1
|
Ji P, Wang N, Yu Y, Zhu J, Zuo Z, Zhang B, Zhao F. Single-cell delineation of the microbiota-gut-brain axis: Probiotic intervention in Chd8 haploinsufficient mice. CELL GENOMICS 2025; 5:100768. [PMID: 39914389 PMCID: PMC11872533 DOI: 10.1016/j.xgen.2025.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/02/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025]
Abstract
Emerging research underscores the gut microbiome's impact on the nervous system via the microbiota-gut-brain axis, yet comprehensive insights remain limited. Using a CHD8-haploinsufficient model for autism spectrum disorder (ASD), we explored host-gut microbiota interactions by constructing a single-cell transcriptome atlas of brain and intestinal tissues in wild-type and mutant mice across three developmental stages. CHD8 haploinsufficiency caused delayed development of radial glial precursors and excitatory neural progenitors in the E14.5 brain, inflammation in the adult brain, immunodeficiency, and abnormal intestinal development. Selective CHD8 knockdown in intestinal epithelial cells generated Chd8ΔIEC mice, which exhibited normal sociability but impaired social novelty recognition. Probiotic intervention with Lactobacillus murinus selectively rescued social deficits in Chd8ΔIEC mice, with single-cell transcriptome analysis revealing underlying mechanisms. This study provides a detailed single-cell transcriptomic dataset of ASD-related neural and intestinal changes, advancing our understanding of the gut-brain axis and offering potential therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Peifeng Ji
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - You Yu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junjie Zhu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhenqiang Zuo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
2
|
Raveendran VA, Serranilla M, Asgarihafshejani A, de Saint-Rome M, Cherednychenko M, Mullany S, Mitchell JA, Pressey JC, Woodin MA. SNARE protein SNAP25 regulates the chloride-transporter KCC2 in neurons. iScience 2024; 27:111156. [PMID: 39507243 PMCID: PMC11539599 DOI: 10.1016/j.isci.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Inhibitory synaptic neurotransmission mediated by GABA requires a low concentration of chloride ions (Cl-) in neurons, which is established and maintained by the potassium-chloride co-transporter 2 (KCC2). While KCC2-interacting proteins are known to regulate KCC2 protein level and function, specific KCC2-interacting partners are still being identified and characterized. We asked whether SNAP25, an integral component of the SNARE-complex and a novel KCC2 interactor, regulates KCC2 protein and function in mice. We demonstrated that SNAP25 interacts with KCC2, and that this interaction is regulated by protein kinase C (PKC)-mediated phosphorylation. We also discovered that SNAP25 knockdown decreases total KCC2 in cortical neurons, and reduces the strength of synaptic inhibition, as demonstrated through a depolarization of the reversal potential for GABA (EGABA), indicating reduced KCC2 function. Our biochemical and electrophysiological data combined demonstrate that SNAP25 regulates KCC2 membrane expression and function, and in doing so, regulates inhibitory synaptic transmission.
Collapse
Affiliation(s)
| | - Melissa Serranilla
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Azam Asgarihafshejani
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Mariia Cherednychenko
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Shanelle Mullany
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jennifer A. Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jessica C. Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Melanie A. Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
3
|
Frank CE, Sadeghi J, Heath DD, Semeniuk CAD. Behavioral transcriptomic effects of triploidy and probiotic therapy (Bifidobacterium, Lactobacillus, and Lactococcus mixture) on juvenile Chinook salmon (Oncorhynchus tshawytscha). GENES, BRAIN, AND BEHAVIOR 2024; 23:e12898. [PMID: 38817102 PMCID: PMC11140169 DOI: 10.1111/gbb.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Aquaculturists use polyploid fish to maximize production albeit with some unintended consequences including compromised behaviors and physiological function. Given benefits of probiotic therapies (e.g., improved immune response, growth, and metabolism), we explored probiotic supplementation (mixture of Bifidobacterium, Lactobacillus, and Lactococcus), to overcome drawbacks. We first examined fish gut bacterial community composition using 16S metabarcoding (via principal coordinate analyses and PERMANOVA) and determined probiotics significantly impacted gut bacteria composition (p = 0.001). Secondly, we examined how a genomic disruptor (triploidy) and diet supplements (probiotics) impact gene transcription and behavioral profiles of hatchery-reared Chinook salmon (Oncorhynchus tshawytscha). Juveniles from four treatment groups (diploid-regular feed, diploid-probiotic feed, triploid-regular feed, and triploid-probiotic feed; n = 360) underwent behavioral assays to test activity, exploration, neophobia, predator evasion, aggression/sociality, behavioral sensitivity, and flexibility. In these fish, transcriptional profiles for genes associated with neural functions (neurogenesis/synaptic plasticity) and biomarkers for stress response and development (growth/appetite) were (i) examined across treatments and (ii) used to describe behavioral phenotypes via principal component analyses and general linear mixed models. Triploids exhibited a more active behavioral profile (p = 0.002), and those on a regular diet had greater Neuropeptide Y transcription (p = 0.02). A growth gene (early growth response protein 1, p = 0.02) and long-term neural development genes (neurogenic differentiation factor, p = 0.003 and synaptysomal-associated protein 25-a, p = 0.005) impacted activity and reactionary profiles, respectively. Overall, our probiotic treatment did not compensate for triploidy. Our research highlights novel applications of behavioral transcriptomics for identifying candidate genes and dynamic, mechanistic associations with complex behavioral repertoires.
Collapse
Affiliation(s)
- Chelsea E. Frank
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
| | - Javad Sadeghi
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| | - Daniel D. Heath
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| | - Christina A. D. Semeniuk
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| |
Collapse
|
4
|
Felício D, Alves-Ferreira M, Santos M, Quintas M, Lopes AM, Lemos C, Pinto N, Martins S. Integrating functional scoring and regulatory data to predict the effect of non-coding SNPs in a complex neurological disease. Brief Funct Genomics 2024; 23:138-149. [PMID: 37254524 DOI: 10.1093/bfgp/elad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Most SNPs associated with complex diseases seem to lie in non-coding regions of the genome; however, their contribution to gene expression and disease phenotype remains poorly understood. Here, we established a workflow to provide assistance in prioritising the functional relevance of non-coding SNPs of candidate genes as susceptibility loci in polygenic neurological disorders. To illustrate the applicability of our workflow, we considered the multifactorial disorder migraine as a model to follow our step-by-step approach. We annotated the overlap of selected SNPs with regulatory elements and assessed their potential impact on gene expression based on publicly available prediction algorithms and functional genomics information. Some migraine risk loci have been hypothesised to reside in non-coding regions and to be implicated in the neurotransmission pathway. In this study, we used a set of 22 non-coding SNPs from neurotransmission and synaptic machinery-related genes previously suggested to be involved in migraine susceptibility based on our candidate gene association studies. After prioritising these SNPs, we focused on non-reported ones that demonstrated high regulatory potential: (1) VAMP2_rs1150 (3' UTR) was predicted as a target of hsa-mir-5010-3p miRNA, possibly disrupting its own gene expression; (2) STX1A_rs6951030 (proximal enhancer) may affect the binding affinity of zinc-finger transcription factors (namely ZNF423) and disturb TBL2 gene expression; and (3) SNAP25_rs2327264 (distal enhancer) expected to be in a binding site of ONECUT2 transcription factor. This study demonstrated the applicability of our practical workflow to facilitate the prioritisation of potentially relevant non-coding SNPs and predict their functional impact in multifactorial neurological diseases.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), Porto 4200-135, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto 4200-135, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
| | - Miguel Alves-Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Porto 4200-135, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
- Unit for Genetic and Epidemiological Research in Neurological Diseases (UnIGENe), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
- Centre for Predictive and Preventive Genetics (CGPP), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Mariana Santos
- Instituto de Investigação e Inovação em Saúde (i3S), Porto 4200-135, Portugal
- Unit for Genetic and Epidemiological Research in Neurological Diseases (UnIGENe), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Marlene Quintas
- Instituto de Investigação e Inovação em Saúde (i3S), Porto 4200-135, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
- Unit for Genetic and Epidemiological Research in Neurological Diseases (UnIGENe), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), Porto 4200-135, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto 4200-135, Portugal
- Centre for Predictive and Preventive Genetics (CGPP), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Carolina Lemos
- Instituto de Investigação e Inovação em Saúde (i3S), Porto 4200-135, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
- Unit for Genetic and Epidemiological Research in Neurological Diseases (UnIGENe), Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Nádia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Porto 4200-135, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto 4200-135, Portugal
- Centro de Matemática da Universidade do Porto (CMUP), Porto 4169-007, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), Porto 4200-135, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto 4200-135, Portugal
| |
Collapse
|
5
|
Shu J, Peng F, Li J, Liu Y, Li X, Yuan C. The Relationship between SNAP25 and Some Common Human Neurological Syndromes. Curr Pharm Des 2024; 30:2378-2386. [PMID: 38963116 DOI: 10.2174/0113816128305683240621060024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Over the years, research on the pathogenesis of neurological diseases has progressed slowly worldwide. However, as the incidence rate continues to increase and the disease gradually develops, early diagnosis and treatment have become a top priority. SANP25, a protein present on the presynaptic membrane and involved in neurotransmitter release, is closely related to the loss or abnormal expression of synapses and neurons. SNAP25 deficiency can lead to synaptic disorders and inhibit neurotransmitter release. Therefore, a large amount of literature believes that SNAP25 gene mutation is a risk factor for many neurological diseases. This review used advanced search on PubMed to conduct extensive article searches for relevant literature. The search keywords included SNAP25 and Alzheimer's disease, SNAP25 and Parkinson's disease, and so on. After reading and summarizing the previous papers, the corresponding conclusions were obtained to achieve the purpose of the review. The deficiency or variation of SNAP25 might be related to the onset of schizophrenia, epilepsy, attention deficit/hypoactivity disorder, bipolar disorder effective disorder, and autism. SNAP25 has been found to be used as a neuropathological marker for neurological diseases, which could be the target of diagnosis or treatment of Alzheimer's disease and Parkinson's disease. Cerebrospinal Fluid (CSF) or blood has been found to enable more effective drug development.
Collapse
Affiliation(s)
- Jie Shu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Fan Peng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Jing Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Yuhang Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| | - Xiaolan Li
- College of Basic Medicine, The Second People's Hospital of China Three Gorges University, Yichang 443002, China
- Department of Gynecology, The Second People's Hospital of Yichang, Hubei, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
6
|
Mensi MM, Guerini FR, Marchesi M, Chiappedi M, Bolognesi E, Borgatti R. SNAP-25 Polymorphisms in Autism Spectrum Disorder: A Pilot Study towards a Possible Endophenotype. Pediatr Rep 2023; 15:766-773. [PMID: 38133436 PMCID: PMC10747488 DOI: 10.3390/pediatric15040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
While there is substantial agreement on the diagnostic criteria for autism spectrum disorder, it is also acknowledged that it has a broad range of clinical presentations. This can complicate the diagnostic process and aggravate the choice of the most suitable rehabilitative strategy for each child. Attentional difficulties are among the most frequently reported comorbidities in autism spectrum disorder. We investigated the role of SNAP-25 polymorphisms. Synaptosome-associated protein 25 (SNAP25) is a presynaptic membrane-binding protein; it plays a crucial role in neurotransmission and has already been studied in numerous psychiatric disorders. It was also seen to be associated with hyperactivity in children with autism spectrum disorder. We collected clinical, behavioral and neuropsychological data on 41 children with a diagnosis of autism spectrum disorder, and then genotyped them for five single-nucleotide polymorphisms of SNAP-25. Participants were divided into two groups according to the Autism Diagnostic Observation Schedule (ADOS-2) Severity Score. In the group with the highest severity score, we found significant associations of clinical data with polymorphism rs363050 (A/G): children with the GG genotype had lower total IQ, more severe autistic functioning and more attentional difficulties. Our research could be the starting point for outlining a possible endophenotype among patients with autism spectrum disorder who are clinically characterized by severe autistic functioning and significant attentional difficulties.
