biological applications such as antibacterial, antifungal, antioxidant, genotoxic, biocompatibility, and larvicidal studies. To explore its multidimensional application in the field of medicine. NPs reported a potential antimicrobial activity at a concentration of 200 μg/mL against bacterial strains in the decreasing order of Streptococcus pyogenes > Streptococcus aureus > Streptococcus typhi > Streptococcus aeruginosa and against the fungi Candida albicans. In vitro studies of RBC hemolysis with varying concentrations of NPs confirm their biocompatibility with IC50 value of 211.4 μg/mL. The synthesized NPs' DPPH free radical scavenging activity was examined to extend their antioxidant applications. The antiproliferation and genetic toxicity were studied with meristematic cells of Allium cepa reported with mitotic index (MI index) of 1.2% at the concentration of 1000 μg/mL. NPs exhibited excellent Larvicidal activity against Culex quinquefasciatus larvae with the highest mortality rate as 98% at 4 mg/L. Our findings elicit the therapeutic potentials of the synthesized zinc oxide NPs.
Collapse
Affiliation(s)
- Cannon
Antony Fernandes
- Department
of Life Sciences. CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Nameeta Jesudoss M
- Department
of Life Sciences. CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Aatika Nizam
- Department
of Chemistry. CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Suresh Babu Naidu Krishna
- Department
of Biomedical and Clinical Technology. Durban
University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
15
|
Wahab S, Salman A, Khan Z, Khan S, Krishnaraj C, Yun SI. Metallic Nanoparticles: A Promising Arsenal against Antimicrobial Resistance-Unraveling Mechanisms and Enhancing Medication Efficacy. Int J Mol Sci 2023; 24:14897. [PMID: 37834344 PMCID: PMC10573543 DOI: 10.3390/ijms241914897] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The misuse of antibiotics and antimycotics accelerates the emergence of antimicrobial resistance, prompting the need for novel strategies to combat this global issue. Metallic nanoparticles have emerged as effective tools for combating various resistant microbes. Numerous studies have highlighted their potential in addressing antibiotic-resistant fungi and bacterial strains. Understanding the mechanisms of action of these nanoparticles, including iron-oxide, gold, zinc oxide, and silver is a central focus of research within the life science community. Various hypotheses have been proposed regarding how nanoparticles exert their effects. Some suggest direct targeting of microbial cell membranes, while others emphasize the release of ions from nanoparticles. The most compelling proposed antimicrobial mechanism of nanoparticles involves oxidative damage caused by nanoparticles-generated reactive oxygen species. This review aims to consolidate knowledge, discuss the properties and mechanisms of action of metallic nanoparticles, and underscore their potential as alternatives to enhance the efficacy of existing medications against infections caused by antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Shahid Wahab
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Alishba Salman
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Zaryab Khan
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Sadia Khan
- Nanobiotechnology Laboratory, Department of Biotechnology University of Malakand, Dir Lower, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (A.S.); (Z.K.); (S.K.)
| | - Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.W.); (C.K.)
- Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
16
|
Ali S, Tyagi A, Bae H. ROS interplay between plant growth and stress biology: Challenges and future perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108032. [PMID: 37757722 DOI: 10.1016/j.plaphy.2023.108032] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
In plants, reactive oxygen species (ROS) have emerged as a multifunctional signaling molecules that modulate diverse stress and growth responses. Earlier studies on ROS in plants primarily focused on its toxicity and ROS-scavenging processes, but recent findings are offering new insights on its role in signal perception and transduction. Further, the interaction of cell wall receptors, calcium channels, HATPase, protein kinases, and hormones with NADPH oxidases (respiratory burst oxidase homologues (RBOHs), provides concrete evidence that ROS regulates major signaling cascades in different cellular compartments related to stress and growth responses. However, at the molecular level there are many knowledge gaps regarding how these players influence ROS signaling and how ROS regulate them during growth and stress events. Furthermore, little is known about how plant sensors or receptors detect ROS under various environmental stresses and induce subsequent signaling cascades. In light of this, we provided an update on the role of ROS signaling in plant growth and stress biology. First, we focused on ROS signaling, its production and regulation by cell wall receptor like kinases. Next, we discussed the interplay between ROS, calcium and hormones, which forms a major signaling trio regulatory network of signal perception and transduction. We also provided an overview on ROS and nitric oxide (NO) crosstalk. Furthermore, we emphasized the function of ROS signaling in biotic, abiotic and mechanical stresses, as well as in plant growth and development. Finally, we conclude by highlighting challenges and future perspectives of ROS signaling in plants that warrants future investigation.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
17
|
Abdul-Rahman Owied O, Muslim Guda MA, Imad Taher H, Ali Abdulhussein MA. Plants anatomically engineered by nanomaterials. BIONATURA 2023; 8:1-11. [DOI: 10.21931/rb/2023.08.02.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Anatomical characteristics are essential in determining the stress that affects plants. In addition, they provided a piece of evidence for environmental pollution. The increasing use of nanomaterials (EnNos) in industries, medicine, agriculture, and all fields. Nanomaterials also have many uses as a new science; they have toxic effects that have not been studied well. Therefore, this research was interested in recording recent studies on (EnNos) and their impact on the anatomical characteristics of plants.
Moreover, the possibility of using anatomical characteristics as evidence of nano contamination (nanotoxicity) in plants comprises a crucial living component of the ecosystem. Studies on the effect of EnNos (carbon) on plant anatomy indicated that excess EnNos content affects the anatomical structure of the plant from the vital structures of the root, stem and leaves. Toxicological effect on xylem and phylum vessels from toxicological studies to date, Toxicological effects on EnNos of various kinds can be toxic if they are not bound to a substrate or freely circulating in living systems. Different types of EnNos, behavior, and plant capacity generate different paths. Moreover, different, or even conflicting, conclusions have been drawn from most studies on the interactions of EnNos with plants. Therefore, this paper comprehensively reviews studies on different types of carbon EnNos and their interactions with different plant species at the anatomical responses.
Keywords: Anatomical characteristics, nanomaterials, nanotoxicity, Fullerene and Carbon Nanotubes
Collapse
Affiliation(s)
| | | | - Hawraa Imad Taher
- Department of Horticulture, Faculty of Agriculture, University of Kufa, Najaf, Iraq
| | | |
Collapse
|
18
|
Al-Momani H, Al Balawi D, Hamed S, Albiss BA, Almasri M, AlGhawrie H, Ibrahim L, Al Balawi H, Al Haj Mahmoud S, Pearson J, Ward C. The impact of biosynthesized ZnO nanoparticles from Olea europaea (Common Olive) on Pseudomonas aeruginosa growth and biofilm formation. Sci Rep 2023; 13:5096. [PMID: 36991258 PMCID: PMC10060419 DOI: 10.1038/s41598-023-32366-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractThere is a limitation in the range of effectual antibiotics due to the Pseudomonas aeruginosa (PA) infection due to its innate antimicrobial resistance. Researchers have therefore been concentrating their efforts to discover advanced and cost effective antibacterial agents among the ever-increasing PA bacterial resistance strains. It has been discovered that various nanoparticles can be employed as antimicrobial agents. Here, we evaluated the antibacterial properties of the Zinc Oxide nanoparticles (ZnO NPs), which was biosynthesized, being examined on six hospital strains of PA alongside a reference strain (ATCC 27853). A chemical approach was applied to biosynthesize the ZnO NPs from Olea europaea was performed, and confirmed by using X-ray diffraction and Scanning Electron Microscopes. The nanoparticles then applied their antibacterial properties to examine them against six clinically isolated PA strains alongside the reference strain. This process tested for the results of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The Growth, biofilm formation and eradication were analyzed. The influence of the differentiating degrees ZnO NPs in regard to Quorom sensing gene expression were further examined. The ZnO NPs exhibited a crystalline size and diameter (Dc) of 40–60 nm and both the MIC and MBC tests revealed positive outcomes of concentrations of 3 and 6 mg/ml for each PA strain, respectively. At sub inhibitory concentration, The ZnO NPs were found to significantly inhibit the growth and biofilm formation of all PA strains and decreases in the biomass and metabolic behavior of PA established biofilms; these decreases varied depending on the dosage. At ZnO NPs concentrations of 900 µg/ml, the expression of majority of quorum sensing genes of all strains were significantly reduced, at ZnO NPs concentrations of 300 µg/ml, few genes were significantly impacted. In conclusion, the treatment of PA and could be other antibiotic resistant bacteria can therefore be approached by using ZnO NPs as it has been uncovered that they withhold advanced antibacterial properties.
