1
|
Jézéquel J, Condomitti G, Kroon T, Hamid F, Sanalidou S, Garcés T, Maeso P, Balia M, Hu Z, Sahara S, Rico B. Cadherins orchestrate specific patterns of perisomatic inhibition onto distinct pyramidal cell populations. Nat Commun 2025; 16:4481. [PMID: 40368888 PMCID: PMC12078473 DOI: 10.1038/s41467-025-59635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
GABAergic interneurons were thought to regulate excitatory networks by establishing unselective connections onto diverse pyramidal cell populations, but recent studies demonstrate the existence of a cell type-specific inhibitory connectome. How and when interneurons establish precise connectivity patterns among intermingled populations of excitatory neurons remains enigmatic. We explore the molecular mechanisms orchestrating the emergence of cell type-specific inhibition in the mouse cerebral cortex. We demonstrate that layer 5 intra- (L5 IT) and extra-telencephalic (L5 ET) neurons express unique transcriptional programs, allowing them to shape parvalbumin- (PV+) and cholecystokinin-positive (CCK+) interneuron wiring. We identified Cdh12 and Cdh13, two cadherin superfamily members, as underpinnings of cell type- and input-specific inhibitory patterns of L5 pyramidal cell populations. Multiplex monosynaptic tracing revealed a minimal overlap between IT and ET presynaptic inhibitory networks and suggests that different PV+ basket cell populations innervate distinct L5 pyramidal cell types. Here, we unravel the contribution of cadherins in shaping cell-type-specific cortical interneuron wiring.
Collapse
Affiliation(s)
- Julie Jézéquel
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Giuseppe Condomitti
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Tim Kroon
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Fursham Hamid
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Stella Sanalidou
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Teresa Garcés
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Patricia Maeso
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Maddalena Balia
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Zhaohui Hu
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Setsuko Sahara
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Beatriz Rico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
2
|
Lesch KP, Gorbunov N. Antisocial personality disorder:Failure to balance excitation/inhibition? Neuropharmacology 2025; 268:110321. [PMID: 39855295 DOI: 10.1016/j.neuropharm.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
While healthy brain function relies on a dynamic but tightly regulated interaction between excitation (E) and inhibition (I), a spectrum of social cognition disorders, including antisocial behavior and antisocial personality disorder (ASPD), frequently ensuing from irregular neurodevelopment, may be associated with E/I imbalance and concomitant alterations in neural connectivity. Technological advances in the evaluation of structural and functional E/I balance proxies in clinical settings and in human cell culture models provide a general basis for identification of biomarkers providing a powerful concept for prevention and intervention across different dimensions of mental health and disease. In this perspective we outline a framework for research to characterize neurodevelopmental pathways to antisocial behavior and ASPD driven by (epi)genetic factors across life, and to identify molecular targets for preventing the detrimental effects of cognitive dysfunction and maladaptive social behavior, considering psychosocial experience; to validate signatures of E/I imbalance and altered myelination proxies as biomarkers of pathogenic neural circuitry mechanisms to determine etiological processes in the transition from mental health to antisocial behavior and ASPD and in the switch from prevention to treatment; to develop a neurobiologically-grounded integrative model of antisocial behavior and ASPD resultant of disrupted E/I balance, allowing to establish objective diagnoses and monitoring tools, to personalize prevention and therapeutic decisions, to predict treatment response, and thus counteract relapse; and finally, to promote transformation of dimensional disorder taxonomy and to enhance societal awareness and reception of the neurobiological basis of antisocial behavior and ASPD.
Collapse
Affiliation(s)
- Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Child- and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Whipp AM, Drouard G, Rose RJ, Pulkkinen L, Kaprio J. Protein associations and protein-metabolite interactions with depressive symptoms and the p-factor. Transl Psychiatry 2025; 15:128. [PMID: 40189586 PMCID: PMC11973182 DOI: 10.1038/s41398-025-03362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
Despite increasing mental health problems among young people, few studies have examined associations between plasma proteins and mental health. Interactions between proteins and metabolites in association with mental health problems remain underexplored. In 730 twins, we quantified associations between plasma proteins measured at age 22 with 21 indicators of either depressive symptoms or the p-factor and tested for interactions with metabolites. Symptoms were collected from questionnaires and interviews completed by different raters (e.g., self-report, teachers) through adolescence to young adulthood (12 to 22 years). We found 47 proteins associated with depressive symptoms or the p-factor (FDR < 0.2), 9 being associated with both. Two proteins, contactin-1 and mast/stem cell growth factor receptor kit, positively interacted with valine levels in explaining p-factor variability. Our study demonstrates strong associations between plasma proteins and mental health and provides evidence for proteome-metabolome interactions in explaining higher levels of mental health problems.
