1
|
Zheng W, Cheng S, Liu F, Yu X, Zhao Y, Yang F, Thongpoon S, Roobsoong W, Sattabongkot J, Luo E, Cui L, Cao Y. Immunogenicity and transmission-blocking potential of quiescin sulfhydryl oxidase in Plasmodium vivax. Front Cell Infect Microbiol 2024; 14:1451063. [PMID: 39258252 PMCID: PMC11385281 DOI: 10.3389/fcimb.2024.1451063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
Background Transmission-blocking vaccines (TBVs) can effectively prevent the community's spread of malaria by targeting the antigens of mosquito sexual stage parasites. At present, only a few candidate antigens have demonstrated transmission-blocking activity (TBA) potential in P. vivax. Quiescin-sulfhydryl oxidase (QSOX) is a sexual stage protein in the rodent malaria parasite Plasmodium berghei and is associated with a critical role in protein folding by introducing disulfides into unfolded reduced proteins. Here, we reported the immunogenicity and transmission-blocking potency of the PvQSOX in P. vivax. Methods and findings The full-length recombinant PvQSOX protein (rPvQSOX) was expressed in the Escherichia coli expression system. The anti-rPvQSOX antibodies were generated following immunization with the rPvQSOX in rabbits. A parasite integration of the pvqsox gene into the P. berghei pbqsox gene knockout genome was developed to express full-length PvQSOX protein in P. berghei (Pv-Tr-PbQSOX). In western blot, the anti-rPvQSOX antibodies recognized the native PvQSOX protein expressed in transgenic P. berghei gametocyte and ookinete. In indirect immunofluorescence assays, the fluorescence signal was detected in the sexual stages, including gametocyte, gamete, zygote, and ookinete. Anti-rPvQSOX IgGs obviously inhibited the ookinetes and oocysts development both in vivo and in vitro using transgenic parasites. Direct membrane feeding assays of anti-rPvQSOX antibodies were conducted using four field P. vivax isolates (named isolates #1-4) in Thailand. Oocyst density in mosquitoes was significantly reduced by 32.00, 85.96, 43.52, and 66.03% with rabbit anti-rPvQSOX antibodies, respectively. The anti-rPvQSOX antibodies also showed a modest reduction of infection prevalence by 15, 15, 20, and 22.22%, respectively, as compared to the control, while the effect was insignificant. The variation in the DMFA results may be unrelated to the genetic polymorphisms. Compared to the P.vivax Salvador (Sal) I strain sequences, the pvqsox in isolate #1 showed no amino acid substitution, whereas isolates #2, #3, and #4 all had the M361I substitution. Conclusions Our results suggest that PvQSOX could serve as a potential P. vivax TBVs candidate, which warrants further evaluation and optimization.
Collapse
Affiliation(s)
- Wenqi Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Clinical Laboratory Medicine, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, China
| | - Shitong Cheng
- National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xinxin Yu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Salaya, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Salaya, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Salaya, Thailand
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Miura K, Flores-Garcia Y, Long CA, Zavala F. Vaccines and monoclonal antibodies: new tools for malaria control. Clin Microbiol Rev 2024; 37:e0007123. [PMID: 38656211 PMCID: PMC11237600 DOI: 10.1128/cmr.00071-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
SUMMARYMalaria remains one of the biggest health problems in the world. While significant reductions in malaria morbidity and mortality had been achieved from 2000 to 2015, the favorable trend has stalled, rather significant increases in malaria cases are seen in multiple areas. In 2022, there were 249 million estimated cases, and 608,000 malaria-related deaths, mostly in infants and children aged under 5 years, globally. Therefore, in addition to the expansion of existing anti-malarial control measures, it is critical to develop new tools, such as vaccines and monoclonal antibodies (mAbs), to fight malaria. In the last 2 years, the first and second malaria vaccines, both targeting Plasmodium falciparum circumsporozoite proteins (PfCSP), have been recommended by the World Health Organization to prevent P. falciparum malaria in children living in moderate to high transmission areas. While the approval of the two malaria vaccines is a considerable milestone in vaccine development, they have much room for improvement in efficacy and durability. In addition to the two approved vaccines, recent clinical trials with mAbs against PfCSP, blood-stage vaccines against P. falciparum or P. vivax, and transmission-blocking vaccine or mAb against P. falciparum have shown promising results. This review summarizes the development of the anti-PfCSP vaccines and mAbs, and recent topics in the blood- and transmission-blocking-stage vaccine candidates and mAbs. We further discuss issues of the current vaccines and the directions for the development of next-generation vaccines.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Zhang B, Feng H, Zhao Y, Zhang D, Yu X, Li Y, Zeng Y, Thongpoon S, Roobsoong W, Wu Y, Liu F, Sattabongkot J, Min H, Cui L, Cao Y. Evaluation of transmission-blocking potential of PvPSOP25 using transgenic murine malaria parasite and clinical isolates. PLoS Negl Trop Dis 2024; 18:e0012231. [PMID: 38865344 PMCID: PMC11168624 DOI: 10.1371/journal.pntd.0012231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Malaria transmission-blocking vaccines (TBVs) aim to inhibit malaria parasite development in mosquitoes and prevent further transmission to the human host. The putative-secreted ookinete protein 25 (PSOP25), highly conserved in Plasmodium spp., is a promising TBV target. Here, we investigated PvPSOP25 from P. vivax as a TBV candidate using transgenic murine parasite P. berghei and clinical P. vivax isolates. METHODS AND FINDINGS A transgenic P. berghei line expressing PvPSOP25 (TrPvPSOP25Pb) was generated. Full-length PvPSOP25 was expressed in the yeast Pichia pastoris and used to immunize mice to obtain anti-rPvPSOP25 sera. The transmission-blocking activity of the anti-rPvPSOP25 sera was evaluated through in vitro assays and mosquito-feeding experiments. The antisera generated by immunization with rPvPSOP25 specifically recognized the native PvPSOP25 antigen expressed in TrPvPSOP25Pb ookinetes. In vitro assays showed that the immune sera significantly inhibited exflagellation and ookinete formation of the TrPvPSOP25Pb parasite. Mosquitoes feeding on mice infected with the transgenic parasite and passively transferred with the anti-rPvPSOP25 sera showed a 70.7% reduction in oocyst density compared to the control group. In a direct membrane feeding assay conducted with five clinical P. vivax isolates, the mouse anti-rPvPSOP25 antibodies significantly reduced the oocyst density while showing a negligible influence on mosquito infection prevalence. CONCLUSIONS This study supported the feasibility of transgenic murine malaria parasites expressing P. vivax antigens as a useful tool for evaluating P. vivax TBV candidates. Meanwhile, the moderate transmission-reducing activity of the generated anti-rPvPSOP25 sera necessitates further research to optimize its efficacy.
Collapse
Affiliation(s)
- Biying Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Di Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xinxin Yu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yusi Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ying Zeng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Yudi Wu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Yamamoto Y, Fabbri C, Okuhara D, Takagi R, Kawabata Y, Katayama T, Iyori M, Hasyim AA, Sakamoto A, Mizukami H, Shida H, Lopes S, Yoshida S. A two-dose viral-vectored Plasmodium vivax multistage vaccine confers durable protection and transmission-blockade in a pre-clinical study. Front Immunol 2024; 15:1372584. [PMID: 38745665 PMCID: PMC11091281 DOI: 10.3389/fimmu.2024.1372584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.
Collapse
Affiliation(s)
- Yutaro Yamamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Camila Fabbri
- Instituto Leônidas & Maria Deane/Fiocruz Amazônia, Laboratório de Diagnóstico e Controle e Doenças Infecciosas da Amazônia, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Unidade de Pesquisa Clínica Carlos Borborema - UPCCB, Manaus, Amazonas, Brazil
| | - Daiki Okuhara
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Rina Takagi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuna Kawabata
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takuto Katayama
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mitsuhiro Iyori
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Ammar A. Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Jichi Medical University, Shimono, Tochigi, Japan
| | - Hisatoshi Shida
- Laboratory of Primate Model, Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, Kyoto, Japan
| | - Stefanie Lopes
- Instituto Leônidas & Maria Deane/Fiocruz Amazônia, Laboratório de Diagnóstico e Controle e Doenças Infecciosas da Amazônia, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Unidade de Pesquisa Clínica Carlos Borborema - UPCCB, Manaus, Amazonas, Brazil
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
5
|
Costa-Gouvea TBL, Françoso KS, Marques RF, Gimenez AM, Faria ACM, Cariste LM, Dominguez MR, Vasconcelos JRC, Nakaya HI, Silveira ELV, Soares IS. Poly I:C elicits broader and stronger humoral and cellular responses to a Plasmodium vivax circumsporozoite protein malaria vaccine than Alhydrogel in mice. Front Immunol 2024; 15:1331474. [PMID: 38650939 PMCID: PMC11033515 DOI: 10.3389/fimmu.2024.1331474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.
