1
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Uthman A, AL-Rawi N, Saeed MH, Eid B, Al-Rawi NH. Tunable theranostics: innovative strategies in combating oral cancer. PeerJ 2024; 12:e16732. [PMID: 38188167 PMCID: PMC10771769 DOI: 10.7717/peerj.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
OBJECTIVE This study aims to assess and compare the potential of advanced nano/micro delivery systems, including quantum dots, carbon nanotubes, magnetic nanoparticles, dendrimers, and microneedles, as theranostic platforms for oral cancer. Furthermore, we seek to evaluate their respective advantages and disadvantages over the past decade. MATERIALS AND METHODS A comprehensive literature search was performed using Google Scholar and PubMed, with a focus on articles published between 2013 and 2023. Search queries included the specific advanced delivery system as the primary term, followed by oral cancer as the secondary term (e.g., "quantum dots AND oral cancer," etc.). RESULTS The advanced delivery platforms exhibited notable diagnostic and therapeutic advantages when compared to conventional techniques or control groups. These benefits encompassed improved tumor detection and visualization, enhanced precision in targeting tumors with reduced harm to neighboring tissues, and improved drug solubility and distribution, leading to enhanced drug absorption and tumor uptake. CONCLUSION The findings suggest that advanced nano/micro delivery platforms hold promise for addressing numerous challenges associated with chemotherapy. By enabling precise targeting of cancerous cells, these platforms have the potential to mitigate adverse effects on surrounding healthy tissues, thus encouraging the development of innovative diagnostic and therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Asmaa Uthman
- Department of Diagnostic and Surgical Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Noor AL-Rawi
- Department of Pharmaceutics and Pharmaceutical Technology, University of Sharjah, Sharjah, United Arab Emirates
| | - Musab Hamed Saeed
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Ajman University, Centre of Medical and Bio-allied Health Sciences Research,, Ajman, United Arab Emirates
| | - Bassem Eid
- Department of Restorative Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, Ajman, United Arab Emirates
| | - Natheer H. Al-Rawi
- University of Sharjah, Sharjah Institute of Medical Research, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Hirano A, Kameda T, Wada M, Tanaka T, Kataura H. Solubilization of Carbon Nanobelts in Aqueous Solutions: Optical and Colloidal Properties. NANO LETTERS 2023. [PMID: 37987714 DOI: 10.1021/acs.nanolett.3c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Carbon nanobelts (CNBs) correspond to carbon nanotube (CNT) segments and are insoluble in most common aqueous solutions, posing challenges across diverse applications. In this study, [12] CNB, which corresponds to a (6,6) CNT segment, was solubilized by aliphatic surfactant micelles through host-guest complexation, which was confirmed by comprehensive analyses involving spectrophotometry, mass spectrometry, and molecular dynamics simulations. Through this solubilization, zero-Stokes shift emission of the CNB could occur, which could be ascribed to the symmetry-allowed transition. In contrast, CNB was insoluble in non-aliphatic surfactant solutions. The mechanism by which CNB is solubilized using aliphatic surfactants is completely distinct from that of the CNT dispersion mechanism. The present finding provides knowledge of the effectiveness of aliphatic compounds in solubilizing CNBs and their derivatives (carbon nanohoops), which show significant potential for various applications in aqueous systems, including biological applications.
Collapse
Affiliation(s)
- Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo 135-0064, Japan
| | - Momoyo Wada
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
4
|
Li J, Guo Y, Ren P, Zhang Y, Han R, Xiong L. Triglyceride-Rich Lipoprotein-Mediated Polymer Dots for Multimodal Imaging Interscapular Brown Adipose Tissue Capillaries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:28981-28992. [PMID: 37289581 DOI: 10.1021/acsami.3c04525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brown adipose tissues (BATs) have been identified as a promising target of metabolism disorders. [18F]FDG-PET (FDG = fluorodeoxyglucose; PET = positron emission tomography) has been predominantly employed for BAT imaging, but its limitations drive the urgent need for novel functional probes combined with multimodal imaging approaches. It has been reported that polymer dots (Pdots) display rapid BAT imaging without additional cold stimulation. However, the mechanism by which Pdots image BAT remains unclear. Here, we made an intensive study of the imaging mechanism and found that Pdots can bind to triglyceride-rich lipoproteins (TRLs). By virtue of their high affinity to TRLs, Pdots selectively accumulate in capillary endothelial cells (ECs) in interscapular brown adipose tissues (iBATs). Compared to poly(styrene-co-maleic anhydride)cumene terminated (PSMAC)-Pdots with a short half-life and polyethylene glycol (PEG)-Pdots with low lipophilicity, naked-Pdots have good lipophilicity, with a half-life of about 30 min and up to 94% uptake in capillary ECs within 5 min, increasing rapidly after acute cold stimulation. These results suggested that the accumulation changes of Pdots in iBAT can reflect iBAT activity sensitively. Based on this mechanism, we further developed a strategy to detect iBAT activity and quantify the TRL uptake in vivo using multimodal Pdots.
Collapse
Affiliation(s)
- Jingru Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Panting Ren
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ruijun Han
- Department of Ultrasound, Renji Hospital of Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
5
|
Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng Regen Med 2023; 20:411-433. [PMID: 37060487 PMCID: PMC10219911 DOI: 10.1007/s13770-023-00530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 04/16/2023] Open
Abstract
Nanoscale biomaterials have garnered immense interest in the scientific community in the recent decade. This review specifically focuses on the application of three nanomaterials, i.e., graphene and its derivatives (graphene oxide, reduced graphene oxide), carbon nanotubes (CNTs) and nanocellulose (cellulose nanocrystals or CNCs and cellulose nanofibers or CNFs), in regenerating different types of tissues, including skin, cartilage, nerve, muscle and bone. Their excellent inherent (and tunable) physical, chemical, mechanical, electrical, thermal and optical properties make them suitable for a wide range of biomedical applications, including but not limited to diagnostics, therapeutics, biosensing, bioimaging, drug and gene delivery, tissue engineering and regenerative medicine. A state-of-the-art literature review of composite tissue scaffolds fabricated using these nanomaterials is provided, including the unique physicochemical properties and mechanisms that induce cell adhesion, growth, and differentiation into specific tissues. In addition, in vitro and in vivo cytotoxic effects and biodegradation behavior of these nanomaterials are presented. We also discuss challenges and gaps that still exist and need to be addressed in future research before clinical translation of these promising nanomaterials can be realized in a safe, efficacious, and economical manner.
Collapse
Affiliation(s)
- Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Woon Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cody Chivers
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA.
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA.
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
6
|
Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng Regen Med 2023. [PMID: 37060487 DOI: 10.1007/s13770-023-0054*-*] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Nanoscale biomaterials have garnered immense interest in the scientific community in the recent decade. This review specifically focuses on the application of three nanomaterials, i.e., graphene and its derivatives (graphene oxide, reduced graphene oxide), carbon nanotubes (CNTs) and nanocellulose (cellulose nanocrystals or CNCs and cellulose nanofibers or CNFs), in regenerating different types of tissues, including skin, cartilage, nerve, muscle and bone. Their excellent inherent (and tunable) physical, chemical, mechanical, electrical, thermal and optical properties make them suitable for a wide range of biomedical applications, including but not limited to diagnostics, therapeutics, biosensing, bioimaging, drug and gene delivery, tissue engineering and regenerative medicine. A state-of-the-art literature review of composite tissue scaffolds fabricated using these nanomaterials is provided, including the unique physicochemical properties and mechanisms that induce cell adhesion, growth, and differentiation into specific tissues. In addition, in vitro and in vivo cytotoxic effects and biodegradation behavior of these nanomaterials are presented. We also discuss challenges and gaps that still exist and need to be addressed in future research before clinical translation of these promising nanomaterials can be realized in a safe, efficacious, and economical manner.