Collapse
Affiliation(s)
- Alyce M Whipp
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Richard J Rose
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Lea Pulkkinen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Mampay M, Al‐Hity G, Rolle SO, Alzboon W, Stewart NA, Flint MS, Sheridan GK. Impact of Psychological Stress and Spontaneous Tumour Regression on the Hippocampal Proteome in a Mouse Model of Breast Cancer. J Neurochem 2025; 169:e70052. [PMID: 40172096 PMCID: PMC11963485 DOI: 10.1111/jnc.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Cognitive impairment is common in people diagnosed with breast cancer, but the molecular mechanisms that underlie maladaptive changes in the brain are unknown. The psychological stress of a cancer diagnosis is certainly a contributing factor. Here, we investigated alterations in the hippocampal proteome in response to both cancer and psychological stress using label-free quantitative mass spectrometry techniques. An orthotopic syngeneic model of triple-negative breast cancer (TNBC) was established by injecting Py230 cells into the mammary fat pads of female C57Bl/6 mice. Half of the mice were subjected to a daily restraint stress paradigm. Mice that experienced both cancer and restraint stress lost weight and displayed larger tumours compared to non-stressed mice. Their urinary corticosterone levels were also elevated, as measured by enzyme-linked immunosorbent assay. Non-stressed tumour-bearing mice displayed higher levels of TNFα in the prefrontal cortex (PFC) compared to stressed mice with cancer. Flow cytometry results suggested that the CD4+/CD8+ T cell ratios were also raised in non-stressed tumour-bearing mice compared to both controls and stressed mice with TNBC. Bioinformatic analysis of hippocampal proteomes indicated that cancer alone causes reduced mitochondrial respiration and ATP synthesis, as well as impaired glutamate recycling and synaptic plasticity. Moreover, daily stress in TNBC mice caused further mitochondrial dysfunction, increased oxidative phosphorylation, and altered lipid metabolism. Importantly, over half of the mammary tumours that initially developed spontaneously regressed after 7-9 weeks in these young immunocompetent mice. Tumour regression inhibited TNFα increases in the PFC. However, the hippocampal proteomes of tumour-bearing mice were largely similar to mice in which tumours regressed, suggesting that spontaneous regression of breast cancer confers lasting physiological dysregulations that impact hippocampal protein expression. This study in mice may help to identify molecular mechanisms responsible for long-term memory impairments in cancer survivors and reveal novel drug targets for cancer-related cognitive impairment.
Collapse
Affiliation(s)
- Myrthe Mampay
- School of Applied SciencesUniversity of BrightonBrightonUK
| | - Gheed Al‐Hity
- School of Applied SciencesUniversity of BrightonBrightonUK
| | | | - Walla Alzboon
- School of Life SciencesUniversity of NottinghamNottinghamUK
| | | | | | | |
Collapse
|
5
|
Lian M, Li H, Zhang Z, Fang J, Liu X. Gene-level connections between anxiety disorders, ADHD, and head and neck cancer: insights from a computational biology approach. Front Psychiatry 2025; 16:1552815. [PMID: 40182194 PMCID: PMC11967369 DOI: 10.3389/fpsyt.2025.1552815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background Anxiety disorders (AD), ADHD, and head and neck cancer (HNC) are complex conditions with potential genetic interconnections that remain to be fully elucidated. The purpose of this study is to investigate gene-level connections among ADHD, AD, and HNC. Method A comprehensive literature mining approach identified potential gene-disease relationships from PubMed and bioinformatics databases, analyzing 19,924 genes. An AI-driven computational process constructed a gene-disease relationship table using the Adjusted Binomial Method Algorithm (ABMA) to evaluate association reliability. Overlapping genes were analyzed through protein-protein interaction (PPI) networks, functional annotations, and literature-based pathway analyses to elucidate shared and unique genetic mechanisms linking these diseases. Results The analysis identified 141 significant genes associated with AD, 153 with ADHD, and 1,065 with HNC (q-value < 0.05). These genes demonstrated significant overlap (odds ratio ≥ 1.8; p ≤ 2.58E-2) and high interconnectivity (PPI network density ≥ 0.39, clustering coefficient ≥ 0.76, and diameter ≤ 3). Centrality analysis revealed core genes such as IL-6, MYC, NLRP3, and CXCR4 as critical mediators. Functional enrichment analysis identified key pathways, including serotonergic synapse, inflammatory response, and Toll-like receptor signaling, highlighting the involvement of neuronal and immune mechanisms. Functional pathway analysis demonstrated reciprocal genetic influences among AD, ADHD, and HNC, emphasizing shared and distinct gene-level connections that may underlie their co-occurrence and mutual risk factors. Conclusion This study reveals a complex and interconnected genetic network among AD, ADHD, and HNC, highlighting shared pathways, unique mechanisms, and critical genes, providing valuable insights into the genetic underpinnings of these conditions and potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China
| | - Haiyang Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China
| | - Zhiyang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China
| | - Xiaoqin Liu
- Department of Otolaryngology, The Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
6
|
Peeters LD, Wills LJ, Cuozzo AM, Ahmed CD, Massey SR, Chen W, Chen Z, Wang C, Gass JT, Brown RW. Effects of positive mGlu5 modulation on D 2 signaling and nicotine-conditioned place preference: Mechanisms of epigenetic inheritance in a transgenerational model of drug abuse vulnerability in psychosis. J Psychopharmacol 2025; 39:265-281. [PMID: 39462877 PMCID: PMC11845308 DOI: 10.1177/02698811241292902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