Collapse
Affiliation(s)
- Tiffany B. L. Costa-Gouvea
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Katia S. Françoso
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana C. M. Faria
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo M. Cariste
- Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Ronnie C. Vasconcelos
- Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| | - Helder I. Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Marques RF, Gimenez AM, Caballero O, Simpson A, Salazar AM, Amino R, Godin S, Gazzinelli RT, Soares IS. Non-clinical toxicity and immunogenicity evaluation of a Plasmodium vivax malaria vaccine using Poly-ICLC (Hiltonol®) as adjuvant. Vaccine 2024; 42:2394-2406. [PMID: 38448321 DOI: 10.1016/j.vaccine.2024.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Malaria caused byPlasmodium vivaxis a pressing public health problem in tropical and subtropical areas.However, little progress has been made toward developing a P. vivaxvaccine, with only three candidates being tested in clinical studies. We previously reported that one chimeric recombinant protein (PvCSP-All epitopes) containing the conserved C-terminus of the P. vivax Circumsporozoite Protein (PvCSP), the three variant repeat domains, and aToll-like receptor-3 agonist,Poly(I:C), as an adjuvant (polyinosinic-polycytidylic acid, a dsRNA analog mimicking viral RNA), elicits strong antibody-mediated immune responses in mice to each of the three allelic forms of PvCSP. In the present study, a pre-clinical safety evaluation was performed to identify potential local and systemic toxic effects of the PvCSP-All epitopes combined with the Poly-ICLC (Poly I:C plus poly-L-lysine, Hiltonol®) or Poly-ICLC when subcutaneously injected into C57BL/6 mice and New Zealand White Rabbits followed by a 21-day recovery period. Overall, all observations were considered non-adverse and were consistent with the expected inflammatory response and immune stimulation following vaccine administration. High levels of vaccine-induced specific antibodies were detected both in mice and rabbits. Furthermore, mice that received the vaccine formulation were protected after the challenge with Plasmodium berghei sporozoites expressing CSP repeats from P. vivax sporozoites (Pb/Pv-VK210). In conclusion, in these non-clinical models, repeated dose administrations of the PvCSP-All epitopes vaccine adjuvanted with a Poly-ICLC were immunogenic, safe, and well tolerated.
Collapse
Affiliation(s)
- Rodolfo F Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Alba M Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | | | | | - Andres M Salazar
- Oncovir, Inc. Washington, Washington, DC, United States of America
| | - Rogerio Amino
- Department of Parasites and Insect Vectors, Pasteur Institute, Paris, France
| | - Steven Godin
- Smithers Avanza Toxicology Services, Gaithersburg, MD, United States of America
| | - Ricardo T Gazzinelli
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Vargas-Parada L. In search of a vaccine for Plasmodium vivax malaria. Nature 2023; 618:S32-S33. [PMID: 37380683 DOI: 10.1038/d41586-023-02053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
|
8
|
Nourani L, Mehrizi AA, Pirahmadi S, Pourhashem Z, Asadollahi E, Jahangiri B. CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105419. [PMID: 36842543 DOI: 10.1016/j.meegid.2023.105419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Malaria as vector-borne disease remains important health concern with over 200 million cases globally. Novel antimalarial medicines and more effective vaccines must be developed to eliminate and eradicate malaria. Appraisal of preceding genome editing approaches confirmed the CRISPR/Cas nuclease system as a novel proficient genome editing system and a tool for species-specific diagnosis, and drug resistance researches for Plasmodium species, and gene drive to control Anopheles population. CRISPR/Cas technology, as a handy tool for genome editing can be justified for the production of transgenic malaria parasites like Plasmodium transgenic lines expressing Cas9, chimeric Plasmodium transgenic lines, knockdown and knockout transgenic parasites, and transgenic parasites expressing alternative alleles, and also mutant strains of Anopheles such as only male mosquito populations, generation of wingless mosquitoes, and creation of knock-out/ knock-in mutants. Though, the incorporation of traditional methods and novel molecular techniques could noticeably enhance the quality of results. The striking development of a CRISPR/Cas-based diagnostic kit that can specifically diagnose the Plasmodium species or drug resistance markers is highly required in malaria settings with affordable cost and high-speed detection. Furthermore, the advancement of genome modifications by CRISPR/Cas technologies resolves contemporary restrictions to culturing, maintaining, and analyzing these parasites, and the aptitude to investigate parasite genome functions opens up new vistas in the better understanding of pathogenesis.
Collapse
Affiliation(s)
- Leila Nourani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Pourhashem
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Elahe Asadollahi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Babak Jahangiri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
10
|
Bai J, Liu F, Yang F, Zhao Y, Jia X, Thongpoon S, Roobsoog W, Sattabongkot J, Zheng L, Cui Z, Zheng W, Cui L, Cao Y. Evaluation of transmission-blocking potential of Pv22 using clinical Plasmodium vivax infections and transgenic Plasmodium berghei. Vaccine 2023; 41:555-563. [PMID: 36503858 PMCID: PMC9812905 DOI: 10.1016/j.vaccine.2022.11.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Antigens expressed during the sexual development of malaria parasites are transmission-blocking vaccine (TBV) targets. Pb22, a protein expressed and localized to the plasma membrane of gametes and ookinetes in Plasmodium berghei, is an excellent TBV candidate. Here, we evaluated the TB potential of the Plasmodium vivax ortholog Pv22 using a transgenic P. berghei parasite line and P. vivax clinical isolates. The full-length recombinant Pv22 (rPv22) protein was produced and used to immunize mice and rabbits to obtain antibodies. We generated a transgenic P. berghei line (TrPv22Pb) by inserting the pv22 gene into the pb22 locus and showed that Pv22 expression completely rescued the defects in male gametogenesis of the pb22 deletion parasite. Since Pv22 in the transgenic parasite showed similar expression and localization patterns to Pb22, we used the TrPv22Pb parasite as a surrogate to evaluate the TB potential of Pv22. In mosquito feeding assays, mosquitoes feeding on rPv22-immunized mice infected with TrPv22Pb parasites showed a 49.3-53.3 % reduction in the oocyst density compared to the control group. In vitro assays showed that the rPv22 immune sera significantly inhibited exflagellation and ookinete formation of the TrPv22Pb parasites. In a direct membrane feeding assay using three clinical P. vivax isolates, the rabbit anti-rPv22 antibodies also significantly decreased the oocyst density by 53.7, 30.2, and 26.2 %, respectively. This study demonstrated the feasibility of using transgenic P. berghei parasites expressing P. vivax antigens as a potential tool to evaluate TBV candidates. However, the much weaker TB activity of Pv22 obtained from two complementary assays suggest that Pv22 may not be a promising TBV candidate for P. vivax.