Collapse
Affiliation(s)
- Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Woon Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cody Chivers
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA.
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA.
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
7
|
Zhu B, Liang SH, Ran C. Imaging Brown Adipose Tissue with TSPO PET Tracers in Preclinical Animal Studies. Methods Mol Biol 2023; 2662:147-156. [PMID: 37076678 DOI: 10.1007/978-1-0716-3167-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Brown adipose tissue (BAT) is closely associated with thermogenesis and related to numerous diseases, including type 2 diabetes, nonalcoholic fatty liver disease (NAFLD), and obesity. Using molecular imaging technologies to monitor BAT could facilitate etiology elucidation, disease diagnosis, and therapeutics development. Translocator protein (TSPO), an 18 kDa protein that mainly locates on the outer mitochondrial membrane, has been proven as a promising biomarker for monitoring BAT mass. Here, we lay out the steps for imaging BAT with TSPO PET tracer [18F]-DPA in mouse studies.
Collapse
Affiliation(s)
- Biyue Zhu
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chongzhao Ran
- Molecular Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Li Y, Lu S, Zhang Y, Li J, Zhang J, Zhang C, Xiong L. Multifunctional Imaging of Vessels, Brown Adipose Tissue, and Bones in the Visible and Second Near-infrared Region Using Dual-Emitting Polymer Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37504-37513. [PMID: 35970519 DOI: 10.1021/acsami.2c10420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dual-emitting polymer dots (dual-Pdots) in the visible and second near-infrared (NIR-II) region can facilitate the high-resolution imaging of the fine structure and improve the signal-to-noise ratio in in vivo imaging. Herein, combining high brightness of Pdots and multi-scale imaging, we synthesized dual-Pdots using a simple nano-coprecipitation method and performed multi-functional imaging of vessels, brown adipose tissue, and bones. Results showed that in vivo blood vessel imaging had a high resolution of up to 5.9 μm and bone imaging had a signal-to-noise ratio of 3.9. Moreover, dual-Pdots can accumulate in the interscapular brown adipose tissue within 2 min with a signal-to-noise ratio of 5.8. In addition, the prepared dual-Pdots can image the lymphatic valves and the frequency of contraction. Our study provides a feasible method of using Pdots as nanoprobes for multi-scale imaging in the fields of metabolic disorders, skeletal system diseases, and circulatory systems.
Collapse
Affiliation(s)
- Yuqiao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Shuting Lu
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Jingru Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Juxiang Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Chunfu Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
9
|
Chan SY, Lee D, Meivita MP, Li L, Tan YS, Bajalovic N, Loke DK. Ultrasensitive Detection of MCF-7 Cells with a Carbon Nanotube-Based Optoelectronic-Pulse Sensor Framework. ACS OMEGA 2022; 7:18459-18470. [PMID: 35694527 PMCID: PMC9178712 DOI: 10.1021/acsomega.2c00842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Biosensors are of vital significance for healthcare by supporting the management of infectious diseases for preventing pandemics and the diagnosis of life-threatening conditions such as cancer. However, the advancement of the field can be limited by low sensing accuracy. Here, we altered the bioelectrical signatures of the cells using carbon nanotubes (CNTs) via structural loosening effects. Using an alternating current (AC) pulse under light irradiation, we developed a photo-assisted AC pulse sensor based on CNTs to differentiate between healthy breast epithelial cells (MCF-10A) and luminal breast cancer cells (MCF-7) within a heterogeneous cell population. We observed a previously undemonstrated increase in current contrast for MCF-7 cells with CNTs compared to MCF-10A cells with CNTs under light exposure. Moreover, we obtained a detection limit of ∼1.5 × 103 cells below a baseline of ∼1 × 104 cells for existing electrical-based sensors for an adherent, heterogeneous cell population. All-atom molecular dynamics (MD) simulations reveal that interactions between the embedded CNT and cancer cell membranes result in a less rigid lipid bilayer structure, which can facilitate CNT translocation for enhancing current. This as-yet unconsidered cancer cell-specific method based on the unique optoelectrical properties of CNTs represents a strategy for unlocking the detection of a small population of cancer cells and provides a promising route for the early diagnosis, monitoring, and staging of cancer.
Collapse
Affiliation(s)
- Sophia
S. Y. Chan
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Denise Lee
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Maria Prisca Meivita
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Lunna Li
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
- Thomas
Young Centre and Department of Chemical Engineering, University College London, LondonWC1E 6BT, U.K.
| | - Yaw Sing Tan
- Bioinformatics
Institute, Agency for Science, Technology
and Research (A*STAR), Singapore138671, Singapore
| | - Natasa Bajalovic
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
| | - Desmond K. Loke
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore487372, Singapore
- Office
of Innovation, Changi General Hospital, Singapore529889, Singapore
| |
Collapse
|
10
|
Ferreira Dantas GDP, Nascimento Martins EMD, Gomides LS, Chequer FMD, Burbano RR, Furtado CA, Santos AP, Tagliati CA. Pyrene-polyethylene glycol-modified multi-walled carbon nanotubes: Genotoxicity in V79-4 fibroblast cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503463. [PMID: 35483786 DOI: 10.1016/j.mrgentox.2022.503463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The genotoxicity of pyrene-polyethylene glycol-modified multi-walled carbon nanotubes (MWCNT-PyPEG), engineered as a nanoplatform for bioapplication, was evaluated. Toxicity was assessed in hamster lung fibroblast cells (V79-4). MTT and Cell Titer Blue methods were used to evaluate cell viability. Genotoxicity was measured by the comet assay and the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, and fluorescence in situ hybridization (FISH) was used to test induction of structural chromosome aberrations (clastogenic activity) and/or numerical chromosome changes (aneuploidogenic activity). Exogenous metabolic activation enzymes were used in the CBMN-Cyt and FISH tests. Only with metabolic activation, the hybrids caused chromosomal damage, by both clastogenic and aneugenic processes.