BACKGROUND The metabotropic glutamate type 5 (mGlu5) receptor has emerged as a potential target for the treatment of psychosis that is suggested to have greater efficacy than antipsychotic medications that are currently utilized. AIMS This study sought to elucidate mechanisms of therapeutic action associated with the modulation of the mGlu5 receptor in a disordered system marked by dopamine dysfunction. We further explored epigenetic mechanisms contributing to heritable transmission of a psychosis-like phenotype in a novel heritable model of drug abuse vulnerability in psychosis. METHODS F1 generation male and female Sprague-Dawley rats that were the offspring of two neonatal quinpirole-treated (QQ) or two saline-treated (SS) animals were tested on nicotine-conditioned place preference (CPP). Regulators of G protein signaling 9 (RGS9) and β-arrestin 2 (βA2), which mediate dopamine (DA) D2 signaling, were measured in the nucleus accumbens shell, prelimbic and infralimbic cortices. Reduced Representation Bisulfite Sequencing (RRBS) was used to analyze the cytosine methylation in these brain regions. RESULTS Pretreatment with the mGlu5-positive allosteric modulator 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) 20 min prior to conditioning trials blocked enhanced nicotine CPP and mitigated aberrant G protein-dependent and -independent signaling in QQ animals. RRBS analysis revealed region-specific changes in several pathways, including nicotine addiction, dopamine synapses, and neural connectivity. CONCLUSIONS These results reveal an important region-specific mechanism of action for CDPPB in a system marked by enhanced DAD2 receptor signaling. Results additionally reveal DNA methylation as an epigenetic mechanism of heritability, further validating the current model as a useful tool for the study of psychosis and comorbid nicotine use.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Liza J Wills
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Cristal D Ahmed
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Samuel R Massey
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Wanqiu Chen
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhong Chen
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Charles Wang
- Center for Genomics and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Justin T Gass
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Russell W Brown
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
7
|
An D, You Y, Ma Q, Xu Z, Liu Z, Liao R, Chen H, Wang Y, Wang Y, Dai H, Li H, Jiang L, Chen Z, Hu W. Deficiency of histamine H 2 receptors in parvalbumin-positive neurons leads to hyperactivity, impulsivity, and impaired attention. Neuron 2025; 113:572-589.e6. [PMID: 39788124 DOI: 10.1016/j.neuron.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
Attention deficit hyperactivity disorder (ADHD), affecting 4% of the population, is characterized by inattention, hyperactivity, and impulsivity; however, its neurophysiological mechanisms remain unclear. Here, we discovered that deficiency of histamine H2 receptor (H2R) in parvalbumin-positive neurons in substantia nigra pars recticulata (PVSNr) attenuates PV+ neuronal activity and induces hyperactivity, impulsivity, and inattention in mice. Moreover, decreased H2R expression was observed in PVSNr in patients with ADHD symptoms and dopamine-transporter-deficient mice, whose behavioral phenotypes were alleviated by H2R agonist treatment. Dysfunction of PVSNr efferents to the substantia nigra pars compacta dopaminergic neurons and superior colliculus differently contributes to H2R-deficiency-induced behavioral disorders. Collectively, our results demonstrate that H2R deficiency in PV+ neurons contributes to hyperactivity, impulsivity, and inattention by dampening PVSNr activity and involving different efferents in mice. It may enhance understanding of the molecular and circuit-level basis of ADHD and afford new potential therapeutic targets for ADHD-like psychiatric diseases.
Collapse
Affiliation(s)
- Dadao An
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi You
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianyi Ma
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengyi Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zonghan Liu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ruichu Liao
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Han Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiquan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou 310013, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haibin Dai
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Haohong Li
- The MOE Frontier Research Center of Brain and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Lei Jiang
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
8
|
Sarabia C, Salado I, Fernández-Gil A, vonHoldt BM, Hofreiter M, Vilà C, Leonard JA. Potential Adaptive Introgression From Dogs in Iberian Grey Wolves (Canis lupus). Mol Ecol 2025:e17639. [PMID: 39791197 DOI: 10.1111/mec.17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Invading species along with increased anthropogenization may lead to hybridization events between wild species and closely related domesticates. As a consequence, wild species may carry introgressed alleles from domestic species, which is generally assumed to yield adverse effects in wild populations. The opposite evolutionary consequence, adaptive introgression, where introgressed genes are positively selected in the wild species, is possible but has rarely been documented. Grey wolves (Canis lupus) are widely distributed across the Holarctic and frequently coexist with their close relative, the domestic dog (C. familiaris). Despite ample opportunity, hybridization rarely occurs in most populations. Here we studied the geographically isolated grey wolves of the Iberian Peninsula, who have coexisted with a large population of loosely controlled dogs for thousands of years in a human-modified landscape. We assessed the extent and impact of dog introgression on the current Iberian grey wolf population by analysing 150 whole genomes of Iberian and other Eurasian grey wolves as well as dogs originating from across Europe and western Siberia. We identified almost no recent introgression and a small (< 5%) overall ancient dog ancestry. Using a combination of single scan statistics and ancestry enrichment estimates, we identified positive selection on six genes (DAPP1, NSMCE4A, MPPED2, PCDH9, MBTPS1, and CDH13) for which wild Iberian wolves carry alleles introgressed from dogs. The genes with introgressed and positively selected alleles include functions in immune response and brain functions, which may explain some of the unique behavioural phenotypes in Iberian wolves such as their reduced dispersal compared to other wolf populations.
Collapse
Affiliation(s)
- Carlos Sarabia
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
| | - Isabel Salado
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Michael Hofreiter
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Carles Vilà
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | |
Collapse
|
9
|
Krueger-Burg D. Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy. Trends Neurosci 2025; 48:47-61. [PMID: 39779392 DOI: 10.1016/j.tins.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins. Notably, many of these proteins appear to function only at specific subsets of GABAergic synapses, creating a diversity of organizer complexes that may serve as circuit-specific targets for pharmacotherapies. The present review aims to summarize the methodological developments that underlie this newfound knowledge and provide a current overview of synapse-specific GABAergic organizer complexes, as well as outlining future avenues and challenges in translating this knowledge into clinical applications.