Collapse
Affiliation(s)
- Jie Bai
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xitong Jia
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Sataporn Thongpoon
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Wanlapa Roobsoog
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Zeshi Cui
- College of Pharmacy, China Medical University, Shenyang, China
| | - Wenqi Zheng
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Moita D, Maia TG, Duarte M, Andrade CM, Albuquerque IS, Dwivedi A, Silva JC, González-Céron L, Janse CJ, Mendes AM, Prudêncio M. A genetically modified Plasmodium berghei parasite as a surrogate for whole-sporozoite vaccination against P. vivax malaria. NPJ Vaccines 2022; 7:163. [PMID: 36526627 PMCID: PMC9755804 DOI: 10.1038/s41541-022-00585-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Two malaria parasite species, Plasmodium falciparum (Pf) and P. vivax (Pv) are responsible for most of the disease burden caused by malaria. Vaccine development against this disease has focused mainly on Pf. Whole-sporozoite (WSp) vaccination, targeting pre-erythrocytic (PE) parasite stages, is a promising strategy for immunization against malaria and several PfWSp-based vaccine candidates are currently undergoing clinical evaluation. In contrast, no WSp candidates have been developed for Pv, mainly due to constraints in the production of Pv sporozoites in the laboratory. Recently, we developed a novel approach for WSp vaccination against Pf based on the use of transgenic rodent P. berghei (Pb) sporozoites expressing immunogens of this human-infective parasite. We showed that this platform can be used to deliver PE Pf antigens, eliciting both targeted humoral responses and cross-species cellular immune responses against Pf. Here we explored this WSp platform for the delivery of Pv antigens. As the Pv circumsporozoite protein (CSP) is a leading vaccine candidate antigen, we generated a transgenic Pb parasite, PbviVac, that, in addition to its endogenous PbCSP, expresses PvCSP under the control of a strictly PE promoter. Immunofluorescence microscopy analyses confirmed that both the PbCSP and the PvCSP antigens are expressed in PbviVac sporozoites and liver stages and that PbviVac sporozoite infectivity of hepatic cells is similar to that of its wild-type Pb counterpart. Immunization of mice with PbviVac sporozoites elicits the production of anti-PvCSP antibodies that efficiently recognize and bind to Pv sporozoites. Our results warrant further development and evaluation of PbviVac as a surrogate for WSp vaccination against Pv malaria.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Teresa G Maia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Duarte
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Carolina M Andrade
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Inês S Albuquerque
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lilia González-Céron
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
12
|
Kim MJ, Chu KB, Kang HJ, Yoon KW, Eom GD, Mao J, Lee SH, Subbiah J, Kang SM, Moon EK, Quan FS. Protective Immunity Induced by Immunization with Baculovirus, Virus-like Particle, and Vaccinia Virus Expressing the AMA1 of Plasmodium berghei. Biomedicines 2022; 10:biomedicines10092289. [PMID: 36140395 PMCID: PMC9496152 DOI: 10.3390/biomedicines10092289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Heterologous prime–boost immunization regimens using various vaccine platforms demonstrated promising results against infectious diseases. Here, mice were sequentially immunized with the recombinant baculovirus (rBV), virus-like particle (VLP), and recombinant vaccinia virus (rVV) vaccines expressing the Plasmodium berghei apical membrane antigen 1 (AMA1) for protective efficacy evaluation. The rBV_V_rVV heterologous immunization regimen elicited high levels of parasite-specific IgG, IgG2a, and IgG2b antibody responses in sera. Upon P. berghei challenge infection, proliferations of germinal center B cells in the inguinal lymph nodes, as well as blood CD4+ and CD8+ T cells were induced. More importantly, rBV_V_rVV immunization significantly diminished the parasitemia and prevented drastic bodyweight loss in mice post-challenge infection with P. berghei. Our findings revealed that immunization with rBV, VLP, and rVV expressing the AMA1 conferred protection against P. berghei infection, providing evidence for the potential implementation of this strategy.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ki-Back Chu
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jeeva Subbiah
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
13
|
Morales-Hernández S, Ugidos-Damboriena N, López-Sagaseta J. Self-Assembling Protein Nanoparticles in the Design of Vaccines: 2022 Update. Vaccines (Basel) 2022; 10:1447. [PMID: 36146525 PMCID: PMC9505534 DOI: 10.3390/vaccines10091447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines constitute a pillar in the prevention of infectious diseases. The unprecedented emergence of novel immunization strategies due to the COVID-19 pandemic has again positioned vaccination as a pivotal measure to protect humankind and reduce the clinical impact and socioeconomic burden worldwide. Vaccination pursues the ultimate goal of eliciting a protective response in immunized individuals. To achieve this, immunogens must be efficiently delivered to prime the immune system and produce robust protection. Given their safety, immunogenicity, and flexibility to display varied and native epitopes, self-assembling protein nanoparticles represent one of the most promising immunogen delivery platforms. Currently marketed vaccines against the human papillomavirus, for instance, illustrate the potential of these nanoassemblies. This review is intended to provide novelties, since 2015, on the ground of vaccine design and self-assembling protein nanoparticles, as well as a comparison with the current emergence of mRNA-based vaccines.
Collapse
Affiliation(s)
- Sergio Morales-Hernández
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed-Public University of Navarra (UPNA), 31008 Pamplona, Spain
- Navarra University Hospital, 31008 Pamplona, Spain
| | - Nerea Ugidos-Damboriena
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed-Public University of Navarra (UPNA), 31008 Pamplona, Spain
- Navarra University Hospital, 31008 Pamplona, Spain
| | - Jacinto López-Sagaseta
- Unit of Protein Crystallography and Structural Immunology, Navarrabiomed-Public University of Navarra (UPNA), 31008 Pamplona, Spain
- Navarra University Hospital, 31008 Pamplona, Spain
| |
Collapse
|
14
|
Thiam LG, Mangou K, Ba A, Mbengue A, Bei AK. Leveraging genome editing to functionally evaluate Plasmodium diversity. Trends Parasitol 2022; 38:558-571. [PMID: 35469746 DOI: 10.1016/j.pt.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The ambitious goal of malaria elimination requires an in-depth understanding of the parasite's biology to counter the growing threat of antimalarial resistance and immune evasion. Timely assessment of the functional impact of antigenic diversity in the early stages of vaccine development will be critical for achieving the goal of malaria control, elimination, and ultimately eradication. Recent advances in targeted genome editing enabled the functional validation of resistance-associated markers in Plasmodium falciparum, the deadliest malaria-causing pathogen and strain-specific immune neutralization. This review explores recent advances made in leveraging genome editing to aid the functional evaluation of Plasmodium diversity and highlights how these techniques can assist in prioritizing both therapeutic and vaccine candidates.
Collapse
Affiliation(s)
- Laty Gaye Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Khadidiatou Mangou
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amy K Bei
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA.
| |
Collapse
|
15
|
White M, Chitnis CE. Potential role of vaccines in elimination of Plasmodium vivax. Parasitol Int 2022; 90:102592. [PMID: 35489701 DOI: 10.1016/j.parint.2022.102592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
The unique biology of Plasmodium vivax, with its ability to form latent hypnozoites in the liver stage and the early appearance of gametocytes during blood stage infection, makes it difficult to target for elimination with standard malaria control tools. Here, we use modelling studies to demonstrate that vaccines that target different stages of P. vivax could greatly assist efforts to eliminate P. vivax. Combination of vaccines that target different P. vivax life cycle stages may be required to achieve high efficacy. Our simulations demonstrate that repeated rounds of mass vaccination with multi-stage vaccines can help achieve pre-elimination levels of P. vivax in both low and high transmission settings. We review the status of global efforts to develop vaccines for P. vivax malaria. We describe the status of the leading P. vivax vaccine candidates and share some thoughts on the prospects for availability of an effective vaccine for P. vivax malaria.
Collapse
Affiliation(s)
- Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Université de Paris, Paris, France
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, Paris, France.
| |
Collapse
|
16
|
Shende P, Gupta S. Role of lipopolysaccharides in potential applications of nanocarrier systems. Curr Pharm Des 2021; 28:1000-1010. [PMID: 34818999 DOI: 10.2174/1381612827666211124094302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lipopolysaccharides (LPS) are considered the main molecular component in the outer membrane of gram-negative bacteria. The LPS molecule in the bacterial cell wall acts as a primary physical barrier and protects gram-negative bacteria from the surrounding environment. LPS (endotoxins) show immunomodulatory therapeutic properties as well as toxicity to the host cell, whereas potential applications encompass. OBJECTIVE This review article aims to describe the recent developments of lipopolysaccharides in nanocarrier systems for various applications such as vaccination, cancer chemotherapy and immune stimulants action. Different nanocarriers like cubosomes, niosomes, dendrimers and metal nanoparticles used in the delivery of actives are employed to decorate lipopolysaccharide molecules superficially. METHODS A narrative review of all the relevant papers known to the author was conducted. CONCLUSION Commercially available lipid nanoparticles contribute to many advances as promising nanocarriers in cancer therapy and are used as a vaccine adjuvant by improving the immune response due to their properties such as size, shape, biocompatibility, and biodegradability. Whereas lipopolysaccharide-decorated nanoparticles change the host's tolerability and increase the effectiveness of molecule in cancer immunotherapy. These nanoconjugate systems enhance overall immunogenic response and effectiveness in vaccine immunotherapy and targeted therapy, not only limited to humans application but also for poultry and aquaculture. Newer opportunities using lipopolysaccharides for the treatment and management of diseases with unique characteristics like the presence of lipoprotein that act as an alternative for bacterial infections over conventional dosage forms.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai. India
| | - Shubham Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai. India
| |
Collapse
|
17
|
Gimenez AM, Salman AM, Marques RF, López-Camacho C, Harrison K, Kim YC, Janse CJ, Soares IS, Reyes-Sandoval A. A universal vaccine candidate against Plasmodium vivax malaria confers protective immunity against the three PvCSP alleles. Sci Rep 2021; 11:17928. [PMID: 34504134 PMCID: PMC8429696 DOI: 10.1038/s41598-021-96986-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria is a highly prevalent parasitic disease in regions with tropical and subtropical climates worldwide. Among the species of Plasmodium causing human malaria, P. vivax is the second most prevalent and the most geographically widespread species. A major target of a pre-erythrocytic vaccine is the P. vivax circumsporozoite protein (PvCSP). In previous studies, we fused two recombinant proteins representing three allelic variants of PvCSP (VK210, VK247 and P. vivax-like) to the mumps virus nucleocapsid protein to enhance immune responses against PvCSP. The objective of the present study was to evaluate the protective efficacy of these recombinants in mice challenged with transgenic P. berghei parasites expressing PvCSP allelic variants. Formulations containing Poly (I:C) or Montanide ISA720 as adjuvants elicited high and long-lasting IgG antibody titers specific to each PvCSP allelic variant. Immunized mice were challenged with two existing chimeric P. berghei parasite lines expressing PvCSP-VK210 and PvCSP-VK247. We also developed a novel chimeric line expressing the third allelic variant, PvCSP-P. vivax-like, as a new murine immunization-challenge model. Our formulations conferred partial protection (significant delay in the time to reach 1% parasitemia) against challenge with the three chimeric parasites. Our results provide insights into the development of a vaccine targeting multiple strains of P. vivax.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ahmed M Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Rodolfo F Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - César López-Camacho
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Kate Harrison
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Young Chan Kim
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chris J Janse
- Department of Parasitology, Leiden Malaria Research Group, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK. .,Instituto Politécnico Nacional, IPN, Av. Luis Enrique Erro S/N. Unidad Adolfo López Mateos, Zacatenco, CP 07738, Mexico City, Mexico.
