1
|
Ahasan K, Hu H, Shrotriya P, Kingston TA. Heterogeneous Condensation on Simplified Viral Envelope Protein Structures. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27829-27838. [PMID: 40318198 PMCID: PMC12086846 DOI: 10.1021/acsami.5c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (p/d)] due to protruding glycoproteins and surface wettability [via liquid-solid interaction intensity (f)] on heterogeneous condensation using molecular dynamics simulations. Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of p/d ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to f = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. The results indicate that initial condensation rates on surfaces with intermediate p/d ratios (e.g., 1.2-1.3) are significantly higher due to increased active surface area and droplet cluster formations. The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. The increased peak condensation rates are not observed as p/d increased to and above 1.7, as the exhibited behavior is like condensation on the unstructured surface. An increase in surface hydrophilicity (θ = 15°, f = 3.0) leads to faster nucleation and higher peak condensation rates compared to hydrophobic surfaces (θ = 105°, f = 1.5). The influence of viral envelope geometries and surface wettability on the heterogeneous condensation mechanisms offers foundational insights required to understand airborne biothreat transmission, which is particularly important in the atmosphere and respiratory tract, and improve biothreat detection methods utilizing condensation-based capture devices.
Collapse
Affiliation(s)
- Kawkab Ahasan
- Center
for Multiphase Flow Research and Education, Department of Mechanical
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Han Hu
- Department
of Mechanical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Pranav Shrotriya
- Center
for Multiphase Flow Research and Education, Department of Mechanical
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Todd A. Kingston
- Center
for Multiphase Flow Research and Education, Department of Mechanical
Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
3
|
Pandey B, S S, Chatterjee A, Mangala Prasad V. Role of surface glycans in enveloped RNA virus infections: A structural perspective. Proteins 2025; 93:93-104. [PMID: 37994197 DOI: 10.1002/prot.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Enveloped RNA viruses have been causative agents of major pandemic outbreaks in the recent past. Glycans present on these virus surface proteins are critical for multiple processes during the viral infection cycle. Presence of glycans serves as a key determinant of immunogenicity, but intrinsic heterogeneity, dynamics, and evolutionary shifting of glycans in heavily glycosylated enveloped viruses confounds typical structure-function analysis. Glycosylation sites are also conserved across different viral families, which further emphasizes their functional significance. In this review, we summarize findings regarding structure-function correlation of glycans on enveloped RNA virus proteins.
Collapse
Affiliation(s)
- Bhawna Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Srividhya S
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Li W, Yang W, Liu X, Zhou W, Wang S, Wang Z, Zhao Y, Feng N, Wang T, Wu M, Ge L, Xia X, Yan F. Fully human monoclonal antibodies against Ebola virus possess complete protection in a hamster model. Emerg Microbes Infect 2024; 13:2392651. [PMID: 39155772 PMCID: PMC11348817 DOI: 10.1080/22221751.2024.2392651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/14/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Ebola disease is a lethal viral hemorrhagic fever caused by ebolaviruses within the Filoviridae family with mortality rates of up to 90%. Monoclonal antibody (mAb) based therapies have shown great potential for the treatment of EVD. However, the potential emerging ebolavirus isolates and the negative effect of decoy protein on the therapeutic efficacy of antibodies highlight the necessity of developing novel antibodies to counter the threat of Ebola. Here, 11 fully human mAbs were isolated from transgenic mice immunized with GP protein and recombinant vesicular stomatitis virus-bearing GP (rVSV-EBOV GP). These mAbs were divided into five groups according to their germline genes and exhibited differential binding activities and neutralization capabilities. In particular, mAbs 8G6, 2A4, and 5H4 were cross-reactive and bound at least three ebolavirus glycoproteins. mAb 4C1 not only exhibited neutralizing activity but no cross-reaction with sGP. mAb 7D8 exhibited the strongest neutralizing capacity. Further analysis on the critical residues for the bindings of 4C1 and 8G6 to GPs was conducted using antibodies complementarity-determining regions (CDRs) alanine scanning. It has been shown that light chain CDR3 played a crucial role in binding and neutralization and that any mutation in CDRs could not improve the binding of 4C1 to sGP. Importantly, mAbs 7D8, 8G6, and 4C1 provided complete protections against EBOV infection in a hamster lethal challenge model when administered 12 h post-infection. These results support mAbs 7D8, 8G6, and 4C1 as potent antibody candidates for further investigations and pave the way for further developments of therapies and vaccines.
Collapse
Affiliation(s)
- Wujian Li
- College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Wanying Yang
- Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xueqin Liu
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Wujie Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Shen Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| |
Collapse
|
5
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
6
|
Donnellan FR, Rayaprolu V, Rijal P, O’Dowd V, Parvate A, Callaway H, Hariharan C, Parekh D, Hui S, Shaffer K, Avalos RD, Hastie K, Schimanski L, Müller-Kräuter H, Strecker T, Balaram A, Halfmann P, Saphire EO, Lightwood DJ, Townsend AR, Draper SJ. A broadly-neutralizing antibody against Ebolavirus glycoprotein that potentiates the breadth and neutralization potency of other antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600001. [PMID: 38979279 PMCID: PMC11230233 DOI: 10.1101/2024.06.21.600001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Ebolavirus disease (EVD) is caused by multiple species of Ebolavirus. Monoclonal antibodies (mAbs) against the virus glycoprotein (GP) are the only class of therapeutic approved for treatment of EVD caused by Zaire ebolavirus (EBOV). Therefore, mAbs targeting multiple Ebolavirus species may represent the next generation of EVD therapeutics. Broadly reactive anti-GP mAbs were produced; among these, mAbs 11886 and 11883 were broadly neutralizing in vitro. A 3.0 Å cryo-electron microscopy structure of EBOV GP bound to both mAbs shows that 11886 binds a novel epitope bridging the glycan cap (GC), 310 pocket and GP2 N-terminus, whereas 11883 binds the receptor binding region (RBR) and GC. In vitro, 11886 synergized with a range of mAbs with epitope specificities spanning the RBR/GC, including 11883. Notably, 11886 increased the breadth of neutralization by partner mAbs against different Ebolavirus species. These data provide a strategic route to design improved mAb-based next-generation EVD therapeutics.