Collapse
Affiliation(s)
- Martina Maria Mensi
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.M.M.); (R.B.)
| | - Franca Rosa Guerini
- IRCCS Don Carlo Gnocchi Foundation—ONLUS, 20148 Milan, Italy; (F.R.G.); (E.B.)
| | - Michele Marchesi
- Child Neurology and Psychiatry Unit, ASST Pavia, 27029 Vigevano, Italy;
| | - Matteo Chiappedi
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Renato Borgatti
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.M.M.); (R.B.)
- Child Neurology and Psychiatry Unit, ASST Pavia, 27029 Vigevano, Italy;
| |
Collapse
|
7
|
Barnett DG, Lechner SA, Gammie SC, Kelm-Nelson CA. Thyroarytenoid Oxidative Metabolism and Synaptic Signaling Dysregulation in the Female Pink1-/- Rat. Laryngoscope 2023; 133:3412-3421. [PMID: 37293988 PMCID: PMC10709531 DOI: 10.1002/lary.30768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVES AND HYPOTHESIS Vocal dysfunction, including hypophonia, in Parkinson disease (PD) manifests in the prodromal period and significantly impacts an individual's quality of life. Data from human studies suggest that pathology leading to vocal deficits may be structurally related to the larynx and its function. The Pink1-/- rat is a translational model used to study pathogenesis in the context of early-stage mitochondrial dysfunction. The primary objective of this work was to identify differentially expressed genes in the thyroarytenoid muscle and examine the dysregulated biological pathways in the female rat. METHODS RNA sequencing was used to determine thyroarytenoid (TA) muscle gene expression in adult female Pink1-/- rats compared with controls. A bioinformatic approach and the ENRICHR gene analysis tool were used to compare the sequencing dataset with biological pathways and processes, disease relationships, and drug-repurposing compounds. Weighted Gene Co-expression Network Analysis was used to construct biological network modules. The data were compared with a previously published dataset in male rats. RESULTS Significant upregulated pathways in female Pink1-/- rats included fatty acid oxidation and muscle contraction, synaptic transmission, and neuromuscular processes. Downregulated pathways included anterograde transsynaptic signaling, chemical synaptic transmission, and ion release. Several drug treatment options including cetuximab, fluoxetine, and resveratrol are hypothesized to reverse observed genetic dysregulation. CONCLUSIONS Data presented here are useful for identifying biological pathways that may underlie the mechanisms of peripheral dysfunction including neuromuscular synaptic transmission to the TA muscle. These experimental biomarkers have the potential to be targeted as sites for improving the treatment for hypophonia in early-stage PD. LEVEL OF EVIDENCE NA Laryngoscope, 133:3412-3421, 2023.
Collapse
Affiliation(s)
- David G.S. Barnett
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Sarah A. Lechner
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| | - Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
8
|
Vinci M, Costanza C, Galati Rando R, Treccarichi S, Saccone S, Carotenuto M, Roccella M, Calì F, Elia M, Vetri L. STXBP6 Gene Mutation: A New Form of SNAREopathy Leads to Developmental Epileptic Encephalopathy. Int J Mol Sci 2023; 24:16436. [PMID: 38003627 PMCID: PMC10670990 DOI: 10.3390/ijms242216436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Syntaxin-binding protein 6 (STXBP6), also known as amysin, is an essential component of the SNAP receptor (SNARE) complex and plays a crucial role in neuronal vesicle trafficking. Mutations in genes encoding SNARE proteins are often associated with a broad spectrum of neurological conditions defined as "SNAREopathies", including epilepsy, intellectual disability, and neurodevelopmental disorders such as autism spectrum disorders. The present whole exome sequencing (WES) study describes, for the first time, the occurrence of developmental epileptic encephalopathy and autism spectrum disorders as a result of a de novo deletion within the STXBP6 gene. The truncated protein in the STXBP6 gene leading to a premature stop codon could negatively modulate the synaptic vesicles' exocytosis. Our research aimed to elucidate a plausible, robust correlation between STXBP6 gene deletion and the manifestation of developmental epileptic encephalopathy.
Collapse
Affiliation(s)
- Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Carola Costanza
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (C.C.); (M.R.)
| | - Rosanna Galati Rando
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (C.C.); (M.R.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Maurizio Elia
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| | - Luigi Vetri
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (R.G.R.); (S.T.); (M.E.); (L.V.)
| |
Collapse
|
9
|
Bolognesi E, Guerini FR, Carta A, Chiappedi M, Sotgiu S, Mensi MM, Agliardi C, Zanzottera M, Clerici M. The Role of SNAP-25 in Autism Spectrum Disorders Onset Patterns. Int J Mol Sci 2023; 24:14042. [PMID: 37762342 PMCID: PMC10531097 DOI: 10.3390/ijms241814042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorders (ASD) can present with different onset and timing of symptom development; children may manifest symptoms early in their first year of life, i.e., early onset (EO-ASD), or may lose already achieved skills during their second year of life, thus showing a regressive-type onset (RO-ASD). It is still controversial whether regression represents a neurobiological subtype of ASD, resulting from distinct genetic and environmental causes. We focused this study on the 25 kD synaptosomal-associated protein (SNAP-25) gene involved in both post-synaptic formation and adhesion and considered a key player in the pathogenesis of ASD. To this end, four single nucleotide polymorphisms (SNPs) of the SNAP-25 gene, rs363050, rs363039, rs363043, and rs1051312, already known to be involved in neurodevelopmental and psychiatric disorders, were analyzed in a cohort of 69 children with EO-ASD and 58 children with RO-ASD. Both the rs363039 G allele and GG genotype were significantly more frequently carried by patients with EO-ASD than those with RO-ASD and healthy controls (HC). On the contrary, the rs1051312 T allele and TT genotype were more frequent in individuals with RO-ASD than those with EO-ASD and HC. Thus, two different SNAP-25 alleles/genotypes seem to discriminate between EO-ASD and RO-ASD. Notably, rs1051312 is located in the 3' untranslated region (UTR) of the gene and is the target of microRNA (miRNA) regulation, suggesting a possible epigenetic role in the onset of regressive autism. These SNPs, by discriminating two different onset patterns, may represent diagnostic biomarkers of ASD and may provide insight into the different biological mechanisms towards the development of better tailored therapeutic and rehabilitative approaches.
Collapse
Affiliation(s)
- Elisabetta Bolognesi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Franca Rosa Guerini
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Alessandra Carta
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (S.S.)
| | - Matteo Chiappedi
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.); (M.M.M.)
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (S.S.)
| | - Martina Maria Mensi
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.); (M.M.M.)
| | - Cristina Agliardi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Milena Zanzottera
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
10
|
Huang W, Fateh AA, Zhao Y, Zeng H, Yang B, Fang D, Zhang L, Meng X, Hassan M, Wen F. Effects of the SNAP-25 Mnll variant on hippocampal functional connectivity in children with attention deficit/hyperactivity disorder. Front Hum Neurosci 2023; 17:1219189. [PMID: 37635807 PMCID: PMC10447972 DOI: 10.3389/fnhum.2023.1219189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023] Open
Abstract
Objectives Attention-deficit/hyperactivity disorder (ADHD) is one of the most widespread and highly heritable neurodevelopmental disorders affecting children worldwide. Although synaptosomal-associated protein 25 (SNAP-25) is a possible gene hypothesized to be associated with working memory deficits in ADHD, little is known about its specific impact on the hippocampus. The goal of the current study was to determine how variations in ADHD's SNAP-25 Mnll polymorphism (rs3746544) affect hippocampal functional connectivity (FC). Methods A total of 88 boys between the ages of 7 and 10 years were recruited for the study, including 60 patients with ADHD and 28 healthy controls (HCs). Data from resting-state functional magnetic resonance imaging (rs-fMRI) and clinical information were acquired and assessed. Two single nucleotide polymorphisms (SNP) in the SNAP-25 gene were genotyped, according to which the study's findings separated ADHD patients into two groups: TT homozygotes (TT = 35) and G-allele carriers (TG = 25). Results Based on the rs-fMRI data, the FC of the right hippocampus and left frontal gyrus was evaluated using group-based comparisons. The corresponding sensitivities and specificities were assessed. Following comparisons between the patient groups, different hippocampal FCs were identified. When compared to TT patients, children with TG had a lower FC between the right precuneus and the right hippocampus, and a higher FC between the right hippocampus and the left middle frontal gyrus. Conclusion The fundamental neurological pathways connecting the SNAP-25 Mnll polymorphism with ADHD via the FC of the hippocampus were newly revealed in this study. As a result, the hippocampal FC may further serve as an imaging biomarker for ADHD.
Collapse
Affiliation(s)
- Wenxian Huang
- Department of Pediatric China Medical University, Shenyang, China
- Healthy Care Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Ahmed Ameen Fateh
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yilin Zhao
- Department of Pediatric China Medical University, Shenyang, China
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Binrang Yang
- Healthy Care Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Diangang Fang
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Linlin Zhang
- Healthy Care Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xianlei Meng
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Muhammad Hassan
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
11
|
Mensi MM, Gasparini L, Chiappedi M, Guerini FR, Orlandi M, Rogantini C, Balottin U. Empathy and behavior in children affected by autism spectrum disorders. Minerva Pediatr (Torino) 2023; 75:460-467. [PMID: 29968451 DOI: 10.23736/s2724-5276.18.05228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND Many studies have already shown that individuals suffering from autism spectrum disorders (ASD) present low levels of empathy: in fact, reduced emotional reciprocity is considered a clinically significant indicator of autistic functioning. We decided to investigate the role of empathy in determining pathological behaviors in children affected by ASD considering parents' point of view; and to evaluate the presence of differences between mothers and fathers' perception of their child's empathy and behaviors. METHODS We compared empathy levels in a sample of 58 patients with ASD as reported by a parent-filled questionnaire with the results of a global evaluation conducted by means of play observations, clinician-rated scales, a semistructured interview with both caregivers and parent-filled questionnaires. RESULTS The majority of ASD patients have low levels of empathy according to both parents' points of view; noteworthy, mothers and fathers are highly concordant in this respect. Children's levels of empathy negatively correlate with many behavioral problems, both internalizing and externalizing. Furthermore, we found that mothers tend to perceive more internalizing problems, while fathers are more willing to notice externalizing ones. CONCLUSIONS Involving both caregivers in children's diagnostic assessment could deepen patient's evaluation and finally the therapeutic results. Mothers and fathers seem to be highly consistent in describing the psychological characteristics of their child, but not in respect to symptoms.