| |
Collapse
|
18
|
Virus-Like Particle Vaccines Against Respiratory Viruses and Protozoan Parasites. Curr Top Microbiol Immunol 2021; 433:77-106. [PMID: 33650036 DOI: 10.1007/82_2021_232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The field of vaccinology underwent massive advances over the past decades with the introduction of virus-like particles (VLPs), a supra-molecular nanoparticle vaccine platform that resembles viral structures without the ability to replicate in hosts. This innovative approach has been remarkably effective, as evidenced by its profound immunogenicity and safety. These highly desirable intrinsic properties enabled their further development as vaccines against a multitude of diseases. To date, several VLP-based vaccines have already been commercialized and many more are undergoing clinical evaluation prior to FDA approval. However, efficacious vaccines against a plethora of pathogens are still lacking, which imposes a tremendous socioeconomic burden and continues to threaten public health throughout the globe. This is especially the case for several respiratory pathogens and protozoan parasites. In this review, we briefly describe the fundamentals of VLP vaccines and the unique properties that enable these to be such valuable vaccine candidates and summarize current advances in VLP-based vaccines targeting respiratory and parasitic diseases of global importance.
Collapse
|
19
|
Kolli SK, Salman AM, Ramesar J, Chevalley-Maurel S, Kroeze H, Geurten FGA, Miyazaki S, Mukhopadhyay E, Marin-Mogollon C, Franke-Fayard B, Hill AVS, Janse CJ. Screening of viral-vectored P. falciparum pre-erythrocytic candidate vaccine antigens using chimeric rodent parasites. PLoS One 2021; 16:e0254498. [PMID: 34252120 PMCID: PMC8274855 DOI: 10.1371/journal.pone.0254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022] Open
Abstract
To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.
Collapse
Affiliation(s)
- Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed M. Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Fiona G. A. Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ekta Mukhopadhyay
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Adrian V. S. Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
20
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
21
|
Miyazaki Y, Marin-Mogollon C, Imai T, Mendes AM, van der Laak R, Sturm A, Geurten FJA, Miyazaki S, Chevalley-Maurel S, Ramesar J, Kolli SK, Kroeze H, van Schuijlenburg R, Salman AM, Wilder BK, Reyes-Sandoval A, Dechering KJ, Prudêncio M, Janse CJ, Khan SM, Franke-Fayard B. Generation of a Genetically Modified Chimeric Plasmodium falciparum Parasite Expressing Plasmodium vivax Circumsporozoite Protein for Malaria Vaccine Development. Front Cell Infect Microbiol 2020; 10:591046. [PMID: 33392104 PMCID: PMC7773900 DOI: 10.3389/fcimb.2020.591046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
Chimeric rodent malaria parasites with the endogenous circumsporozoite protein (csp) gene replaced with csp from the human parasites Plasmodium falciparum (Pf) and P. vivax (Pv) are used in preclinical evaluation of CSP vaccines. Chimeric rodent parasites expressing PfCSP have also been assessed as whole sporozoite (WSP) vaccines. Comparable chimeric P. falciparum parasites expressing CSP of P. vivax could be used both for clinical evaluation of vaccines targeting PvCSP in controlled human P. falciparum infections and in WSP vaccines targeting P. vivax and P. falciparum. We generated chimeric P. falciparum parasites expressing both PfCSP and PvCSP. These Pf-PvCSP parasites produced sporozoite comparable to wild type P. falciparum parasites and expressed PfCSP and PvCSP on the sporozoite surface. Pf-PvCSP sporozoites infected human hepatocytes and induced antibodies to the repeats of both PfCSP and PvCSP after immunization of mice. These results support the use of Pf-PvCSP sporozoites in studies optimizing vaccines targeting PvCSP.
Collapse
Affiliation(s)
- Yukiko Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Takashi Imai
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands.,Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Fiona J A Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Surendra K Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
22
|
Soares IF, López-Camacho C, Rodrigues-da-Silva RN, da Silva Matos A, de Oliveira Baptista B, Totino PRR, de Souza RM, Harrison K, Gimenez AM, de Freitas EO, Kim YC, Oliveira-Ferreira J, Daniel-Ribeiro CT, Reyes-Sandoval A, Pratt-Riccio LR, Lima-Junior JDC. Recombinant Plasmodium vivax circumsporozoite surface protein allelic variants: antibody recognition by individuals from three communities in the Brazilian Amazon. Sci Rep 2020; 10:14020. [PMID: 32820195 PMCID: PMC7441389 DOI: 10.1038/s41598-020-70893-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 08/02/2020] [Indexed: 12/31/2022] Open
Abstract
Circumsporozoite protein (CSP) variants of P. vivax, besides having variations in the protein repetitive portion, can differ from each other in aspects such as geographical distribution, intensity of transmission, vectorial competence and immune response. Such aspects must be considered to P. vivax vaccine development. Therefore, we evaluated the immunogenicity of novel recombinant proteins corresponding to each of the three P. vivax allelic variants (VK210, VK247 and P. vivax-like) and of the C-terminal region (shared by all PvCSP variants) in naturally malaria-exposed populations of Brazilian Amazon. Our results demonstrated that PvCSP-VK210 was the major target of humoral immune response in studied population, presenting higher frequency and magnitude of IgG response. The IgG subclass profile showed a prevalence of cytophilic antibodies (IgG1 and IgG3), that seem to have an essential role in protective immune response. Differently of PvCSP allelic variants, antibodies elicited against C-terminal region of protein did not correlate with epidemiological parameters, bringing additional evidence that humoral response against this protein region is not essential to protective immunity. Taken together, these findings increase the knowledge on serological response to distinct PvCSP allelic variants and may contribute to the development of a global and effective P. vivax vaccine.