Collapse
Affiliation(s)
- Dilja Krueger-Burg
- Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
10
|
Arnett AB, Zimon M, Subedi S, Peisch V, Ferrara E, Gourdet G, Mastrangelo C. EEG aperiodic dynamics from early through late childhood: Associations with ADHD, cognition, and development. Clin Neurophysiol 2024; 168:161-167. [PMID: 39577377 PMCID: PMC11631642 DOI: 10.1016/j.clinph.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Aperiodic resting electroencephalography (EEG) activity is dynamic, reflecting shifting excitatory:inhibitory (E:I) balance with changing environmental conditions. We examined developmental and cognitive correlates of aperiodic and dynamic aperiodic indices in a cross-sequential cohort of early, middle, and late childhood youth with and without attention deficit hyperactivity disorder (ADHD). METHODS Two-hundred eighty-five children ages 2 - 14 years provided resting EEG during high- and low-visual input conditions. Licensed clinical psychologists determined ADHD diagnosis or likelihood (in young children). Linear regressions were estimated to examine associations between aperiodic features and age, ADHD diagnosis, IQ, and experimental condition. RESULTS From early to middle childhood, the aperiodic exponent increased linearly, indicating lower E:I, followed by a decreasing trajectory in late childhood. The aperiodic exponent was greater with high versus low visual input in young children, but this effect reversed with age. The ADHD group had a decreased aperiodic exponent, overall. Dynamic aperiodic activity, i.e. shifts in E:I balance, was associated with IQ. CONCLUSIONS The aperiodic exponent and aperiodic dynamics are proxies for age-related cortical maturation and E:I balance, and have distinct associations with ADHD symptoms and cognitive ability. SIGNIFICANCE We provide novel evidence that dynamic aperiodic activity is a candidate marker of cortical efficiency in childhood.
Collapse
Affiliation(s)
- Anne B Arnett
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Matthew Zimon
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Sambridhi Subedi
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Virginia Peisch
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Gaelle Gourdet
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Carissa Mastrangelo
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Jiang J, Xu L, Zhuang Y, Wei X, Zhang Z, Zhao W, Wang Q, Ye X, Gu J, Cao C, Sun J, He K, Zhang Z, Wang Q, Pan Y, Wang Z. MeHA: A Computational Framework in Revealing the Genetic Basis of Animal Mental Health Traits Under an Intensive Farming System-A Case Study in Pigs. BIOLOGY 2024; 13:843. [PMID: 39452151 PMCID: PMC11504952 DOI: 10.3390/biology13100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Intensively farmed animals such as pigs inevitably experience a certain degree of psychological stress, which leads to a reduction in production performance. Mental health traits are currently difficult to measure, resulting in a gap in understanding their genetic basis. To address this challenge, we propose a computational framework called mental health of animals (MeHA), capable of revealing genes related to animal mental health traits. Using MeHA, we identified 109 candidate genes associated with pig mental health and discovered their intricate connections with critical functions, such as memory, cognition, and neural development, which are essential components of mental health and cognitive performance. Importantly, our findings provide evidence of the potential impact of these genes on economically important traits, including meat quality and piglet survival. This research underscores the importance of genetic studies in enhancing our understanding of animal behavior and cognition, as well as promoting agricultural practices. By applying our approach to study the genetic basis of mental health in pigs as a case, we confirmed that our framework is an effective way to reveal genetic factors affecting animal mental health traits, which contributes to animal welfare and has potential implications for understanding human mental disorders.
Collapse
Affiliation(s)
- Jinyun Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Lingyao Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Yizheng Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Xingyu Wei
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Zhenyang Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Wei Zhao
- SciGene Biotechnology Co., Ltd., Hefei 230031, China;
| | - Qingyu Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Xiaowei Ye
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Jiamin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Caiyun Cao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Jiabao Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, China;
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yuchun Pan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.J.); (L.X.); (Y.Z.); (X.W.); (Z.Z.); (Q.W.); (X.Y.); (J.G.); (C.C.); (J.S.); (Z.Z.); (Q.W.); (Y.P.)
| |
Collapse
|
12
|
Kumaragamage C, McIntyre S, Nixon TW, De Feyter HM, de Graaf RA. High-quality lipid suppression and B0 shimming for human brain 1H MRSI. Neuroimage 2024; 300:120845. [PMID: 39276817 PMCID: PMC11540284 DOI: 10.1016/j.neuroimage.2024.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) is a powerful technique that can map the metabolic profile in the brain non-invasively. Extracranial lipid contamination and insufficient B0 homogeneity however hampers robustness, and as a result has hindered widespread use of MRSI in clinical and research settings. Over the last six years we have developed highly effective extracranial lipid suppression methods with a second order gradient insert (ECLIPSE) utilizing inner volume selection (IVS) and outer volume suppression (OVS) methods. While ECLIPSE provides > 100-fold in lipid suppression with modest radio frequency (RF) power requirements and immunity to B1+ field variations, axial coverage is reduced for non-elliptical head shapes. In this work we detail the design, construction, and utility of MC-ECLIPSE, a pulsed second order gradient coil with Z2 and X2Y2 fields, combined with a 54-channel multi-coil (MC) array. The MC-ECLIPSE platform allows arbitrary region of interest (ROI) shaped OVS for full-axial slice coverage, in addition to MC-based B0 field shimming, for robust human brain proton MRSI. In vivo experiments demonstrate that MC-ECLIPSE allows axial brain coverage of 92-95 % is achieved following arbitrary ROI shaped OVS for various head shapes. The standard deviation (SD) of the residual B0 field following SH2 and MC shimming were 25 ± 9 Hz and 18 ± 8 Hz over a 5 cm slab, and 18 ± 5 Hz and 14 ± 6 Hz over a 1.5 cm slab, respectively. These results demonstrate that B0 magnetic field shimming with the MC array supersedes second order harmonic capabilities available on standard MRI systems for both restricted and large ROIs. Furthermore, MC based B0 shimming provides comparable shimming performance to an unrestricted SH5 shim set for both restricted, and 5-cm slab shim challenges. Phantom experiments demonstrate the high level of localization performance achievable with MC-ECLIPSE, with ROI edge chemical shift displacements ranging from 1-3 mm with a median value of 2 mm, and transition width metrics ranging from 1-2.5 mm throughout the ROI edge. Furthermore, MC based B0 shimming is comparable to performance following a full set of unrestricted spherical harmonic fields up to order 5. Short echo time MRSI and GABA-edited MRSI acquisitions in the human brain following MC-shimming and arbitrary ROI shaping demonstrate full-axial slice coverage and extracranial lipid artifact free spectra. MC-ECLIPSE allows full-axial coverage and robust MRSI acquisitions, while allowing interrogation of cortical tissue proximal to the skull, which has significant value in a wide range of neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA.