Collapse
Affiliation(s)
- Martina M Mensi
- Unit of Child Neuropsychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Linda Gasparini
- Unit of Child Neuropsychiatry, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Matteo Chiappedi
- Unit of Child Neuropsychiatry, IRCCS Mondino Foundation, Pavia, Italy -
| | | | | | - Chiara Rogantini
- Unit of Child Neuropsychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Umberto Balottin
- Unit of Child Neuropsychiatry, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
12
|
Wang QW, Qin J, Chen YF, Tu Y, Xing YY, Wang Y, Yang LY, Lu SY, Geng L, Shi W, Yang Y, Yao J. 16p11.2 CNV gene Doc2α functions in neurodevelopment and social behaviors through interaction with Secretagogin. Cell Rep 2023; 42:112691. [PMID: 37354460 DOI: 10.1016/j.celrep.2023.112691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
Copy-number variations (CNVs) of the human 16p11.2 genetic locus are associated with neurodevelopmental disorders, including autism spectrum disorders (ASDs) and schizophrenia. However, it remains largely unclear how this locus is involved in the disease pathogenesis. Doc2α is localized within this locus. Here, using in vivo and ex vivo electrophysiological and morphological approaches, we show that Doc2α-deficient mice have neuronal morphological abnormalities and defects in neural activity. Moreover, the Doc2α-deficient mice exhibit social and repetitive behavioral deficits. Furthermore, we demonstrate that Doc2α functions in behavioral and neural phenotypes through interaction with Secretagogin (SCGN). Finally, we demonstrate that SCGN functions in social/repetitive behaviors, glutamate release, and neuronal morphology of the mice through its Doc2α-interacting activity. Therefore, Doc2α likely contributes to neurodevelopmental disorders through its interaction with SCGN.
Collapse
Affiliation(s)
- Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junhong Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan-Fen Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun-Yun Xing
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Yuchen Wang
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lv-Yu Yang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Si-Yao Lu
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Libo Geng
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Wei Shi
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yiming Yang
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China.
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
de Oliveira Ferreira E, Pessoa Gomes JM, Neves KRT, Lima FAV, de Barros Viana GS, de Andrade GM. Maternal treatment with aripiprazole prevents the development of a valproic acid-induced autism-like phenotype in juvenile male mice. Behav Pharmacol 2023; 34:154-168. [PMID: 36853856 DOI: 10.1097/fbp.0000000000000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Autism spectrum disorder (ASD) describes a heterogeneous group of neurodevelopmental conditions characterized by deficits in social communication and repetitive behaviors. Aripiprazole (APZ) is an atypical antipsychotic that can safeguard mice against autism-like behavior induced by valproic acid (VPA). In the present study, we examined the effects of maternal treatment with APZ (10 mg/kg) in juvenile mice prenatally exposed to VPA on neurodevelopmental behaviors, social interactions, communication, and working memory, as well as synaptophysin (SYP), synaptosomal-associated protein, 25 kDa (SNAP-25) and microtubule-associated protein 2 (MAP-2) expression in the medial prefrontal cortex (mPFC) and cell viability in the hippocampus. In addition, to evaluate possible APZ interference with the anticonvulsant properties of VPA on pentylenetetrazole (PTZ)-induced seizures were evaluated. Maternal treatment with APZ significantly prevented body weight loss, self-righting, eye-opening, social interactions, social communication, and working memory deficits in mice prenatally exposed to VPA. Additionally, the decrease in the SYP, SNAP-25, and MAP-2 expressions in the mPFC and cell death in the hippocampus was prevented by APZ. Furthermore, APZ (10 mg/kg) did not interfere with the anticonvulsant effect of VPA (15 mg/kg) in animals with PTZ-induced seizures. These findings indicate that maternal treatment with APZ in pregnant mice exposed to VPA protects animals against the ASD-like behavioral phenotype, and this effect may be related, at least in part, to synaptic plasticity and neuronal protection in the PFC and hippocampus. APZ may serve as an effective pharmacological therapeutic target against autistic behaviors in the VPA animal model of ASD, which should be further investigated to verify its clinical relevance.
Collapse
Affiliation(s)
| | | | | | | | - Glauce Socorro de Barros Viana
- Department of Physiology and Pharmacology
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Brazil
| | - Geanne Matos de Andrade
- Department of Clinical Medicine
- Department of Physiology and Pharmacology
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
14
|
Agostini S, Bolognesi E, Mancuso R, Marventano I, Citterio LA, Guerini FR, Clerici M. miR-23a-3p and miR-181a-5p modulate SNAP-25 expression. PLoS One 2023; 18:e0279961. [PMID: 36649268 PMCID: PMC9844927 DOI: 10.1371/journal.pone.0279961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
SNAP-25 protein is a key protein of the SNARE complex that is involved in synaptic vesicles fusion with plasma membranes and neurotransmitter release, playing a fundamental role in neural plasticity. Recently the concentration of three specific miRNAs-miR-27b-3p, miR-181a-5p and miR-23a-3p -was found to be associated with a specific SNAP-25 polymorphism (rs363050). in silico analysis showed that all the three miRNAs target SNAP-25, but the effect of the interaction between these miRNAs and the 3'UTR of SNAP-25 mRNA is currently unknown. For this reason, we verified in vitro whether miR-27b-3p, miR-181a-5p and miR-23a-3p modulate SNAP-25 gene and protein expression. Initial experiments using miRNAs-co-transfected Vero cells and SNAP-25 3'UTR luciferase reporter plasmids showed that miR-181a-5p (p≤0.01) and miR-23a-3p (p<0.05), but not miR-27b-3p, modulate the luciferase signal, indicating that these two miRNAs bind the SNAP-25 3'UTR. Results obtained using human oligodendroglial cell line (MO3.13) transfected with miR-181a-5p or miR-27b-3p confirmed that miR-181a-5p and miR-23a-3p regulate SNAP-25 gene and protein expression. Interestingly, the two miRNAs modulate in an opposite way SNAP-25, as miR-181a-5p significantly increases (p<0.0005), whereas miR-23a-3p decreases (p<0.0005) its expression. These results for the first time describe the ability of miR-181a-5p and miR-23a-3p to modulate SNAP-25 expression, suggesting their possible use as biomarkers or as therapeutical targets for diseases in which SNAP-25 expression is altered.
Collapse
Affiliation(s)
| | | | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- * E-mail:
| | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Tong C, Avilés L, Rayor LS, Mikheyev AS, Linksvayer TA. Genomic signatures of recent convergent transitions to social life in spiders. Nat Commun 2022; 13:6967. [PMID: 36414623 PMCID: PMC9681848 DOI: 10.1038/s41467-022-34446-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The transition from solitary to social life is a major phenotypic innovation, but its genetic underpinnings are largely unknown. To identify genomic changes associated with this transition, we compare the genomes of 22 spider species representing eight recent and independent origins of sociality. Hundreds of genes tend to experience shifts in selection during the repeated transition to social life. These genes are associated with several key functions, such as neurogenesis, behavior, and metabolism, and include genes that previously have been implicated in animal social behavior and human behavioral disorders. In addition, social species have elevated genome-wide rates of molecular evolution associated with relaxed selection caused by reduced effective population size. Altogether, our study provides unprecedented insights into the genomic signatures of social evolution and the specific genetic changes that repeatedly underpin the evolution of sociality. Our study also highlights the heretofore unappreciated potential of transcriptomics using ethanol-preserved specimens for comparative genomics and phylotranscriptomics.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Linda S Rayor
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander S Mikheyev
- Evolutionary Genomics Group, Research School of Biology, Australian National University, Canberra, 0200, Australia
| | - Timothy A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
16
|
Ochneva A, Zorkina Y, Abramova O, Pavlova O, Ushakova V, Morozova A, Zubkov E, Pavlov K, Gurina O, Chekhonin V. Protein Misfolding and Aggregation in the Brain: Common Pathogenetic Pathways in Neurodegenerative and Mental Disorders. Int J Mol Sci 2022; 23:14498. [PMID: 36430976 PMCID: PMC9695177 DOI: 10.3390/ijms232214498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Mental disorders represent common brain diseases characterized by substantial impairments of social and cognitive functions. The neurobiological causes and mechanisms of psychopathologies still have not been definitively determined. Various forms of brain proteinopathies, which include a disruption of protein conformations and the formation of protein aggregates in brain tissues, may be a possible cause behind the development of psychiatric disorders. Proteinopathies are known to be the main cause of neurodegeneration, but much less attention is given to the role of protein impairments in psychiatric disorders' pathogenesis, such as depression and schizophrenia. For this reason, the aim of this review was to discuss the potential contribution of protein illnesses in the development of psychopathologies. The first part of the review describes the possible mechanisms of disruption to protein folding and aggregation in the cell: endoplasmic reticulum stress, dysfunction of chaperone proteins, altered mitochondrial function, and impaired autophagy processes. The second part of the review addresses the known proteins whose aggregation in brain tissue has been observed in psychiatric disorders (amyloid, tau protein, α-synuclein, DISC-1, disbindin-1, CRMP1, SNAP25, TRIOBP, NPAS3, GluA1, FABP, and ankyrin-G).
Collapse
Affiliation(s)
- Aleksandra Ochneva
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Pavlova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Konstantin Pavlov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Gurina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- National University of Science and Technology “MISiS”, Leninskiy Avenue 4, 119049 Moscow, Russia
| |
Collapse
|
17
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
18
|
Özdemir Ç, Şahin N, Edgünlü T. Vesicle trafficking with snares: a perspective for autism. Mol Biol Rep 2022; 49:12193-12202. [PMID: 36198849 DOI: 10.1007/s11033-022-07970-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Vesicle-mediated membrane traffic is the mechanism fundamental to many biological events, especially the release of neurotransmitters. The main proteins of the mechanism that mediates membrane fusion in vesicle-mediated membrane traffic are N-ethylmaleimide sensitive factor (NSF) supplemental protein (SNAP) receptor (SNAREs) proteins. SNAREs are classified into vesicle-associated SNAREs (vesicle-SNAREs/v-SNAREs) and target membrane-associated SNAREs (target-SNARE/t-SNAREs). Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by many symptoms, especially complications in social communication and stereotypical behaviours. Defects in synaptogenesis and neurotransmission, oxidative stress, and developmental defects in the early stages of development are defined in the pathogenesis of the disease. SNARE proteins are on the basis of synaptogenesis and neurotransmission. Although the formation mechanisms and underlying causes of the SNARE complex are not fully understood, expression differences, polymorphisms, abnormal expressions or dysfunctions of the proteins that make up the SNARE complex have been associated with many neurodevelopmental diseases, including autism. Further understanding of SNARE mechanisms is crucial both for understanding ASD and for developing new treatments. In this review, the formation mechanisms of the SNARE complex and the roles of various factors involved in this process are explained. In addition, a brief evaluation of clinical and basic studies on the SNARE complex in autism spectrum disorders was made.