Collapse
Affiliation(s)
- Graziela de Paula Ferreira Dantas
- ToxLab, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | | | - Lívia Santos Gomides
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Farah Maria Drumond Chequer
- Laboratório de Análises Toxicológicas, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu (UFSJ-CCO), Divinópolis, MG, Brazil
| | - Rommel Rodríguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Clascídia Aparecida Furtado
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Adelina Pinheiro Santos
- Laboratório de Química de Nanoestruturas de Carbono, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG, Brazil
| | - Carlos Alberto Tagliati
- ToxLab, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Ichihashi K, Umezawa M, Ueya Y, Okubo K, Takamoto E, Matsuda T, Kamimura M, Soga K. Effect of the enantiomeric structure of hydrophobic polymers on the encapsulation properties of a second near infrared (NIR-II) fluorescent dye for in vivo deep imaging. RSC Adv 2022; 12:1310-1318. [PMID: 35425212 PMCID: PMC8979197 DOI: 10.1039/d1ra08330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Over-thousand-nanometer (OTN) near-infrared (NIR) fluorophores are useful for biological deep imaging because of the reduced absorption and scattering of OTN-NIR light in biological tissues. IR-1061, an OTN-NIR fluorescent dye, has a hydrophobic and cationic backbone in its molecular structure, and a non-polar counter ion, BF4 -. Because of its hydrophobicity, IR-1061 needs to be encapsulated in a hydrophobic microenvironment, such as a hydrophobic core of polymer micelles, shielded with a hydrophilic shell for bioimaging applications. Previous studies have shown that the affinity of dyes with hydrophobic core polymers is dependent on the polarity of the core polymer, and that this characteristic is important for designing dye-encapsulated micelles to be used in bioimaging. In this study, the dye-polymer affinity was investigated using hydrophobic polymer films with different chiral structures of poly(lactic acid). IR-1061 showed higher affinity for l- and d-lactic acid copolymers (i.e., poly(dl-lactic acid) (PDLLA)) than to poly(l-lactic acid) (PLLA), as IR-1061 shows less dimerization in PDLLA than in PLLA. In contrast, the stability of IR-1061 in PDLLA was less than that in PLLA due to the influence of hydroxyl groups. Choosing hydrophobic core polymers for their robustness and dye affinity is an effective strategy to prepare OTN-NIR fluorescent probes for in vivo deep imaging.
Collapse
Affiliation(s)
- Kotoe Ichihashi
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
| | - Yuichi Ueya
- Tsukuba Research Laboratories, JSR Corporation 25 Miyukigaoka Tsukuba Ibaraki 305-0841 Japan
| | - Kyohei Okubo
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
| | - Eiji Takamoto
- Tsukuba Research Laboratories, JSR Corporation 25 Miyukigaoka Tsukuba Ibaraki 305-0841 Japan
| | - Takashi Matsuda
- Tsukuba Research Laboratories, JSR Corporation 25 Miyukigaoka Tsukuba Ibaraki 305-0841 Japan
| | - Masao Kamimura
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
| |
Collapse
|
12
|
Murjani BO, Kadu PS, Bansod M, Vaidya SS, Yadav MD. Carbon nanotubes in biomedical applications: current status, promises, and challenges. CARBON LETTERS 2022; 32:1207-1226. [PMCID: PMC9252568 DOI: 10.1007/s42823-022-00364-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 06/17/2023]
Abstract
In the past decade, there has been phenomenal progress in the field of nanomaterials, especially in the area of carbon nanotubes (CNTs). In this review, we have elucidated a contemporary synopsis of properties, synthesis, functionalization, toxicity, and several potential biomedical applications of CNTs. Researchers have reported remarkable mechanical, electronic, and physical properties of CNTs which makes their applications so versatile. Functionalization of CNTs has been valuable in modifying their properties, expanding their applications, and reducing their toxicity. In recent years, the use of CNTs in biomedical applications has grown exponentially as they are utilized in the field of drug delivery, tissue engineering, biosensors, bioimaging, and cancer treatment. CNTs can increase the lifespan of drugs in humans and facilitate their delivery directly to the targeted cells; they are also highly efficient biocompatible biosensors and bioimaging agents. CNTs have also shown great results in detecting the SARS COVID-19 virus and in the field of cancer treatment and tissue engineering which is substantially required looking at the present conditions. The concerns about CNTs include cytotoxicity faced in in vivo biomedical applications and its high manufacturing cost are discussed in the review.
Collapse
Affiliation(s)
- Bhushan O. Murjani
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Parikshit S. Kadu
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Manasi Bansod
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Saloni S. Vaidya
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| | - Manishkumar D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Mumbai, 19 India
| |
Collapse
|
13
|
Seetasang S, Xu Y. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. J Mater Chem B 2022; 10:2323-2337. [DOI: 10.1039/d1tb02675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired materials have attracted attention in a wide range of fields. Among these materials, a polymer family containing 2-methacryloyloxyethyl phosphorylcholine (MPC), which has a zwitterionic phosphorylcholine headgroup inspired by the...
Collapse
|
14
|
Yudasaka M, Okamatsu-Ogura Y, Tanaka T, Saeki K, Kataura H. Cold-induced Conversion of Connective Tissue Skeleton in Brown Adipose Tissues. Acta Histochem Cytochem 2021; 54:131-141. [PMID: 34764522 PMCID: PMC8569133 DOI: 10.1267/ahc.21-00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 01/21/2023] Open
Abstract
Thermogenesis via fatty acid-induced uncoupled mitochondrial respiration is the primary function of brown adipose tissue (BAT). In response to changes in ambient temperatures, the weight and specific gravity of BAT change, depending on the quantity of lipid droplets stored in brown adipocytes (BA). Such conditions should result in the reconstruction of connective tissue skeletons, especially of collagen fiber networks, although the mechanisms have not been clarified. This study showed that, within 4 hr of exposing mice to a cold environment, collagen fibers in the extracellular matrix (ECM) of BAT became discontinuous, twisted, emancipated, and curtailed. Surprisingly, the structure of collagen fibers returned to normal after the mice were kept at room temperature for 19 hr, indicating that the alterations in collagen fiber structures are physiological processes association with adaptation to cold environments. These dynamic changes in connective tissue skeletons were not observed in white adipose tissues, suggesting that they are unique to BAT. Interestingly, the vascular permeability of BAT was also augmented by exposure to cold. Collectively, these findings indicate that dynamic changes in ECM collagen fibers provide high flexibility to BAT, enabling the adjustment of tissue structures and the regulation of vascular permeability, resulting in adaptation to changes in ambient temperatures.
Collapse
Affiliation(s)
- Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Kumiko Saeki
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
15
|
Nguyen TL, Takai M, Ishihara K, Oyama K, Fujii S, Yusa SI. Facile preparation of water-soluble multiwalled carbon nanotubes bearing phosphorylcholine groups for heat generation under near-infrared irradiation. Polym J 2021. [DOI: 10.1038/s41428-021-00495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Yang J, Zhang H, Parhat K, Xu H, Li M, Wang X, Ran C. Molecular Imaging of Brown Adipose Tissue Mass. Int J Mol Sci 2021; 22:ijms22179436. [PMID: 34502347 PMCID: PMC8431742 DOI: 10.3390/ijms22179436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Brown adipose tissue (BAT), a uniquely thermogenic tissue that plays an important role in metabolism and energy expenditure, has recently become a revived target in the fight against metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Different from white adipose tissue (WAT), the brown adipocytes have distinctive features including multilocular lipid droplets, a large number of mitochondria, and a high expression of uncoupling protein-1 (UCP-1), as well as abundant capillarity. These histologic characteristics provide an opportunity to differentiate BAT from WAT using imaging modalities, such as PET/CT, SPECT/CT, MRI, NIRF and Ultrasound. However, most of the reported imaging methods were BAT activation dependent, and the imaging signals could be affected by many factors, including environmental temperatures and the states of the sympathetic nervous system. Accurate BAT mass detection methods that are independent of temperature and hormone levels have the capacity to track the development and changes of BAT throughout the lifetime of mammals, and such methods could be very useful for the investigation of potential BAT-related therapies. In this review, we focus on molecular imaging modalities that can detect and quantify BAT mass. In addition, their detection mechanism and limitations will be discussed as well.