Collapse
Affiliation(s)
- Isabela Ferreira Soares
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - César López-Camacho
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Rodrigo Nunes Rodrigues-da-Silva
- Laboratório de Tecnologia em Anticorpos Monoclonais, Instituto de Tecnologia de Imunobiológicos, Fiocruz, Rio de Janeiro, Brazil
| | - Ada da Silva Matos
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, (Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo Medeiros de Souza
- Centro de Pesquisa em Doenças Infecciosas, Centro Multidisciplinar, Campus Floresta, Universidade Federal do Acre, Rio Branco, Brazil
| | - Kate Harrison
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Alba Marina Gimenez
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Elisângela Oliveira de Freitas
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Young Chan Kim
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Joseli Oliveira-Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, (Fiocruz), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
23
|
Kim YC, Dema B, Rodriguez-Garcia R, López-Camacho C, Leoratti FMS, Lall A, Remarque EJ, Kocken CHM, Reyes-Sandoval A. Evaluation of Chimpanzee Adenovirus and MVA Expressing TRAP and CSP from Plasmodium cynomolgi to Prevent Malaria Relapse in Nonhuman Primates. Vaccines (Basel) 2020; 8:vaccines8030363. [PMID: 32640702 PMCID: PMC7564164 DOI: 10.3390/vaccines8030363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Plasmodium vivax is the world’s most widely distributed human malaria parasite, with over 2.8 billion people at risk in Asia, the Americas, and Africa. The 80–90% new P. vivax malaria infections are due to relapses which suggest that a vaccine with high efficacy against relapses by prevention of hypnozoite formation could lead to a significant reduction in the prevalence of P. vivax infections. Here, we describe the development of new recombinant ChAdOx1 and MVA vectors expressing P. cynomolgi Thrombospondin Related Adhesive Protein (PcTRAP) and the circumsporozoite protein (PcCSP). Both were shown to be immunogenic in mice prior to their assessment in rhesus macaques. We confirmed good vaccine-induced humoral and cellular responses after prime-boost vaccination in rhesus macaques prior to sporozoite challenge. Results indicate that there were no significant differences between mock-control and vaccinated animals after challenge, in terms of protective efficacy measured as the time taken to 1st patency, or as number of relapses. This suggests that under the conditions tested, the vaccination with PcTRAP and PcCSP using ChAdOx1 or MVA vaccine platforms do not protect against pre-erythrocytic malaria or relapses despite good immunogenicity induced by the viral-vectored vaccines.
Collapse
Affiliation(s)
- Young Chan Kim
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
| | - Barbara Dema
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
| | - Roberto Rodriguez-Garcia
- Department of Parasitology, Biomedical Primate Research Centre (BPRC), 2288 GJ Rijswijk, The Netherlands; (R.R.-G.); (E.J.R.); (C.H.M.K.)
| | - César López-Camacho
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
| | - Fabiana M. S. Leoratti
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
| | - Amar Lall
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre (BPRC), 2288 GJ Rijswijk, The Netherlands; (R.R.-G.); (E.J.R.); (C.H.M.K.)
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre (BPRC), 2288 GJ Rijswijk, The Netherlands; (R.R.-G.); (E.J.R.); (C.H.M.K.)
| | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK; (Y.C.K.); (B.D.); (C.L.-C.); (F.M.S.L.); (A.L.)
- Correspondence: ; Tel.: +44-(0)-1865-287811
| |
Collapse
|
24
|
A Multistage Formulation Based on Full-Length CSP and AMA-1 Ectodomain of Plasmodium vivax Induces High Antibody Titers and T-cells and Partially Protects Mice Challenged with a Transgenic Plasmodium berghei Parasite. Microorganisms 2020; 8:microorganisms8060916. [PMID: 32560380 PMCID: PMC7356588 DOI: 10.3390/microorganisms8060916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 01/23/2023] Open
Abstract
Infections with Plasmodium vivax are predominant in the Americas, representing 75% of malaria cases. Previously perceived as benign, malaria vivax is, in fact, a highly debilitating and economically important disease. Considering the high complexity of the malaria parasite life cycle, it has been hypothesized that an effective vaccine formulation against Plasmodium should contain multiple antigens expressed in different parasite stages. Based on that, we analyzed a recombinant P. vivax vaccine formulation mixing the apical membrane antigen 1 ectodomain (PvAMA-1) and a full-length circumsporozoite protein (PvCSP-AllFL) previously studied by our group, which elicits a potent antibody response in mice. Genetically distinct strains of mice (C57BL/6 and BALB/c) were immunized with the proteins, alone or in combination, in the presence of poly(I:C) adjuvant, a TLR3 agonist. In C57BL/6, high-antibody titers were induced against PvAMA-1 and the three PvCSP variants (VK210, VK247, and P. vivax-like). Meanwhile, mixing PvAMA-1 with PvCSP-AllFL had no impact on total IgG antibody titers, which were long-lasting. Moreover, antibodies from immunized mice recognized VK210 sporozoites and blood-stage parasites by immunofluorescence assay. However, in the BALB/c model, the antibody response against PvCSP-AllFL was relatively low. PvAMA-1-specific CD3+CD4+ and CD3+CD8+ T-cell responses were observed in C57BL/6 mice, and the cellular response was impaired by PvCSP-AllFL combination. More relevant, the multistage vaccine formulation provided partial protection in mice challenged with a transgenic Plasmodium berghei sporozoite expressing the homologous PvCSP protein.
Collapse
|
25
|
Protective efficacy of peptides from Plasmodium vivax circumsporozoite protein. Vaccine 2020; 38:4346-4354. [PMID: 32402755 PMCID: PMC7408485 DOI: 10.1016/j.vaccine.2020.03.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Short repeat-region peptides from PvCSP on a VLP protect against malaria. The AGDR tetramer from PvCSP VK210 can, on a VLP, also protect against malaria. Full-length PvCSP is much less protective as a vaccine than truncated PvCSP. Region I and II peptides confer no protection against malaria presented on a VLP.
Vivax malaria is a major cause of morbidity and mortality worldwide, with several million clinical cases per year and 2.5 billion at risk of infection. A vaccine is urgently needed but the most advanced malaria vaccine, VMP001, confers only very low levels of protection against vivax malaria challenge in humans. VMP001 is based on the circumsporozoite protein (CSP) of Plasmodium vivax. Here a virus-like particle, Qβ, is used as a platform to generate very high levels of antibody against peptides from PvCSP in mice, in order to answer questions important to further development of P. vivax CSP (PvCSP) vaccines. Minimal peptides from the VK210 and VK247 allelic variants of PvCSP are found to be highly protective as Qβ-peptide vaccines, using transgenic P. berghei parasites expressing the homologous PvCSP allelic variant. A target of neutralising antibodies within the nonamer unit repeat of VK210, AGDR, is found, as a Qβ-peptide vaccine, to provide partial protection against malaria challenge, and enhances protective efficacy when combined with full-length PvCSP vaccination. A truncated form of PvCSP, missing the N-terminal domain, is found to confer much higher levels of protective efficacy than full-length PvCSP. Peptides derived from highly conserved areas of PvCSP, RI and RII, are found not to confer protective efficacy as Qβ-peptide vaccines.
Collapse
|
26
|
Marques RF, Gimenez AM, Aliprandini E, Novais JT, Cury DP, Watanabe IS, Dominguez MR, Silveira ELV, Amino R, Soares IS. Protective Malaria Vaccine in Mice Based on the Plasmodium vivax Circumsporozoite Protein Fused with the Mumps Nucleocapsid Protein. Vaccines (Basel) 2020; 8:vaccines8020190. [PMID: 32325874 PMCID: PMC7348950 DOI: 10.3390/vaccines8020190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022] Open
Abstract
Plasmodium vivax is the most common species of human malaria parasite found outside Africa, with high endemicity in Asia, Central and South America, and Oceania. Although Plasmodium falciparum causes the majority of deaths, P. vivax can lead to severe malaria and result in significant morbidity and mortality. The development of a protective vaccine will be a major step toward malaria elimination. Recently, a formulation containing the three allelic variants of the P. vivax circumsporozoite protein (PvCSP—All epitopes) showed partial protection in mice after a challenge with the hybrid Plasmodium berghei (Pb) sporozoite, in which the PbCSP central repeats were replaced by the VK210 PvCSP repeats (Pb/Pv sporozoite). In the present study, the chimeric PvCSP allelic variants (VK210, VK247, and P. vivax-like) were fused with the mumps virus nucleocapsid protein in the absence (NLP-CSPR) or presence of the conserved C-terminal (CT) domain of PvCSP (NLP-CSPCT). To elicit stronger humoral and cellular responses, Pichia pastoris yeast was used to assemble them as nucleocapsid-like particles (NLPs). Mice were immunized with each recombinant protein adjuvanted with Poly (I:C) and presented a high frequency of antigen-specific antibody-secreting cells (ASCs) on days 5 and 30, respectively, in the spleen and bone marrow. Moreover, high IgG titers against all PvCSP variants were detected in the sera. Later, these immunized mice with NLP-CSPCT were challenged with Pb/Pv sporozoites. Sterile protection was observed in 30% of the challenged mice. Therefore, this vaccine formulation use has the potential to be a good candidate for the development of a universal vaccine against P. vivax malaria.
Collapse
Affiliation(s)
- Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Alba Marina Gimenez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
- Center of Cellular and Molecular Therapy, Federal University of São Paulo, São Paulo 04044-010 SP, Brazil
| | - Eduardo Aliprandini
- Unit of Malaria Infection & Immunity, Institut Pasteur, 75015 Paris, France; (E.A.); (R.A.)
| | - Janaina T. Novais
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Diego P. Cury
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (D.P.C.); (I.-S.W.)
| | - Ii-Sei Watanabe
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (D.P.C.); (I.-S.W.)
| | - Mariana R. Dominguez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
| | - Rogerio Amino
- Unit of Malaria Infection & Immunity, Institut Pasteur, 75015 Paris, France; (E.A.); (R.A.)