| | - Scott McIntyre
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Terence W Nixon
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Henk M De Feyter
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, USA; Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Chen ZK, Quintanilla L, Su Y, Sheehy RN, Simon JM, Luo YJ, Li YD, Chen Z, Asrican B, Tart DS, Farmer WT, Ming GL, Song H, Song J. Septo-dentate gyrus cholinergic circuits modulate function and morphogenesis of adult neural stem cells through granule cell intermediaries. Proc Natl Acad Sci U S A 2024; 121:e2405117121. [PMID: 39312657 PMCID: PMC11459179 DOI: 10.1073/pnas.2405117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Cholinergic neurons in the basal forebrain play a crucial role in regulating adult hippocampal neurogenesis (AHN). However, the circuit and molecular mechanisms underlying cholinergic modulation of AHN, especially the initial stages of this process related to the generation of newborn progeny from quiescent radial neural stem cells (rNSCs), remain unclear. Here, we report that stimulation of the cholinergic circuits projected from the diagonal band of Broca (DB) to the dentate gyrus (DG) neurogenic niche promotes proliferation and morphological development of rNSCs, resulting in increased neural stem/progenitor pool and rNSCs with longer radial processes and larger busy heads. Interestingly, DG granule cells (GCs) are required for DB-DG cholinergic circuit-dependent modulation of proliferation and morphogenesis of rNSCs. Furthermore, single-nucleus RNA sequencing of DG reveals cell type-specific transcriptional changes in response to cholinergic circuit stimulation, with GCs (among all the DG niche cells) exhibiting the most extensive transcriptional changes. Our findings shed light on how the DB-DG cholinergic circuits orchestrate the key niche components to support neurogenic function and morphogenesis of rNSCs at the circuit and molecular levels.
Collapse
Affiliation(s)
- Ze-Ka Chen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Luis Quintanilla
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ryan N. Sheehy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jeremy M. Simon
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Yan-Jia Luo
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Ya-Dong Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Zhe Chen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Brent Asrican
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Dalton S. Tart
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - W. Todd Farmer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
14
|
Nikhil P, Aishwarya D, Dhingra S, Pandey K, Ravichandiran V, Peraman R. Comparative analysis of plasma affinity depletion methods: Impact on protein composition and phosphopeptide abundance in human plasma. Electrophoresis 2024; 45:1860-1873. [PMID: 39031703 DOI: 10.1002/elps.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 07/22/2024]
Abstract
Affinity-based protein depletion and TiO2 enrichment methods play a crucial role in detection of low-abundant proteins and phosphopeptides enrichment, respectively. Here, we assessed the effectiveness of HSA/IgG (HU2) and Human 7 (HU7) depletion methods and their impact on phosphopeptides coverage through comparative proteome analysis, utilizing in-solution digestion and nano-LC-Orbitrap mass spectrometry (MS). Our results demonstrated that both HU2 and HU7 affinity depletion significantly decreased high-abundant proteins by 1.5-7.8-fold (p < 0.001). A total of 1491 proteins were identified, with 48 proteins showing significant expression in the depleted groups. Notably, cadherin-13, neutrophil defensin 1, APM1, and desmoplakin variant protein were exclusively detected in the HU2/HU7-depleted groups. Furthermore, study on effect of depletion on phosphopeptides revealed an increase in tandem MS spectral counts with notable decrease (∼50%) in peptide spectrum matching in depleted groups, which was attributed to significant reduction in protein counts. Our post translation modification workflow for phosphoproteomics detected 42 phosphorylated peptides, corresponding to 12 phosphoproteins with unique peptide match ≥2 (high false discovery rates confidence). Among them, 10 phosphorylated proteins are highly expressed in depleted groups. Overall, these findings offer valuable insights in selection of protein depletion methods for comprehensive plasma proteomics analysis.