Collapse
Affiliation(s)
- Çilem Özdemir
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Nilfer Şahin
- Department of Child and Adolescent Mental Health Diseases School of Medicine, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Tuba Edgünlü
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, 48000, Mugla, Turkey.
| |
Collapse
|
19
|
Fang D, Yang B, Wang P, Mo T, Gan Y, Liang G, Huang R, Zeng H. Role of SNAP-25 MnlI variant in impaired working memory and brain functions in attention deficit/hyperactivity disorder. Brain Behav 2022; 12:e2758. [PMID: 36068994 PMCID: PMC9575616 DOI: 10.1002/brb3.2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Attention deficit/hyperactivity disorder (ADHD) is a hereditary neurodevelopmental disorder characterized by working memory (WM) deficits. The MnlI variant (rs3746544) of the synaptosomal-associated protein 25 (SNAP-25) gene is associated with ADHD. In this study, we investigated the role and underlying mechanism of SNAP-25 MnlI variant in cognitive impairment and brain functions in boys with ADHD. METHOD We performed WM capacity tests using the fourth version of the Wechsler Intelligence Scale for Children (WISC-IV) and regional homogeneity (ReHo) analysis for the resting-state functional magnetic resonance imaging data of 56 boys with ADHD divided into two genotypic groups (TT homozygotes and G-allele carriers). Next, Spearman's rank correlation analysis between the obtained ReHo values and the WM index (WMI) calculated for each participant. RESULTS Compared with G-allele carrier group, there were higher ReHo values for the left medial prefrontal cortex (mPFC) and higher WM capacity in TT homozygote group. Contrary to TT homozygote group, the WM capacity was negatively correlated with the peak ReHo value for the left mPFC in G-allele carrier group. CONCLUSION These findings suggest that SNAP-25 MnlI variant may underlie cognitive and brain function impairments in boys with ADHD, thus suggesting its potential as a new target for ADHD treatment.
Collapse
Affiliation(s)
- Diangang Fang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Binrang Yang
- Development and Behavior Specialty, Shenzhen Children's Hospital, Shenzhen, China
| | - Peng Wang
- Cardiac Rehabilitation Center, Fuwai Hospital CAMS&PUMC, Beijing, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Guohua Liang
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| | - Rong Huang
- Department of Radiology, Peking University Shenzhen hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
20
|
Costa AS, Ferri E, Guerini FR, Rossi PD, Arosio B, Clerici M. VAMP2 Expression and Genotype Are Possible Discriminators in Different Forms of Dementia. Front Aging Neurosci 2022; 14:858162. [PMID: 35360211 PMCID: PMC8964122 DOI: 10.3389/fnagi.2022.858162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
Vascular alterations often overlap with neurodegeneration, resulting in mixed forms of dementia (MD) that are hard to differentiate from Alzheimer’s Disease (AD). The 26 bp intergenic polymorphism of VAMP2, a key component of SNARE complex, as well as its mRNA and protein levels are associated with neurological diseases. We evaluated ApoE4 and VAMP2 26 bp Ins/Del genotype distribution in 177 AD, 132 MD, 115 Mild Cognitive Impairment (MCI) and 250 individuals without cognitive decline (CT), as well as VAMP2 gene expression in a subset of 73 AD, 122 MD, 103 MCI and 140 CT. Forty-two MCI evolved to AD (22 MCI-AD) or MD (20 MCI-MD) over time. VAMP2 mRNA was higher in MD compared to AD (p = 0.0013) and CT (p = 0.0017), and in MCI-MD compared to MCI-AD (p < 0.001) after correcting for age, gender, MMSE and ApoE4 +/− covariates (pc = 0.004). A higher VAMP2 expression was observed in subjects carrying the minor allele Del compared to those carrying the Ins/Ins genotype (p = 0.012). Finally, Del/Del genotype was more frequently carried by MD/MCI-MD compared to CT (pc = 0.036). These results suggest that VAMP2 mRNA expression can discriminate mixed form of dementia from AD, possibly being a biomarker of AD evolution in MCI patients.
Collapse
Affiliation(s)
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- *Correspondence: Franca Rosa Guerini,
| | - Paolo Dionigi Rossi
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Hao X, Zhu B, Yang P, Dong D, Sahbaie P, Oliver PL, Shen WJ, Azhar S, Kraemer FB. SNAP25 mutation disrupts metabolic homeostasis, steroid hormone production and central neurobehavior. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166304. [PMID: 34826585 PMCID: PMC8759409 DOI: 10.1016/j.bbadis.2021.166304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE SNAP-25 is one of the key proteins involved in formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes that are at the core of hormonal secretion and synaptic transmission. Altered expression or function of SNAP-25 can contribute to the development of neuropsychiatric and metabolic disease. A dominant negative (DN) I67T missense mutation in the b-isoform of SNAP-25 (DN-SNAP25mut) mice leads to abnormal interactions within the SNARE complex and impaired exocytotic vesicle recycling, yet the significance of this mutation to any association between the central nervous system and metabolic homeostasis is unknown. METHODS Here we explored aspects of metabolism, steroid hormone production and neurobehavior of DN-SNAP25mut mice. RESULTS DN-SNAP25mut mice displayed enhanced insulin function through increased Akt phosphorylation, alongside increased adrenal and gonadal hormone production. In addition, increased anxiety behavior and beigeing of white adipose tissue with increased energy expenditure were observed in mutants. CONCLUSIONS Our results show that SNAP25 plays an important role in bridging central neurological systems with peripheral metabolic homeostasis, and provide potential insights between metabolic disease and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Xiao Hao
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Endocrinology, First Affiliated Hospital of the Medical College of Zhengzhou University, Zhengzhou, China
| | - Bing Zhu
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pinglin Yang
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Orthopedics, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, Shaanxi, China
| | - Dachuan Dong
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peyman Sahbaie
- Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States
| | - Peter L Oliver
- Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, United Kingdom
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States.
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States.
| |
Collapse
|
22
|
Stanford SC. Animal Models of ADHD? Curr Top Behav Neurosci 2022; 57:363-393. [PMID: 35604570 DOI: 10.1007/7854_2022_342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To describe animals that express abnormal behaviors as a model of Attention-Deficit Hyperactivity Disorder (ADHD) implies that the abnormalities are analogous to those expressed by ADHD patients. The diagnostic features of ADHD comprise inattentiveness, impulsivity, and hyperactivity and so these behaviors are fundamental for validation of any animal model of this disorder. Several experimental interventions such as neurotoxic lesion of neonatal rats with 6-hydroxydopamine (6-OHDA), genetic alterations, or selective inbreeding of rodents have produced animals that express each of these impairments to some extent. This article appraises the validity of claims that these procedures have produced a model of ADHD, which is essential if they are to be used to investigate the underlying cause(s) of ADHD and its abnormal neurobiology.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
23
|
Optimization of Neurite Tracing and Further Characterization of Human Monocyte-Derived-Neuronal-like Cells. Brain Sci 2021; 11:brainsci11111372. [PMID: 34827371 PMCID: PMC8615477 DOI: 10.3390/brainsci11111372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
Deficits in neuronal structure are consistently associated with neurodevelopmental illnesses such as autism and schizophrenia. Nonetheless, the inability to access neurons from clinical patients has limited the study of early neurostructural changes directly in patients’ cells. This obstacle has been circumvented by differentiating stem cells into neurons, although the most used methodologies are time consuming. Therefore, we recently developed a relatively rapid (~20 days) protocol for transdifferentiating human circulating monocytes into neuronal-like cells. These monocyte-derived-neuronal-like cells (MDNCs) express several genes and proteins considered neuronal markers, such as MAP-2 and PSD-95. In addition, these cells conduct electrical activity. We have also previously shown that the structure of MDNCs is comparable with that of human developing neurons (HDNs) after 5 days in culture. Moreover, the neurostructure of MDNCs responds similarly to that of HDNs when exposed to colchicine and dopamine. In this manuscript, we expanded our characterization of MDNCs to include the expression of 12 neuronal genes, including tau. Following, we compared three different tracing approaches (two semi-automated and one automated) that enable tracing using photographs of live cells. This comparison is imperative for determining which neurite tracing method is more efficient in extracting neurostructural data from MDNCs and thus allowing researchers to take advantage of the faster yield provided by these neuronal-like cells. Surprisingly, it was one of the semi-automated methods that was the fastest, consisting of tracing only the longest primary and the longest secondary neurite. This tracing technique also detected more structural deficits. The only automated method tested, Volocity, detected MDNCs but failed to trace the entire neuritic length. Other advantages and disadvantages of the three tracing approaches are also presented and discussed.
Collapse
|
24
|
Chen S, Liu S, Mi S, Li W, Zhang S, Ding X, Yu Y. Comparative Analyses of Sperm DNA Methylomes Among Three Commercial Pig Breeds Reveal Vital Hypomethylated Regions Associated With Spermatogenesis and Embryonic Development. Front Genet 2021; 12:740036. [PMID: 34691153 PMCID: PMC8527042 DOI: 10.3389/fgene.2021.740036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Identifying epigenetic changes is essential for an in-depth understanding of phenotypic diversity and pigs as the human medical model for anatomizing complex diseases. Abnormal sperm DNA methylation can lead to male infertility, fetal development failure, and affect the phenotypic traits of offspring. However, the whole genome epigenome map in pig sperm is lacking to date. In this study, we profiled methylation levels of cytosine in three commercial pig breeds, Landrace, Duroc, and Large White using whole-genome bisulfite sequencing (WGBS). The results showed that the correlation of methylation levels between Landrace and Large White pigs was higher. We found that 1,040-1,666 breed-specific hypomethylated regions (HMRs) were associated with embryonic developmental and economically complex traits for each breed. By integrating reduced representation bisulfite sequencing (RRBS) public data of pig testis, 1743 conservated HMRs between sperm and testis were defined, which may play a role in spermatogenesis. In addition, we found that the DNA methylation patterns of human and pig sperm showed high similarity by integrating public data from WGBS and chromatin immunoprecipitation sequencing (ChIP-seq) in other mammals, such as human and mouse. We identified 2,733 conserved HMRs between human and pig involved in organ development and brain-related traits, such as NLGN1 (neuroligin 1) containing a conserved-HMR between human and pig. Our results revealed the similarities and diversity of sperm methylation patterns among three commercial pig breeds and between human and pig. These findings are beneficial for elucidating the mechanism of male fertility, and the changes in commercial traits that undergo strong selection.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Chen S, Alhassen W, Vakil Monfared R, Vachirakorntong B, Nauli SM, Baldi P, Alachkar A. Dynamic Changes of Brain Cilia Transcriptomes across the Human Lifespan. Int J Mol Sci 2021; 22:10387. [PMID: 34638726 PMCID: PMC8509004 DOI: 10.3390/ijms221910387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
Almost all brain cells contain primary cilia, antennae-like microtubule sensory organelles, on their surface, which play critical roles in brain functions. During neurodevelopmental stages, cilia are essential for brain formation and maturation. In the adult brain, cilia play vital roles as signaling hubs that receive and transduce various signals and regulate cell-to-cell communications. These distinct roles suggest that cilia functions, and probably structures, change throughout the human lifespan. To further understand the age-dependent changes in cilia roles, we identified and analyzed age-dependent patterns of expression of cilia's structural and functional components across the human lifespan. We acquired cilia transcriptomic data for 16 brain regions from the BrainSpan Atlas and analyzed the age-dependent expression patterns using a linear regression model by calculating the regression coefficient. We found that 67% of cilia transcripts were differentially expressed genes with age (DEGAs) in at least one brain region. The age-dependent expression was region-specific, with the highest and lowest numbers of DEGAs expressed in the ventrolateral prefrontal cortex and hippocampus, respectively. The majority of cilia DEGAs displayed upregulation with age in most of the brain regions. The transcripts encoding cilia basal body components formed the majority of cilia DEGAs, and adjacent cerebral cortices exhibited large overlapping pairs of cilia DEGAs. Most remarkably, specific α/β-tubulin subunits (TUBA1A, TUBB2A, and TUBB2B) and SNAP-25 exhibited the highest rates of downregulation and upregulation, respectively, across age in almost all brain regions. α/β-tubulins and SNAP-25 expressions are known to be dysregulated in age-related neurodevelopmental and neurodegenerative disorders. Our results support a role for the high dynamics of cilia structural and functional components across the lifespan in the normal physiology of brain circuits. Furthermore, they suggest a crucial role for cilia signaling in the pathophysiological mechanisms of age-related psychiatric/neurological disorders.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Roudabeh Vakil Monfared
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Benjamin Vachirakorntong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Pierre Baldi
- Department of Computer Science, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA; (S.C.); (P.B.)