Collapse
Affiliation(s)
- Francesca R. Donnellan
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Vamseedhar Rayaprolu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current affiliation: Pacific Northwest Cryo-EM Center, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Pramila Rijal
- Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | | | - Amar Parvate
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current affiliation: Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Heather Callaway
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current affiliation: Chemistry & Biochemistry Building, Montana State University, Bozeman, MT 59717, USA
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Dipti Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sean Hui
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Current Affiliation: Department of Pathology & Immunology, Washington University School of Medicine. St. Louis MO 63110, USA
| | - Kelly Shaffer
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Medicine. University of California San Diego. La Jolla, CA 92037, USA
| | - Ruben Diaz Avalos
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kathryn Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Lisa Schimanski
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Helena Müller-Kräuter
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Ariane Balaram
- Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53713, USA
| | - Peter Halfmann
- Influenza Research Institute, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53713, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Medicine. University of California San Diego. La Jolla, CA 92037, USA
| | | | - Alain R. Townsend
- Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, OX1 3QU, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
7
|
Bagdonaite I, Abdurahman S, Mirandola M, Pasqual D, Frank M, Narimatsu Y, Joshi HJ, Vakhrushev SY, Salata C, Mirazimi A, Wandall HH. Targeting host O-linked glycan biosynthesis affects Ebola virus replication efficiency and reveals differential GalNAc-T acceptor site preferences on the Ebola virus glycoprotein. J Virol 2024; 98:e0052424. [PMID: 38757972 PMCID: PMC11237518 DOI: 10.1128/jvi.00524-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Ebola virus glycoprotein (EBOV GP) is one of the most heavily O-glycosylated viral glycoproteins, yet we still lack a fundamental understanding of the structure of its large O-glycosylated mucin-like domain and to what degree the host O-glycosylation capacity influences EBOV replication. Using tandem mass spectrometry, we identified 47 O-glycosites on EBOV GP and found similar glycosylation signatures on virus-like particle- and cell lysate-derived GP. Furthermore, we performed quantitative differential O-glycoproteomics on proteins produced in wild-type HEK293 cells and cell lines ablated for the three key initiators of O-linked glycosylation, GalNAc-T1, -T2, and -T3. The data show that 12 out of the 47 O-glycosylated sites were regulated, predominantly by GalNAc-T1. Using the glycoengineered cell lines for authentic EBOV propagation, we demonstrate the importance of O-linked glycan initiation and elongation for the production of viral particles and the titers of progeny virus. The mapped O-glycan positions and structures allowed to generate molecular dynamics simulations probing the largely unknown spatial arrangements of the mucin-like domain. The data highlight targeting GALNT1 or C1GALT1C1 as a possible way to modulate O-glycan density on EBOV GP for novel vaccine designs and tailored intervention approaches.IMPORTANCEEbola virus glycoprotein acquires its extensive glycan shield in the host cell, where it is decorated with N-linked glycans and mucin-type O-linked glycans. The latter is initiated by a family of polypeptide GalNAc-transferases that have different preferences for optimal peptide substrates resulting in a spectrum of both very selective and redundant substrates for each isoform. In this work, we map the exact locations of O-glycans on Ebola virus glycoprotein and identify subsets of sites preferentially initiated by one of the three key isoforms of GalNAc-Ts, demonstrating that each enzyme contributes to the glycan shield integrity. We further show that altering host O-glycosylation capacity has detrimental effects on Ebola virus replication, with both isoform-specific initiation and elongation playing a role. The combined structural and functional data highlight glycoengineered cell lines as useful tools for investigating molecular mechanisms imposed by specific glycans and for steering the immune responses in future vaccine designs.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Mattia Mirandola
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Denis Pasqual
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Ali Mirazimi
- Public Health Agency of Sweden, Solna, Sweden
- Department of Laboratory Medicine (LABMED), Karolinska Institute, Stockholm, Sweden
- National Veterinary Institute, Uppsala, Sweden
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Zhang Y, Zhang M, Wu H, Wang X, Zheng H, Feng J, Wang J, Luo L, Xiao H, Qiao C, Li X, Zheng Y, Huang W, Wang Y, Wang Y, Shi Y, Feng J, Chen G. A novel MARV glycoprotein-specific antibody with potentials of broad-spectrum neutralization to filovirus. eLife 2024; 12:RP91181. [PMID: 38526940 PMCID: PMC10963030 DOI: 10.7554/elife.91181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Min Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Haiyan Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Xinwei Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Hang Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Junjuan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug ControlBeijingChina
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug ControlBeijingChina
| | - Yi Wang
- Department of Hematology, Fifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical UniversityHohhotChina
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyBeijingChina
| |
Collapse
|
9
|
Xu S, Li W, Jiao C, Cao Z, Wu F, Yan F, Wang H, Feng N, Zhao Y, Yang S, Wang J, Xia X. A Bivalent Bacterium-like Particles-Based Vaccine Induced Potent Immune Responses against the Sudan Virus and Ebola Virus in Mice. Transbound Emerg Dis 2023; 2023:9248581. [PMID: 40303775 PMCID: PMC12017122 DOI: 10.1155/2023/9248581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 05/02/2025]
Abstract
Ebola virus disease (EVD) is an acute viral hemorrhagic fever disease causing thousands of deaths. The large Ebola outbreak in 2014-2016 posed significant threats to global public health, requiring the development of multiple medical measures for disease control. Sudan virus (SUDV) and Zaire virus (EBOV) are responsible for severe disease and occasional deadly outbreaks in West Africa and Middle Africa. This study shows that bivalent bacterium-like particles (BLPs)-based vaccine, SUDV-EBOV BLPs (S/ZBLP + 2 + P), generated by mixing SUDV-BLPs and EBOV-BLPs at a 1 : 1 ratio, is immunogenic in mice. The SUDV-EBOV BLPs induced potent immune responses against SUDV and EBOV and elicited both T-helper 1 (Th1) and T-helper 2 (Th2) immune responses. The results indicated that SUDV-EBOV BLPs-based vaccine has the potential to be a promising candidate against SUDV and EBOV infections and provide a strategy to develop universal vaccines for EVD.
Collapse
Affiliation(s)
- Shengnan Xu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Shandong Agricultural University, Taian, China
| | - Wujian Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cuicui Jiao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengguo Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fangfang Wu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hualei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Collaborative Innovation Center for Healthy Sheep Breeding and Zoonoses Prevention and Control, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
10
|
Borisevich SS, Zarubaev VV, Shcherbakov DN, Yarovaya OI, Salakhutdinov NF. Molecular Modeling of Viral Type I Fusion Proteins: Inhibitors of Influenza Virus Hemagglutinin and the Spike Protein of Coronavirus. Viruses 2023; 15:902. [PMID: 37112882 PMCID: PMC10142020 DOI: 10.3390/v15040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.
Collapse
Affiliation(s)
- Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Vladimir V. Zarubaev
- Laboratory of Experimental Virology, Saint-Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia;
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
11
|
Tong XK, Li H, Yang L, Xie SZ, Xie S, Gong Y, Peng C, Gao XX, Shi ZL, Yang XL, Zuo JP. Multiplication of defective Ebola virus in a complementary permissive cell line. Antiviral Res 2023; 209:105491. [PMID: 36526073 DOI: 10.1016/j.antiviral.2022.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
In an effort to develop safe and innovative in vitro models for Ebola virus (EBOV) research, we generated a recombinant Ebola virus where the glycoprotein (GP) gene was substituted with the Cre recombinase (Cre) gene by reverse genetics. This defective virus could multiply itself in a complementary permissive cell line, which could express GP and reporter protein upon exogenous Cre existence. The main features of this novel model for Ebola virus are intact viral life cycle, robust virus multiplication and normal virions morphology. The design of this model ensures its safety, excellent stability and maneuverability as a tool for virology research as well as for antiviral agent screening and drug discovery, and such a design could be further adapted to other viruses.
Collapse
Affiliation(s)
- Xian-Kun Tong
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Heng Li
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yang
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Zhe Xie
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sha Xie
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Gong
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiao-Xiao Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Jiangxia Lab, Wuhan, 430071, China.
| | - Jian-Ping Zuo
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
12
|
Viral and Host Factors Regulating HIV-1 Envelope Protein Trafficking and Particle Incorporation. Viruses 2022; 14:v14081729. [PMID: 36016351 PMCID: PMC9415270 DOI: 10.3390/v14081729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) is an essential structural component of the virus, serving as the receptor-binding protein and principal neutralizing determinant. Env trimers are incorporated into developing particles at the plasma membrane of infected cells. Incorporation of HIV-1 Env into particles in T cells and macrophages is regulated by the long Env cytoplasmic tail (CT) and the matrix region of Gag. The CT incorporates motifs that interact with cellular factors involved in endosomal trafficking. Env follows an unusual pathway to arrive at the site of particle assembly, first traversing the secretory pathway to the plasma membrane (PM), then undergoing endocytosis, followed by directed sorting to the site of particle assembly on the PM. Many aspects of Env trafficking remain to be defined, including the sequential events that occur following endocytosis, leading to productive recycling and particle incorporation. This review focuses on the host factors and pathways involved in Env trafficking, and discusses leading models of Env incorporation into particles.
Collapse
|
13
|
Yu X, Saphire EO. Development and Structural Analysis of Antibody Therapeutics for Filoviruses. Pathogens 2022; 11:pathogens11030374. [PMID: 35335698 PMCID: PMC8949092 DOI: 10.3390/pathogens11030374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The filoviruses, including ebolaviruses and marburgviruses, are among the world’s deadliest pathogens. As the only surface-exposed protein on mature virions, their glycoprotein GP is the focus of current therapeutic monoclonal antibody discovery efforts. With recent technological developments, potent antibodies have been identified from immunized animals and human survivors of virus infections and have been characterized functionally and structurally. Structural insight into how the most successful antibodies target GP further guides vaccine development. Here we review the recent developments in the identification and characterization of neutralizing antibodies and cocktail immunotherapies.