Collapse
Affiliation(s)
- Jing Yang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| | - Haili Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Kadirya Parhat
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Hui Xu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Mingshuang Li
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Xiangyu Wang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| |
Collapse
|
17
|
Onyancha RB, Aigbe UO, Ukhurebor KE, Muchiri PW. Facile synthesis and applications of carbon nanotubes in heavy-metal remediation and biomedical fields: A comprehensive review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130462] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Yeniyurt Y, Kilic S, Güner-Yılmaz ÖZ, Bozoglu S, Meran M, Baysak E, Kurkcuoglu O, Hizal G, Karatepe N, Batirel S, Güner FS. Fmoc-PEG Coated Single-Wall Carbon Nanotube Carriers by Non-covalent Functionalization: An Experimental and Molecular Dynamics Study. Front Bioeng Biotechnol 2021; 9:648366. [PMID: 34055757 PMCID: PMC8160473 DOI: 10.3389/fbioe.2021.648366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Due to their structural characteristics at the nanoscale level, single-walled carbon nanotubes (SWNTs), hold great promise for applications in biomedicine such as drug delivery systems. Herein, a novel single-walled carbon nanotube (SWNT)-based drug delivery system was developed by conjugation of various Fmoc-amino acid bearing polyethylene glycol (PEG) chains (Mw = 2,000, 5,000, and 12,000). In the first step, full-atom molecular dynamics simulations (MD) were performed to identify the most suitable Fmoc-amino acid for an effective surface coating of SWNT. Fmoc-glycine, Fmoc-tryptophan, and Fmoc-cysteine were selected to attach to the PEG polymer. Here, Fmoc-cysteine and -tryptophan had better average interaction energies with SWNT with a high number of aromatic groups, while Fmoc-glycine provided a non-aromatic control. In the experimental studies, non-covalent modification of SWNTs was achieved by Fmoc-amino acid-bearing PEG chains. The remarkably high amount of Fmoc-glycine-PEG, Fmoc-tryptophan-PEG, and Fmoc-cysteine-PEG complexes adsorbed onto the SWNT surface, as was assessed via thermogravimetric and UV-vis spectroscopy analyses. Furthermore, Fmoc-cysteine-PEG5000 and Fmoc-cysteine-PEG12000 complexes displayed longer suspension time in deionized water, up to 1 and 5 week, respectively, underlying the ability of these surfactants to effectively disperse SWNTs in an aqueous environment. In vitro cell viability assays on human dermal fibroblast cells also showed the low cytotoxicity of these two samples, even at high concentrations. In conclusion, synthesized nanocarriers have a great potential for drug delivery systems, with high loading capacity, and excellent complex stability in water critical for biocompatibility.
Collapse
Affiliation(s)
- Yesim Yeniyurt
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Sila Kilic
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | | | - Serdar Bozoglu
- Energy Institute, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey
| | - Mehdi Meran
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| | - Elif Baysak
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Gurkan Hizal
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Nilgun Karatepe
- Energy Institute, Renewable Energy Division, Istanbul Technical University, Istanbul, Turkey
| | - Saime Batirel
- Department of Medical Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - F. Seniha Güner
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Istanbul, Turkey
| |
Collapse
|
19
|
Zheng X, Wang J, Rao J. The Chemistry in Surface Functionalization of Nanoparticles for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
Nishio M, Saeki K. The Remaining Mysteries about Brown Adipose Tissues. Cells 2020; 9:cells9112449. [PMID: 33182625 PMCID: PMC7696203 DOI: 10.3390/cells9112449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Brown adipose tissue (BAT), which is a thermogenic fat tissue originally discovered in small hibernating mammals, is believed to exert anti-obesity effects in humans. Although evidence has been accumulating to show the importance of BAT in metabolism regulation, there are a number of unanswered questions. In this review, we show the remaining mysteries about BATs. The distribution of BAT can be visualized by nuclear medicine examinations; however, the precise localization of human BAT is not yet completely understood. For example, studies of 18F-fluorodeoxyglucose PET/CT scans have shown that interscapular BAT (iBAT), the largest BAT in mice, exists only in the neonatal period or in early infancy in humans. However, an old anatomical study illustrated the presence of iBAT in adult humans, suggesting that there is a discrepancy between anatomical findings and imaging data. It is also known that BAT secretes various metabolism-improving factors, which are collectively called as BATokines. With small exceptions, however, their main producers are not BAT per se, raising the possibility that there are still more BATokines to be discovered. Although BAT is conceived as a favorable tissue from the standpoint of obesity prevention, it is also involved in the development of unhealthy conditions such as cancer cachexia. In addition, a correlation between browning of mammary gland and progression of breast cancers was shown in a xenotransplantation model. Therefore, the optimal condition should be carefully determined when BAT is considered as a measure the prevention of obesity and improvement of metabolism. Solving BAT mysteries will open a new door for health promotion via advanced understanding of metabolism regulation system.
Collapse
Affiliation(s)
- Miwako Nishio
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Kumiko Saeki
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Correspondence: ; Tel.: +81-3-3202-7181
| |
Collapse
|
21
|
Kiratipaiboon C, Voronkova M, Ghosh R, Rojanasakul LW, Dinu CZ, Chen YC, Rojanasakul Y. SOX2Mediates Carbon Nanotube-Induced Fibrogenesis and Fibroblast Stem Cell Acquisition. ACS Biomater Sci Eng 2020; 6:5290-5304. [PMID: 33455278 DOI: 10.1021/acsbiomaterials.0c00887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Certain nanosized particles like carbon nanotubes (CNTs) are known to induce pulmonary fibrosis, but the underlying mechanisms are unclear, and efforts to prevent this disease are lacking. Fibroblast-associated stem cells (FSCs) have been suggested as a critical driver of fibrosis induced by CNTs by serving as a renewable source of extracellular matrix-producing cells; however, a detailed understanding of this process remains obscure. Here, we demonstrated that single-walled CNTs induced FSC acquisition and fibrogenic responses in primary human lung fibroblasts. This was indicated by increased expression of stem cell markers (e.g., CD44 and ABCG2) and fibrogenic markers (e.g., collagen and α-SMA) in CNT-exposed cells. These cells also showed increased sphere formation, anoikis resistance, and aldehyde dehydrogenase (ALDH) activities, which are characteristics of stem cells. Mechanistic studies revealed sex-determining region Y-box 2 (SOX2), a self-renewal associated transcription factor, as a key driver of FSC acquisition and fibrogenesis. Upregulation and colocalization of SOX2 and COL1 were found in the fibrotic lung tissues of CNT-exposed mice via oropharyngeal aspiration after 56 days. The knockdown of SOX2 by gene silencing abrogated the fibrogenic and FSC-inducing effects of CNTs. Chromatin immunoprecipitation assays identified SOX2-binding sites on COL1A1 and COL1A2, indicating SOX2 as a transcription factor in collagen synthesis. SOX2 was also found to play a critical role in TGF-β-induced fibrogenesis through its collagen- and FSC-inducing effects. Since many nanomaterials are known to induce TGF-β, our findings that SOX2 regulate FSCs and fibrogenesis may have broad implications on the fibrogenic mechanisms and treatment strategies of various nanomaterial-induced fibrotic disorders.