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000 SP, Brazil; (R.F.M.); (A.M.G.); (J.T.N.); (M.R.D.); (E.L.V.S.)
- Correspondence:
| |
Collapse
|
27
|
Zawawi A, Forman R, Smith H, Mair I, Jibril M, Albaqshi MH, Brass A, Derrick JP, Else KJ. In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection. PLoS Pathog 2020; 16:e1008243. [PMID: 32203551 PMCID: PMC7117776 DOI: 10.1371/journal.ppat.1008243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/02/2020] [Accepted: 02/20/2020] [Indexed: 11/20/2022] Open
Abstract
Trichuris trichiura is a parasite that infects 500 million people worldwide, leading to colitis, growth retardation and Trichuris dysentery syndrome. There are no licensed vaccines available to prevent Trichuris infection and current treatments are of limited efficacy. Trichuris infections are linked to poverty, reducing children's educational performance and the economic productivity of adults. We employed a systematic, multi-stage process to identify a candidate vaccine against trichuriasis based on the incorporation of selected T-cell epitopes into virus-like particles. We conducted a systematic review to identify the most appropriate in silico prediction tools to predict histocompatibility complex class II (MHC-II) molecule T-cell epitopes. These tools were used to identify candidate MHC-II epitopes from predicted ORFs in the Trichuris genome, selected using inclusion and exclusion criteria. Selected epitopes were incorporated into Hepatitis B core antigen virus-like particles (VLPs). Bone marrow-derived dendritic cells and bone marrow-derived macrophages responded in vitro to VLPs irrespective of whether the VLP also included T-cell epitopes. The VLPs were internalized and co-localized in the antigen presenting cell lysosomes. Upon challenge infection, mice vaccinated with the VLPs+T-cell epitopes showed a significantly reduced worm burden, and mounted Trichuris-specific IgM and IgG2c antibody responses. The protection of mice by VLPs+T-cell epitopes was characterised by the production of mesenteric lymph node (MLN)-derived Th2 cytokines and goblet cell hyperplasia. Collectively our data establishes that a combination of in silico genome-based CD4+ T-cell epitope prediction, combined with VLP delivery, offers a promising pipeline for the development of an effective, safe and affordable helminth vaccine.
Collapse
Affiliation(s)
- Ayat Zawawi
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Murtala Jibril
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Munirah H. Albaqshi
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew Brass
- Faculty of Biology, Medicine and Health, Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jeremy P. Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
28
|
Gitta B, Kilian N. Diagnosis of Malaria Parasites Plasmodium spp. in Endemic Areas: Current Strategies for an Ancient Disease. Bioessays 2019; 42:e1900138. [PMID: 31830324 DOI: 10.1002/bies.201900138] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Fast and effective detection of the causative agent of malaria in humans, protozoan Plasmodium parasites, is of crucial importance for increasing the effectiveness of treatment and to control a devastating disease that affects millions of people living in endemic areas. The microscopic examination of Giemsa-stained blood films still remains the gold-standard in Plasmodium detection today. However, there is a high demand for alternative diagnostic methods that are simple, fast, highly sensitive, ideally do not rely on blood-drawing and can potentially be conducted by the patients themselves. Here, the history of Plasmodium detection is discussed, and advantages and disadvantages of diagnostic methods that are currently being applied are assessed.
Collapse
Affiliation(s)
- Brian Gitta
- Matibabu, 120 Semawata Rd, Ntinda, Kampala, 00256, Uganda
| | - Nicole Kilian
- Centre for Infectious Diseases, Parasitology Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| |
Collapse
|
29
|
Loiseau C, Cooper MM, Doolan DL. Deciphering host immunity to malaria using systems immunology. Immunol Rev 2019; 293:115-143. [PMID: 31608461 DOI: 10.1111/imr.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
A century of conceptual and technological advances in infectious disease research has changed the face of medicine. However, there remains a lack of effective interventions and a poor understanding of host immunity to the most significant and complex pathogens, including malaria. The development of successful interventions against such intractable diseases requires a comprehensive understanding of host-pathogen immune responses. A major advance of the past decade has been a paradigm switch in thinking from the contemporary reductionist (gene-by-gene or protein-by-protein) view to a more holistic (whole organism) view. Also, a recognition that host-pathogen immunity is composed of complex, dynamic interactions of cellular and molecular components and networks that cannot be represented by any individual component in isolation. Systems immunology integrates the field of immunology with omics technologies and computational sciences to comprehensively interrogate the immune response at a systems level. Herein, we describe the system immunology toolkit and report recent studies deploying systems-level approaches in the context of natural exposure to malaria or controlled human malaria infection. We contribute our perspective on the potential of systems immunity for the rational design and development of effective interventions to improve global public health.
Collapse
Affiliation(s)
- Claire Loiseau
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Qld, Australia
| |
Collapse
|
30
|
Abstract
The development of highly effective and durable vaccines against the human malaria parasites Plasmodium falciparum and P. vivax remains a key priority. Decades of endeavor have taught that achieving this goal will be challenging; however, recent innovation in malaria vaccine research and a diverse pipeline of novel vaccine candidates for clinical assessment provides optimism. With first-generation pre-erythrocytic vaccines aiming for licensure in the coming years, it is important to reflect on how next-generation approaches can improve on their success. Here we review the latest vaccine approaches that seek to prevent malaria infection, disease, and transmission and highlight some of the major underlying immunological and molecular mechanisms of protection. The synthesis of rational antigen selection, immunogen design, and immunization strategies to induce quantitatively and qualitatively improved immune effector mechanisms offers promise for achieving sustained high-level protection.
Collapse
|
31
|
A probabilistic model of pre-erythrocytic malaria vaccine combination in mice. PLoS One 2019; 14:e0209028. [PMID: 30625136 PMCID: PMC6326473 DOI: 10.1371/journal.pone.0209028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
Malaria remains one the world’s most deadly infectious diseases, with almost half a million deaths and over 150 million clinical cases each year. An effective vaccine would contribute enormously to malaria control and will almost certainly be required for eventual eradication of the disease. However, the leading malaria vaccine candidate, RTS,S, shows only 30–50% efficacy under field conditions, making it less cost-effective than long-lasting insecticide treated bed nets. Other subunit malaria vaccine candidates, including TRAP-based vaccines, show no better protective efficacy. This has led to increased interest in combining subunit malaria vaccines as a means of enhancing protective efficacy. Mathematical models of the effect of combining such vaccines on protective efficacy can help inform optimal vaccine strategies and decision-making at all stages of the clinical process. So far, however, no such model has been developed for pre-clinical murine studies, the stage at which all candidate antigens and combinations begin evaluation. To address this gap, this paper develops a mathematical model of vaccine combination adapted to murine malaria studies. The model is based on simple probabilistic assumptions which put the model on a firmer theoretical footing than previous clinical models, which rather than deriving a relationship between immune responses and protective efficacy posit the relationship to be either exponential or Hill curves. Data from pre-clinical murine malaria studies are used to derive values for unknowns in the model which in turn allows simulations of vaccine combination efficacy and suggests optimal strategies to pursue. Finally, the ability of the model to shed light on fundamental biological variables of murine malaria such as the blood stage growth rate and sporozoite infectivity is explored.