Collapse
|
19
|
Anand AS, Jain K, Chauhan A, Prasad DN, Kohli E. Zinc oxide nanoparticles trigger dysfunction of mitochondrial respiratory complexes and repair dynamics in human alveolar cells. Toxicol Ind Health 2023; 39:127-137. [PMID: 36680355 DOI: 10.1177/07482337231152956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Zinc oxide nanoparticles (ZnO NP) are commonly used engineered NPs with extensive usage in consumer products, thus leading to direct exposure to humans. The direct route of exposure is through inhalation. Once inhaled, these particles accumulate in the lungs, increasing the chances of respiratory tract illness through cellular organelle damage. Zinc oxide nanoparticle-treated lung cells are reported to display cytotoxicity, increase DNA damage, and induce oxidative stress. The current study focused on the effects of ZnO NPs on mitochondrial dynamics (fission and fusion) in human lung epithelial cells (A549). The lung cells were exposed to ZnO NPs at 50 and 100 μg/ml concentrations, and their mitochondrial dynamics were assessed to understand the effects of the NPs. Treatment with ZnO NPs reduced the activity of mitochondrial complex I and complex III and altered mitochondrial structural and functional characteristics in a concentration-dependent manner. Zinc oxide nanoparticles exposure showed an increase in small and round-shaped mitochondria. The expression of various fission proteins (Drp1 and Fis1) and fusion proteins (Mfn1, Mfn2, and OPA1) was altered upon exposure to ZnO NPs. Our studies showed dysfunction of the mitochondria induced by ZnO NPs. In fibroblast mitochondrial dynamics, fission symbolizes threshold damage. In this paper, we have shown that the mitochondrial fission phenotype increased upon exposure to ZnO NPs. The paper emphasizes that these particles enter mitochondria, triggering a stress response that results in the removal of mitochondria via fission. It provides relevant data for safety guidelines to ensure the safer use of these particles.
Collapse
Affiliation(s)
- Avnika Singh Anand
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Timarpur, Delhi, India
| | - Khushbu Jain
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Timarpur, Delhi, India
| | - Amitabh Chauhan
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Timarpur, Delhi, India
| | - Dipti N Prasad
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Timarpur, Delhi, India
| | - Ekta Kohli
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Timarpur, Delhi, India
| |
Collapse
|
20
|
Flora RMN, Palani S, Kowsalya P, Chamundeeswari M. Sunlight-driven antibacterial activity of a novel zinc oxide quantum dot and its optimization using Box-Behnken design-A medicament for communicable disease protective wearables. Biotechnol Appl Biochem 2023; 70:221-237. [PMID: 35398918 DOI: 10.1002/bab.2345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/25/2022] [Indexed: 11/06/2022]
Abstract
The current study focuses on microwave-assisted zinc oxide quantum dots synthesis (ZnO-QDs) from zinc oxide bionanocomposite (ZnO-BC) preparation. The novelty lies in the preparation of ZnO-QDs, since the natural elements present in ZnO-BC itself acted as a surface penetration enhancer without using any chemical agent. Under ultraviolet (UV) light ZnO-QDs emitted a blue glow, confirming the fluorescence property. Using Box-Behnken design, the experimental factors of ZnO-QDs were optimized, yielding a positive response of 350 nm absorbance and these results also matched with the UV-visible spectroscopy characterization studies of ZnO-QDs. Using Escherichia coli, the antibacterial activity of ZnO-BC in comparison to ZnO-QDs was determined using the well diffusion method and an inhibition zone ranging from 11 to 23 mm and in the broth assay the OD values were reduced by almost seven and 10 times for ZnO-BC and ZnO-QDs, respectively, when compared to the control (untreated). The antibacterial activity demonstrated that our newly prepared BC and its QDs have superior activity when compared to the standard antibiotics such as ampicillin. This type of nanomaterial can be used as a new bioactive natural material with light-assisted activity for antibacterial coatings in the manufacture of personal protective equipment.
Collapse
Affiliation(s)
| | - Subramani Palani
- Department of Biotechnology, Arunai Engineering College, Tiruvannamalai, Tamil Nadu, India
| | - Palanimuthu Kowsalya
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, Tamil Nadu, India
| | - Munusamy Chamundeeswari
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
Govindappa M, Vishaka A, Akshatha BS, Popli D, Sunayana N, Srinivas C, Pugazhendhi A, Raghavendra VB. An endophytic fungus, Penicillium simplicissimum conjugated with C60 fullerene for its potential antimitotic, anti-inflammatory, anticancer and photodegradation activities. ENVIRONMENTAL TECHNOLOGY 2023; 44:817-831. [PMID: 34559029 DOI: 10.1080/09593330.2021.1985621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In the present study, endophytic fungus, Penicillium simplicissimum isolated from Loranthus micranthus was used to analyze phytochemical studies by qualitative and GC-MS methods. The endophytic fungus P. simplicissimum yielded novel compound penisimplicissin identified through GC-MS studies. Further, P. simplicissimum was conjugated with C60 fullerene nanoparticles (Ps-FNPs) were verified using UV-vis spectra, XRD, FTIR, DLS, EDX and SEM. Ps-FNPs was confirmed using UV-visible spectra with a peak at 260 nm. The IR bands were recorded at 2085, 1428, 1181, 661, 652, 644, 628, and 604 cm-1. The Ps-FNPs treated cells showed a nucleolar shrinkage and cell arrest atprophase, binuclear and multinucleolar cells, a chromosomal bridge and diversion at anaphase was observed, whereas, chromosomal fragment and abnormal distribution at metaphase stage. The Ps-FNPs exhibited a noteworthy anticancer activity on lung cancer cell line H1975 through cytotoxicity. The cytotoxicity was induced by increasing caspase-3, 7, and 9 activities and also showed highest inhibition in xanthine oxidase and COX-II assay proved good anti-inflammatory activity. Ps-FNPs have been extensively studied for photocatalytic activity test against Rhodamine B, Methylene blue and nigrosine showed potential dye degradation in the presence of sunlight proved to be novel photocatalysts. With all the results recorded, Ps-FNPs also have a synergetic effect having on anti-mitotic, anticancer, anti-inflammation potential and photocatalytic degradation of dyes. Hence, the conjugated Ps-FNPs could be one of the potent nano-drug formulations in future. Thus, the present study gives a clear idea of the multifaceted therapeutic and photocatalytic applications.