Collapse
Affiliation(s)
- Pallaprolu Nikhil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Krishna Pandey
- Division of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, Bihar, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
15
|
Parlatini V, Bellato A, Murphy D, Cortese S. From neurons to brain networks, pharmacodynamics of stimulant medication for ADHD. Neurosci Biobehav Rev 2024; 164:105841. [PMID: 39098738 DOI: 10.1016/j.neubiorev.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulants represent the first line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD) and are among the most prescribed psychopharmacological treatments. Their mechanism of action at synaptic level has been extensively studied. However, it is less clear how their mechanism of action determines clinically observed benefits. To help bridge this gap, we provide a comprehensive review of stimulant effects, with an emphasis on nuclear medicine and magnetic resonance imaging (MRI) findings. There is evidence that stimulant-induced modulation of dopamine and norepinephrine neurotransmission optimizes engagement of task-related brain networks, increases perceived saliency, and reduces interference from the default mode network. An acute administration of stimulants may reduce brain alterations observed in untreated individuals in fronto-striato-parieto-cerebellar networks during tasks or at rest. Potential effects of prolonged treatment remain controversial. Overall, neuroimaging has fostered understanding on stimulant mechanism of action. However, studies are often limited by small samples, short or no follow-up, and methodological heterogeneity. Future studies should address age-related and longer-term effects, potential differences among stimulants, and predictors of treatment response.
Collapse
Affiliation(s)
- Valeria Parlatini
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Solent NHS Trust, Southampton, United Kingdom.
| | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; School of Psychology, University of Nottingham, Semenyih, Malaysia
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; Mind and Neurodevelopment (MiND) Research Group, University of Nottingham, Semenyih, Malaysia; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| |
Collapse
|
16
|
Mahrous NN, Albaqami A, Saleem RA, Khoja B, Khan MI, Hawsawi YM. The known and unknown about attention deficit hyperactivity disorder (ADHD) genetics: a special emphasis on Arab population. Front Genet 2024; 15:1405453. [PMID: 39165752 PMCID: PMC11333229 DOI: 10.3389/fgene.2024.1405453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a clinically and genetically heterogeneous neurodevelopmental syndrome characterized by behavioral appearances such as impulsivity, inattention, and hyperactivity. The prevalence of ADHD is high in childhood when compared to adults. ADHD has been significantly advanced by genetic research over the past 25 years. However, it is logically conceivable that both genetic and/or non-genetic factors, such as postnatal environmental and social influences, are associated with ADHD phenotype in Arab populations. While genetic influences are strongly linked with the etiology of ADHD, it remains obscure how consanguinity which is an underlying factor for many genetic diseases, contributes to ADHD subtypes. Arabian Gulf Nations have one the highest rates of consanguineous marriages, and consanguinity plays an important contributing factor in many genetic diseases that exist in higher percentages in Arabian Gulf Nations. Therefore, the current review aims to shed light on the genetic variants associated with ADHD subtypes in Arabian Gulf nations and Saudi Arabia in particular. It also focuses on the symptoms and the diagnosis of ADHD before turning to the neuropsychological pathways and subgroups of ADHD. The impact of a consanguinity-based understanding of the ADHD subtype will help to understand the genetic variability of the Arabian Gulf population in comparison with the other parts of the world and will provide novel information to develop new avenues for future research in ADHD.
Collapse
Affiliation(s)
- Nahed N. Mahrous
- Department of Biological Sciences, College of Science, University of Hafr Al-Batin, Hafr Al- Batin, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turbah University College, Taif University, Taif, Saudi Arabia
| | - Rimah A. Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Basmah Khoja
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed I. Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Yousef M. Hawsawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Stezin A, Sathe GJ, Gajbhiye A, Bharadwaj S, Ghose V, Bellad A, Malo PK, Holla V, Hegde S, Bharath RD, Saini J, Jain S, Yadav R, Pandey A, Pal PK. Dysregulated Cerebrospinal Fluid Proteome of Spinocerebellar Ataxia Type 2 and its Clinical Implications. Mov Disord 2024; 39:1418-1423. [PMID: 38769639 DOI: 10.1002/mds.29834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Abnormalities in ataxin-2 associated with spinocerebellar ataxia type 2 (SCA2) may lead to widespread disruptions in the proteome. This study was performed to identify dysregulated proteome in SCA2 and to explore its clinical-radiological correlations. METHODS Cerebrospinal fluid (CSF) samples from 21 genetically confirmed SCA2 were subjected to shotgun proteome analysis using mass spectrometry (MS) and tandem mass tag (TMT)-based multiplexing. Proteins with at least 1.5-fold change in abundance were identified. Their relative abundance was measured using parallel reaction monitoring (PRM) and correlated against disease-related factors. RESULTS Eleven proteins were significantly upregulated in SCA2. They belonged to the family of cell adhesion molecules and granins. Their fold changes showed significant clinical, genetic, and radiological correlations. CONCLUSIONS Significant dysregulation of CSF proteome is seen in SCA2. The dysregulated protein may have potential use in clinical evaluation of patients with SCA2.
Collapse
Affiliation(s)
- Albert Stezin
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Clinical Neurosciences, Centre for Brain Research (CBR), Indian Institute of Science (IISc), Bangalore, India
| | | | | | - Sujas Bharadwaj
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Vivek Ghose
- Institute of Bioinformatics (IOB), Bangalore, India
| | | | - Palash Kumar Malo
- Clinical Neurosciences, Centre for Brain Research (CBR), Indian Institute of Science (IISc), Bangalore, India
| | - Vikram Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shantala Hegde
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Neuroimaging, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Neuroimaging, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Akhilesh Pandey
- Institute of Bioinformatics (IOB), Bangalore, India
- Center for Individualized Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
18
|
Rasetto NB, Giacomini D, Berardino AA, Waichman TV, Beckel MS, Di Bella DJ, Brown J, Davies-Sala MG, Gerhardinger C, Lie DC, Arlotta P, Chernomoretz A, Schinder AF. Transcriptional dynamics orchestrating the development and integration of neurons born in the adult hippocampus. SCIENCE ADVANCES 2024; 10:eadp6039. [PMID: 39028813 PMCID: PMC11259177 DOI: 10.1126/sciadv.adp6039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing. Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple immature stages bearing increasing levels of effector genes supporting growth, excitability, and synaptogenesis. Analysis of differential gene expression, pseudo-time trajectory, and transcription factors (TFs) revealed critical transitions defining four cellular states: quiescent RGLs, proliferative progenitors, immature aGCs, and mature aGCs. Becoming mature aGCs involved a transcriptional switch that shuts down pathways promoting cell growth, such SoxC TFs, to activate programs that likely control neuronal homeostasis. aGCs overexpressing Sox4 or Sox11 remained immature. Our results unveil precise molecular mechanisms driving adult RGLs through the pathway of neuronal differentiation.