Collapse
|
32
|
Cabral-Miranda G, M Salman A, O Mohsen M, L Storni F, S Roesti E, A Skinner M, D Heath M, F Kramer M, M Khan S, J Janse C, V S Hill A, F Bachmann M. DOPS Adjuvant Confers Enhanced Protection against Malaria for VLP-TRAP Based Vaccines. Diseases 2018; 6:diseases6040107. [PMID: 30469323 PMCID: PMC6313579 DOI: 10.3390/diseases6040107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Vaccination remains the most effective and essential prophylactic tool against infectious diseases. Enormous efforts have been made to develop effective vaccines against malaria but successes remain so far limited. Novel adjuvants may offer a significant advantage in the development of malaria vaccines, in particular if combined with inherently immunogenic platforms, such as virus-like particles (VLP). Dioleoyl phosphatidylserine (DOPS), which is expressed on the outer surface of apoptotic cells, represents a novel adjuvant candidate that may confer significant advantage over existing adjuvants, such as alum. In the current study we assessed the potential of DOPS to serve as an adjuvant in the development of a vaccine against malaria either alone or combined with VLP using Plasmodium falciparum thrombospondin-related adhesive protein (TRAP) as a target antigen. TRAP was chemically coupled to VLPs derived from the cucumber mosaic virus fused to a universal T cell epitope of tetanus toxin (CuMVtt). Mice were immunized with TRAP alone or formulated in alum or DOPS and compared to TRAP coupled to CuMVtt formulated in PBS or DOPS. Induced immune responses, in particular T cell responses, were assessed as the major protective effector cell population induced by TRAP. The protective capacity of the various formulations was assessed using a transgenic Plasmodium berghei expressing PfTRAP. All vaccine formulations using adjuvants and/or VLP increased humoral and T cell immunogenicity for PfTRAP compared to the antigen alone. Display on VLPs, in particular if formulated with DOPS, induced the strongest and most protective immune response. Thus, the combination of VLP with DOPS may harness properties of both immunogenic components and optimally enhance induction of protective immune responses.
Collapse
Affiliation(s)
- Gustavo Cabral-Miranda
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), Roosevelt Drive, Oxford OX3 7BN, UK.
- Department of Immunology, RIA, Inselspital, University of Bern, Sahlihaus 1/2, 3010 Bern, Switzerland.
| | - Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Mona O Mohsen
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Federico L Storni
- Department of Immunology, RIA, Inselspital, University of Bern, Sahlihaus 1/2, 3010 Bern, Switzerland.
| | - Elisa S Roesti
- Department of Immunology, RIA, Inselspital, University of Bern, Sahlihaus 1/2, 3010 Bern, Switzerland.
| | | | - Matthew D Heath
- Bencard Adjuvant Systems, Dominion Way, Worthing BN14 8SA, UK.
| | | | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Martin F Bachmann
- The Jenner Institute, Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), Roosevelt Drive, Oxford OX3 7BN, UK.
- Department of Immunology, RIA, Inselspital, University of Bern, Sahlihaus 1/2, 3010 Bern, Switzerland.
| |
Collapse
|
33
|
Tailoring a Plasmodium vivax Vaccine To Enhance Efficacy through a Combination of a CSP Virus-Like Particle and TRAP Viral Vectors. Infect Immun 2018; 86:IAI.00114-18. [PMID: 29986894 PMCID: PMC6105880 DOI: 10.1128/iai.00114-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Vivax malaria remains one of the most serious and neglected tropical diseases, with 132 to 391 million clinical cases per year and 2.5 billion people at risk of infection. A vaccine against Plasmodium vivax could have more impact than any other intervention, and the use of a vaccine targeting multiple antigens may result in higher efficacy against sporozoite infection than targeting a single antigen. Vivax malaria remains one of the most serious and neglected tropical diseases, with 132 to 391 million clinical cases per year and 2.5 billion people at risk of infection. A vaccine against Plasmodium vivax could have more impact than any other intervention, and the use of a vaccine targeting multiple antigens may result in higher efficacy against sporozoite infection than targeting a single antigen. Here, two leading P. vivax preerythrocytic vaccine candidate antigens, the P. vivax circumsporozoite protein (PvCSP) and the thrombospondin-related adhesion protein (PvTRAP) were delivered as a combined vaccine. This strategy provided a dose-sparing effect, with 100% sterile protection in mice using doses that individually conferred low or no protection, as with the unadjuvanted antigens PvTRAP (0%) and PvCSP (50%), and reached protection similar to that of adjuvanted components. Efficacy against malaria infection was assessed using a new mouse challenge model consisting of a double-transgenic Plasmodium berghei parasite simultaneously expressing PvCSP and PvTRAP used in mice immunized with the virus-like particle (VLP) Rv21 previously reported to induce high efficacy in mice using Matrix-M adjuvant, while PvTRAP was concomitantly administered in chimpanzee adenovirus and modified vaccinia virus Ankara (MVA) vectors (viral-vectored TRAP, or vvTRAP) to support effective induction of T cells. We examined immunity elicited by these vaccines in the context of two adjuvants approved for human use (AddaVax and Matrix-M). Matrix-M supported the highest anti-PvCSP antibody titers when combined with Rv21, and, interestingly, mixing PvCSP Rv21 and PvTRAP viral vectors enhanced immunity to malaria over levels provided by single vaccines.
Collapse
|
34
|
Marin-Mogollon C, van Pul FJA, Miyazaki S, Imai T, Ramesar J, Salman AM, Winkel BMF, Othman AS, Kroeze H, Chevalley-Maurel S, Reyes-Sandoval A, Roestenberg M, Franke-Fayard B, Janse CJ, Khan SM. Chimeric Plasmodium falciparum parasites expressing Plasmodium vivax circumsporozoite protein fail to produce salivary gland sporozoites. Malar J 2018; 17:288. [PMID: 30092798 PMCID: PMC6085629 DOI: 10.1186/s12936-018-2431-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rodent malaria parasites where the gene encoding circumsporozoite protein (CSP) has been replaced with csp genes from the human malaria parasites, Plasmodium falciparum or Plasmodium vivax, are used as pre-clinical tools to evaluate CSP vaccines in vivo. These chimeric rodent parasites produce sporozoites in Anopheles stephensi mosquitoes that are capable of infecting rodent and human hepatocytes. The availability of chimeric P. falciparum parasites where the pfcsp gene has been replaced by the pvcsp would open up possibilities to test P. vivax CSP vaccines in small scale clinical trials using controlled human malaria infection studies. METHODS Using CRISPR/Cas9 gene editing two chimeric P. falciparum parasites, were generated, where the pfcsp gene has been replaced by either one of the two major pvcsp alleles, VK210 or VK247. In addition, a P. falciparum parasite line that lacks CSP expression was also generated. These parasite lines have been analysed for sporozoite production in An. stephensi mosquitoes. RESULTS The two chimeric Pf-PvCSP lines exhibit normal asexual and sexual blood stage development in vitro and produce sporozoite-containing oocysts in An. stephensi mosquitoes. Expression of the corresponding PvCSP was confirmed in oocyst-derived Pf-PvCSP sporozoites. However, most oocysts degenerate before sporozoite formation and sporozoites were not found in either the mosquito haemocoel or salivary glands. Unlike the chimeric Pf-PvCSP parasites, oocysts of P. falciparum parasites lacking CSP expression do not produce sporozoites. CONCLUSIONS Chimeric P. falciparum parasites expressing P. vivax circumsporozoite protein fail to produce salivary gland sporozoites. Combined, these studies show that while PvCSP can partially complement the function of PfCSP, species-specific features of CSP govern full sporozoite maturation and development in the two human malaria parasites.
Collapse
Affiliation(s)
- Catherin Marin-Mogollon
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Fiona J A van Pul
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Takashi Imai
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8510, Japan
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Welcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Beatrice M F Winkel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ahmad Syibli Othman
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Severine Chevalley-Maurel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Welcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
35
|
Prime-boost vaccination with recombinant protein and adenovirus-vector expressing Plasmodium vivax circumsporozoite protein (CSP) partially protects mice against Pb/Pv sporozoite challenge. Sci Rep 2018; 8:1118. [PMID: 29348479 PMCID: PMC5773670 DOI: 10.1038/s41598-017-19063-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Vaccine development against Plasmodium vivax malaria lags behind that for Plasmodium falciparum. To narrow this gap, we administered recombinant antigens based on P. vivax circumsporozoite protein (CSP) to mice. We expressed in Pichia pastoris two chimeric proteins by merging the three central repeat regions of different CSP alleles (VK210, VK247, and P. vivax-like). The first construct (yPvCSP-AllFL) contained the fused repeat regions flanked by N- and C-terminal regions. The second construct (yPvCSP-AllCT) contained the fused repeat regions and the C-terminal domain, plus RI region. Mice were vaccinated with three doses of yPvCSP in adjuvants Poly (I:C) or Montanide ISA720. We also used replication-defective adenovirus vectors expressing CSP of human serotype 5 (AdHu5) and chimpanzee serotype 68 (AdC68) for priming mice which were subsequently boosted twice with yPvCSP proteins in Poly (I:C) adjuvant. Regardless of the regime used, immunized mice generated high IgG titres specific to all CSP alleles. After challenge with P. berghei ANKA transgenic parasites expressing Pb/PvVK210 or Pb/PvVK247 sporozoites, significant time delays for parasitemia were observed in all vaccinated mice. These vaccine formulations should be clinically tried for their potential as protective universal vaccine against P. vivax malaria.