Collapse
Affiliation(s)
- Chayanin Kiratipaiboon
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Maria Voronkova
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Rajib Ghosh
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Liying W Rojanasakul
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yi Charlie Chen
- College of Health Science, Technology and Mathematics, Alderson Broaddus University, Philippi, West Virginia 26416, United States
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, United States.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
22
|
Nguyen TL, Katayama R, Kojima C, Matsumoto A, Ishihara K, Yusa SI. Singlet oxygen generation by sonication using a water-soluble fullerene (C60) complex: a potential application for sonodynamic therapy. Polym J 2020. [DOI: 10.1038/s41428-020-0390-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Gu J, Wang X, Yang H, Li H, Wang J. Preclinical in vivo imaging for brown adipose tissue. Life Sci 2020; 249:117500. [PMID: 32147430 DOI: 10.1016/j.lfs.2020.117500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/23/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
Abstract
Brown adipose tissue (BAT) has multiple functions in the human body, including the production of heat and increasing energy consumption. However, BAT is also related to many kinds of diseases, such as obesity and metabolic disorders. The progression of such diseases occurs at the cellular level, and thus, imaging techniques could prove greatly beneficial for determining optimal therapeutic regimens. Currently, positron-emission tomography (PET) is considered to be the gold standard for assessing the function of activated BAT. However, PET also has inherent disadvantages, and, thus, recent efforts have been focused on exploring, and potentially developing, new imaging techniques to better observe BAT and evaluate its metabolic function. Researchers have already achieved promising success with computed tomography, magnetic resonance approaches, ultrasound, new tracers for use in PET, and other imaging techniques through in vivo and in vitro animal experiments. Since, these studies have shown that BAT may serve as an effective therapeutic target for treatment of metabolic dysfunction diseases, the development of an efficient in vivo BAT imaging technique that is applicable to humans will prove to be of great clinical value. In this review, classical PET imaging technique is highlighted as well as the current status of preclinical imaging methods developed for BAT examination.
Collapse
Affiliation(s)
- Jiaojiao Gu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shengjing Hospital, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Xinlu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shengjing Hospital, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, China.
| | - Hua Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shengjing Hospital, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - He Li
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shengjing Hospital, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Jie Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shengjing Hospital, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, China
| |
Collapse
|
25
|
Sato K, Konno T. Carbon Nanotube Immobilized Electrode Using Amphiphilic Phospholipid Polymer with Anti‐fouling and Dispersion Property for Electrochemical Analysis. ELECTROANAL 2020. [DOI: 10.1002/elan.201900549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katsuhiko Sato
- Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
26
|
Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. Carbon Nanotubes in Biomedicine. Top Curr Chem (Cham) 2020; 378:15. [PMID: 31938922 DOI: 10.1007/s41061-019-0278-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/31/2019] [Indexed: 01/18/2023]
Abstract
Nowadays, biomaterials have become a crucial element in numerous biomedical, preclinical, and clinical applications. The use of nanoparticles entails a great potential in these fields mainly because of the high ratio of surface atoms that modify the physicochemical properties and increases the chemical reactivity. Among them, carbon nanotubes (CNTs) have emerged as a powerful tool to improve biomedical approaches in the management of numerous diseases. CNTs have an excellent ability to penetrate cell membranes, and the sp2 hybridization of all carbons enables their functionalization with almost every biomolecule or compound, allowing them to target cells and deliver drugs under the appropriate environmental stimuli. Besides, in the new promising field of artificial biomaterial generation, nanotubes are studied as the load in nanocomposite materials, improving their mechanical and electrical properties, or even for direct use as scaffolds in body tissue manufacturing. Nevertheless, despite their beneficial contributions, some major concerns need to be solved to boost the clinical development of CNTs, including poor solubility in water, low biodegradability and dispersivity, and toxicity problems associated with CNTs' interaction with biomolecules in tissues and organs, including the possible effects in the proteome and genome. This review performs a wide literature analysis to present the main and latest advances in the optimal design and characterization of carbon nanotubes with biomedical applications, and their capacities in different areas of preclinical research.
Collapse
Affiliation(s)
- Viviana Negri
- Departamento de Biotecnología y Farmacia, Facultad de Ciencias Biomédicas, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Jesús Pacheco-Torres
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Calle
- Laboratorio de Imagen Médica, Hospital Universitario Gregorio Marañón, c/Dr. Esquerdo 56, 28007, Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, c/Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
27
|
Carbon nanotubes: An effective platform for biomedical electronics. Biosens Bioelectron 2019; 150:111919. [PMID: 31787449 DOI: 10.1016/j.bios.2019.111919] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Cylindrical fullerenes (or carbon nanotubes (CNTs)) have been extensively investigated as potential sensor platforms due to effective and practical manipulation of their physical and chemical properties by functionalization/doping with chemical groups suitable for novel nanocarrier systems. CNTs play a significant role in biomedical applications due to rapid development of synthetic methods, structural integration, surface area-controlled heteroatom doping, and electrical conductivity. This review article comprehensively summarized recent trends in biomedical science and technologies utilizing a promising nanomaterial of CNTs in disease diagnosis and therapeutics, based on their biocompatibility and significance in drug delivery, implants, and bio imaging. Biocompatibility of CNTs is essential for designing effective and practical electronic applications in the biomedical field particularly due to their growing potential in the delivery of anticancer agents. Furthermore, functionalized CNTs have been shown to exhibit advanced electrochemical properties, responsible for functioning of numerous oxidase and dehydrogenase based amperometric biosensors. Finally, faster signal transduction by CNTs allows charge transfer between underlying electrode and redox centres of biomolecules (enzymes).
Collapse
|
28
|
Barui AK, Nethi SK, Haque S, Basuthakur P, Patra CR. Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS APPLIED BIO MATERIALS 2019; 2:5492-5511. [DOI: 10.1021/acsabm.9b00587] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ayan Kumar Barui
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Susheel Kumar Nethi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Papia Basuthakur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
29
|
Alvarez-Primo F, Anil Kumar S, Manciu FS, Joddar B. Fabrication of Surfactant-Dispersed HiPco Single-Walled Carbon Nanotube-Based Alginate Hydrogel Composites as Cellular Products. Int J Mol Sci 2019; 20:ijms20194802. [PMID: 31569637 PMCID: PMC6801781 DOI: 10.3390/ijms20194802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
In this study, we designed, synthesized, and characterized ultrahigh purity single-walled carbon nanotube (SWCNT)-alginate hydrogel composites. Among the parameters of importance in the formation of an alginate-based hydrogel composite with single-walled carbon nanotubes, are their varying degrees of purity, their particulate agglomeration and their dose-dependent correlation to cell viability, all of which have an impact on the resultant composite’s efficiency and effectiveness towards cell-therapy. To promote their homogenous dispersion by preventing agglomeration of the SWCNT, three different surfactants-sodium dodecyl sulfate (SDS-anionic), cetyltrimethylammonium bromide (CTAB-cationic), and Pluronic F108 (nonionic)-were utilized. After mixing of the SWCNT-surfactant with alginate, the mixtures were cross-linked using divalent calcium ions and characterized using Raman spectroscopy. Rheometric analysis showed an increase in complex viscosity, loss, and storage moduli of the SWCNT composite gels in comparison with pure alginate gels. Scanning electron microscopy revealed the presence of a well-distributed porous structure, and all SWCNT-gel composites depicted enhanced electrical conductivity with respect to alginate gels. To characterize their biocompatibility, cardiomyocytes were cultured atop these SWCNT-gels. Results comprehensively implied that Pluronic F108 was most efficient in preventing agglomeration of the SWCNTs in the alginate matrix, leading to a stable scaffold formation without posing any toxicity to the cells.