Collapse
Affiliation(s)
- Xiaoying Yu
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Discovery, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA;
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Correspondence: ; Tel.: +1-858-752-6791
| |
Collapse
|
14
|
Lavado-García J, Zhang T, Cervera L, Gòdia F, Wuhrer M. Differential N- and O-glycosylation signatures of HIV-1 Gag virus-like particles and coproduced extracellular vesicles. Biotechnol Bioeng 2022; 119:1207-1221. [PMID: 35112714 PMCID: PMC9303603 DOI: 10.1002/bit.28051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
HIV-1 virus-like particles (VLPs) are nanostructures derived from the self-assembly and cell budding of Gag polyprotein. Mimicking the native structure of the virus and being non-infectious, they represent promising candidates for the development of new vaccines as they elicit a strong immune response. In addition to this, the bounding membrane can be functionalized with exogenous antigens to target different diseases. Protein glycosylation depends strictly on the production platform and expression system used and the displayed glycosylation patterns may influence down-stream processing as well as the immune response. One of the main challenges for the development of Gag VLP production bioprocess is the separation of VLPs and coproduced extracellular vesicles (EVs). In this work, porous graphitized carbon separation method coupled with mass spectrometry was used to characterize the N- and O- glycosylation profiles of Gag VLPs produced in HEK293 cells. We identified differential glycan signatures between VLPs and EVs that could pave the way for further separation and purification strategies in order to optimize downstream processing and move forward in VLP-based vaccine production technology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Kuppan JP, Mitrovich MD, Vahey MD. A morphological transformation in respiratory syncytial virus leads to enhanced complement deposition. eLife 2021; 10:70575. [PMID: 34586067 PMCID: PMC8480979 DOI: 10.7554/elife.70575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
The complement system is a critical host defense against infection, playing a protective role that can also enhance disease if dysregulated. Although many consequences of complement activation during viral infection are well established, mechanisms that determine the extent to which viruses activate complement remain elusive. Here, we investigate complement activation by human respiratory syncytial virus (RSV), a filamentous respiratory pathogen that causes significant morbidity and mortality. By engineering a strain of RSV harboring tags on the surface glycoproteins F and G, we are able to monitor opsonization of single RSV particles using fluorescence microscopy. These experiments reveal an antigenic hierarchy, where antibodies that bind toward the apex of F in either the pre- or postfusion conformation activate the classical pathway whereas other antibodies do not. Additionally, we identify an important role for virus morphology in complement activation: as viral filaments age, they undergo a morphological transformation which lowers the threshold for complement deposition through changes in surface curvature. Collectively, these results identify antigenic and biophysical characteristics of virus particles that contribute to the formation of viral immune complexes, and suggest models for how these factors may shape disease severity and adaptive immune responses to RSV.
Collapse
Affiliation(s)
- Jessica P Kuppan
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, United States
| | - Margaret D Mitrovich
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, United States
| | - Michael D Vahey
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
16
|
Rajput A, Kumar M. Anti-Ebola: an initiative to predict Ebola virus inhibitors through machine learning. Mol Divers 2021; 26:1635-1644. [PMID: 34357513 PMCID: PMC8343361 DOI: 10.1007/s11030-021-10291-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023]
Abstract
Ebola virus is a deadly pathogen responsible for a frequent series of outbreaks since 1976. Despite various efforts from researchers worldwide, its mortality and fatality are quite high. For antiviral drug discovery, the computational efforts are considered highly useful. Therefore, we have developed an 'anti-Ebola' web server, through quantitative structure-activity relationship information of available molecules with experimental anti-Ebola activities. Three hundred and five unique anti-Ebola compounds with their respective IC50 values were extracted from the 'DrugRepV' database. Later, the compounds were used to extract the molecular descriptors, which were subjected to regression-based model development. The robust machine learning techniques, namely support vector machine, random forest and artificial neural network, were employed using tenfold cross-validation. After a randomization approach, the best predictive model showed Pearson's correlation coefficient ranges from 0.83 to 0.98 on training/testing (T274) dataset. The robustness of the developed models was cross-evaluated using William's plot. The highly robust computational models are integrated into the web server. The 'anti-Ebola' web server is freely available at https://bioinfo.imtech.res.in/manojk/antiebola . We anticipate this will serve the scientific community for developing effective inhibitors against the Ebola virus.
Collapse
Affiliation(s)
- Akanksha Rajput
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh, 160036, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Ghosh S, Saha A, Samanta S, Saha RP. Genome structure and genetic diversity in the Ebola virus. Curr Opin Pharmacol 2021; 60:83-90. [PMID: 34364102 DOI: 10.1016/j.coph.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Ebola is a deadly pathogen responsible for Ebola virus disease, first came to prominence in the year 1976. This rapidly evolving virus imposed a serious threat to the human population in the last few decades and also continues to be a probable threat to our race. A better understanding of the virus in terms of its genomic structure is very much needed to develop an effective antiviral therapy against this deadly pathogen. Complete knowledge of its genomic structure and variations will help us and the entire scientific community to design effective therapy in terms of either vaccine development or the development of proper antiviral medicine.
Collapse
Affiliation(s)
- Sanmitra Ghosh
- Department of Microbiology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Abinit Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India
| | - Rudra P Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, 700126, India.
| |
Collapse
|
18
|
Schön K, Lepenies B, Goyette-Desjardins G. Impact of Protein Glycosylation on the Design of Viral Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 175:319-354. [PMID: 32935143 DOI: 10.1007/10_2020_132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play crucial roles in various biological processes such as cell proliferation, cell-cell interactions, and immune responses. Since viruses co-opt cellular biosynthetic pathways, viral glycosylation mainly depends on the host cell glycosylation machinery. Consequently, several viruses exploit the cellular glycosylation pathway to their advantage. It was shown that viral glycosylation is strongly dependent on the host system selected for virus propagation and/or protein expression. Therefore, the use of different expression systems results in various glycoforms of viral glycoproteins that may differ in functional properties. These differences clearly illustrate that the choice of the expression system can be important, as the resulting glycosylation may influence immunological properties. In this review, we will first detail protein N- and O-glycosylation pathways and the resulting glycosylation patterns; we will then discuss different aspects of viral glycosylation in pathogenesis and in vaccine development; and finally, we will elaborate on how to harness viral glycosylation in order to optimize the design of viral vaccines. To this end, we will highlight specific examples to demonstrate how glycoengineering approaches and exploitation of different expression systems could pave the way towards better self-adjuvanted glycan-based viral vaccines.
Collapse
Affiliation(s)
- Kathleen Schön
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Guillaume Goyette-Desjardins
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| |
Collapse
|
19
|
Winter SL, Chlanda P. Dual-axis Volta phase plate cryo-electron tomography of Ebola virus-like particles reveals actin-VP40 interactions. J Struct Biol 2021; 213:107742. [PMID: 33971285 DOI: 10.1016/j.jsb.2021.107742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022]
Abstract
Cryo-electron tomography (cryo-ET) is a pivotal imaging technique for studying the structure of pleomorphic enveloped viruses and their interactions with the host at native conditions. Owing to the limited tilting range of samples with a slab geometry, electron tomograms suffer from so-called missing wedge information in Fourier space. In dual-axis cryo-ET, two tomograms reconstructed from orthogonally oriented tilt series are combined into a tomogram with improved resolution as the missing wedge information is reduced to a pyramid. Volta phase plate (VPP) allows to perform in-focus cryo-ET with high contrast transfer at low-resolution frequencies and thus its application may improve the quality of dual-axis tomograms. Here, we compare dual-axis cryo-ET with and without VPP on Ebola virus-like particles to visualize and segment viral and host cell proteins within the membrane-enveloped filamentous particles. Dual-axis VPP cryo-ET reduces the missing wedge information and ray artifacts arising from the weighted back-projection during tomogram reconstruction, thereby minimizing ambiguity in the analysis of crowded environments and facilitating 3D segmentation. We show that dual-axis VPP tomograms provide a comprehensive description of macromolecular organizations such as nucleocapsid assembly states, the distribution of glycoproteins on the viral envelope and asymmetric arrangements of the VP40 layer in non-filamentous regions of virus-like particles. Our data reveal actin filaments within virus-like particles in close proximity to the viral VP40 scaffold, suggesting a direct interaction between VP40 and actin filaments. Dual-axis VPP cryo-ET provides more complete 3D information at high contrast and allows for better interpretation of macromolecule interactions and pleomorphic organizations.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; Research Group "Membrane Biology of Viral Infection", Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; Research Group "Membrane Biology of Viral Infection", Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
20
|
Diallo I, Ho J, Laffont B, Laugier J, Benmoussa A, Lambert M, Husseini Z, Soule G, Kozak R, Kobinger GP, Provost P. Altered microRNA Transcriptome in Cultured Human Liver Cells upon Infection with Ebola Virus. Int J Mol Sci 2021; 22:ijms22073792. [PMID: 33917562 PMCID: PMC8038836 DOI: 10.3390/ijms22073792] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013–2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jeffrey Ho
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Benoit Laffont
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Jonathan Laugier
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Abderrahim Benmoussa
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Marine Lambert
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Zeinab Husseini
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Gary P. Kobinger
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada; (G.S.); (R.K.)