Collapse
Affiliation(s)
- Natalí B. Rasetto
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Damiana Giacomini
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Ariel A. Berardino
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Tomás Vega Waichman
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Maximiliano S. Beckel
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
| | - Daniela J. Di Bella
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Juliana Brown
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - M. Georgina Davies-Sala
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| | - Chiara Gerhardinger
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paola Arlotta
- Department of Stem Cells and Regenerative Biology, Harvard University and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ariel Chernomoretz
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Integrative Systems Biology, Leloir Institute, Buenos Aires, Argentina
- University of Buenos Aires, School of Science, Phys Dept and INFINA (CONICET-UBA), Buenos Aires, Argentina
| | - Alejandro F. Schinder
- Instituto de Investigaciones Biomédicas de Buenos Aires (IIBBA) – CONICET, Buenos Aires, Argentina
- Laboratory of Neuronal Plasticity, Leloir Institute, Buenos Aires, Argentina
| |
Collapse
|
19
|
Peeters LD, Wills LJ, Cuozzo AM, Ivanich KL, Turney SE, Bullock LP, Price RM, Gass JT, Brown RW. Modulation of mGlu5 reduces rewarding associative properties of nicotine via changes in mesolimbic plasticity: Relevance to comorbid cigarette smoking in psychosis. Pharmacol Biochem Behav 2024; 239:173752. [PMID: 38521210 PMCID: PMC11088493 DOI: 10.1016/j.pbb.2024.173752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
RATIONALE Antipsychotic medications that are used to treat psychosis are often limited in their efficacy by high rates of severe side effects. Treatment success in schizophrenia is further complicated by high rates of comorbid nicotine use. Dopamine D2 heteroreceptor complexes have recently emerged as targets for the development of more efficacious pharmaceutical treatments for schizophrenia. OBJECTIVE The current study sought to explore the use of the positive allosteric modulator of the mGlu5 receptor 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) as a treatment to reduce symptoms related to psychosis and comorbid nicotine use. METHODS Neonatal treatment of animals with the dopamine D2-like receptor agonist quinpirole (NQ) from postnatal day (P)1-21 produces a lifelong increase in D2 receptor sensitivity, showing relevance to psychosis and comorbid tobacco use disorder. Following an 8-day conditioning paradigm, brain tissue in the mesolimbic pathway was analyzed for several plasticity markers, including brain derived neurotrophic factor (BDNF), phosphorylated p70 ribosomal S6 kinase (phospho-p70S6K), and cadherin-13 (Cdh13). RESULTS Pretreatment with CDPPB was effective to block enhanced nicotine conditioned place preference observed in NQ-treated animals. Pretreatment was additionally effective to block the nicotine-induced increase in BDNF and sex-dependent increases in cadherin-13 in the ventral tegmental area (VTA), as well as increased phospho-p70S6K in the nucleus accumbens (NAcc) shell found in NQ-treated animals. CONCLUSION In conjunction with prior work, the current study suggests positive allosteric modulation of the mGlu5 receptor, an emerging target for schizophrenia therapeutics, may be effective for the treatment of comorbid nicotine abuse in psychosis.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Liza J Wills
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Kira L Ivanich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Seth E Turney
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Luke P Bullock
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Robert M Price
- Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Justin T Gass
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States of America.
| |
Collapse
|
20
|
Furukawa M, Tada H, Raju R, Wang J, Yokoi H, Yamada M, Shikama Y, Saito T, Saido TC, Matsushita K. Effects of tooth loss on behavioral and psychological symptoms of dementia in app knock-in mice. J Oral Biosci 2024; 66:329-338. [PMID: 38521152 DOI: 10.1016/j.job.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVES Many patients with Alzheimer's disease (AD) experience behavioral and psychological symptoms of dementia (BPSD), which significantly affect their quality of life. It is known that 5-Hydroxytryptamine (5-HT) plays a crucial role in the development of BPSD. While the relationship between tooth loss and AD symptoms has been acknowledged, the aspect of aggression has not been focused on until now. Despite the established importance of 5-HT in BPSD, how tooth loss is related to the exacerbation of AD symptoms, especially in terms of aggression, remains largely unexplored. Although nutritional status is known to influence the progression of dementia, the specific effect of tooth loss on peripheral symptoms, notably aggression, is not well understood. METHODS In our study, we conducted maxillary molar extractions in aged C57BL/6J and AppNL-G-F mice and observed their condition over a 3-month period. During this time, we documented significant behavioral and genetic differences between mice in the control groups and mice that underwent tooth extraction. Notably, mice that underwent tooth extraction exhibited a considerable decline in cognitive function and increased in aggression 3 months after tooth extraction compared with the control groups (C57BL/6J and AppNL-G-Fmice). RESULTS Our findings suggest that molar loss may lead to reduced 5-HT levels in the hippocampus, possibly mediated by the trigeminal nerve, contributing to the development of aggression and BPSD in AD. CONCLUSION This study sheds light on the intricate relationships between oral health, 5-HT, and AD symptoms, offering valuable insights into potential therapeutic avenues for managing BPSD in patients with dementia.