Collapse
Affiliation(s)
- Fabian Alvarez-Primo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, TX 79902, USA.
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
| | - Shweta Anil Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, TX 79902, USA.
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
| | - Felicia S Manciu
- Department of Physics, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, TX 79902, USA.
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
30
|
Li Y, Wu X, Kim M, Fortner J, Qu H, Wang Y. Fluorescent Ultrashort Nanotubes from Defect-Induced Chemical Cutting. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:4536-4544. [PMID: 32742079 PMCID: PMC7394297 DOI: 10.1021/acs.chemmater.9b01196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrashort single-walled carbon nanotubes (SWCNTs) that fluoresce brightly in the shortwave infrared could open exciting opportunities in high-resolution bioimaging and sensing. However, this material remains largely unexplored due to the synthetic challenge. Here, we describe a high-yield synthesis of fluorescent ultrashort nanotubes based on a fundamentally new understanding of defect-induced chemical etching of SWCNTs. We first implant fluorescent sp3 quantum defects along the nanotube sidewalls and then oxidatively cut the nanotubes into ultrashort pieces using hydrogen peroxide. This simple two-step process leads to the synthesis of fluorescent ultrashort nanotubes with a narrow length distribution (38 ± 18 nm) and a yield as high as 57%. Despite their ultrashort length, the cut SWCNTs fluoresce brightly in the shortwave infrared at wavelengths characteristic of the sp3 defects, which provides a spectral fingerprint allowing us to uncover new insights into this defect-induced cutting process. Quantum chemical computations suggest that this etching reaction occurs selectively at the defect sites where hydroxyl radicals (•OH) attack the surrounding electron-rich carbon atoms. This work reveals fundamental insights into defect chemistry and makes fluorescent ultrashort nanotubes synthetically accessible for both basic and applied studies of this largely unexplored but rich class of synthetic molecular nanostructures.
Collapse
Affiliation(s)
| | | | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
31
|
Nagai Y, Yudasaka M, Kataura H, Fujigaya T. Brighter near-IR emission of single-walled carbon nanotubes modified with a cross-linked polymer coating. Chem Commun (Camb) 2019; 55:6854-6857. [PMID: 31123733 DOI: 10.1039/c9cc02712b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoluminescence (PL) in the near-infrared (NIR) region is an attractive feature of single-walled carbon nanotubes (SWNTs). In this study, we investigated the effect of the chemical structure of the cross-linked polymer coating of polymer-coated SWNTs on the NIR PL emission intensity. We found that brighter NIR emission can be achieved using a more hydrophobic polymer coating.
Collapse
Affiliation(s)
- Yukiko Nagai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | | | | | |
Collapse
|
32
|
Umemura K, Ishibashi Y, Ito M, Homma Y. Quantitative Detection of the Disappearance of the Antioxidant Ability of Catechin by Near-Infrared Absorption and Near-Infrared Photoluminescence Spectra of Single-Walled Carbon Nanotubes. ACS OMEGA 2019; 4:7750-7758. [PMID: 31459864 PMCID: PMC6648150 DOI: 10.1021/acsomega.9b00767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/18/2019] [Indexed: 06/10/2023]
Abstract
We succeeded in quantitatively detecting the disappearance of catechin antioxidant ability as a function of time using near-infrared (NIR) absorbance and NIR photoluminescence (PL) spectra of single-walled carbon nanotubes (SWNTs) wrapped with DNA molecules (DNA-SWNT hybrids). When 15 μg/mL of catechin was added to the oxidized hybrid suspension, the absorbance of SWNTs increased, according to the antioxidant ability of catechin, and the effect was maintained at least for 30 min. When catechin concentrations were less than 0.3 μg/mL, SWNT absorbance gradually decreased, although it increased when catechin is added. The results revealed that disappearance of the catechin effects could be quantitatively detected by NIR absorbance spectra. When NIR PL was employed, the disappearance of PL intensity was also observed in the case of low catechin concentrations. However, time-lapse measurement of the disappearance was difficult because the PL intensity was rapidly quenched. In addition, the optical responses were different due to different chirality of SWNTs. Our results suggested that both NIR absorbance and PL can detect disappearance of catechin antioxidant effects; in particular, slow response of NIR absorbance was effective to detect time dependence of the disappearance of the catechin effects. Contrarily, PL revealed huge and rapid responses in contrast to NIR absorbance. PL might be effective for reversible use of DNA-SWNT hybrids as a nanobiosensor.
Collapse
Affiliation(s)
- Kazuo Umemura
- Department
of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yu Ishibashi
- Department
of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Masahiro Ito
- Department
of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yoshikazu Homma
- Department
of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
33
|
Takeuchi T, Iizumi Y, Yudasaka M, Kizaka-Kondoh S, Okazaki T. Characterization and Biodistribution Analysis of Oxygen-Doped Single-Walled Carbon Nanotubes Used as in Vivo Fluorescence Imaging Probes. Bioconjug Chem 2019; 30:1323-1330. [PMID: 30848886 DOI: 10.1021/acs.bioconjchem.9b00088] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) show strong fluorescence in the 1000-1700 nm second near-infrared (NIR-II) wavelength range and are considered promising candidates for angiographic imaging probes. Oxygen-doped SWCNTs coated with phospholipid-polyethylene glycol (o-SWCNT-PEG) show exceptional potential, as they emit fluorescence at ∼1300 nm through excitation with 980 nm light. Here, with the aim of putting o-SWCNTs to practical use as an angiographic agent in animal experiments, the retention time after intravenous administration in the vasculature of mice and the biodistribution were studied. To provide bio affinity, the o-SWCNTs were coated with phospholipid polyethylene glycol. The intravenously injected o-SWCNT-PEG circulated within the vasculature for 3 h and cleared within 1 day. There was prominent fluorescence and Raman signals from the SWCNTs in the liver and spleen early in the experiment; the signals remained for 1 month. No apparent abnormalities in weight or appearance were observed after 2 months, suggesting low toxicity of o-SWCNT-PEG. These characteristics of o-SWCNT-PEG would make it useful as an angiographic imaging probe in the NIR-II wavelength range.
Collapse
Affiliation(s)
- Tsukasa Takeuchi
- School of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama , Kanagawa 226-8503 Japan.,Shimadzu Corporation , 1-3 Kanda , Nishiki-cho, Chiyoda , Tokyo 101-8448 , Japan
| | | | | | - Shinae Kizaka-Kondoh
- School of Life Science and Technology , Tokyo Institute of Technology , 4259 Nagatsuta-cho , Midori-ku, Yokohama , Kanagawa 226-8503 Japan
| | | |
Collapse
|
34
|
Simon J, Flahaut E, Golzio M. Overview of Carbon Nanotubes for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E624. [PMID: 30791507 PMCID: PMC6416648 DOI: 10.3390/ma12040624] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
The unique combination of mechanical, optical and electrical properties offered by carbon nanotubes has fostered research for their use in many kinds of applications, including the biomedical field. However, due to persisting outstanding questions regarding their potential toxicity when considered as free particles, the research is now focusing on their immobilization on substrates for interface tuning or as biosensors, as load in nanocomposite materials where they improve both mechanical and electrical properties or even for direct use as scaffolds for tissue engineering. After a brief introduction to carbon nanotubes in general and their proposed applications in the biomedical field, this review will focus on nanocomposite materials with hydrogel-based matrices and especially their potential future use for diagnostics, tissue engineering or targeted drug delivery. The toxicity issue will also be briefly described in order to justify the safe(r)-by-design approach offered by carbon nanotubes-based hydrogels.