- Département de Microbiologie Médicale, Université du Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Patrick Provost
- CHU de Québec Research Center, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada; (I.D.); (J.H.); (B.L.); (J.L.); (A.B.); (M.L.); (Z.H.); (G.P.K.)
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Room T1-65, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
21
|
Silver ZA, Antonopoulos A, Haslam SM, Dell A, Dickinson GM, Seaman MS, Desrosiers RC. Discovery of O-Linked Carbohydrate on HIV-1 Envelope and Its Role in Shielding against One Category of Broadly Neutralizing Antibodies. Cell Rep 2021; 30:1862-1869.e4. [PMID: 32049016 DOI: 10.1016/j.celrep.2020.01.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/02/2019] [Accepted: 01/17/2020] [Indexed: 10/25/2022] Open
Abstract
Approximately 50% of the mass of the Envelope (Env) glycoprotein surface subunit (gp120) of human immunodeficiency virus type 1 (HIV-1) is composed of N-linked carbohydrate. Until now, the dogma has been that HIV-1 lacks O-linked carbohydrate on Env. Here we show that a subset of patient-derived HIV-1 isolates contain O-linked carbohydrate on the variable 1 (V1) domain of Env gp120. We demonstrate the presence of this O-glycosylation both on virions and on gp120 expressed as a secreted protein. Further, we establish that these O-linked glycans can confer a more than 1,000-fold decrease in neutralization sensitivity (IC50) to V3-glycan broadly neutralizing antibodies. These findings uncover a structural modification to the HIV-1 Env and suggest a functional role in promoting viral escape from one category of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Zachary A Silver
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Gordon M Dickinson
- Infectious Diseases Section, Miami Veterans Affairs Health Care System, University of Miami, Miami, FL, USA; Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
22
|
Dolzhikova IV, Shcherbinin DN, Logunov DY, Gintsburg AL. [Ebola virus ( Filoviridae: Ebolavirus: Zaire ebolavirus): fatal adaptation mutations]. Vopr Virusol 2021; 66:7-16. [PMID: 33683061 DOI: 10.36233/0507-4088-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 01/13/2023]
Abstract
Ebola virus disease (EVD) (former Ebola hemorrhagic fever) is one of the most dangerous infectious diseases affecting humans and primates. Since the identification of the first outbreak in 1976, there have been more than 25 outbreaks worldwide, the largest of which escalated into an epidemic in 2014-2016 and caused the death of more than 11,000 people. There are currently 2 independent outbreaks of this disease in the eastern and western parts of the Democratic Republic of the Congo (DRC) at the same time. Bats (Microchiroptera) are supposed to be the natural reservoir of EVD, but the infectious agent has not yet been isolated from them. Most animal viruses are unable to replicate in humans. They have to develop adaptive mutations (AM) to become infectious for humans. In this review based on the results of a number of studies, we hypothesize that the formation of AM occurs directly in the human and primate population and subsequently leads to the development of EVD outbreaks.
Collapse
Affiliation(s)
- I V Dolzhikova
- FSBI National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of Russia
| | - D N Shcherbinin
- FSBI National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of Russia
| | - D Yu Logunov
- FSBI National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of Russia
| | - A L Gintsburg
- FSBI National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of Russia
| |
Collapse
|
23
|
Lu M. Single-Molecule FRET Imaging of Virus Spike-Host Interactions. Viruses 2021; 13:v13020332. [PMID: 33669922 PMCID: PMC7924862 DOI: 10.3390/v13020332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
As a major surface glycoprotein of enveloped viruses, the virus spike protein is a primary target for vaccines and anti-viral treatments. Current vaccines aiming at controlling the COVID-19 pandemic are mostly directed against the SARS-CoV-2 spike protein. To promote virus entry and facilitate immune evasion, spikes must be dynamic. Interactions with host receptors and coreceptors trigger a cascade of conformational changes/structural rearrangements in spikes, which bring virus and host membranes in proximity for membrane fusion required for virus entry. Spike-mediated viral membrane fusion is a dynamic, multi-step process, and understanding the structure–function-dynamics paradigm of virus spikes is essential to elucidate viral membrane fusion, with the ultimate goal of interventions. However, our understanding of this process primarily relies on individual structural snapshots of endpoints. How these endpoints are connected in a time-resolved manner, and the order and frequency of conformational events underlying virus entry, remain largely elusive. Single-molecule Förster resonance energy transfer (smFRET) has provided a powerful platform to connect structure–function in motion, revealing dynamic aspects of spikes for several viruses: SARS-CoV-2, HIV-1, influenza, and Ebola. This review focuses on how smFRET imaging has advanced our understanding of virus spikes’ dynamic nature, receptor-binding events, and mechanism of antibody neutralization, thereby informing therapeutic interventions.
Collapse
Affiliation(s)
- Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
24
|
Length of mucin-like domains enhances cell-Ebola virus adhesion by increasing binding probability. Biophys J 2021; 120:781-790. [PMID: 33539790 DOI: 10.1016/j.bpj.2021.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/20/2022] Open
Abstract
The Ebola virus (EBOV) hijacks normal physiological processes by apoptotic mimicry to be taken up by the cell it infects. The initial adhesion of the virus to the cell is based on the interaction between T cell immunoglobulin and mucin domain protein, TIM, on the cell surface and phosphatidylserine (PS) on the viral outer surface. Therefore, it is important to understand the interaction between EBOV and PS and TIM, with selective blocking of the interaction as a potential therapy. Recent experimental studies have shown that for TIM-dependent EBOV entry, a mucin-like domain with a length of at least 120 amino acids is required, possibly because of the increase of area of the PS-coated surface sampled. We examine this hypothesis by modeling the process of TIM-PS adhesion using a coarse-grained molecular model. We find that the strength of individual bound PS-TIM pairs is essentially independent of TIM length. TIMs with longer mucin-like domains collectively have higher average binding strengths because of an increase in the probability of binding between EBOV and TIM proteins. Similarly, we find that for larger persistence length (less flexible), the average binding force decreases, again because of a reduction in the probability of binding.
Collapse
|
25
|
Yoon BK, Jeon WY, Sut TN, Cho NJ, Jackman JA. Stopping Membrane-Enveloped Viruses with Nanotechnology Strategies: Toward Antiviral Drug Development and Pandemic Preparedness. ACS NANO 2021; 15:125-148. [PMID: 33306354 DOI: 10.1021/acsnano.0c07489] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membrane-enveloped viruses are a leading cause of viral epidemics, and there is an outstanding need to develop broad-spectrum antiviral strategies to treat and prevent enveloped virus infections. In this review, we critically discuss why the lipid membrane surrounding enveloped virus particles is a promising antiviral target and cover the latest progress in nanotechnology research to design and evaluate membrane-targeting virus inhibition strategies. These efforts span diverse topics such as nanomaterials, self-assembly, biosensors, nanomedicine, drug delivery, and medical devices and have excellent potential to support the development of next-generation antiviral drug candidates and technologies. Application examples in the areas of human medicine and agricultural biosecurity are also presented. Looking forward, research in this direction is poised to strengthen capabilities for virus pandemic preparedness and demonstrates how nanotechnology strategies can help to solve global health challenges related to infectious diseases.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won-Yong Jeon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tun Naw Sut
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Joshua A Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Agnolon V, Kiseljak D, Wurm MJ, Wurm FM, Foissard C, Gallais F, Wehrle S, Muñoz-Fontela C, Bellanger L, Correia BE, Corradin G, Spertini F. Designs and Characterization of Subunit Ebola GP Vaccine Candidates: Implications for Immunogenicity. Front Immunol 2020; 11:586595. [PMID: 33250896 PMCID: PMC7672190 DOI: 10.3389/fimmu.2020.586595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
The humoral responses of Ebola virus (EBOV) survivors mainly target the surface glycoprotein GP, and anti-GP neutralizing antibodies have been associated with protection against EBOV infection. In order to elicit protective neutralizing antibodies through vaccination a native-like conformation of the antigen is required. We therefore engineered and expressed in CHO cells several GP variants from EBOV (species Zaire ebolavirus, Mayinga variant), including a soluble GP ΔTM, a mucin-like domain-deleted GP ΔTM-ΔMUC, as well as two GP ΔTM-ΔMUC variants with C-terminal trimerization motifs in order to favor their native trimeric conformation. Inclusion of the trimerization motifs resulted in proteins mimicking GP metastable trimer and showing increased stability. The mucin-like domain appeared not to be critical for the retention of the native conformation of the GP protein, and its removal unmasked several neutralizing epitopes, especially in the trimers. The soluble GP variants inhibited mAbs neutralizing activity in a pseudotype transduction assay, further confirming the proteins' structural integrity. Interestingly, the trimeric GPs, a native-like GP complex, showed stronger affinity for antibodies raised by natural infection in EBOV disease survivors rather than for antibodies raised in volunteers that received the ChAd3-EBOZ vaccine. These results support our hypothesis that neutralizing antibodies are preferentially induced when using a native-like conformation of the GP antigen. The soluble trimeric recombinant GP proteins we developed represent a novel and promising strategy to develop prophylactic vaccines against EBOV and other filoviruses.