Collapse
Affiliation(s)
- M Govindappa
- Department of Studies in Botany, Davanagere University, Davanagere, India
| | - A Vishaka
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - B S Akshatha
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - Dimple Popli
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | - N Sunayana
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - C Srinivas
- Department of Biotechnology and Microbiology, Bangalore University, Bengaluru, India
| | | | | |
Collapse
|
22
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
23
|
Primo JDO, Correa JDS, Horsth DFL, Das A, Zając M, Umek P, Wattiez R, Anaissi FJ, Onderwater RCA, Bittencourt C. Antiviral Properties against SARS-CoV-2 of Nanostructured ZnO Obtained by Green Combustion Synthesis and Coated in Waterborne Acrylic Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4345. [PMID: 36500967 PMCID: PMC9740257 DOI: 10.3390/nano12234345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic has increased the need for developing disinfectant surfaces as well as reducing the spread of infections on contaminated surfaces and the contamination risk from the fomite route. The present work reports on the antiviral activity of coatings containing ZnO particles obtained by two simple synthesis routes using Aloe vera (ZnO-aloe) or cassava starch (ZnO-starch) as reaction fuel. After detailed characterization using XRD and NEXAFS, the obtained ZnO particles were dispersed in a proportion of 10% with two different waterborne acrylic coatings (binder and commercial white paint) and brushed on the surface of polycarbonates (PC). The cured ZnO/coatings were characterized by scanning electron microscopes (SEM) and energy-dispersive X-ray spectroscopy (EDS). Wettability tests were performed. The virucidal activity of the ZnO particles dispersed in the waterborne acrylic coating was compared to a reference control sample (PC plates). According to RT-PCR results, the ZnO-aloe/coating displays the highest outcome for antiviral activity against SARS-CoV-2 using the acrylic binder, inactivating >99% of the virus after 24 h of contact relative to reference control.
Collapse
Affiliation(s)
- Julia de O. Primo
- Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85-040-200, Brazil
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Jamille de S. Correa
- Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85-040-200, Brazil
| | - Dienifer F. L. Horsth
- Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85-040-200, Brazil
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Arkaprava Das
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| | - Marcin Zając
- National Synchrotron Radiation Centre Solaris, Jagiellonian University, 30-392 Kraków, Poland
| | - Polona Umek
- Solid State Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, University of Mons, 7000 Mons, Belgium
| | - Fauze J. Anaissi
- Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava 85-040-200, Brazil
| | | | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
24
|
Biocompatibility and Connectivity of Semiconductor Nanostructures for Cardiac Tissue Engineering Applications. Bioengineering (Basel) 2022; 9:bioengineering9110621. [DOI: 10.3390/bioengineering9110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- or microdevices, enabling simultaneous, long-term, multisite, cellular recording and stimulation from many excitable cells, are expected to make a strategic turn in basic and applied cardiology (particularly tissue engineering) and neuroscience. We propose an innovative approach aiming to elicit bioelectrical information from the cell membrane using an integrated circuit (IC) bearing a coating of nanowires on the chip surface. Nanowires grow directly on the backend of the ICs, thus allowing on-site amplification of bioelectric signals with uniform and controlled morphology and growth of the NWs on templates. To implement this technology, we evaluated the biocompatibility of silicon and zinc oxide nanowires (NWs), used as a seeding substrate for cells in culture, on two different primary cell lines. Human cardiac stromal cells were used to evaluate the effects of ZnO NWs of different lengths on cell behavior, morphology and growth, while BV-2 microglial-like cells and GH4-C1 neuroendocrine-like cell lines were used to evaluate cell membrane–NW interaction and contact when cultured on Si NWs. As the optimization of the contact between integrated microelectronics circuits and cellular membranes represents a long-standing issue, our technological approach may lay the basis for a new era of devices exploiting the microelectronics’ sensitivity and “smartness” to both improve investigation of biological systems and to develop suitable NW-based systems available for tissue engineering and regenerative medicine.
Collapse
|
25
|
Sivaram AK, Logeshwaran P, Abinandan S, Mukunthan K, Megharaj M. Cyto-genotoxicity evaluation of pyroligneous acid using Allium cepa assay. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:852-857. [PMID: 36093751 DOI: 10.1080/10934529.2022.2119741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Pyroligneous acid (PA) is a highly oxygenated organic condensate obtained by cooling the gases generated from the pyrolysis process. PA has been used in agriculture for several years with multiple beneficial effects, including plant health and yields, pest resilience, and seed germination. It is generally applied to agricultural soils in the dilution of 1:1000 to 1:100, corresponding to 0.1-1% PA concentration. In this study, the cyto-genotoxic potential of PA to Allium cepa meristematic root-tips (where all cells undergo repeated division and form primary root tissues) was examined. Exposure to PA concentrations of 0.1% and above showed a reduction in the mitotic index percentage, and at 5%, a complete arrest in the cell division was recorded. However, chromosomal aberrations at 0.5, 1, and 3% PA were reversible types such as bridges, vagrants, laggards, and multipolar anaphase, with a maximum of only 5.8% chromosomal aberration observed at 3% PA. Comet assay (single-cell gel electrophoresis) for genotoxicity assessment determined using PA exposed A. cepa root tips showed that it was not genotoxic. The absence of cyto-genotoxicity in A. cepa, even at concentrations far above what would be typically encountered in agricultural applications, strongly suggests that PA is unlikely to cause adverse effects on crops and ultimately on the biota and human health.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, Australia
| | | | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
26
|
Ahmed B, Rizvi A, Syed A, Rajput VD, Elgorban AM, Al-Rejaie SS, Minkina T, Khan MS, Lee J. Understanding the phytotoxic impact of Al 3+, nano-size, and bulk Al 2O 3 on growth and physiology of maize (Zea mays L.) in aqueous and soil media. CHEMOSPHERE 2022; 300:134555. [PMID: 35405193 DOI: 10.1016/j.chemosphere.2022.134555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/10/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The release and accumulation of metal-oxide nanoparticles in soils have threatened terrestrial plants. However, limited knowledge is available on the accumulation of nano-Al2O3 (22 nm), bulk-Al2O3 (167 nm), and Al3+ by maize plants and the subsequent impact on its physiology and growth in agar (0.7% w/v), hydroponic (1X), and soil. Maize plants were cultivated with 0.05-2 mg g-1 or ml-1 of three Al types and their biological attributes, oxidative status, Al bioaccumulation, and translocation were measured. The ICP-MS results revealed a dose-dependent increase (P ≤ 0.05 or ≤0.01) in Al content in maize tissues following nano-Al2O3 and Al3+ exposure, however, plants exposed to bulk-Al2O3 showed no significant uptake of Al. Atomic mapping by EDX during SEM analysis and TEM revealed varied distributions of nano-Al2O3 from roots to aerial parts and intracellular transportation. Al deposition in tissues followed the order: Al3+ > nano-Al2O3 > bulk-Al2O3 and therefore, a similar trend of toxicity was observed for seed germination, the emergence of plant organs, length, biomass accumulation, total chlorophyll, phosphorus content, and total soluble protein. Oxidative stress was profoundly induced dose-dependently and was highest at 2 mg ml-1 or g-1 of Al3+ and nano-Al2O3 when superoxide radical formation, proline induction, activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (GPX), and glutathione reductase (GR) and membrane lipid peroxidation were measured. Aluminum toxicity was found higher in hydroponically grown maize compared to soil-grown maize. Forty days exposure in soil showed greater inhibition of maize growth compared to 20 days exposure. This study is significant in understanding the maize response to different Al types in soil and soil-free media.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Asfa Rizvi
- Department of Botany, Jamia Hamdard University, New Delhi, 110062, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, P.O. Box 55760, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
27
|
Nile SH, Thiruvengadam M, Wang Y, Samynathan R, Shariati MA, Rebezov M, Nile A, Sun M, Venkidasamy B, Xiao J, Kai G. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. J Nanobiotechnology 2022; 20:254. [PMID: 35659295 PMCID: PMC9164476 DOI: 10.1186/s12951-022-01423-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano-priming is an innovative seed priming technology that helps to improve seed germination, seed growth, and yield by providing resistance to various stresses in plants. Nano-priming is a considerably more effective method compared to all other seed priming methods. The salient features of nanoparticles (NPs) in seed priming are to develop electron exchange and enhanced surface reaction capabilities associated with various components of plant cells and tissues. Nano-priming induces the formation of nanopores in shoot and helps in the uptake of water absorption, activates reactive oxygen species (ROS)/antioxidant mechanisms in seeds, and forms hydroxyl radicals to loosen the walls of the cells and acts as an inducer for rapid hydrolysis of starch. It also induces the expression of aquaporin genes that are involved in the intake of water and also mediates H2O2, or ROS, dispersed over biological membranes. Nano-priming induces starch degradation via the stimulation of amylase, which results in the stimulation of seed germination. Nano-priming induces a mild ROS that acts as a primary signaling cue for various signaling cascade events that participate in secondary metabolite production and stress tolerance. This review provides details on the possible mechanisms by which nano-priming induces breaking seed dormancy, promotion of seed germination, and their impact on primary and secondary metabolite production. In addition, the use of nano-based fertilizer and pesticides as effective materials in nano-priming and plant growth development were also discussed, considering their recent status and future perspectives.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ramkumar Samynathan
- R&D Division, Alchem Diagnostics, No. 1/1, Gokhale Street, Ram Nagar, Coimbatore, 641009, Tamil Nadu, India
| | - Mohammad Ali Shariati
- Scientific Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow, 109004, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., Moscow, 109316, Russian Federation
| | - Arti Nile
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Meihong Sun
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, 641062, Tamil Nadu, India.