Collapse
Affiliation(s)
- Juliette Simon
- CIRIMAT, Université Toulouse Paul Sabatier, B.t. CIRIMAT, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse Paul Sabatier, 205, Route de Narbonne, 31077 Toulouse CEDEX 4, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse Paul Sabatier, B.t. CIRIMAT, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse Paul Sabatier, 205, Route de Narbonne, 31077 Toulouse CEDEX 4, France.
| |
Collapse
|
35
|
Yamagami M, Tajima T, Ishimoto K, Miyake H, Michiue H, Takaguchi Y. Physical modification of carbon nanotubes with a dendrimer bearing terminal mercaptoundecahydrododecaborates (Na
2
B
12
H
11
S). HETEROATOM CHEMISTRY 2018. [DOI: 10.1002/hc.21467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Masahiro Yamagami
- Graduate School of Environmental and Life ScienceOkayama University Okayama Japan
| | - Tomoyuki Tajima
- Graduate School of Environmental and Life ScienceOkayama University Okayama Japan
| | - Kango Ishimoto
- Graduate School of Environmental and Life ScienceOkayama University Okayama Japan
| | - Hideaki Miyake
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yamaguchi Japan
| | | | - Yutaka Takaguchi
- Graduate School of Environmental and Life ScienceOkayama University Okayama Japan
| |
Collapse
|
36
|
Swasey SM, Copp SM, Nicholson HC, Gorovits A, Bogdanov P, Gwinn EG. High throughput near infrared screening discovers DNA-templated silver clusters with peak fluorescence beyond 950 nm. NANOSCALE 2018; 10:19701-19705. [PMID: 30350832 DOI: 10.1039/c8nr05781h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We use high throughput near-infrared (NIR) screening technology to discover abundant new DNA-stabilized silver clusters, AgN-DNA, that fluoresce in the NIR. These include the longest wavelength AgN-DNA fluorophores identified to date, with peak emission beyond 950 nm that extends into the NIR II tissue transparency window, and the highest silver content.
Collapse
Affiliation(s)
- Steven M Swasey
- Department of Chemistry and Biochemistry, UCSB, Santa Barbara, CA 93106, USA
| | | | | | | | | | | |
Collapse
|
37
|
Yudasaka M, Yomogida Y, Zhang M, Nakahara M, Kobayashi N, Tanaka T, Okamatsu-Ogura Y, Saeki K, Kataura H. Fasting-dependent Vascular Permeability Enhancement in Brown Adipose Tissues Evidenced by Using Carbon Nanotubes as Fluorescent Probes. Sci Rep 2018; 8:14446. [PMID: 30262832 PMCID: PMC6160465 DOI: 10.1038/s41598-018-32758-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/12/2018] [Indexed: 01/24/2023] Open
Abstract
Brown adipose tissue (BAT), which is composed of thermogenic brown adipocytes (BA) and non-parenchymal components including vasculatures and extracellular matrix, contribute to the maintenance of body temperature. BAT distribution is detected by positron emission tomography-computed tomography (PET/CT) using 18F-fluorodeoxy glucose (18F-FDG) or single-photon-emission computed tomography-computed tomography (SPECT/CT) using [123/125I]-beta-methyl-p-iodophenyl-pentadecanoic acid. Although sympathetic nerve activity and thermogenic capacity of BA is downregulated under fasting conditions in mice, fasting-dependent structural changes and fluid kinetics of BAT remain unknown. Here we show that the fasting induces fine and reversible structural changes in the non-parenchymal region in murine BAT with widened intercellular spaces and deformed collagen bands as revealed by electron microscopy. Interestingly, a newly introduced near infrared fluorescent probe of single-walled carbon nanotubes (CNTs) coated with phospholipid polyethylene glycol (PLPEG) easily demonstrated enhanced vascular permeability in BAT by the fasting. PLPEG-CNTs extravasated and remained in intercellular spaces or further redistributed in parenchymal cells in fasted mice, which is a previously unknown phenomenon. Thus, PLPEG-CNTs provide a powerful tool to trace fluid kinetics in sub-tissue levels.
Collapse
Affiliation(s)
- Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan. .,Graduate School of Science and Technology, Meijo University, Nagoya, 468-85002, Japan.
| | - Yohei Yomogida
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Minfang Zhang
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masako Nakahara
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Norihiko Kobayashi
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yuko Okamatsu-Ogura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kumiko Saeki
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
38
|
Swasey SM, Nicholson HC, Copp SM, Bogdanov P, Gorovits A, Gwinn EG. Adaptation of a visible wavelength fluorescence microplate reader for discovery of near-infrared fluorescent probes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:095111. [PMID: 30278750 DOI: 10.1063/1.5023258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present an inexpensive, generalizable approach for modifying visible wavelength fluorescence microplate readers to detect emission in the near-infrared (NIR) I (650-950 nm) and NIR II (1000-1350 nm) tissue imaging windows. These wavelength ranges are promising for high sensitivity fluorescence-based cell assays and biological imaging, but the inaccessibility of NIR microplate readers is limiting development of the requisite, biocompatible fluorescent probes. Our modifications enable rapid screening of NIR candidate probes, using short pulses of UV light to provide excitation of diverse systems including dye molecules, semiconductor quantum dots, and metal clusters. To confirm the utility of our approach for rapid discovery of new NIR probes, we examine the silver cluster synthesis products formed on 375 candidate DNA strands that were originally designed to produce green-emitting, DNA-stabilized silver clusters. The fast, sensitive system developed here discovered DNA strands that unexpectedly stabilize NIR-emitting silver clusters.
Collapse
Affiliation(s)
- Steven M Swasey
- Department of Chemistry and Biochemistry, UCSB, Santa Barbara, California 93106, USA
| | | | - Stacy M Copp
- Center for Integrated Nanotechnologies, Los Alamos National Laboratories, Los Alamos, New Mexico 87545, USA
| | - Petko Bogdanov
- Department of Computer Science, University at Albany, SUNY, Albany, New York 12222, USA
| | - Alexander Gorovits
- Department of Computer Science, University at Albany, SUNY, Albany, New York 12222, USA
| | | |
Collapse
|
39
|
Guo Y, Li Y, Yang Y, Tang S, Zhang Y, Xiong L. Multiscale Imaging of Brown Adipose Tissue in Living Mice/Rats with Fluorescent Polymer Dots. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20884-20896. [PMID: 29893119 DOI: 10.1021/acsami.8b06094] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Brown adipose tissue (BAT) has been identified as a promising target for the treatment of obesity, diabetes, and relevant metabolism disorders because of the adaptive thermogenesis ability of this tissue. Visualizing BAT may provide an essential tool for pathology study, drug screening, and efficacy evaluation. Owing to limitations of current nuclear and magnetic resonance imaging approaches for BAT detection, fluorescence imaging has advantages in large-scale preclinical research on small animals. Here, fast BAT imaging in mice is conducted based on polymer dots as fluorescent probes. As early as 5 min after the intravenous injection of polymer dots, extensive fluorescence is detected in the interscapular BAT and axillar BAT. In addition, axillar and inguinal white adipose tissues (WAT) are recognized. The real-time in vivo behavior of polymer dots in rodents is monitored using the probe-based confocal laser endomicroscopy imaging, and the preferred accumulation in BAT over WAT is confirmed by histological assays. Moreover, the whole study is conducted without a low temperature or pharmaceutical stimulation. The imaging efficacy is verified at the cellular, histological, and whole-body levels, and the present results indicate that fluorescent polymer dots may be a promising tool for the visualization of BAT in living subjects.