Collapse
Affiliation(s)
- Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | | | - Florian M Wurm
- ExcellGene SA, Monthey, Switzerland.,Faculty of Life Sciences, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Foissard
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Fabrice Gallais
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Sarah Wehrle
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Hamburg, Germany
| | - Laurent Bellanger
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Bruno Emanuel Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - Giampietro Corradin
- Department of Biochemistry, Université de Lausanne (UNIL), Epalinges, Switzerland
| | - François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
27
|
Lim S, Kim DS, Ko K. Expression of a Large Single-Chain 13F6 Antibody with Binding Activity against Ebola Virus-Like Particles in a Plant System. Int J Mol Sci 2020; 21:E7007. [PMID: 32977599 PMCID: PMC7582593 DOI: 10.3390/ijms21197007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022] Open
Abstract
Pathogenic animal and human viruses present a growing and persistent threat to humans worldwide. Ebola virus (EBOV) causes zoonosis in humans. Here, two structurally different anti-Ebola 13F6 antibodies, recognizing the heavily glycosylated mucin-like domain (MLD) of the glycoprotein (GP), were expressed in transgenic Nicotiana tabacum plants and designed as inexpensive and effective diagnostic antibodies against Ebola virus disease (EVD). The first was anti-EBOV 13F6 full size antibody with heavy chain (HC) and light chain (LC) (monoclonal antibody, mAb 13F6-FULL), while the second was a large single-chain (LSC) antibody (mAb 13F6-LSC). mAb 13F6-LSC was constructed by linking the 13F6 LC variable region (VL) with the HC of mAb 13F6-FULL using a peptide linker and extended to the C-terminus using the endoplasmic reticulum (ER) retention motif KDEL. Agrobacterium-mediated plant transformation was employed to express the antibodies in N. tabacum. PCR, RT-PCR, and immunoblot analyses confirmed the gene insertion, transcription, and protein expression of these antibodies, respectively. The antibodies tagged with the KDEL motif displayed high-mannose type N-glycan structures and efficient binding to EBOV-like particles (VLPs). Thus, various forms of anti-EBOV plant-derived mAbs 13F6-FULL and LSC with efficient binding affinity to EBOV VLP can be produced in the plant system.
Collapse
Affiliation(s)
- Sohee Lim
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea;
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| |
Collapse
|
28
|
A Virion-Based Assay for Glycoprotein Thermostability Reveals Key Determinants of Filovirus Entry and Its Inhibition. J Virol 2020; 94:JVI.00336-20. [PMID: 32611759 DOI: 10.1128/jvi.00336-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) entry into cells is mediated by its spike glycoprotein (GP). Following attachment and internalization, virions traffic to late endosomes where GP is cleaved by host cysteine proteases. Cleaved GP then binds its cellular receptor, Niemann-Pick C1. In response to an unknown cellular trigger, GP undergoes conformational rearrangements that drive fusion of viral and endosomal membranes. The temperature-dependent stability (thermostability) of the prefusion conformers of class I viral fusion glycoproteins, including those of filovirus GPs, has provided insights into their propensity to undergo fusion-related rearrangements. However, previously described assays have relied on soluble glycoprotein ectodomains. Here, we developed a simple enzyme-linked immunosorbent assay (ELISA)-based assay that uses the temperature-dependent loss of conformational epitopes to measure thermostability of GP embedded in viral membranes. The base and glycan cap subdomains of all filovirus GPs tested suffered a concerted loss of prefusion conformation at elevated temperatures but did so at different temperature ranges, indicating virus-specific differences in thermostability. Despite these differences, all of these GPs displayed reduced thermostability upon cleavage to GP conformers (GPCL). Surprisingly, acid pH enhanced, rather than decreased, GP thermostability, suggesting it could enhance viral survival in hostile endo/lysosomal compartments. Finally, we confirmed and extended previous findings that some small-molecule inhibitors of filovirus entry destabilize EBOV GP and uncovered evidence that the most potent inhibitors act through multiple mechanisms. We establish the epitope-loss ELISA as a useful tool for studies of filovirus entry, engineering of GP variants with enhanced stability for use in vaccine development, and discovery of new stability-modulating antivirals.IMPORTANCE The development of Ebola virus countermeasures is challenged by our limited understanding of cell entry, especially at the step of membrane fusion. The surface-exposed viral protein, GP, mediates membrane fusion and undergoes major structural rearrangements during this process. The stability of GP at elevated temperatures (thermostability) can provide insights into its capacity to undergo these rearrangements. Here, we describe a new assay that uses GP-specific antibodies to measure GP thermostability under a variety of conditions relevant to viral entry. We show that proteolytic cleavage and acid pH have significant effects on GP thermostability that shed light on their respective roles in viral entry. We also show that the assay can be used to study how small-molecule entry inhibitors affect GP stability. This work provides a simple and readily accessible assay to engineer stabilized GP variants for antiviral vaccines and to discover and improve drugs that act by modulating GP stability.
Collapse
|
29
|
Delauzun V, Amigues B, Gaubert A, Leone P, Grange M, Gauthier L, Roussel A. Extracellular vesicles as a platform to study cell-surface membrane proteins. Methods 2020; 180:35-44. [PMID: 32156657 DOI: 10.1016/j.ymeth.2020.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Producing intact recombinant membrane proteins for structural studies is an inherently challenging task due to their requirement for a cell-lipid environment. Most of the procedures developed involve isolating the protein by solubilization with detergent and further reconstitutions into artificial membranes. These procedures are highly time consuming and suffer from further drawbacks, including low yields and high cost. We describe here an alternative method for rapidly obtaining recombinant cell-surface membrane proteins displayed on extracellular vesicles (EVs) derived from cells in culture. Interaction between these membrane proteins and ligands can be analyzed directly on EVs. Moreover, EVs can also be used for protein structure determination or immunization purposes.
Collapse
Affiliation(s)
- Vincent Delauzun
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Beatrice Amigues
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Anais Gaubert
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Magali Grange
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | | | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France.
| |
Collapse
|
30
|
Barrett CT, Dutch RE. Viral Membrane Fusion and the Transmembrane Domain. Viruses 2020; 12:v12070693. [PMID: 32604992 PMCID: PMC7412173 DOI: 10.3390/v12070693] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.
Collapse
|
31
|
Hariharan V, Kane RS. Glycosylation as a tool for rational vaccine design. Biotechnol Bioeng 2020; 117:2556-2570. [PMID: 32330286 DOI: 10.1002/bit.27361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
The discovery of broadly neutralizing antibodies that can neutralize multiple strains or subtypes of a pathogen has renewed interest in the development of broadly protective vaccines. To that end, there has been an interest in designing immunofocusing strategies to direct the immune response to specific, conserved regions on antigenic proteins. Modulation of glycosylation is one such immunofocusing strategy; extensive glycosylation is often exploited by pathogens for immune evasion. Masking epitopes on protein immunogens with "self" glycans can also shield the underlying protein surface from humoral immune surveillance. We review recent advances in applying glycosylation as an immunofocusing tool. We also highlight recent interesting work in the HIV-1 field involving the identification and elicitation of broadly neutralizing antibodies that incorporate glycans into their binding epitopes.