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain.
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People's Republic of China.
| |
Collapse
|
28
|
Ahmad A, W Hassan S, Banat F. An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered 2022; 13:9521-9547. [PMID: 35387561 PMCID: PMC9161971 DOI: 10.1080/21655979.2022.2061148] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sustainable management of natural resources is critical to food security. The shrimp feed and fishery sector is expanding rapidly, necessitating the development of alternative sustainable components. Several factors necessitate the exploration of a new source of environmentally friendly and nutrient-rich fish feed ingredients. Microalgal biomass has the potential to support the growth of fish and shrimp aquaculture for global food security in the bio-economy. Algal biorefineries must valorize the whole crop to develop a viable microalgae-based economy. Microalgae have the potential to replace fish meal and fish oil in aquaculture and ensure sustainability standards. Microalgae biomasses provide essential amino acids, valuable triglycerides such as lipids, vitamins, and pigments, making them suitable as nutritional supplements in livestock feed formulations. Fish and microalgae have similar nutritional profiles, and digestibility is a critical aspect of the aquafeed formulation. A highly digestible feed reduces production costs, feed waste, and the risk of eutrophication. Due to low input costs, low carbon footprint, wastewater treatment benefits, and carbon credits from industrial CO2 conversion, microalgae-based fish and shrimp feeds have the potential to provide significant economic benefits. However, several challenges must be addressed before microalgal biomass and bioproducts may be used as fish feeds, including heavy metal bioaccumulation, poor algal biomass digestion, and antinutrient effects. Knowledge of biochemical composition is limited and diverse, and information on nutritional value is scattered or contradictory. This review article presents alternative approaches that could be used in aquaculture to make microalgal biomass a viable alternative to fish meal.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hassan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
29
|
Murali M, Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Alomary MN, Alshamrani M, Salawi A, Almoshari Y, Ansari MA, Amruthesh KN. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152249. [PMID: 34896497 DOI: 10.1016/j.scitotenv.2021.152249] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 05/27/2023]
Abstract
The main focus of this review is to discuss the current advancement in nano-metallic caused phytotoxicity on living organisms and current challenges in crops. Nanostructured materials provide new tools in agriculture to boost sustainable food production, but the main concern is that large-scale production and release of nanomaterials (NMs) into the ecosystem is a rising threat to the surrounding environment that is an urgent challenge to be addressed. The usage of NMs directly influences the transport pathways within plants, which directly relates to their stimulatory/ inhibitory effects. Because of the unregulated nanoparticles (NMs) exposure to soil, they are adsorbed at the root surface, followed by uptake and inter/intracellular mobility within the plant tissue, while the aerial exposure is taken up by foliage, mostly through cuticles, hydathodes, stigma, stomata, and trichomes, but the actual mode of NMs absorption into plants is still unclear. NMs-plant interactions may have stimulatory or inhibitory effects throughout their life cycle depending on their composition, size, concentration, and plant species. Although many publications on NMs interactions with plants have been reported, the knowledge on their uptake, translocation, and bioaccumulation is still a question to be addressed by the scientific community. One of the critical aspects that must be discovered and understood is detecting NMs in soil and the uptake mechanism in plants. Therefore, the nanopollution in plants has yet to be completely understood regarding its impact on plant health, making it yet another artificial environmental influence of unknown long-term consequences. The present review summarizes the uptake, translocation, and bioaccumulation of NMs in plants, focusing on their inhibitory effects and mechanisms involved within plants.
Collapse
Affiliation(s)
- M Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - H G Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - S Brijesh Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - N Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - K N Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
30
|
Wilson‐Kovacs RS, Fang X, Hagemann MJL, Symons HE, Faul CFJ. Design and Control of Perylene Supramolecular Polymers through Imide Substitutions. Chemistry 2022; 28:e202103443. [PMID: 34595777 PMCID: PMC9298417 DOI: 10.1002/chem.202103443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/13/2022]
Abstract
The number and type of new supramolecular polymer (SMP) systems have increased rapidly in recent years. Some of the key challenges faced for these novel systems include gaining full control over the mode of self-assembly, the creation of novel architectures and exploring functionality. Here, we provide a critical overview of approaches related to perylene-based SMPs and discuss progress to exert control over these potentially important SMPs through chemical modification of the imide substituents. Imide substitutions affect self-assembly behaviour orthogonally to the intrinsic optoelectronic properties of the perylene core, making for a valuable approach to tune SMP properties. Several recent approaches are therefore highlighted, with a focus on controlling 1) morphology, 2) H- or J- aggregation, and 3) mechanism of growth and degree of aggregation using thermodynamic and kinetic control. Areas of potential future exploration and application of these functional SMPs are also explored.