Collapse
Affiliation(s)
- Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yidian Yang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors , Shanghai Normal University , Shanghai 200234 , P. R. China
| | - Shiyi Tang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , P. R. China
| |
Collapse
|
40
|
Iizumi Y, Yudasaka M, Kim J, Sakakita H, Takeuchi T, Okazaki T. Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes. Sci Rep 2018; 8:6272. [PMID: 29674647 PMCID: PMC5908862 DOI: 10.1038/s41598-018-24399-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/03/2018] [Indexed: 12/04/2022] Open
Abstract
Chemical modification of carbon nanotube surface can controllably modulate their optical properties. Here we report a simple and effective synthesis method of oxygen-doped single-walled carbon nanotubes (o-SWCNTs), in which a thin film of SWCNTs is just irradiated under the UV light for a few minutes in air. By using this method, the epoxide-type oxygen-adducts (ep-SWCNTs) were produced in addition to the ether-type oxygen-adducts (eth-SWCNTs). The Treated (6, 5) ep-SWCNTs show a red-shifted luminescence at ~1280 nm, which corresponds to the most transparent regions for bio-materials. Immunoassay, fluorescence vascular angiography and observation of the intestinal contractile activity of mice were demonstrated by using the produced o-SWCNTs as infrared fluorescent labels and imaging agents.
Collapse
Affiliation(s)
- Yoko Iizumi
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Masako Yudasaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Jaeho Kim
- Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, 305-8568, Japan
| | - Hajime Sakakita
- Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, 305-8568, Japan
| | - Tsukasa Takeuchi
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan.,Shimadzu Corporation, 1-3 Kanda Nishiki-cho Chiyoda, Tokyo, 101-8448, Japan
| | - Toshiya Okazaki
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan.
| |
Collapse
|
41
|
Yang J, Yang J, Ran C. Spectral Unmixing Imaging for Differentiating Brown Adipose Tissue Mass and Its Activation. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:6134186. [PMID: 29531505 PMCID: PMC5817366 DOI: 10.1155/2018/6134186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Recent large-scale clinical analysis indicates that brown adipose tissue (BAT) mass levels inversely correlate with body-mass index (BMI), suggesting that BAT is associated with metabolic disorders such as obesity and diabetes. PET imaging with 18F-FDG is the most commonly used method for visualizing BAT. However, this method is not able to differentiate between BAT mass and BAT activation. This task, in fact, presents a tremendous challenge with no currently existing methods to separate BAT mass and BAT activation. Our previous results indicated that BAT could be successfully imaged in mice with near infrared fluorescent (NIRF) curcumin analogues. However, the results from conventional NIRF imaging could not reflect what portion of the NIRF signal from BAT activation contributed to the signal observed. To solve this problem, we used spectral unmixing to separate/unmix NIRF signal from oil droplets in BAT, which represents its mass and NIRF signal from blood, which represents BAT activation. In this report, results from our proof-of-concept investigation demonstrated that spectral unmixing could be used to separate NIRF signal from BAT mass and BAT activation.
Collapse
Affiliation(s)
- Jing Yang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- School of Pharmacy, Soochow University, Suzhou 215006, China
| | - Jian Yang
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Center for Drug Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chongzhao Ran
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
| |
Collapse
|
42
|
Farrera C, Torres Andón F, Feliu N. Carbon Nanotubes as Optical Sensors in Biomedicine. ACS NANO 2017; 11:10637-10643. [PMID: 29087693 DOI: 10.1021/acsnano.7b06701] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have become potential candidates for a wide range of medical applications including sensing, imaging, and drug delivery. Their photophysical properties (i.e., the capacity to emit in the near-infrared), excellent photostability, and fluorescence, which is highly sensitive to the local environment, make SWCNTs promising optical probes in biomedicine. In this Perspective, we discuss the existing strategies for and challenges of using carbon nanotubes for medical diagnosis based on intracellular sensing as well as discuss also their biocompatibility and degradability. Finally, we highlight the potential improvements of this nanotechnology and future directions in the field of carbon nanotubes for biomedical applications.
Collapse
Affiliation(s)
- Consol Farrera
- St. John's Institute of Dermatology, King's College London , London SE1 9RT, United Kingdom
- NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, Guy's Hospital , London SE1 9RT, United Kingdom
| | - Fernando Torres Andón
- Laboratory of Cellular Immunology, IRCCS Humanitas Clinical and Research Institute , 20089 Rozzano-Milano, Italy
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela , 15706 Santiago de Compostela, Spain
| | - Neus Feliu
- Experimental Cancer Medicine, Department of Laboratory Medicine, Karolinska Institutet , 141 86 Stockholm, Sweden
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), University of Hamburg , 20146 Hamburg, Germany
| |
Collapse
|
43
|
Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architectures. Colloids Surf B Biointerfaces 2017; 158:249-256. [DOI: 10.1016/j.colsurfb.2017.06.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/12/2017] [Accepted: 06/23/2017] [Indexed: 01/14/2023]
|
44
|
Ishihara K, Mu M, Konno T. Water-soluble and amphiphilic phospholipid copolymers having 2-methacryloyloxyethyl phosphorylcholine units for the solubilization of bioactive compounds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:844-862. [DOI: 10.1080/09205063.2017.1377023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Mingwei Mu
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Konno
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Kobayashi N, Nakahara M, Oka M, Saeki K. Additional attention to combination antiretroviral therapy-related lipodystrophy. World J Virol 2017; 6:49-52. [PMID: 28868242 PMCID: PMC5561498 DOI: 10.5501/wjv.v6.i3.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/21/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
The occurrence of lipodystrophy in patients taking anti-human immunodeficiency virus (HIV) medications is a serious problem as it is irreversible even after drug withdrawal. Although it was first recognized in patients taking proteinase inhibitors, other types of anti-HIV agents can also cause lipodystrophy. In a recent publication by Jones et al entitled "Highly active antiretroviral therapy dysregulates proliferation and differentiation of human pre-adipocytes" in World Journal of Virology, it was reported that simultaneous treatment of human subcutaneous adipocytes with anti-HIV drugs with different mechanisms of action synergistically exerted anti-adipogenesis effects in vitro, warning us to take utmost care in every case receiving combination antiretroviral therapy (cART). For elucidation of the molecular basis for cART-related lipodystrophy, multi-faceted approaches should be taken, based on a deeper understanding of the development and organization of adipose tissues.
Collapse
|