Collapse
Affiliation(s)
- Vivek Hariharan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
32
|
Iraqi M, Edri A, Greenshpan Y, Kundu K, Bolel P, Cahana A, Ottolenghi A, Gazit R, Lobel L, Braiman A, Porgador A. N-Glycans Mediate the Ebola Virus-GP1 Shielding of Ligands to Immune Receptors and Immune Evasion. Front Cell Infect Microbiol 2020; 10:48. [PMID: 32211339 PMCID: PMC7068452 DOI: 10.3389/fcimb.2020.00048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
The Ebola Virus (EBOV) glycoprotein (GP) sterically shields cell-membrane ligands to immune receptors such as human leukocyte antigen class-1 (HLA-I) and MHC class I polypeptide-related sequence A (MICA), thus mediating immunity evasion. It was suggested that the abundant N-glycosylation of the EBOV-GP is involved in this steric shielding. We aimed to characterize (i) the GP N-glycosylation sites contributing to the shielding, and (ii) the effect of mutating these sites on immune subversion by the EBOV-GP. The two highly glycosylated domains of GP are the mucin-like domain (MLD) and the glycan cap domain (GCD) with three and six N-glycosylation sites, respectively. We mutated the N-glycosylation sites either in MLD or in GCD or in both domains. We showed that the glycosylation sites in both the MLD and GCD domains contribute to the steric shielding. This was shown for the steric shielding of either HLA-I or MICA. We then employed the fluorescence resonance energy transfer (FRET) method to measure the effect of N-glycosylation site removal on the distance in the cell membrane between the EBOV-GP and HLA-I (HLA.A*0201 allele). We recorded high FRET values for the interaction of CFP-fused HLA.A*0201 and YFP-fused EBOV-GP, demonstrating the very close distance (<10 nm) between these two proteins on the cell membrane of GP-expressing cells. The co-localization of HLA-I and Ebola GP was unaffected by the disruption of steric shielding, as the removal of N-glycosylation sites on Ebola GP revealed similar FRET values with HLA-I. However, these mutations directed to N-glycosylation sites had restored immune cell function otherwise impaired due to steric shielding over immune cell ligands by WT Ebola GP. Overall, we showed that the GP-mediated steric shielding aimed to impair immune function is facilitated by the N-glycans protruding from its MLD and GCD domains, but these N-glycans are not controlling the close distance between GP and its shielded proteins.
Collapse
Affiliation(s)
- Muhammed Iraqi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Kiran Kundu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Priyanka Bolel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Avishag Cahana
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Leslie Lobel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
33
|
Sanchez-Lockhart M, Reyes DS, Gonzalez JC, Garcia KY, Villa EC, Pfeffer BP, Trefry JC, Kugelman JR, Pitt ML, Palacios GF. Qualitative Profiling of the Humoral Immune Response Elicited by rVSV-ΔG-EBOV-GP Using a Systems Serology Assay, Domain Programmable Arrays. Cell Rep 2020; 24:1050-1059.e5. [PMID: 30044972 DOI: 10.1016/j.celrep.2018.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 06/18/2018] [Indexed: 01/02/2023] Open
Abstract
Development of an effective vaccine became a worldwide priority after the devastating 2013-2016 Ebola disease outbreak. To qualitatively profile the humoral response against advanced filovirus vaccine candidates, we developed Domain Programmable Arrays (DPA), a systems serology platform to identify epitopes targeted after vaccination or filovirus infection. We optimized the assay using a panel of well-characterized monoclonal antibodies. After optimization, we utilized the system to longitudinally characterize the immunoglobulin (Ig) isotype-specific responses in non-human primates vaccinated with rVSV-ΔG-EBOV-glycoprotein (GP). Strikingly, we observed that, although the IgM response was directed against epitopes over the whole GP, the IgG and IgA responses were almost exclusively directed against the mucin-like domain (MLD) of the glycan cap. Further research will be needed to characterize this possible biased IgG and IgA response toward the MLD, but the results corroborate that DPA is a valuable tool to qualitatively measure the humoral response after vaccination.
Collapse
Affiliation(s)
- Mariano Sanchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel S Reyes
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeanette C Gonzalez
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Karla Y Garcia
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erika C Villa
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley P Pfeffer
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - John C Trefry
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Jeffrey R Kugelman
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Margaret L Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Gustavo F Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
34
|
Takamatsu Y, Dolnik O, Noda T, Becker S. A live-cell imaging system for visualizing the transport of Marburg virus nucleocapsid-like structures. Virol J 2019; 16:159. [PMID: 31856881 PMCID: PMC6923871 DOI: 10.1186/s12985-019-1267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 01/22/2023] Open
Abstract
Background Live-cell imaging is a powerful tool for visualization of the spatio-temporal dynamics of moving signals in living cells. Although this technique can be utilized to visualize nucleocapsid transport in Marburg virus (MARV)- or Ebola virus-infected cells, the experiments require biosafety level-4 (BSL-4) laboratories, which are restricted to trained and authorized individuals. Methods To overcome this limitation, we developed a live-cell imaging system to visualize MARV nucleocapsid-like structures using fluorescence-conjugated viral proteins, which can be conducted outside BSL-4 laboratories. Results Our experiments revealed that nucleocapsid-like structures have similar transport characteristics to those of nucleocapsids observed in MARV-infected cells, both of which are mediated by actin polymerization. Conclusions We developed a non-infectious live cell imaging system to visualize intracellular transport of MARV nucleocapsid-like structures. This system provides a safe platform to evaluate antiviral drugs that inhibit MARV nucleocapsid transport.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany.,Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Olga Dolnik
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan. .,Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Shogoin-Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, 35043, Marburg, Germany. .,German Center of Infection Research (DZIF), partner site Giessen-Marburg-Langen, Marburg, Germany.
| |
Collapse
|
35
|
Stass R, Ng WM, Kim YC, Huiskonen JT. Structures of enveloped virions determined by cryogenic electron microscopy and tomography. Adv Virus Res 2019; 105:35-71. [PMID: 31522708 PMCID: PMC7112279 DOI: 10.1016/bs.aivir.2019.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enveloped viruses enclose their genomes inside a lipid bilayer which is decorated by membrane proteins that mediate virus entry. These viruses display a wide range of sizes, morphologies and symmetries. Spherical viruses are often isometric and their envelope proteins follow icosahedral symmetry. Filamentous and pleomorphic viruses lack such global symmetry but their surface proteins may display locally ordered assemblies. Determining the structures of enveloped viruses, including the envelope proteins and their protein-protein interactions on the viral surface, is of paramount importance. These structures can reveal how the virions are assembled and released by budding from the infected host cell, how the progeny virions infect new cells by membrane fusion, and how antibodies bind surface epitopes to block infection. In this chapter, we discuss the uses of cryogenic electron microscopy (cryo-EM) in elucidating structures of enveloped virions. Starting from a detailed outline of data collection and processing strategies, we highlight how cryo-EM has been successfully utilized to provide unique insights into enveloped virus entry, assembly, and neutralization.
Collapse
Affiliation(s)
- Robert Stass
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Weng M Ng
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Young Chan Kim
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Helsinki Institute of Life Science HiLIFE and Research Programme in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
36
|
Anti-Niemann Pick C1 Single-Stranded Oligonucleotides with Locked Nucleic Acids Potently Reduce Ebola Virus Infection In Vitro. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:686-697. [PMID: 31125846 PMCID: PMC6529764 DOI: 10.1016/j.omtn.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/12/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Ebola virus is the causative agent of Ebola virus disease, a severe, often fatal illness in humans. So far, there are no US Food and Drug Administration (FDA)-approved therapeutics directed against Ebola virus. Here, we selected the host factor Niemann-Pick C1 (NPC1), which has been shown to be essential for Ebola virus entry into host cytoplasm, as a therapeutic target for suppression by locked nucleic acid-modified antisense oligonucleotides. Screening of antisense oligonucleotides in human and murine cell lines led to identification of candidates with up to 94% knockdown efficiency and 50% inhibitory concentration (IC50) values in the submicromolar range. Selected candidate oligonucleotides led to efficient NPC1 protein knockdown in vitro without alteration of cell viability. Furthermore, they did not have immune stimulatory activity in cell-based assays. Treatment of Ebola-virus-infected HeLa cells with the most promising candidates resulted in significant (>99%) virus titer reduction, indicating that antisense oligonucleotides against NPC1 are a promising therapeutic approach for treatment of Ebola virus infection.