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
| | - Amal Alachkar
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA 92617, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92617, USA; (W.A.); (R.V.M.); (B.V.)
| |
Collapse
|
26
|
Blasi V, Bolognesi E, Ricci C, Baglio G, Zanzottera M, Canevini MP, Walder M, Cabinio M, Zanette M, Baglio F, Clerici M, Guerini FR. SNAP-25 Single Nucleotide Polymorphisms, Brain Morphology and Intelligence in Children With Borderline Intellectual Functioning: A Mediation Analysis. Front Neurosci 2021; 15:715048. [PMID: 34512248 PMCID: PMC8427043 DOI: 10.3389/fnins.2021.715048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Borderline intellectual functioning (BIF) is a multifactorial condition in which both genetic and environmental factors are likely to contribute to the clinical outcome. Abnormal cortical development and lower IQ scores were shown to be correlated in BIF children, but the genetic components of this condition and their possible connection with intelligence and brain morphology have never been investigated in BIF. The synaptosomal-associated protein of 25 kD (SNAP-25) is involved in synaptic plasticity, neural maturation, and neurotransmission, affecting intellectual functioning. We investigated SNAP-25 polymorphisms in BIF and correlated such polymorphisms with intelligence and cortical thickness, using socioeconomic status and environmental stress as covariates as a good proxy of the variables that determine intellectual abilities. Thirty-three children with a diagnosis of BIF were enrolled in the study. SNAP-25 polymorphisms rs363050, rs363039, rs363043, rs3746544, and rs1051312 were analyzed by genotyping; cortical thickness was studied by MRI; intelligence was measured using the WISC-III/IV subscales; environmental stressors playing a role in neuropsychiatric development were considered as covariate factors. Results showed that BIF children carrying the rs363043(T) minor allele represented by (CT + TT) genotypes were characterized by lower performance Perceptual Reasoning Index and lower full-scale IQ scores (p = 0.04) compared to those carrying the (CC) genotype. This association was correlated with a reduced thickness of the left inferior parietal cortex (direct effect = 0.44) and of the left supramarginal gyrus (direct effect = 0.56). These results suggest a link between SNAP-25 polymorphism and intelligence with the mediation role of brain morphological features in children with BIF.
Collapse
Affiliation(s)
- Valeria Blasi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | - Cristian Ricci
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | | | - Maria Paola Canevini
- Epilepsy Center, ASST S. Paolo and S. Carlo Hospital, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Mauro Walder
- Child Neuropsychiatry Unit - ASST S. Paolo and S. Carlo Hospital, Milan, Italy
| | - Monia Cabinio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
27
|
Agostini S, Mancuso R, Costa AS, Guerini FR, Trecate F, Miglioli R, Menna E, Arosio B, Clerici M. Sarcopenia associates with SNAP-25 SNPs and a miRNAs profile which is modulated by structured rehabilitation treatment. J Transl Med 2021; 19:315. [PMID: 34289870 PMCID: PMC8296538 DOI: 10.1186/s12967-021-02989-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sarcopenia is a loss of muscle mass and strength causing disability, morbidity, and mortality in older adults, which is characterized by alterations of the neuromuscular junctions (NMJs). SNAP-25 is essential for the maintenance of NMJ integrity, and the expression of this protein was shown to be modulated by the SNAP-25 rs363050 polymorphism and by a number of miRNAs. METHODS We analysed these parameters in a cohort of sarcopenic patients undergoing structured rehabilitation. The rs363050 genotype frequency distribution was analyzed in 177 sarcopenic patients and 181 healthy controls (HC). The concentration of seven miRNAs (miR-451a, miR-425-5p, miR155-5p, miR-421-3p, miR-495-3p, miR-744-5p and miR-93-5p), identified by mouse brain miRNome analysis to be differentially expressed in wild type compared to SNAP-25± heterozygous mice, was analyzed as well by droplet digital PCR (ddPCR) in a subgroup of severe sarcopenic patients undergoing rehabilitation. RESULTS The SNAP-25 rs363050 AA genotype was significantly more common in sarcopenic patients compared to HC (pc = 0.01); miR-451a was significantly up-regulated in these patients before rehabilitation. Rehabilitation modified miRNAs expression, as miR-155-5p, miR-421-3p, miR-451a, miR-425-5p, miR-744-5p and miR-93-5p expression was significantly up-regulated (p < 0.01), whereas that of miR-495-3p was significantly down-regulated (p < 0.001) by rehabilitation. Notably, rehabilitation-associated improvement of the muscle-skeletal SPPB score was significantly associated with the reduction of miR-451a expression. CONCLUSION These results support the hypothesis of a role for SNAP-25 in sarcopenia and suggest SNAP-25-associated miRNAs as circulatory biomarkers of rehabilitative outcome for sarcopenia.
Collapse
Affiliation(s)
- Simone Agostini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Andrea Saul Costa
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Fabio Trecate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Rossella Miglioli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Elisabetta Menna
- CNR-Institute of Neuroscience, Milan, Italy
- Humanitas Clinical and Research Center–IRCCS, via Manzoni 56, 20089 Rozzano, MI Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - the SA. M. B. A. project
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
- Humanitas Clinical and Research Center–IRCCS, via Manzoni 56, 20089 Rozzano, MI Italy
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Rodina AV, Semochkina YP, Vysotskaya OV, Romantsova AN, Strepetov AN, Moskaleva EY. Low dose gamma irradiation pretreatment modulates the sensitivity of CNS to subsequent mixed gamma and neutron irradiation of the mouse head. Int J Radiat Biol 2021; 97:926-942. [PMID: 34043460 DOI: 10.1080/09553002.2021.1928787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
ABSTRACТPurpose: To explore if the total body γ-irradiation at a dose of 0.1 Gy 7 days prior to acute mixed γ, n-irradiation of the head at the dose of 1 Gy can reduce the harmful effects of neutron irradiation on the hippocampal functions, neuroinflammation and neurogenesis.Materials and methods: Mice were exposed to γ-radiation alone, mixed γ,n-radiation or combined γ-rays and γ,n-radiation 7 days after γ-irradiation. Two months post-irradiation, mice were tested in Open Field and in the Morris water maze. The content of microglia, astrocytes, proliferating cells and cytokines TGF-β, TNF-α, IL-1β, GFAP levels, hippocampal BDNF, NT-3, NT-4, NGF mRNA expression were evaluated.Results: Two months after combined irradiation, we observed impaired hippocampus-dependent cognition, which was not detected in mice exposed to γ,n-irradiation. Combined exposure and γ,n-irradiation led to a significant increase in the level of activated microglia and astrocytes in the brains. The level of pro- and anti-inflammatory cytokines in the brain and hippocampal neurotrophine's genes changed differenly after the combined exposure and γ,n-irradiation. The quantity of DCX-positive cells was reduced after γ,n-irradiation exposer alone, but increased after combined irradiation.Conclusions: Our results indicate radio-adaptive responses in brains of mice that were exposed to low-dose gamma irradiation 7 days prior to acute 1 Gy γ,n-irradiation.
Collapse
Affiliation(s)
- Alla V Rodina
- Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
- Chair of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Yulia P Semochkina
- Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Olga V Vysotskaya
- Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Anastasia N Romantsova
- Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| | - Aleksandr N Strepetov
- Kurchatov Nuclear Physics Complex, NRC 'Kurchatov Institute', Moscow, Russian Federation
| | - Elizaveta Y Moskaleva
- Kurchatov Complex of NBICS Technologies, NRC Kurchatov Institute, Moscow, Russian Federation
| |
Collapse
|
29
|
Wang Z, Li J, Zhang T, Lu T, Wang H, Jia M, Liu J, Xiong J, Zhang D, Wang L. Family-based association study identifies SNAP25 as a susceptibility gene for autism in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:109985. [PMID: 32479779 DOI: 10.1016/j.pnpbp.2020.109985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022]
Abstract
Autism is a neurodevelopmental disorder with high heritability. Synaptosome associated protein 25 (SNAP25) encodes a presynaptic membrane-binding protein. It plays a crucial role in neurotransmission and may be involved in the pathogenesis of autism. However, the association between SNAP25 and autism in the Han Chinese population remains unclear. To investigate whether single nucleotide polymorphisms (SNPs) in SNAP25 contribute to the risk of autism, we performed a family-based association study of 14 tagSNPs in SNAP25 in 640 Han Chinese autism trios. Our results demonstrated that rs363018 in SNAP25 was significantly associated with autism under both additive (A > G, Z = 3.144, P = .0017) and recessive models (A > G, Z = 3.055, P = .0023) after Bonferroni correction (P < .0036). An additional SNP, rs8636, was nominally associated with autism under the recessive model (C > T, Z = 1.972, P = .0487). Haplotype-based association test revealed that haplotypes A-T (Z = 2.038, P = .0415) and G-T (Z = -3.114, P = .0018) of rs363018-rs362582 were significantly associated with autism after the permutation test (P = .0158). These findings suggest that SNAP25 may represent a susceptibility gene for autism in the Han Chinese population.
Collapse
Affiliation(s)
- Ziqi Wang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jun Li
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tian Zhang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Meixiang Jia
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jing Liu
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Jun Xiong
- Haidian Maternal & Child Health Hospital, Beijing 100080, China.
| | - Dai Zhang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lifang Wang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| |
Collapse
|
30
|
Matta SM, Moore Z, Walker FR, Hill-Yardin EL, Crack PJ. An altered glial phenotype in the NL3 R451C mouse model of autism. Sci Rep 2020; 10:14492. [PMID: 32879325 PMCID: PMC7468159 DOI: 10.1038/s41598-020-71171-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorder (ASD; autism) is a neurodevelopmental disorder characterised by deficits in social communication, and restricted and/or repetitive behaviours. While the precise pathophysiologies are unclear, increasing evidence supports a role for dysregulated neuroinflammation in the brain with potential effects on synapse function. Here, we studied characteristics of microglia and astrocytes in the Neuroligin-3 (NL3R451C) mouse model of autism since these cell types are involved in regulating both immune and synapse function. We observed increased microglial density in the dentate gyrus (DG) of NL3R451C mice without morphological differences. In contrast, WT and NL3R451C mice had similar astrocyte density but astrocyte branch length, the number of branch points, as well as cell radius and area were reduced in the DG of NL3R451C mice. Because retraction of astrocytic processes has been linked to altered synaptic transmission and dendrite formation, we assessed for regional changes in pre- and postsynaptic protein expression in the cortex, striatum and cerebellum in NL3R451C mice. NL3R451C mice showed increased striatal postsynaptic density 95 (PSD-95) protein levels and decreased cortical expression of synaptosomal-associated protein 25 (SNAP-25). These changes could contribute to dysregulated neurotransmission and cognition deficits previously reported in these mice.