Collapse
Affiliation(s)
| | - Xue Fang
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Henry E. Symons
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Charl F. J. Faul
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
31
|
Azarin K, Usatov A, Minkina T, Plotnikov A, Kasyanova A, Fedorenko A, Duplii N, Vechkanov E, Rajput VD, Mandzhieva S, Alamri S. Effects of ZnO nanoparticles and its bulk form on growth, antioxidant defense system and expression of oxidative stress related genes in Hordeum vulgare L. CHEMOSPHERE 2022; 287:132167. [PMID: 34509010 DOI: 10.1016/j.chemosphere.2021.132167] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 05/21/2023]
Abstract
A comparative analysis of physio-biochemical indices and transcriptional activity of oxidative stress genes in barley (Hordeum vulgare L.) seedlings after 7-days exposure to bulk- and nano-ZnO (300 and 2000 mg/L) was carried out. A dose-dependent reduction in the length and weight of roots and shoots, as well as a significant accumulation of Zn in plant parts, was shown. Alterations in the shape and size of organelles, cytoplasmic vacuolization, and chloroplast and mitochondrial disorganization were also revealed. These processes are particularly pronounced when H. vulgare is exposed to the higher concentrations of nano-ZnO. The study of the antioxidant defense system revealed mainly an increase in the level of reduced glutathione and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST). The increases in activity, by 4-fold and 3-fold, was found for glutathione transferase in the roots when exposed to 2000 mg/L bulk- and nano-ZnO, respectively. The study of transcriptional activity demonstrated that in the roots under the influence of bulk- and nano-ZnO, along with Mn-SOD, Fe-SOD is highly expressed, mainly associated with the protection of chloroplasts. Analysis of the Cat 1 and Cat 2 gene expression showed that the main contribution to the increase in catalase activity in treated H. vulgare is made by the CAT-1 isozyme. Generally, in response to the impact of the studied ZnO forms, the antioxidant defense system is activated in H. vulgare, which effectively prevents the progression of oxidative stress in early stages of plant ontogenesis. Nevertheless, with constant exposure to bulk- and nano-ZnO at high concentrations, such activation leads to a depletion of the plant's energy resources, which negatively affects its growth and development. The results obtained could be useful in predicting the risks associated with the further transfer of nano-ZnO to the environment.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, Rostov-on-Don, 344090, Russia
| | | | | | | | | | | | | | | | | | | | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
32
|
Ahmed B, Rizvi A, Syed A, Jailani A, Elgorban AM, Khan MS, Al-Shwaiman HA, Lee J. Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117854. [PMID: 34333267 DOI: 10.1016/j.envpol.2021.117854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Expanding applications of metal-oxide nanoparticles (NPs) and increased environmental deposition of NPs followed by their interactions with edible crops threaten yields. This study demonstrates the effects of aging (45 days in soil) of four NPs (ZnO, CuO, Al2O3, TiO2; 3.9-34 nm) and their corresponding metal oxide bulk particles (BPs; 144-586 nm) on cucumbers (Cucumis sativus L.) cultivated in sandy-clay-loam field soil and compares these with the phytotoxic effects of readily soluble metal salts (Zn2+, Cu2+, and Al3+). Data revealed the cell-to-cell translocations of NPs, their attachments to outer and inner cell surfaces, nuclear membranes, and vacuoles, and their upward movements to aerial parts. Metal bioaccumulations in cucumbers were found in the order: (i) ZnO-NPs > ZnO-BPs > Zn2+, (ii) CuO-NPs > CuO-BPs > Cu2+, (iii) Al3+> Al2O3-NPs > Al2O3-BPs and (iv) TiO2-NPs > TiO2-BPs. Aging of NPs in soil for 45 days significantly enhanced metal uptake (P ≤ 0.05), for instance aged ZnO-NPs at 1 g kg-1 increased the uptake by 20.7 % over non-aged ZnO-NPs. Metal uptakes inhibited root (RDW) and shoot (SDW) dry weight accumulations. For Cu species, maximum negative impact (%) was exhibited by Cu2+ (RDW:SDW = 94:65) followed by CuO-NPs (RDW:SDW = 78:34) and CuO-BPs (RDW:SDW = 27:22). Aging of NPs/BPs at 1-4 g kg-1 further enhanced the toxic impact of tested materials on biomass accumulations and chlorophyll formation. NPs also induced membrane damage of root tissues and enhanced levels of antioxidant enzymes. The results of this study suggest that care is required when aged metal-oxide NPs of both essential (Zn and Cu) and non-essential (Al and Ti) metals interact with cucumber plants, especially, when they are used for agricultural purposes.
Collapse
Affiliation(s)
- Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Asfa Rizvi
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Afreen Jailani
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, 202002, India
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
33
|
Bozzuto G, D'Avenio G, Condello M, Sennato S, Battaglione E, Familiari G, Molinari A, Grigioni M. Label-free cell based impedance measurements of ZnO nanoparticles-human lung cell interaction: a comparison with MTT, NR, Trypan blue and cloning efficiency assays. J Nanobiotechnology 2021; 19:306. [PMID: 34620157 PMCID: PMC8499537 DOI: 10.1186/s12951-021-01033-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background There is a huge body of literature data on ZnOnanoparticles (ZnO NPs) toxicity. However, the reported results are seen to be increasingly discrepant, and deep comprehension of the ZnO NPs behaviour in relation to the different experimental conditions is still lacking. A recent literature overview emphasizes the screening of the ZnO NPs toxicity with more than one assay, checking the experimental reproducibility also versus time, which is a key factor for the robustness of the results. In this paper we compared high-throughput real-time measurements through Electric Cell-substrate Impedance-Sensing (ECIS®) with endpoint measurements of multiple independent assays. Results ECIS-measurements were compared with traditional cytotoxicity tests such as MTT, Neutral red, Trypan blue, and cloning efficiency assays. ECIS could follow the cell behavior continuously and noninvasively for days, so that certain long-term characteristics of cell proliferation under treatment with ZnO NPs were accessible. This was particularly important in the case of pro-mitogenic activity exerted by low-dose ZnO NPs, an effect not revealed by endpoint independent assays. This result opens new worrisome questions about the potential mitogenic activity exerted by ZnO NPs, or more generally by NPs, on transformed cells. Of importance, impedance curve trends (morphology) allowed to discriminate between different cell death mechanisms (apoptosis vs autophagy) in the absence of specific reagents, as confirmed by cell structural and functional studies by high-resolution microscopy. This could be advantageous in terms of costs and time spent. ZnO NPs-exposed A549 cells showed an unusual pattern of actin and tubulin distribution which might trigger mitotic aberrations leading to genomic instability. Conclusions ZnO NPs toxicity can be determined not only by the intrinsic NPs characteristics, but also by the external conditions like the experimental setting, and this could account for discrepant data from different assays. ECIS has the potential to recapitulate the needs required in the evaluation of nanomaterials by contributing to the reliability of cytotoxicity tests. Moreover, it can overcome some false results and discrepancies in the results obtained by endpoint measurements. Finally, we strongly recommend the comparison of cytotoxicity tests (ECIS, MTT, Trypan Blue, Cloning efficiency) with the ultrastructural cell pathology studies. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01033-w.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giuseppe D'Avenio
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Condello
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Simona Sennato
- CNR-ISC Sede Sapienza and Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Ezio Battaglione
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Agnese Molinari
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Mauro Grigioni
- National Centre for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
34
|
El-Saber MM, Mahdi AA, Hassan AH, Farroh KY, Osman A. Effects of magnetite nanoparticles on physiological processes to alleviate salinity induced oxidative damage in wheat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5550-5562. [PMID: 33709391 DOI: 10.1002/jsfa.11206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND One of the major abiotic stressors that have a serious effect on plant growth and productivity worldwide is the salinity of soil or irrigation water. The effect of foliar application of magnetite nanoparticles (size = 22.05 nm) at different concentrations (0, 0.25, 0.5, and 1.0 ppm) was investigated to improve salinity tolerance in two wheat cultivars, namely, Misr1 (Tolerant) and Gimmeza11 (Sensitive). Moreover, toxicological investigations of magnetite oxide nanoparticle in Wistar albino rats were estimated. RESULTS The magnetite nanoparticles positively affected growth, chlorophyll, and enzymatic antioxidants such as superoxide dismutase (SOD), stimulating reduced glutathione and improving the aggregation of several polypeptide chains that may be linked to the tolerance of saline stress. In contrast, magnetite nanoparticles reduced malondialdehyde (MDA). Inverse sequence-tagged repeat (ISTR) assay of DNA molecular marker showed the change in band numbers with the highest polymorphic bands with 90% polymorphism at primer F3, B5 and 20 positive bands in Gimmeza11 with 0.5 ppm magnetite nanoparticles. In the median lethal dose (LD50 ) study, no rats died after the oral administration of magnetite nanoparticle at different doses. Therefore, the iron oxide nanoparticle was nontoxic when administered orally by gavage. CONCLUSION Magnetite nanoparticles partially helped to alleviate the effects of salt stress by activating growth, chlorophyll content, SOD, glutathione, and soluble proteins in two wheat cultivars (Misr1 and Gimmeza11) and decreasing MDA content. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mahmoud M El-Saber
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Asmaa A Mahdi
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Ahmed H Hassan
- Genetics Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center, Giza, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
35
|
Chirality and Supramolecular Copolymerizations – The Elusive Role of Subtle Solvation Effects. Isr J Chem 2021. [DOI: 10.1002/ijch.202100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Mansouri H, Soltani Nezhad F. Changes in growth and biochemical parameters in Dunaliella salina (Dunaliellaceae) in response to auxin and gibberellin under colchicine-induced polyploidy. JOURNAL OF PHYCOLOGY 2021; 57:1284-1294. [PMID: 33817802 DOI: 10.1111/jpy.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
We reported the significant effect of auxin and gibberellin on mixoploid cultures created by colchicine in Dunaliella salina. Polyploidy induction increased growth and the amount of all biochemical parameters measured in this work including chlorophyll, carotenoid, starch, glycerol, sugar, and protein. Treatment with colchicine 0.1%, which resulted in 58.26% of polyploid cells, had a better effect on increasing the amount of analyzed parameters. Auxin increased the amount of all measured parameters except protein. Low concentrations of auxin (1 and 10 µM) caused an increase in growth and the amount of chlorophyll, carotenoid, sugar, starch, glycerol, and protein in the cells treated with colchicine. Gibberellin significantly increased the amount of the mentioned parameters in a concentration-dependent manner. In cultures treated with colchicine, additive effects of gibberellin were observed in glycerol, protein, starch, and sugar content. Our results showed that the use of phytohormones such as auxin and gibberellin can be a good way to increase the biochemical value of algal polyploid cell biomass.