Collapse
|
37
|
King LB, West BR, Moyer CL, Gilchuk P, Flyak A, Ilinykh PA, Bombardi R, Hui S, Huang K, Bukreyev A, Crowe JE, Saphire EO. Cross-reactive neutralizing human survivor monoclonal antibody BDBV223 targets the ebolavirus stalk. Nat Commun 2019; 10:1788. [PMID: 30996276 PMCID: PMC6470140 DOI: 10.1038/s41467-019-09732-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/12/2019] [Indexed: 11/09/2022] Open
Abstract
Three Ebolavirus genus viruses cause lethal disease and lack targeted therapeutics: Ebola virus, Sudan virus and Bundibugyo virus. Monoclonal antibody (mAb) cocktails against the surface glycoprotein (GP) present a potential therapeutic strategy. Here we report two crystal structures of the antibody BDBV223, alone and complexed with its GP2 stalk epitope, an interesting site for therapeutic/vaccine design due to its high sequence conservation among ebolaviruses. BDBV223, identified in a human survivor of Bundibugyo virus disease, neutralizes both Bundibugyo virus and Ebola virus, but not Sudan virus. Importantly, the structure suggests that BDBV223 binding interferes with both the trimeric bundle assembly of GP and the viral membrane by stabilizing a conformation in which the monomers are separated by GP lifting or bending. Targeted mutagenesis of BDBV223 to enhance SUDV GP recognition indicates that additional determinants of antibody binding likely lie outside the visualized interactions, and perhaps involve quaternary assembly or membrane-interacting regions. Human antibodies cross-reactive for several viruses within the Ebolavirus genus have been identified. Here the authors present the crystal structure of such a neutralizing monoclonal antibody (mAb) targeting the stalk of Bundibugyo virus glycoprotein and show that mAb binding may interfere with trimeric bundle assembly and/or the viral membrane.
Collapse
Affiliation(s)
- Liam B King
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Brandyn R West
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Crystal L Moyer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrew Flyak
- Departments of Pediatrics, Pathology, and Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Galveston National Laboratory, Galveston, TX, 77555, USA
| | - Robin Bombardi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sean Hui
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Galveston National Laboratory, Galveston, TX, 77555, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Galveston National Laboratory, Galveston, TX, 77555, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Departments of Pediatrics, Pathology, and Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,La Jolla Institute for Immunology La Jolla, CA, 92037, USA.
| |
Collapse
|
38
|
Monath TP, Fast PE, Modjarrad K, Clarke DK, Martin BK, Fusco J, Nichols R, Heppner DG, Simon JK, Dubey S, Troth SP, Wolf J, Singh V, Coller BA, Robertson JS, For the Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG). rVSVΔG-ZEBOV-GP (also designated V920) recombinant vesicular stomatitis virus pseudotyped with Ebola Zaire Glycoprotein: Standardized template with key considerations for a risk/benefit assessment. Vaccine X 2019; 1:100009. [PMID: 31384731 PMCID: PMC6668225 DOI: 10.1016/j.jvacx.2019.100009] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. A recent publication by the V3SWG described live, attenuated, recombinant vesicular stomatitis virus (rVSV) as a chimeric virus vaccine for HIV-1 (Clarke et al., 2016). The rVSV vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features of the rVSV vector system, followed by a template with details on the safety and characteristics of a rVSV vaccine against Zaire ebolavirus (ZEBOV). The rVSV-ZEBOV vaccine is a live, replication competent vector in which the VSV glycoprotein (G) gene is replaced with the glycoprotein (GP) gene of ZEBOV. Multiple copies of GP are expressed and assembled into the viral envelope responsible for inducing protective immunity. The vaccine (designated V920) was originally constructed by the National Microbiology Laboratory, Public Health Agency of Canada, further developed by NewLink Genetics Corp. and Merck & Co., and is now in final stages of registration by Merck. The vaccine is attenuated by deletion of the principal virulence factor of VSV (the G protein), which also removes the primary target for anti-vector immunity. The V920 vaccine caused no toxicities after intramuscular (IM) or intracranial injection of nonhuman primates and no reproductive or developmental toxicity in a rat model. In multiple studies, cynomolgus macaques immunized IM with a wide range of virus doses rapidly developed ZEBOV-specific antibodies measured in IgG ELISA and neutralization assays and were fully protected against lethal challenge with ZEBOV virus. Over 20,000 people have received the vaccine in clinical trials; the vaccine has proven to be safe and well tolerated. During the first few days after vaccination, many vaccinees experience a mild acute-phase reaction with fever, headache, myalgia, and arthralgia of short duration; this period is associated with a low-level viremia, activation of anti-viral genes, and increased levels of chemokines and cytokines. Oligoarthritis and rash appearing in the second week occur at a low incidence, and are typically mild-moderate in severity and self-limited. V920 vaccine was used in a Phase III efficacy trial during the West African Ebola epidemic in 2015, showing 100% protection against Ebola Virus Disease, and it has subsequently been deployed for emergency control of Ebola outbreaks in central Africa. The template provided here provides a comprehensive picture of the first rVSV vector to reach the final stage of development and to provide a solution to control of an alarming human disease.
Collapse
Affiliation(s)
| | - Patricia E. Fast
- International AIDS Vaccine Initiative, New York, NY 10004, United States
| | - Kayvon Modjarrad
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | | | | | - Joan Fusco
- NewLink Genetics Corp, Ames, IA, United States
| | | | | | | | - Sheri Dubey
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Sean P. Troth
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jayanthi Wolf
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Vidisha Singh
- Immunology and Molecular Pathogenesis, Emory University, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
39
|
King LB, Milligan JC, West BR, Schendel SL, Ollmann Saphire E. Achieving cross-reactivity with pan-ebolavirus antibodies. Curr Opin Virol 2019; 34:140-148. [PMID: 30884329 DOI: 10.1016/j.coviro.2019.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/24/2019] [Indexed: 11/25/2022]
Abstract
Filoviruses are the causative agents of highly lethal outbreaks in sub-Saharan Africa. Although an experimental vaccine and several therapeutics are being deployed in the Democratic Republic of Congo to combat the ongoing Ebola virus outbreak, these therapies are specific for only one filovirus species. There is currently significant interest in developing broadly reactive monoclonal antibodies (mAbs) with utility against the variety of ebolaviruses that may emerge. Thus far, the primary target of these mAbs has been the viral spike glycoprotein (GP). Here we present an overview of GP-targeted antibodies that exhibit broad reactivity and the structural characteristics that could confer this cross-reactivity. We also discuss how these structural features could be leveraged to design vaccine antigens that elicit cross-reactive antibodies.
Collapse
Affiliation(s)
- Liam B King
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jacob C Milligan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brandyn R West
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Simon EJ, Linstedt AD. Site-specific glycosylation of Ebola virus glycoprotein by human polypeptide GalNAc-transferase 1 induces cell adhesion defects. J Biol Chem 2018; 293:19866-19873. [PMID: 30389789 PMCID: PMC6314128 DOI: 10.1074/jbc.ra118.005375] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/31/2018] [Indexed: 01/26/2023] Open
Abstract
The surface glycoprotein (GP) of Ebola virus causes many of the virus's pathogenic effects, including a dramatic loss of endothelial cell adhesion associated with widespread hemorrhaging during infection. Although the GP-mediated deadhesion depends on its extracellular mucin-like domain, it is unknown whether any, or all, of this domain's densely clustered O-glycosylation sites are required. It is also unknown whether any of the 20 distinct polypeptide GalNAc-transferases (ppGalNAc-Ts) that initiate mucin-type O-glycosylation in human cells are functionally required. Here, using HEK293 cell lines lacking specific glycosylation enzymes, we demonstrate that GP requires extended O-glycans to exert its deadhesion effect. We also identified ppGalNAc-T1 as largely required for the GP-mediated adhesion defects. Despite its profound effect on GP function, the absence of ppGalNAc-T1 only modestly reduced the O-glycan mass of GP, indicating that even small changes in the bulky glycodomain can cause loss of GP function. Indeed, protein-mapping studies identified a small segment of the mucin-like domain critical for function and revealed that mutation of five glycan acceptor sites within this segment are sufficient to abrogate GP function. Together, these results argue against a mechanism of Ebola GP-induced cell detachment that depends solely on ectodomain bulkiness and identify a single host-derived glycosylation enzyme, ppGalNAc-T1, as a potential target for therapeutic intervention against Ebola virus disease.
Collapse
Affiliation(s)
- Emily J Simon
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Adam D Linstedt
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
41
|
Pal S, Ganesan K, Eswaran S. Chemical Crosslinking-Mass Spectrometry (CXL-MS) for Proteomics, Antibody-Drug Conjugates (ADCs) and Cryo-Electron Microscopy (cryo-EM). IUBMB Life 2018; 70:947-960. [DOI: 10.1002/iub.1916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Shreya Pal
- Amity University Haryana; Manesar Haryana India
| | | | - Sambasivan Eswaran
- Regional Centre for Biotechnology (Established by DBT, Govt. of India under the auspices of UNESCO); NCR Biotech Science Cluster; Faridabad Haryana India
| |
Collapse
|
42
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
43
|
The structural basis for filovirus neutralization by monoclonal antibodies. Curr Opin Immunol 2018; 53:196-202. [PMID: 29940415 DOI: 10.1016/j.coi.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
Filoviruses, including ebolaviruses and marburgviruses, are the causative agents of highly lethal disease outbreaks. The 2013-2016 Ebola virus outbreak was responsible for >28000 infections and >11000 deaths. Although there are currently no licensed vaccines or therapeutics for any filovirus-induced disease, monoclonal antibodies (mAbs) are among the most promising options for therapeutic development. Hundreds of mAbs have been isolated from human survivors of filovirus infections that target the viral spike glycoprotein (GP). The binding, neutralization, and cross-reactivity of many of these mAbs has been determined. Several mAbs have been characterized structurally, and this information has been crucial for strategizing therapeutic and vaccine design. Here we present an overview of the structural features of the neutralizing/protective epitopes on filovirus glycoproteins.