Collapse
Affiliation(s)
- Samantha M Matta
- Department of Pharmacology and Therapeutics, The University of Melbourne, Grattan St, Parkville, VIC, Australia.,School of Health & Biomedical Sciences, RMIT University, 225-245 Clements Drive, Bundoora, VIC, Australia
| | - Zachery Moore
- Department of Pharmacology and Therapeutics, The University of Melbourne, Grattan St, Parkville, VIC, Australia
| | - Frederick Rohan Walker
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Locked Bag 1000, New Lambton, NSW, Australia
| | - Elisa L Hill-Yardin
- School of Health & Biomedical Sciences, RMIT University, 225-245 Clements Drive, Bundoora, VIC, Australia.,Department of Physiology, The University of Melbourne, Grattan St, Parkville, VIC, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Grattan St, Parkville, VIC, Australia.
| |
Collapse
|
31
|
Polygenic analysis suggests the involvement of calcium signaling in executive function in schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 2020; 270:425-431. [PMID: 30523404 DOI: 10.1007/s00406-018-0961-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]
Abstract
Cognitive deficits are increasingly recognized as a core dimension rather than a consequence of schizophrenia (SCZ). The previous evidence supports the hypothesis of shared genetic factors between SCZ and cognitive ability. The objective of this study was to test whether and to what extent the variation of disease-relevant neurocognitive function in a sample of SCZ patients from the previous clinical interventional studies can be explained by SCZ polygenic risk scores (PRSs) or by hypothesis-driven and biomedical PRSs. The previous studies have described associations of the SNAP25 gene with cognition in SCZ. Likewise, the enrichment of several calcium signaling-related gene sets has been reported by genome-wide association studies (GWAS) in SCZ. Hypothesis-driven PRSs were calculated on the basis of the SNAP-25 interactome and also for genes regulated by phorbol myristate acetate (PMA), an activator of the signal transduction of protein kinase C (PKC) enzymes. In a cohort of 127 SCZ patients who had completed a comprehensive neurocognitive test battery as part of the previous antipsychotic intervention studies, we investigated the association between neurocognitive dimensions and PRSs. The PRS for SCZ and SNAP-25-associated genes could not explain the variance of neurocognition in this cohort. At a p value threshold of 0.05, the PRS for PMA was able to explain 2% of the variance in executive function (p = 0.05, uncorrected). The correlation between the PRS for PMA-regulated genes and cognition can give hints for further patient-derived cellular assays. In conclusion, incorporating biological information into PRSs and other en masse genetic analyses may help to close the gap between genetic vulnerability and the biological processes underlying neuropsychiatric diseases such as SCZ.
Collapse
|
32
|
Gąssowska-Dobrowolska M, Cieślik M, Czapski GA, Jęśko H, Frontczak-Baniewicz M, Gewartowska M, Dominiak A, Polowy R, Filipkowski RK, Babiec L, Adamczyk A. Prenatal Exposure to Valproic Acid Affects Microglia and Synaptic Ultrastructure in a Brain-Region-Specific Manner in Young-Adult Male Rats: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21103576. [PMID: 32443651 PMCID: PMC7279050 DOI: 10.3390/ijms21103576] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental conditions categorized as synaptopathies. Environmental risk factors contribute to ASD aetiology. In particular, prenatal exposure to the anti-epileptic drug valproic acid (VPA) may increase the risk of autism. In the present study, we investigated the effect of prenatal exposure to VPA on the synaptic morphology and expression of key synaptic proteins in the hippocampus and cerebral cortex of young-adult male offspring. To characterize the VPA-induced autism model, behavioural outcomes, microglia-related neuroinflammation, and oxidative stress were analysed. Our data showed that prenatal exposure to VPA impaired communication in neonatal rats, reduced their exploratory activity, and led to anxiety-like and repetitive behaviours in the young-adult animals. VPA-induced pathological alterations in the ultrastructures of synapses accompanied by deregulation of key pre- and postsynaptic structural and functional proteins. Moreover, VPA exposure altered the redox status and expression of proinflammatory genes in a brain region-specific manner. The disruption of synaptic structure and plasticity may be the primary insult responsible for autism-related behaviour in the offspring. The vulnerability of specific synaptic proteins to the epigenetic effects of VPA may highlight the potential mechanisms by which prenatal VPA exposure generates behavioural changes.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
- Correspondence: (M.G.-D.); (A.A.); Tel.: +48-22-6086420 (M.G-D.); +48-22-6086572 (A.A.)
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Grzegorz Arkadiusz Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.F.-B.); (M.G.)
| | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.F.-B.); (M.G.)
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Robert Kuba Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
- Correspondence: (M.G.-D.); (A.A.); Tel.: +48-22-6086420 (M.G-D.); +48-22-6086572 (A.A.)
| |
Collapse
|
33
|
Changes in the Expression of SNAP-25 Protein in the Brain of Juvenile Rats in Two Models of Autism. J Mol Neurosci 2020; 70:1313-1320. [PMID: 32367505 PMCID: PMC7399687 DOI: 10.1007/s12031-020-01543-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
The results of genetic studies suggest a possible role for SNAP-25 polymorphism in the development of autism spectrum disorders (ASDs); however, there are no data available on whether changes in SNAP-25 expression also affect animals in rodent models of ASD. The aim of the present study was to explore this issue. The studies included 1-month-old rats representing valproic acid (VPA)- and thalidomide (THAL)-induced models of autism. Their mothers received single doses of VPA (800 mg/kg) or THAL (500 mg/kg) per os on the 11th day of gestation. SNAP-25 protein content in the cerebellum, hippocampus, and frontal lobe was determined using Western blotting, while changes of mRNA levels of Snap25 gene were determined using real-time polymerase chain reaction. Compared to controls, SNAP-25 content was decreased by approximately 35% in all brain structures tested, in both males and females, exclusively in the VPA group. In contrast to this, Snap25 expression, studied in males, was increased in the hippocampus and cerebellum in both, VPA- and THAL-treated rats. We discuss the compliance of these results with the hypothesized role of SNAP-25 in the pathophysiology of ASD and the adequacy of the experimental models used.
Collapse
|
34
|
Sasaki Y. Local Translation in Growth Cones and Presynapses, Two Axonal Compartments for Local Neuronal Functions. Biomolecules 2020; 10:biom10050668. [PMID: 32344905 PMCID: PMC7277458 DOI: 10.3390/biom10050668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 01/02/2023] Open
Abstract
During neural development, growth cones, very motile compartments of tips of axons, lead axonal extension to the correct targets. Subsequently, presynapses, another axonal compartment with vigorous trafficking of synaptic vesicles, emerge to form functional synapses with postsynapses. In response to extracellular stimuli, the immediate supply of proteins by local translation within these two axonal compartments far from cell bodies confers high motility of growth cones and active vesicle trafficking in presynapses. Although local translation in growth cones and presynapses occurs at a very low level compared with cell bodies and even dendrites, recent progress in omics and visualization techniques with subcellular fractionation of these compartments has revealed the actual situation of local translation within these two axonal compartments. Here, the increasing evidence for local protein synthesis in growth cones and presynapses for axonal and synaptic functions has been reviewed. Furthermore, the mechanisms regulating local translation in these two compartments and pathophysiological conditions caused by dysregulated local translation are highlighted.
Collapse
Affiliation(s)
- Yukio Sasaki
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
35
|
Kazantseva AV, Enikeeva RF, Romanova AR, Malykh SB, Galyautdinova SI, Khusnutdinova EK. Stress-Associated Cognitive Functioning Is Controlled by Variations in Synaptic Plasticity Genes. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Velmeshev D, Magistri M, Mazza EMC, Lally P, Khoury N, D'Elia ER, Bicciato S, Faghihi MA. Cell-Type-Specific Analysis of Molecular Pathology in Autism Identifies Common Genes and Pathways Affected Across Neocortical Regions. Mol Neurobiol 2020; 57:2279-2289. [PMID: 32008165 DOI: 10.1007/s12035-020-01879-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Despite its heterogeneity, autism is characterized by a defined behavioral phenotype, suggesting that the molecular pathology affects specific neural substrates to cause behavioral dysfunction. Previous studies identified genes dysregulated in autism cortex but did not address their cell-type specificity. Moreover, it is unknown whether there is a core of genes dysregulated across multiple neocortical regions. We applied RNA sequencing to postmortem brain tissue samples from autism patients and neurologically normal controls and combined our data with previously published datasets. We then identified genes, pathways, and alternative splicing events which are dysregulated in five neocortical regions in autism. To gain information about cell-type specificity of the dysregulated genes, we analyzed single-nuclei RNA sequencing data of adult human cortex and intersected cell-type-specific gene signatures with genes dysregulated in autism in specific cortical regions. We found that autism-associated gene expression changes across 4 frontal and temporal cortex regions converge on 27 genes related to immune response and enriched in human astrocytes, microglia, and brain endothelium. Shared splicing changes, however, are found in genes predominantly associated with synaptic function and adult interneurons and projection neurons. Finally, we demonstrate that regions of DNA differentially methylated in autism overlap genes associated with development and enriched in human cortical oligodendrocytes. Our study identifies signatures of autism molecular pathology shared across neocortical regions, as well as neural cell types enriched for common dysregulated genes, thus paving way for assessing cell-type-specific mechanisms of autism pathology.