Collapse
|
36
|
Gimenez AM, Lima LC, Françoso KS, Denapoli PMA, Panatieri R, Bargieri DY, Thiberge JM, Andolina C, Nosten F, Renia L, Nussenzweig RS, Nussenzweig V, Amino R, Rodrigues MM, Soares IS. Vaccine Containing the Three Allelic Variants of the Plasmodium vivax Circumsporozoite Antigen Induces Protection in Mice after Challenge with a Transgenic Rodent Malaria Parasite. Front Immunol 2017; 8:1275. [PMID: 29075260 PMCID: PMC5642139 DOI: 10.3389/fimmu.2017.01275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is the most common species that cause malaria outside of the African continent. The development of an efficacious vaccine would contribute greatly to control malaria. Recently, using bacterial and adenoviral recombinant proteins based on the P. vivax circumsporozoite protein (CSP), we demonstrated the possibility of eliciting strong antibody-mediated immune responses to each of the three allelic forms of P. vivax CSP (PvCSP). In the present study, recombinant proteins representing the PvCSP alleles (VK210, VK247, and P. vivax-like), as well as a hybrid polypeptide, named PvCSP-All epitopes, were generated. This hybrid containing the conserved C-terminal of the PvCSP and the three variant repeat domains in tandem were successfully produced in the yeast Pichia pastoris. After purification and biochemical characterization, they were used for the experimental immunization of C57BL/6 mice in a vaccine formulation containing the adjuvant Poly(I:C). Immunization with a recombinant protein expressing all three different allelic forms in fusion elicited high IgG antibody titers reacting with all three different allelic variants of PvCSP. The antibodies targeted both the C-terminal and repeat domains of PvCSP and recognized the native protein on the surface of P. vivax sporozoites. More importantly, mice that received the vaccine formulation were protected after challenge with chimeric Plasmodium berghei sporozoites expressing CSP repeats of P. vivax sporozoites (Pb/PvVK210). Our results suggest that it is possible to elicit protective immunity against one of the most common PvCSP alleles using soluble recombinant proteins expressed by P. pastoris. These recombinant proteins are promising candidates for clinical trials aiming to develop a multiallele vaccine against P. vivax malaria.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Department of Microbiology, Immunology and Parasitology, Center of Cellular and Molecular Therapy (CTCMol), Federal University of São Paulo, São Paulo, Brazil
| | - Luciana Chagas Lima
- Department of Microbiology, Immunology and Parasitology, Center of Cellular and Molecular Therapy (CTCMol), Federal University of São Paulo, São Paulo, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Katia Sanches Françoso
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Priscila M. A. Denapoli
- Department of Microbiology, Immunology and Parasitology, Center of Cellular and Molecular Therapy (CTCMol), Federal University of São Paulo, São Paulo, Brazil
| | - Raquel Panatieri
- Unit of Malaria Infection and Immunity, Institut Pasteur, Paris, France
- Department of Parasitology, University of São Paulo, São Paulo, Brazil
| | | | | | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Laurent Renia
- Singapore Immunology Network, Biopolis, Agency for Science Technology and Research, Singapore, Singapore
| | | | | | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, Paris, France
| | - Mauricio M. Rodrigues
- Department of Microbiology, Immunology and Parasitology, Center of Cellular and Molecular Therapy (CTCMol), Federal University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Cabral-Miranda G, Heath MD, Gomes AC, Mohsen MO, Montoya-Diaz E, Salman AM, Atcheson E, Skinner MA, Kramer MF, Reyes-Sandoval A, Bachmann MF. Microcrystalline Tyrosine (MCT ®): A Depot Adjuvant in Licensed Allergy Immunotherapy Offers New Opportunities in Malaria. Vaccines (Basel) 2017; 5:vaccines5040032. [PMID: 28953265 PMCID: PMC5748599 DOI: 10.3390/vaccines5040032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023] Open
Abstract
Microcrystalline Tyrosine (MCT®) is a widely used proprietary depot excipient in specific immunotherapy for allergy. In the current study we assessed the potential of MCT to serve as an adjuvant in the development of a vaccine against malaria. To this end, we formulated the circumsporozoite protein (CSP) of P. vivax in MCT and compared the induced immune responses to CSP formulated in PBS or Alum. Both MCT and Alum strongly increased immunogenicity of CSP compared to PBS in both C57BL/6 and BALB/c mice. Challenge studies in mice using a chimeric P. bergei expressing CSP of P. vivax demonstrated clinically improved symptoms of malaria with CSP formulated in both MCT and Alum; protection was, however, more pronounced if CSP was formulated in MCT. Hence, MCT may be an attractive biodegradable adjuvant useful for the development of novel prophylactic vaccines.
Collapse
Affiliation(s)
- Gustavo Cabral-Miranda
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Matthew D Heath
- Allergy Therapeutics (UK) Ltd. Dominion Way, Worthing BN14 8SA, UK.
| | - Ariane C Gomes
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Mona O Mohsen
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Eduardo Montoya-Diaz
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Ahmed M Salman
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Erwan Atcheson
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Murray A Skinner
- Allergy Therapeutics (UK) Ltd. Dominion Way, Worthing BN14 8SA, UK.
| | | | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
| | - Martin F Bachmann
- Nuffield Department of Medicine, Centre for Cellular and Molecular Physiology (CCMP), The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK.
- Immunology, RIA, Inselspital, University of Bern, 3010 Bern ,Switzerland.
| |
Collapse
|
38
|
França CT, White MT, He WQ, Hostetler JB, Brewster J, Frato G, Malhotra I, Gruszczyk J, Huon C, Lin E, Kiniboro B, Yadava A, Siba P, Galinski MR, Healer J, Chitnis C, Cowman AF, Takashima E, Tsuboi T, Tham WH, Fairhurst RM, Rayner JC, King CL, Mueller I. Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for vaccine development. eLife 2017; 6:28673. [PMID: 28949293 PMCID: PMC5655538 DOI: 10.7554/elife.28673] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
The study of antigenic targets of naturally-acquired immunity is essential to identify and prioritize antigens for further functional characterization. We measured total IgG antibodies to 38 P. vivax antigens, investigating their relationship with prospective risk of malaria in a cohort of 1–3 years old Papua New Guinean children. Using simulated annealing algorithms, the potential protective efficacy of antibodies to multiple antigen-combinations, and the antibody thresholds associated with protection were investigated for the first time. High antibody levels to multiple known and newly identified proteins were strongly associated with protection (IRR 0.44–0.74, p<0.001–0.041). Among five-antigen combinations with the strongest protective effect (>90%), EBP, DBPII, RBP1a, CyRPA, and PVX_081550 were most frequently identified; several of them requiring very low antibody levels to show a protective association. These data identify individual antigens that should be prioritized for further functional testing and establish a clear path to testing a multicomponent P. vivax vaccine.
Collapse
Affiliation(s)
- Camila Tenorio França
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Michael T White
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Australia.,MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Wen-Qiang He
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Jessica B Hostetler
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Jessica Brewster
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Gabriel Frato
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, United States
| | - Indu Malhotra
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, United States
| | - Jakub Gruszczyk
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Christele Huon
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Paris, France
| | - Enmoore Lin
- Malaria Immuno-Epidemiology Unit, PNG Institute of Medical Research, Yagaum, Papua New Guinea
| | - Benson Kiniboro
- Malaria Immuno-Epidemiology Unit, PNG Institute of Medical Research, Yagaum, Papua New Guinea
| | - Anjali Yadava
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, United States
| | - Peter Siba
- Malaria Immuno-Epidemiology Unit, PNG Institute of Medical Research, Yagaum, Papua New Guinea
| | - Mary R Galinski
- International Center for Malaria Research, Education, and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, United States.,Infectious Diseases Division, Department of Medicine, Emory University, Atlanta, United States
| | - Julie Healer
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Chetan Chitnis
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Paris, France.,International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Alan F Cowman
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Eizo Takashima
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, United States
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Wai-Hong Tham
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, United States
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, United States
| | - Ivo Mueller
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Malaria Parasites and Hosts Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Barcelona Institute of Global Health, Barcelona, Spain
| |
Collapse
|
39
|
Othman AS, Marin-Mogollon C, Salman AM, Franke-Fayard BM, Janse CJ, Khan SM. The use of transgenic parasites in malaria vaccine research. Expert Rev Vaccines 2017; 16:1-13. [DOI: 10.1080/14760584.2017.1333426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmad Syibli Othman
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Catherin Marin-Mogollon
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | | | - Blandine M. Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| |
Collapse
|