Collapse
Affiliation(s)
- Hakimeh Mansouri
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fatemeh Soltani Nezhad
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
37
|
Ikram M, Wakeel M, Hassan J, Haider A, Naz S, Ul-Hamid A, Haider J, Ali S, Goumri-Said S, Kanoun MB. Impact of Bi Doping into Boron Nitride Nanosheets on Electronic and Optical Properties Using Theoretical Calculations and Experiments. NANOSCALE RESEARCH LETTERS 2021; 16:82. [PMID: 33978872 PMCID: PMC8116421 DOI: 10.1186/s11671-021-03542-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/03/2021] [Indexed: 05/16/2023]
Abstract
In the present work, boron nitride (BN) nanosheets were prepared through bulk BN liquid phase exfoliation while various wt. ratios (2.5, 5, 7.5 and 10) of bismuth (Bi) were incorporated as dopant using hydrothermal technique. Our findings exhibit that the optical investigation showed absorption spectra in near UV region. Density functional theory calculations indicate that Bi doping has led to various modifications in the electronic structures of BN nanosheet by inducing new localized gap states around the Fermi level. It was found that bandgap energy decrease with the increase of Bi dopant concentrations. Therefore, in analysis of the calculated absorption spectra, a redshift has been observed in the absorption edges, which is consistent with the experimental observation. Additionally, host and Bi-doped BN nanosheets were assessed for their catalytic and antibacterial potential. Catalytic activity of doped free and doped BN nanosheets was evaluated by assessing their performance in dye reduction/degradation process. Bactericidal activity of Bi-doped BN nanosheets resulted in enhanced efficiency measured at 0-33.8% and 43.4-60% against S. aureus and 0-38.8% and 50.5-85.8% against E. coli, respectively. Furthermore, In silico molecular docking predictions were in good agreement with in-vitro bactericidal activity. Bi-doped BN nanosheets showed good binding score against DHFR of E. coli (- 11.971 kcal/mol) and S. aureus (- 8.526 kcal/mol) while binding score for DNA gyrase from E. coli (- 6.782 kcal/mol) and S. aureus (- 7.819 kcal/mol) suggested these selected enzymes as possible target.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan.
| | - Muhammad Wakeel
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Jahanzeb Hassan
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Ali Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences Lahore, Lahore, 54000, Punjab, Pakistan
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Mohammed Benali Kanoun
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia.
| |
Collapse
|
38
|
VDAC1 as a target in cisplatin anti-tumor activity through promoting mitochondria fusion. Biochem Biophys Res Commun 2021; 560:52-58. [PMID: 33971568 DOI: 10.1016/j.bbrc.2021.04.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/25/2021] [Indexed: 11/24/2022]
Abstract
Cisplatin is one of the most effective anti-cancer drugs, but its efficacy is limited by the development of resistance. Previous studies have shown that mitochondria play critical roles in cisplatin cytotoxicity, however, the exact mechanism of mitochondria involved in cisplatin sensitivity has not been clarified. In this study, cisplatin triggered mitochondrial oxidative stress and the decrease of mitochondria membrane potential in human cervical cancer cells. Then we screened a series of mitochondrial relevant inhibitors, including mitochondrial mPTP inhibitors DIDS and CsA, and mitochondrial respiratory complex inhibitors Rot and TTFA. Among these, only DIDS, as the inhibitor of mitochondrial outer membrane protein VDAC1, showed strong antagonism against cisplatin toxicity. DIDS mitigated cisplatin-induced MFN1-dependent mitochondrial fusion, mitochondrial dysfunction and oxidative damage. These findings demonstrated that VDAC1 may serve as a potential therapeutic target in the increase sensitivity of cisplatin, which provides an attractive pharmacological therapy to improve the effectiveness of chemotherapy.
Collapse
|
39
|
Sivaram AK, Logeshwaran P, Surapaneni A, Shah K, Crosbie N, Rogers Z, Lee E, Venkatraman K, Kannan K, Naidu R, Megharaj M. Evaluation of Cyto-genotoxicity of Perfluorooctane Sulfonate (PFOS) to Allium cepa. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:792-798. [PMID: 33074584 DOI: 10.1002/etc.4905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/08/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have emerged as contaminants of global concern. Among several PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are persistent and bioaccumulative compounds. We investigated the cyto-genotoxic potential of PFOS to Allium cepa root meristem cells. The A. cepa root tips were exposed to 6 different concentrations (1-100 mg L-1 ) of PFOS for 48 h. Reduction in mitotic index and chromosomal aberrations was measured as genotoxic endpoints in meristematic root cells. Exposure to PFOS significantly affected cell division by reducing the miotic index at higher concentrations (>10 mg L-1 ). The median effect concentration of PFOS to elicit cytotoxicity based on the mitotic index was 43.2 mg L-1 . Exposure to PFOS significantly increased chromosomal aberrations at concentrations >25 mg L-1 . The common aberrations were micronuclei, vagrant cells, and multipolar anaphase. The alkaline comet assay revealed a genotoxic potential of PFOS with increased tail DNA percentage at concentrations >25 mg L-1 . To our knowledge, this is the first study to report the cyto-genotoxic potential of PFOS in higher plants. Environ Toxicol Chem 2021;40:792-798. © 2020 SETAC.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan New South Wales, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan New South Wales, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, New South Wales, Australia
| | | | - Kalpit Shah
- Chemical & Environmental Engineering Department, School of Engineering, RMIT University, Melbourne, Victoria, Australia
| | | | - Zoe Rogers
- Hunter Water, Newcastle, New South Wales, Australia
| | - Elliot Lee
- Water Corporation, Leederville, Western Australia, Australia
| | | | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan New South Wales, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan New South Wales, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
40
|
Responses of Medicinal and Aromatic Plants to Engineered Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medicinal and aromatic plants have been used by mankind since ancient times. This is primarily due to their healing effects associated with their specific secondary metabolites (some of which are also used as drugs in modern medicine), or their structures, served as a basis for the development of new effective synthetic drugs. One way to increase the production of these secondary metabolites is to use nanoparticles that act as elicitors. However, depending on the specific particle size, composition, concentration, and route of application, nanoparticles may have several other benefits on medicinal and aromatic plants (e.g., increased plant growth, improved photosynthesis, and overall performance). On the other hand, particularly at applications of high concentrations, they are able to damage plants mechanically, adversely affect morphological and biochemical characteristics of plants, and show cytotoxic and genotoxic effects. This paper provides a comprehensive overview of the beneficial and adverse effects of metal-, metalloid-, and carbon-based nanoparticles on the germination, growth, and biochemical characteristics of a wide range of medicinal and aromatic plants, including the corresponding mechanisms of action. The positive impact of nanopriming and application of nanosized fertilizers on medicinal and aromatic plants is emphasized. Special attention is paid to the effects of various nanoparticles on the production of valuable secondary metabolites in these plants cultivated in hydroponic systems, soil, hairy root, or in vitro cultures. The beneficial impact of nanoparticles on the alleviation of abiotic stresses in medicinal and aromatic plants is also discussed.