Collapse
Affiliation(s)
- Dmitry Velmeshev
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA
| | - Marco Magistri
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA
| | - Emilia Maria Cristina Mazza
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, 41121, Modena, Italy
| | - Patrick Lally
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA
| | - Nathalie Khoury
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA
| | - Evan Ross D'Elia
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, 41121, Modena, Italy
| | - Mohammad Ali Faghihi
- Department of Psychiatry, University of Miami, Miami, FL, 33137, USA. .,Center for Therapeutic Innovation & Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL, 33136, USA.
| |
Collapse
|
37
|
SNAP-25 Puts SNAREs at Center Stage in Metabolic Disease. Neuroscience 2019; 420:86-96. [DOI: 10.1016/j.neuroscience.2018.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
|
38
|
Rafi SK, Fernández-Jaén A, Álvarez S, Nadeau OW, Butler MG. High Functioning Autism with Missense Mutations in Synaptotagmin-Like Protein 4 (SYTL4) and Transmembrane Protein 187 (TMEM187) Genes: SYTL4- Protein Modeling, Protein-Protein Interaction, Expression Profiling and MicroRNA Studies. Int J Mol Sci 2019; 20:E3358. [PMID: 31323913 PMCID: PMC6651166 DOI: 10.3390/ijms20133358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 01/31/2023] Open
Abstract
We describe a 7-year-old male with high functioning autism spectrum disorder (ASD) and maternally-inherited rare missense variant of Synaptotagmin-like protein 4 (SYTL4) gene (Xq22.1; c.835C>T; p.Arg279Cys) and an unknown missense variant of Transmembrane protein 187 (TMEM187) gene (Xq28; c.708G>T; p. Gln236His). Multiple in-silico predictions described in our study indicate a potentially damaging status for both X-linked genes. Analysis of predicted atomic threading models of the mutant and the native SYTL4 proteins suggest a potential structural change induced by the R279C variant which eliminates the stabilizing Arg279-Asp60 salt bridge in the N-terminal half of the SYTL4, affecting the functionality of the protein's critical RAB-Binding Domain. In the European (Non-Finnish) population, the allele frequency for this variant is 0.00042. The SYTL4 gene is known to directly interact with several members of the RAB family of genes, such as, RAB27A, RAB27B, RAB8A, and RAB3A which are known autism spectrum disorder genes. The SYTL4 gene also directly interacts with three known autism genes: STX1A, SNAP25 and STXBP1. Through a literature-based analytical approach, we identified three of five (60%) autism-associated serum microRNAs (miRs) with high predictive power among the total of 298 mouse Sytl4 associated/predicted microRNA interactions. Five of 13 (38%) miRs were differentially expressed in serum from ASD individuals which were predicted to interact with the mouse equivalent Sytl4 gene. TMEM187 gene, like SYTL4, is a protein-coding gene that belongs to a group of genes which host microRNA genes in their introns or exons. The novel Q236H amino acid variant in the TMEM187 in our patient is near the terminal end region of the protein which is represented by multiple sequence alignments and hidden Markov models, preventing comparative structural analysis of the variant harboring region. Like SYTL4, the TMEM187 gene is expressed in the brain and interacts with four known ASD genes, namely, HCFC1; TMLHE; MECP2; and GPHN. TMM187 is in linkage with MECP2, which is a well-known determinant of brain structure and size and is a well-known autism gene. Other members of the TMEM gene family, TMEM132E and TMEM132D genes are associated with bipolar and panic disorders, respectively, while TMEM231 is a known syndromic autism gene. Together, TMEM187 and SYTL4 genes directly interact with recognized important ASD genes, and their mRNAs are found in extracellular vesicles in the nervous system and stimulate target cells to translate into active protein. Our evidence shows that both these genes should be considered as candidate genes for autism. Additional biological testing is warranted to further determine the pathogenicity of these gene variants in the causation of autism.
Collapse
Affiliation(s)
- Syed K Rafi
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | - Sara Álvarez
- Genomics and Medicine, NIM Genetics, 28108 Madrid, Spain
| | - Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
39
|
Guerini FR, Ripamonti E, Costa AS, Zanzottera M, Agliardi C, Bolognesi E, Clerici M, Racca V. The Syntaxin-1A gene single nucleotide polymorphism rs4717806 associates with the risk of ischemic heart disease. Medicine (Baltimore) 2019; 98:e15846. [PMID: 31192914 PMCID: PMC6587621 DOI: 10.1097/md.0000000000015846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ischemic heart disease (IHD) has a genetic predisposition and a number of cardiovascular risk factors are known to be affected by genetic factors. Development of metabolic syndrome and insulin resistance, strongly influenced by lifestyle and environmental factors, frequently occur in subjects with a genetic susceptibility. The definition of genetic factors influencing disease susceptibility would allow to identify individuals at higher risk and thus needing to be closely monitored.To this end, we focused on a complex of soluble-N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), playing an important role in metabolic syndrome and insulin resistance, involved in endothelial dysfunction and heart disease. We assessed if genetic variants of the SNARE genes are associated with IHD.SNAP25 rs363050, Stx-1A rs4717806, rs2293489, and VAMP2 26bp ins/del genetic polymorphisms were analyzed in a cohort of 100 participants who underwent heart surgery; 56 of them were affected by IHD, while 44 were not. A statistical association of plasma glycemia and insulin resistance, calculated as Triglyceride glucose (TyG) index, was observed in IHD (P < .001 and P = .03, respectively) after binomial logistic stepwise regression analysis, adjusted by age, gender, diabetes positivity, waist circumference, and cholesterol plasma level. Among genetic polymorphisms, rs4717806(A) and rs2293489(T), as well as the rs4717806 - rs2293489 (A-T) haplotype were associated with higher risk for IHD (Pc = .02; Pc = .02; P = .04, respectively). Finally, a statistical association of rs4717806(AA) genotype with higher TyG index in IHD patients (P = .03) was highlighted by multiple regression analysis considering log-transformed biochemical parameters as dependent variable and presence of coronary artery disease, age, gender, waist circumference, presence of diabetes as predictors. These results point to a role of the Stx-1A rs4717806 SNP in IHD, possibly due to its influence on Stx-1A expression and, as a consequence, on insulin secretion and glucose metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milano
- Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | | |
Collapse
|
40
|
Kroeze Y, Oti M, van Beusekom E, Cooijmans RHM, van Bokhoven H, Kolk SM, Homberg JR, Zhou H. Transcriptome Analysis Identifies Multifaceted Regulatory Mechanisms Dictating a Genetic Switch from Neuronal Network Establishment to Maintenance During Postnatal Prefrontal Cortex Development. Cereb Cortex 2019; 28:833-851. [PMID: 28108491 DOI: 10.1093/cercor/bhw407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
The prefrontal cortex (PFC) is one of the latest brain regions to mature, which allows the acquisition of complex cognitive abilities through experience. To unravel the underlying gene expression changes during postnatal development, we performed RNA-sequencing (RNA-seq) in the rat medial PFC (mPFC) at five developmental time points from infancy to adulthood, and analyzed the differential expression of protein-coding genes, long intergenic noncoding RNAs (lincRNAs), and alternative exons. We showed that most expression changes occur in infancy, and that the number of differentially expressed genes reduces toward adulthood. We observed 137 differentially expressed lincRNAs and 796 genes showing alternative exon usage during postnatal development. Importantly, we detected a genetic switch from neuronal network establishment in infancy to maintenance of neural networks in adulthood based on gene expression dynamics, involving changes in protein-coding and lincRNA gene expression as well as alternative exon usage. Our gene expression datasets provide insights into the multifaceted transcriptional regulation of the developing PFC. They can be used to study the basic developmental processes of the mPFC and to understand the mechanisms of neurodevelopmental and neuropsychiatric disorders. Our study provides an important contribution to the ongoing efforts to complete the "brain map", and to the understanding of PFC development.
Collapse
Affiliation(s)
- Yvet Kroeze
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands.,Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Martin Oti
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands.,Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Ellen van Beusekom
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Roel H M Cooijmans
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Sharon M Kolk
- Department of Molecular Animal Physiology, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.,Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
41
|
Costa AS, Guerini FR, Arosio B, Galimberti D, Zanzottera M, Bianchi A, Nemni R, Clerici M. SNARE Complex Polymorphisms Associate with Alterations of Visual Selective Attention in Alzheimer’s Disease. J Alzheimers Dis 2019; 69:179-188. [DOI: 10.3233/jad-190147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Beatrice Arosio
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Geriatric Unit, Milan, Italy
- Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | | | - Anna Bianchi
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Raffaello Nemni
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| |
Collapse
|
42
|
Sumirtanurdin R, Thalib AY, Cantona K, Abdulah R. Effect of genetic polymorphisms on Alzheimer's disease treatment outcomes: an update. Clin Interv Aging 2019; 14:631-642. [PMID: 30992661 PMCID: PMC6445219 DOI: 10.2147/cia.s200109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genetic variations in individuals may cause differences in the response to cholinesterase inhibitor drugs used in the treatment of Alzheimer's disease (AD). Through this review, we aimed to understand the potential relationship between genetic polymorphisms and treatment response in AD. We conducted a systematic review of the studies published from 2006 to 2018 that assessed the relationship between genetic polymorphisms and the pharmacotherapeutic outcomes of patients with AD. Via several possible mechanisms, genetic polymorphisms of many genes, including ABCA1, ApoE3, CYP2D6, CHAT, CHRNA7, and ESR1, appear to have strong correlations with the treatment response of patients with AD. Indeed, these genetic polymorphisms, either in the form of single nucleotide polymorphisms or direct changes to one or more amino acids, have been shown to cause differences in the therapeutic response. In summary, our findings indicate that genetic polymorphisms should be considered in the management of AD to achieve both effective and efficient treatment outcomes in terms of cost and prognosis.
Collapse
Affiliation(s)
- Riyadi Sumirtanurdin
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Amirah Y Thalib
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Kelvin Cantona
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia, .,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia,
| |
Collapse
|
43
|
Ponzoni L, Sala C, Verpelli C, Sala M, Braida D. Different attentional dysfunctions in
eEF2K
−/−
, IL1RAPL1
−/−
and
SHANK3Δ11
−/−
mice. GENES BRAIN AND BEHAVIOR 2019; 18:e12563. [DOI: 10.1111/gbb.12563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Luisa Ponzoni
- CNR, Neuroscience Institute Milan Italy
- Department of Medical Biotechnology and Translational MedicineUniversità degli Studi di Milano Milan Italy
| | | | | | | | - Daniela Braida
- Department of Medical Biotechnology and Translational MedicineUniversità degli Studi di Milano Milan Italy
| |
Collapse
|
44
|
Agostini S, Mancuso R, Liuzzo G, Bolognesi E, Costa AS, Bianchi A, Clerici M. Serum miRNAs Expression and SNAP-25 Genotype in Alzheimer's Disease. Front Aging Neurosci 2019; 11:52. [PMID: 30914946 PMCID: PMC6421304 DOI: 10.3389/fnagi.2019.00052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/22/2019] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression by binding their 3' untranslated region (3'UTR) region; these molecules play a fundamental role in several pathologies, including Alzheimer's disease (AD). Synaptosomal-associated protein of 25 kDa (SNAP-25) is a vesicular protein of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in neural plasticity and in the exocytosis of neurotransmitters, processes that are altered in AD. Recent results showed that a reduction of SNAP-25 is associated with dementia, and that the rs363050 SNAP-25 polymorphism correlates with cognitive decline and brain atrophy, as well as with the outcome of multistructured rehabilitation in AD patients. We verified the presence of possible correlations between the serum concentration of miRNAs that bind the SNAP-25 3'UTR region and AD. Six different microRNAs (miR-181a-5p, miR-361-3p, miR-23a-3p, miR-15b-3p, 130a-3p and miR-27b-3p) that bind the SNAP-25 3'UTR region were measured by qPCR in serum of AD patients (n = 22), mild cognitive impairment (MCI) subjects (n = 22) and age- and sex-matched controls (n = 22); analysis of results was done stratified for the rs363050 SNAP-25 genotype. Results showed that miR-27b-3p, miR-23a-3p and miR181a-5p serum concentration was significantly reduced in rs363050 SNAP-25 GG homozygous AD patients. Notably, concentration of these miRNAs was comparable in rs363050 AA homozygous AD patients, MCI and healthy controls (HCs). Data herein suggest that miRNAs that bind the SNAP-25 3'UTR region interact with SNAP-25 polymorphisms to influence the neural plasticity typical of AD brains, possibly as a consequence of modulatory activity on SNAP-25 mRNA and/or protein.