Collapse
|
44
|
Takamatsu Y, Kolesnikova L, Becker S. Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proc Natl Acad Sci U S A 2018; 115:1075-1080. [PMID: 29339477 PMCID: PMC5798334 DOI: 10.1073/pnas.1712263115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The intracytoplasmic movement of nucleocapsids is a crucial step in the life cycle of enveloped viruses. Determination of the viral components necessary for viral nucleocapsid transport competency is complicated by the dynamic and complex nature of nucleocapsid assembly and the lack of appropriate model systems. Here, we established a live-cell imaging system based on the ectopic expression of fluorescent Ebola virus (EBOV) fusion proteins, allowing the visualization and analysis of the movement of EBOV nucleocapsid-like structures with different protein compositions. Only three of the five EBOV nucleocapsid proteins-nucleoprotein, VP35, and VP24-were necessary and sufficient to form transport-competent nucleocapsid-like structures. The transport of these structures was found to be dependent on actin polymerization and to have dynamics that were undistinguishable from those of nucleocapsids in EBOV-infected cells. The intracytoplasmic movement of nucleocapsid-like structures was completely independent of the viral matrix protein VP40 and the viral surface glycoprotein GP. However, VP40 greatly enhanced the efficiency of nucleocapsid recruitment into filopodia, the sites of EBOV budding.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany
| | - Larissa Kolesnikova
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany;
- Thematic Translational Unit Emerging Infections, German Center of Infection Research (DZIF), 35037 Marburg, Germany
| |
Collapse
|
45
|
Abstract
Filoviruses are highly filamentous enveloped animal viruses that can cause severe haemorrhagic fevers. The filovirus ribonucleoprotein forms a highly organized double-layered helical nucleocapsid (NC) containing five different virally encoded proteins. The inner layer consists of NP, the RNA binding protein, complexed with the monopartite linear genome. A distinctive outer layer links individual NP subunits with bridges composed of VP24-VP35 heterodimers, which achieves condensation of the NP-RNA into tight helical coils. There are no vertical connections between the outer helical layers, explaining the flexibility of the NC and its ability to bend into tight curves without breaking the genomic RNA. These properties allow the formation of enveloped virions with varying polymorphisms, including single, linear, continuous, linked, comma-shaped and torroidal forms. Virion length is modular so that just one, or two or more genome copies may be present in each virion, producing polyploid particles. The matrix protein VP40, which drives budding and envelopment, is found in a layer adjacent to the inner cytoplasmic side of viral envelope and is arranged in a 5 nm lattice structure, but its exact symmetry is unclear. There is a constant low density gap between VP40 and the nucleocapsid, so that the latter is held rigidly centred on the long axis of the viral filament. This gap likely contains a region of flexible contacts between VP40 and the NC. The unique morphology of filoviruses may be related to high titre replication, their ease of transmission, and abilities to invade a wide range of host cells and tissues.
Collapse
|
46
|
Yu DS, Weng TH, Wu XX, Wang FX, Lu XY, Wu HB, Wu NP, Li LJ, Yao HP. The lifecycle of the Ebola virus in host cells. Oncotarget 2017; 8:55750-55759. [PMID: 28903457 PMCID: PMC5589696 DOI: 10.18632/oncotarget.18498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/29/2017] [Indexed: 01/01/2023] Open
Abstract
Ebola haemorrhagic fever causes deadly disease in humans and non-human primates resulting from infection with the Ebola virus (EBOV) genus of the family Filoviridae. However, the mechanisms of EBOV lifecycle in host cells, including viral entry, membrane fusion, RNP formation, GP-tetherin interaction, and VP40-inner leaflet association remain poorly understood. This review describes the biological functions of EBOV proteins and their roles in the lifecycle, summarizes the factors related to EBOV proteins or RNA expression throughout the different phases, and reviews advances with regards to the molecular events and mechanisms of the EBOV lifecycle. Furthermore, the review outlines the aspects remain unclear that urgently need to be solved in future research.
Collapse
Affiliation(s)
- Dong-Shan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Frederick X.C. Wang
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Dallas, TX, USA
| | - Xiang-Yun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hai-Bo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
47
|
Vesicular Stomatitis Virus Pseudotyped with Ebola Virus Glycoprotein Serves as a Protective, Noninfectious Vaccine against Ebola Virus Challenge in Mice. J Virol 2017; 91:JVI.00479-17. [PMID: 28615211 DOI: 10.1128/jvi.00479-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022] Open
Abstract
The recent Ebola virus (EBOV) epidemic in West Africa demonstrates the potential for a significant public health burden caused by filoviral infections. No vaccine or antiviral is currently FDA approved. To expand the vaccine options potentially available, we assessed protection conferred by an EBOV vaccine composed of vesicular stomatitis virus pseudovirions that lack native G glycoprotein (VSVΔG) and bear EBOV glycoprotein (GP). These pseudovirions mediate a single round of infection. Both single-dose and prime/boost vaccination regimens protected mice against lethal challenge with mouse-adapted Ebola virus (ma-EBOV) in a dose-dependent manner. The prime/boost regimen provided significantly better protection than a single dose. As N-linked glycans are thought to shield conserved regions of the EBOV GP receptor-binding domain (RBD), thereby blocking epitopes within the RBD, we also tested whether VSVΔG bearing EBOV GPs that lack GP1 N-linked glycans provided effective immunity against challenge with ma-EBOV or a more distantly related virus, Sudan virus. Using a prime/boost strategy, high doses of GP/VSVΔG partially or fully denuded of N-linked glycans on GP1 protected mice against ma-EBOV challenge, but these mutants were no more effective than wild-type (WT) GP/VSVΔG and did not provide cross protection against Sudan virus. As reported for other EBOV vaccine platforms, the protection conferred correlated with the quantity of EBOV GP-specific Ig produced but not with the production of neutralizing antibodies. Our results show that EBOV GP/VSVΔG pseudovirions serve as a successful vaccination platform in a rodent model of Ebola virus disease and that GP1 N-glycan loss does not influence immunogenicity or vaccination success.IMPORTANCE The West African Ebola virus epidemic was the largest to date, with more than 28,000 people infected. No FDA-approved vaccines are yet available, but in a trial vaccination strategy in West Africa, recombinant, infectious VSV encoding the Ebola virus glycoprotein effectively prevented virus-associated disease. VSVΔG pseudovirion vaccines may prove as efficacious and have better safety, but they have not been tested to date. Thus, we tested the efficacy of VSVΔG pseudovirions bearing Ebola virus glycoprotein as a vaccine platform. We found that wild-type Ebola virus glycoprotein, in the context of this platform, provides robust protection of EBOV-challenged mice. Further, we found that removal of the heavy glycan shield surrounding conserved regions of the glycoprotein does not enhance vaccine efficacy.
Collapse
|
48
|
Kirchdoerfer RN, Wasserman H, Amarasinghe GK, Saphire EO. Filovirus Structural Biology: The Molecules in the Machine. Curr Top Microbiol Immunol 2017; 411:381-417. [PMID: 28795188 DOI: 10.1007/82_2017_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this chapter, we describe what is known thus far about the structures and functions of the handful of proteins encoded by filovirus genomes. Amongst the fascinating findings of the last decade is the plurality of functions and structures that these polypeptides can adopt. Many of the encoded proteins can play multiple, distinct roles in the virus life cycle, although the mechanisms by which these functions are determined and controlled remain mostly veiled. Further, some filovirus proteins are multistructural: adopting different oligomeric assemblies and sometimes, different tertiary structures to achieve their separate, and equally essential functions. Structures, and the functions they dictate, are described for components of the nucleocapsid, the matrix, and the surface and secreted glycoproteins.
Collapse
Affiliation(s)
- Robert N Kirchdoerfer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hal Wasserman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA, 92037, USA.
| |
Collapse
|