Collapse
|
41
|
Tarrahi R, Mahjouri S, Khataee A. A review on in vivo and in vitro nanotoxicological studies in plants: A headlight for future targets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111697. [PMID: 33396028 DOI: 10.1016/j.ecoenv.2020.111697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Owing to the unique properties and useful applications in numerous fields, nanomaterials (NMs) received a great attention. The mass production of NMs has raised major concern for the environment. Recently, some altered growth patterns in plants have been reported due to the plant-NMs interactions. However, for NMs safe applications in agriculture and medicine, a comprehensive understanding of bio-nano interactions is crucial. The main goal of this review article is to summarize the results of the toxicological studies that have shown the in vitro and in vivo interactions of NMs with plants. The toxicity mechanisms are briefly discussed in plants as the defense mechanism works to overcome the stress caused by NMs implications. Indeed, the impact of NMs on plants varies significantly with many factors including physicochemical properties of NMs, culture media, and plant species. To investigate the impacts, dose metrics is an important analysis for assaying toxicity and is discussed in the present article to broadly open up different aspects of nanotoxicological investigations. To access reliable quantification and measurement in laboratories, standardized methodologies are crucial for precise dose delivery of NMs to plants during exposure. Altogether, the information is significant to researchers to describe restrictions and future perspectives.
Collapse
Affiliation(s)
- Roshanak Tarrahi
- Health Promotion Research Center, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Sepideh Mahjouri
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation.
| |
Collapse
|
42
|
Begum I, Ameen F, Soomro Z, Shamim S, AlNadhari S, Almansob A, Al-Sabri A, Arif A. Facile fabrication of malonic acid capped silver nanoparticles and their antibacterial activity. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2021; 33:101231. [DOI: 10.1016/j.jksus.2020.101231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
43
|
Haq ANU, Islam A, Younas F, Danish L, Ullah I, Nadhman A, Shah H, Khan I. Impact of zinc oxide nanoflowers on growth dynamics and physio-biochemical response of Triticum aestivum. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2020; 102:568-584. [DOI: 10.1080/02772248.2020.1837133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/10/2020] [Indexed: 10/10/2024]
Affiliation(s)
- Ayesha Naveed Ul Haq
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Arshad Islam
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Farhan Younas
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Lubna Danish
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Ikram Ullah
- Sulaiman Bin Abdullah Aba Alkhail, Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Hamidullah Shah
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, Pakistan
| | - Imran Khan
- Gomal University, Gomal Center for Biochemistry and Biotechnology, Indus Highway, Dera Ismail Khan, Pakistan
| |
Collapse
|
44
|
Gomes MP, Moreira Brito JC, Cristina Rocha D, Navarro-Silva MA, Juneau P. Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111025. [PMID: 32888593 DOI: 10.1016/j.ecoenv.2020.111025] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We investigated individual and combined effects of environmentally representative concentrations of amoxicillin (AMX; 2 μg l-1), enrofloxacin (ENR; 2 μg l-1), and oxytetracycline (OXY; 1 μg l-1) on the aquatic macrophyte Lemna minor. While the concentrations of AMX and ENR tested were not toxic, OXY decreased plant growth and cell division. OXY induced hydrogen peroxide (H2O2) accumulation and related oxidative stress through its interference with the activities of mitochondria electron transport chain enzymes, although those deleterious effects could be ameliorated by the presence of AMX and/or ENR, which prevented the overaccumulation of ROS by increasing catalase enzyme activity. L. minor plants accumulated significant quantities of AMX, ENR and OXY from the media, although competitive uptakes were observed when plants were submitted to binary or tertiary mixtures of those antibiotics. Our results therefore indicate L. minor as a candidate for phytoremediation of service waters contaminated by AMX, ENR, and/or OXY.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil.
| | - Júlio César Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, 30510-010, Belo Horizonte, Minas Gerais, Brazil
| | - Daiane Cristina Rocha
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Mário Antônio Navarro-Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chronomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal, Succ. Centre-Ville, H3C 3P8, Montréal, QC, Canada.
| |
Collapse
|
45
|
Finiuk N, Romanyuk N, Mitina N, Lobachevska O, Zaichenko A, Terek O, Stoika R. Evaluation of Phytotoxicity and Mutagenicity of Novel DMAEMA-Containing Gene Carriers. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720050096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Khan S, Shahid M, Khan MS, Syed A, Bahkali AH, Elgorban AM, Pichtel J. Fungicide-Tolerant Plant Growth-Promoting Rhizobacteria Mitigate Physiological Disruption of White Radish Caused by Fungicides Used in the Field Cultivation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7251. [PMID: 33020389 PMCID: PMC7579310 DOI: 10.3390/ijerph17197251] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Excessive use of fungicides in agriculture may result in substantial accumulation of active residues in soil, which affect crop health and yield. We investigated the response of Raphanus sativus (white radish) to fungicides in soil and potential beneficial interactions of radish plants with fungicide-tolerant plant growth-promoting rhizobacteria (PGPR). The PGPR were isolated from cabbage and mustard rhizospheres. Morphological and biochemical characteristics measured using standard methods, together with analysis of partial 16S rRNA gene sequences, revealed that fungicide-tolerant PGPR, isolates PS3 and AZ2, were closely related to Pseudomonas spp. These PGPR survived in the presence of high fungicide concentrations i.e., up to 2400 μg mL-1 carbendazim (CBZM) and 3200 μg mL-1 hexaconazole (HEXA). Bacterial isolates produced plant growth stimulants even under fungicide stress, though fungicides induced surface morphological distortion and alteration in membrane permeability of these bacteria, which was proved by a set of microscopic observations. Fungicides considerably affected the germination efficiency, growth, and physiological development of R. sativus, but these effects were relieved when inoculated with PGPR isolates. For instance, CBZM at 1500 mg kg-1 decreased whole dry biomass by 71%, whole plant length by 54%, total chlorophyll by 50%, protein content by 61%, and carotenoid production by 29%. After applying isolate AZ2 for white radish grown in CBZM (10 mg kg-1)-amended soil, it could improve plant growth and development with increased whole plant dry weight (10%), entire plant length (13%) and total chlorophyll content (18%). Similarly, isolate PS3 enhanced plant survival by relieving plant stress with declined biomarkers, i.e., proline (12%), malondialdehyde (3%), ascorbate peroxidase (6.5%), catalase (18%), and glutathione reductase (4%). Application of isolates AZ2 and PS3 could be effective for remediation of fungicide-contaminated soil and for improving the cultivation of radish plants while minimizing inputs of fungicides.
Collapse
Affiliation(s)
- Sadaf Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (M.S.K.)
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (M.S.K.)
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (M.S.K.)