Collapse
Affiliation(s)
| | | | - Gaia Liuzzo
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | | | | | - Anna Bianchi
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
45
|
SNAP-25 in Major Psychiatric Disorders: A Review. Neuroscience 2019; 420:79-85. [PMID: 30790667 DOI: 10.1016/j.neuroscience.2019.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Synaptosomal Associated Protein-25 kilodaltons (SNAP-25) is an integral member of the SNARE complex. This complex is essential for calcium-triggered synaptic vesicular fusion and release of neurotransmitters into the synaptic cleft. In addition to neurotransmission, SNAP-25 is associated with insulin release, the regulation of intracellular calcium, and neuroplasticity. Because of SNAP-25's varied and crucial biological roles, the consequences of changes in this protein can be seen in both the central nervous system and the periphery. In this review, we will look at the published literature from human genetic, postmortem, and animal studies involving SNAP-25. The accumulated data indicate that SNAP-25 may be linked with some symptoms associated with a variety of psychiatric disorders. These disorders include bipolar disorder, schizophrenia, major depressive disorder, attention deficit hyperactivity disorder, autism, alcohol use disorder, and dementia. There are also data suggesting SNAP-25 may be involved with non-psychiatric seizures and metabolic disorders. We believe investigation of SNAP-25 is important for understanding both normal behavior and some aspects of the pathophysiology of behavior seen with psychiatric disorders. The wealth of information from both animal and human studies on SNAP-25 offers an excellent opportunity to use a bi-directional research approach. Hypotheses generated from genetically manipulated mice can be directly tested in human postmortem tissue, and, conversely, human genetic and postmortem findings can improve and validate animal models for psychiatric disorders.
Collapse
|
46
|
Sex-Specific Proteomic Changes Induced by Genetic Deletion of Fibroblast Growth Factor 14 (FGF14), a Regulator of Neuronal Ion Channels. Proteomes 2019; 7:proteomes7010005. [PMID: 30678040 PMCID: PMC6473632 DOI: 10.3390/proteomes7010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 14 (FGF14) is a member of the intracellular FGFs, which is a group of proteins involved in neuronal ion channel regulation and synaptic transmission. We previously demonstrated that male Fgf14−/− mice recapitulate the salient endophenotypes of synaptic dysfunction and behaviors that are associated with schizophrenia (SZ). As the underlying etiology of SZ and its sex-specific onset remain elusive, the Fgf14−/− model may provide a valuable tool to interrogate pathways related to disease mechanisms. Here, we performed label-free quantitative proteomics to identify enriched pathways in both male and female hippocampi from Fgf14+/+ and Fgf14−/− mice. We discovered that all of the differentially expressed proteins measured in Fgf14−/− animals, relative to their same-sex wildtype counterparts, are associated with SZ based on genome-wide association data. In addition, measured changes in the proteome were predominantly sex-specific, with the male Fgf14−/− mice distinctly enriched for pathways associated with neuropsychiatric disorders. In the male Fgf14−/− mouse, we found molecular characteristics that, in part, may explain a previously described neurotransmission and behavioral phenotype. This includes decreased levels of ALDH1A1 and protein kinase A (PRKAR2B). ALDH1A1 has been shown to mediate an alternative pathway for gamma-aminobutyric acid (GABA) synthesis, while PRKAR2B is essential for dopamine 2 receptor signaling, which is the basis of current antipsychotics. Collectively, our results provide new insights in the role of FGF14 and support the use of the Fgf14−/− mouse as a useful preclinical model of SZ for generating hypotheses on disease mechanisms, sex-specific manifestation, and therapy.
Collapse
|
47
|
Ramos-Miguel A, Gicas K, Alamri J, Beasley CL, Dwork AJ, Mann JJ, Rosoklija G, Cai F, Song W, Barr AM, Honer WG. Reduced SNAP25 Protein Fragmentation Contributes to SNARE Complex Dysregulation in Schizophrenia Postmortem Brain. Neuroscience 2018; 420:112-128. [PMID: 30579835 DOI: 10.1016/j.neuroscience.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Recent studies associated schizophrenia with enhanced functionality of the presynaptic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex. Altered degradation pathways of the three core SNARE proteins: synaptosomal-associated protein 25 (SNAP25), syntaxin-1 and vesicle-associated membrane protein (VAMP) could contribute to enhanced complex function. To investigate these pathways, we first identified a 15-kDa SNAP25 fragment (f-S25) in human and rat brains, highly enriched in synaptosomal extractions, and mainly attached to cytosolic membranes with low hydrophobicity. The presence of f-S25 is consistent with reports of calpain-mediated SNAP25 cleavage. Co-immunoprecipitation assays showed that f-S25 retains the ability to bind syntaxin-1, which might prevent VAMP and/or Munc18-1 assembly into the complex. Quantitative analyses in postmortem human orbitofrontal cortex (OFC) revealed that schizophrenia (n = 35), but not major depression (n = 15), is associated with lower amounts of f-S25 (-37%, P = 0.027), and greater SNARE protein-protein interactions (35%, P < 0.001), compared with healthy matched controls (n = 28). Enhanced SNARE complex formation was strongly correlated with lower SNAP25 fragmentation rates (R = 0.563, P < 0.001). Statistical mediation analyses supported the hypothesis that reduced f-S25 density could upregulate SNARE fusion events in schizophrenia. Cortical calpain activity in schizophrenia did not differ from controls. f-S25 levels did not correlate with total calpain activity, indicating that if present, schizophrenia-related calpain dysfunction might occur locally at the presynaptic terminals. Overall, the present findings suggest the existence of an endogenous SNARE complex inhibitor related to SNAP25 proteolysis, associated with enhanced SNARE activity in schizophrenia.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Biscay, Spain
| | - Kristina Gicas
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Jehan Alamri
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Anesthesiology, Pharmacology, & Therapeutics, University of British Columbia, 2176 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - Clare L Beasley
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Fang Cai
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Weihong Song
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Alasdair M Barr
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Anesthesiology, Pharmacology, & Therapeutics, University of British Columbia, 2176 Health Sciences Mall Vancouver, BC V6T 1Z3, Canada
| | - William G Honer
- BC Mental Health and Addictions Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada.
| |
Collapse
|
48
|
Karmakar S, Sharma LG, Roy A, Patel A, Pandey LM. Neuronal SNARE complex: A protein folding system with intricate protein-protein interactions, and its common neuropathological hallmark, SNAP25. Neurochem Int 2018; 122:196-207. [PMID: 30517887 DOI: 10.1016/j.neuint.2018.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/08/2018] [Accepted: 12/01/2018] [Indexed: 12/26/2022]
Abstract
SNARE (Soluble NSF(N-ethylmaleimide-sensitive factor) Attachment Receptor) complex is a trimeric supramolecular organization of SNAP25, syntaxin, and VAMP which mediates fusion of synaptic vesicles with the presynaptic plasma membrane. The functioning of this entire protein assembly is dependent on its tetrahelical coiled coil structure alongside its interaction with a large spectrum of regulatory proteins like synaptotagmin, complexin, intersectin, etc. Defects arising in SNARE complex assembly due to mutations or faulty post-translational modifications are associated to severe synaptopathies like Schizophrenia and also proteopathies like Alzheimer's disease. The review primarily focuses on SNAP25, which is the prime contributor in the complex assembly. It is conceptualized that the network of protein interactions of this helical protein assists as a chaperoning system for attaining functional structure. Additionally, the innate disordered nature of SNAP25 and its amyloidogenic propensities have been highlighted employing computational methods. The intrinsic nature of SNAP25 is anticipated to form higher-order aggregates due to its cysteine rich domain, which is also a target for several post-translational modifications. Furthermore, the aberrations in the structure and expression profile of the protein display common patterns in the pathogenesis of a diverse synaptopathies and proteopathies. This work of SNARE literature aims to provide a new comprehensive outlook and research directions towards SNARE complex and presents SNAP25 as a common neuropathological hallmark which can be a diagnostic or therapeutic target.
Collapse
Affiliation(s)
- Srijeeb Karmakar
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Laipubam Gayatri Sharma
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Abhishek Roy
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Anjali Patel
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Lalit Mohan Pandey
- Bio-Interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
49
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
50
|
Agliardi C, Guerini FR, Zanzottera M, Riboldazzi G, Zangaglia R, Sturchio A, Casali C, Di Lorenzo C, Minafra B, Nemni R, Clerici M. SNAP25 Gene Polymorphisms Protect Against Parkinson's Disease and Modulate Disease Severity in Patients. Mol Neurobiol 2018; 56:4455-4463. [PMID: 30334187 DOI: 10.1007/s12035-018-1386-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/09/2018] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is a α-synucleinopathy in which intracellular aggregates of α-synuclein (α-syn) result in neurodegeneration and in the impairment of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex-mediated release of neurotransmitters. SNAP25 is a SNARE complex component: its concentration is increased in the cerebrospinal fluid of PD patients and this is related to the severity of cognitive and motor symptoms. Five SNAP25 single-nucleotide polymorphisms (SNPs) that modulate gene expression and were described to play a role in neurologic conditions (rs363050, rs363039, rs363043, rs3746544, and rs1051312) were analyzed in a cohort of 412 sporadic Italian PD patients and 1103 healthy controls (HC) in order to identify possible correlation with the disease. The SNAP25 rs1051312 C allele and CC genotype confer protection against PD onset, in particular in males (p = 0.003, OR(95%CI) = 0.67(0.51-0.88)) (pc = 0.008, OR(95%CI) = 0.28(0.10-0.70)). Co-segregation analyses revealed that the rs1051312 effect was reinforced when present within the rs363043 C-rs3746544 T-rs1051312 C haplotype (p = 3.3 × 10-4, OR = 0.47, 95%CI = 0.31-0.72), once again in males. Finally, rs363039 influenced age at onset (p = 0.02) and MMSE (Mini-Mental State Examination) scores (p = 0.01). The SNAP25 SNPs analyzed herein modulate gene expression at different levels as they are involved in binding miRNA and transcription factors; this suggests a possible synergistic effect of SNAP25 SNPs in the pathogenesis of PD. A replication in a larger and independent sample will help to further explore this hypothesis.
Collapse
Affiliation(s)
| | | | | | - Giulio Riboldazzi
- Center for Parkinson's Disease and Movement Disorders, Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - Roberta Zangaglia
- Parkinson's disease and Movement Disorders Unit, IRCCS National Neurological Institute C. Mondino, Pavia, Italy
| | - Andrea Sturchio
- Neurology Unit-Varese, Insubria University Varese, Varese, Italy
| | - Carlo Casali
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome, Rome, Italy
| | | | - Brigida Minafra
- Parkinson's disease and Movement Disorders Unit, IRCCS National Neurological Institute C. Mondino, Pavia, Italy
| | - Raffaello Nemni
- IRCCS Fondazione Don Carlo Gnocchi, Milano, Italy.,Department of Pathophisiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milano, Italy.,Department of Pathophisiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|