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.); (A.M.E.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.); (A.M.E.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.); (A.M.E.)
| | - John Pichtel
- Natural Resources and Environmental Management, Ball State University, Muncie, IN 47306, USA;
| |
Collapse
|
47
|
Li J, Li Y, Tang S, Zhang Y, Zhang J, Li Y, Xiong L. Toxicity, uptake and transport mechanisms of dual-modal polymer dots in penny grass (Hydrocotyle vulgaris L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114877. [PMID: 32531651 DOI: 10.1016/j.envpol.2020.114877] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
The use of polymers such as plastic has become an important part of daily life, and in aqueous environments, these polymers are considered as pollutants. When macropolymers are reduced to the nanoscale, their small particle size and large specific surface area facilitate their uptake by plants, which has a significant impact on aquatic plants. Therefore, it is essential to study the pollution of nanoscale polymers in the aquatic environment. In this work, we prepared nanoscale polymer dots (Pdots) and explored their toxicity, uptake and transport mechanisms in penny grass. From toxicological studies, in the absence of other nutrients, the cell structure, physiological parameters (total soluble protein and chlorophyll) and biochemical parameters (malondialdehyde) do not show significant changes over at least five days. Through in vivo fluorescence and photoacoustic (PA) imaging, the transport location can be visually detected accurately, and the transport rate can be analyzed without destroying the plants. Moreover, through ex vivo fluorescence imaging, we found that different types of Pdots have various uptake and transport mechanisms in stems and blades. It may be due to the differences in ligands, particle sizes, and oil-water partition coefficients of Pdots. By understanding how Pdots interact with plants, a corresponding method can be developed to prevent them from entering plants, thus avoiding the toxicity from accumulation. Therefore, the results of this study also provide the basis for subsequent prevention work.
Collapse
Affiliation(s)
- Jingru Li
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Yao Li
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Shiyi Tang
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Yufan Zhang
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Juxiang Zhang
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Yuqiao Li
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China
| | - Liqin Xiong
- Shanghai Med-X Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai JiaoTong University, Shanghai, PR China.
| |
Collapse
|
48
|
Hadi F, Ghader A, Shakeri-Zadeh A, Asgari H, Farashahi A, Behruzi M, Ghaznavi H, Ardakani AA. Magneto-plasmonic nanoparticle mediated thermo-radiotherapy significantly affects the nonlinear optical properties of treated cancer cells. Photodiagnosis Photodyn Ther 2020; 30:101785. [PMID: 32330612 DOI: 10.1016/j.pdpdt.2020.101785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/16/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
In order to determine the level of cell damage in cancerous cells, current cytogenetic tests have limitations such as time consumption and high cost. The aim of this study was to demonstrate the ability of nonlinear refractive (NLR) index as a predictor of breast cell damage caused by magneto-plasmonic nanoparticle based thermo-radiotherapy treatments. MCF-7 breast cancer cells were subjected individually to the treatment of radiation, radio-frequency (RF) hyperthermia, and radiation + RF hyperthermia. These treatments were repeated in the presence of magneto-plasmonic nanoparticle (Au@IONP). The MTT and nonlinear optical assays were used to evaluate the damage induced by different treatment modalities. The results of MTT were correlated with Z-scan, as the magnitude of nonlinear refraction increased with higher intensity of induced cell damages. In this regard, the lowest cell viability (38 %,) and highest magnitude of NLR index (+28.12) were obtained from combination of radiation (at 4 Gy dose) and hyperthermia treatment in the presence of nanoparticles. The proposed optical index (NLR) indicated high capability and can be used as an auxiliary tool to monitor induced cell damage during different treatment strategies. This technique is fast, noninvasive, does not impose cost, and finally does not waste materials.
Collapse
Affiliation(s)
- Fahimeh Hadi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Alireza Ghader
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Asgari
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Farashahi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masume Behruzi
- Anatomical Sciences Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Habib Ghaznavi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran.
| | - Ali Abbasian Ardakani
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
49
|
Mo F, Li H, Li Y, Cui W, Wang M, Li Z, Chai R, Wang H. Toxicity of Ag + on microstructure, biochemical activities and genic material of Trifolium pratense L. seedlings with special reference to phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110499. [PMID: 32208213 DOI: 10.1016/j.ecoenv.2020.110499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/16/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
The objective of this research was to evaluate Ag+ toxicity in Trifolium pratense L. seedlings subjected to increasing doses of Ag+ by determining photosynthetic pigment and malondialdehyde (MDA) contents, microstructure and hereditary substance alterations, changes in activities of antioxidase-superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) as well as the content of total Ag absorbed in vivo with evaluation of root growth. Doses of approximately 80 mg L-1 Ag+ severely affected photosynthetic efficiency in Trifolium pratense L. seedlings promoted by damages in photosynthetic apparatus evidenced by downward trend in photosynthetic pigment contents and obvious chlorosis. Alterations in enzymatic activity, lipid peroxidation, genic material damage and the presence of Ag+in vivo had impacted on photosynthetic machinery as well. A hormesis effect was observed at 60 mg L-1 Ag+ for the photosynthetic pigments and antioxidase for Trifolium pratense L. seedlings. Tissue changes (i.e., roots, stems and leaves) observed in fluorescence microscope with obvious chlorosis, roots blackening and formation of agglomerated black particles, were related to the lesion promoted by excessive ROS in vivo. Asynchronous change of antioxidase activity corresponded to the alteration in the MDA content, indicating the synchronization in the elimination of ROS. The changes occurred in RAPD profiles of treated samples following Ag+ toxicity containing loss of normal bands, appearance of new bands and variation in band intensity compared to the normal plants with a dose-dependent effect. On average, the roots of Trifolium pratense L. immobilized 92.20% of the total Ag absorbed as a metal exclusion response. Root growth was significantly sensitive to Ag+ stress with obvious hormesis, which corresponded to the changes in Ag uptake, demonstrating the functional alterations in plants. To sum up, we suggest that modulating the genotype of Trifolium pratense L. seedlings to bear higher proportion of pollutants is conducive to contamination site treatment.
Collapse
Affiliation(s)
- Fan Mo
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Weina Cui
- Institute of Applied Ecology, Chinese Academy of Sciences Shenyang Branch, Shenyang, 110819, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China; School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Rui Chai
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Hongxuan Wang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| |
Collapse
|
50
|
Ma J, Feng X, Yang X, Cao Y, Zhao W, Sun L. The leaf extract of crofton weed ( Eupatorium adenophorum) inhibits primary root growth by inducing cell death in maize root border cells. PLANT DIVERSITY 2020; 42:174-180. [PMID: 32695950 PMCID: PMC7361134 DOI: 10.1016/j.pld.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 05/24/2023]
Abstract
The extract of crofton weed (Eupatorium adenophorum) inhibits seed germination and weed growth; however, the physiological mechanisms underlying the effect of crofton weed extract on the modulation of seedling growth and root system development remain largely unclear. In this study, we investigated the effects of the leaf extract of crofton weed (LECW) on primary root (PR) growth in maize seedlings. Treatment with LECW markedly inhibited seed germination and seedling growth in a dose-dependent manner. Physiological analysis indicated that the LECW induced reactive oxygen species (ROS) accumulation in root tips, thereby leading to cell swelling and deformation both in the root cap and elongation zone of root tips, finally leading to cell death in root border cells (RBCs) and PR growth inhibition. The LECW also inhibited pectin methyl esterase (PME) activity, thereby decreasing the RBC number. Taken together, our results indicated that the LECW inhibited PR growth by inducing ROS accumulation and subsequent cell death in RBCs. The present study provides a better understanding of how the LECW modifies root system development and provides insight for evaluating the toxicity of crofton weed extracts in plants.
Collapse
Affiliation(s)
- Jinhu Ma
- College of Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Xinxin Feng
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaohuan Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yongheng Cao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Weifeng Zhao
- Faculty of Tropical Crops, Yunnan Agricultural University, Puer, 665000, China
| | - Liangliang Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|