Collapse
Affiliation(s)
- Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, 7-430, Morioka-cho, Obu City, Aichi 474-8511, Japan.
| | - Hirobumi Tada
- Department of Nutrition, Faculty of Wellness, Shigakkan University, 55 Nadakayama, Yokone-cho, Obu City, Aichi 474-8651, Japan; Department of Integrative Physiology, Geroscience Research Center, National Center for Geriatrics and Gerontology, 7-430, Morioka-cho, Obu City, Aichi 474-8511, Japan.
| | - Resmi Raju
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, 7-430, Morioka-cho, Obu City, Aichi 474-8511, Japan.
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, 7-430, Morioka-cho, Obu City, Aichi 474-8511, Japan.
| | - Haruna Yokoi
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, 7-430, Morioka-cho, Obu City, Aichi 474-8511, Japan; Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, 4-1, Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8575, Japan.
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, 7-430, Morioka-cho, Obu City, Aichi 474-8511, Japan; Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya City, Aichi 464-8651, Japan.
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, 7-430, Morioka-cho, Obu City, Aichi 474-8511, Japan; Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, 4-1, Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8575, Japan.
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya City, Aichi 467-0001, Japan; Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1, Hirosawa, Wako City, Saitama 351-0198, Japan.
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1, Hirosawa, Wako City, Saitama 351-0198, Japan.
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, 7-430, Morioka-cho, Obu City, Aichi 474-8511, Japan; Department of Geriatric Oral Science, Graduate School of Dentistry, Tohoku University, 4-1, Seiryo-machi, Aoba-ku, Sendai City, Miyagi 980-8575, Japan.
| |
Collapse
|
21
|
Ferranti AS, Luessen DJ, Niswender CM. Novel pharmacological targets for GABAergic dysfunction in ADHD. Neuropharmacology 2024; 249:109897. [PMID: 38462041 PMCID: PMC11843668 DOI: 10.1016/j.neuropharm.2024.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neurodevelopment disorder that affects approximately 5% of the population. The disorder is characterized by impulsivity, hyperactivity, and deficits in attention and cognition, although symptoms vary across patients due to the heterogenous and polygenic nature of the disorder. Stimulant medications are the standard of care treatment for ADHD patients, and their effectiveness has led to the dopaminergic hypothesis of ADHD in which deficits in dopaminergic signaling, especially in cortical brain regions, mechanistically underly ADHD pathophysiology. Despite their effectiveness in many individuals, almost one-third of patients do not respond to stimulant treatments and the long-term negative side effects of these medications remain unclear. Emerging clinical evidence is beginning to highlight an important role of dysregulated excitatory/inhibitory (E/I) balance in ADHD. These deficits in E/I balance are related to functional abnormalities in glutamate and Gamma-Aminobutyric Acid (GABA) signaling in the brain, with increasing emphasis placed on GABAergic interneurons driving specific aspects of ADHD pathophysiology. Recent genome-wide association studies (GWAS) have also highlighted how genes associated with GABA function are mutated in human populations with ADHD, resulting in the generation of several new genetic mouse models of ADHD. This review will discuss how GABAergic dysfunction underlies ADHD pathophysiology, and how specific receptors/proteins related to GABAergic interneuron dysfunction may be pharmacologically targeted to treat ADHD in subpopulations with specific comorbidities and symptom domains. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Deborah J Luessen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA; Warren Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
22
|
TIAN T, XU X, SONG J, ZHANG X, ZHANG D, YUAN H, ZHONG F, LI J, HU Y. Learning and Memory Impairments With Attention-Deficit/Hyperactivity Disorder. Physiol Res 2024; 73:205-216. [PMID: 38710050 PMCID: PMC11081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/02/2023] [Indexed: 05/08/2024] Open
Abstract
ADHD is a common chronic neurodevelopmental disorder and is characterized by persistent inattention, hyperactivity, impulsivity and are often accompanied by learning and memory impairment. Great evidence has shown that learning and memory impairment of ADHD plays an important role in its executive function deficits, which seriously affects the development of academic, cognitive and daily social skills and will cause a serious burden on families and society. With the increasing attention paid to learning and memory impairment in ADHD, relevant research is gradually increasing. In this article, we will present the current research results of learning and memory impairment in ADHD from the following aspects. Firstly, the animal models of ADHD, which display the core symptoms of ADHD as well as with learning and memory impairment. Secondly, the molecular mechanism of has explored, including some neurotransmitters, receptors, RNAs, etc. Thirdly, the susceptibility gene of ADHD related to the learning and impairment in order to have a more comprehensive understanding of the pathogenesis. Key words: Learning and memory, ADHD, Review.
Collapse
Affiliation(s)
- Tian TIAN
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Xu XU
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jia SONG
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Xiaoqian ZHANG
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Dan ZHANG
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Hui YUAN
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Fengyu ZHONG
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jing LI
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Youfang HU
- Department of Children’s Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Kim D, Yadav D, Song M. An updated review on animal models to study attention-deficit hyperactivity disorder. Transl Psychiatry 2024; 14:187. [PMID: 38605002 PMCID: PMC11009407 DOI: 10.1038/s41398-024-02893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neuropsychiatric disorder affecting both children and adolescents. Individuals with ADHD experience heterogeneous problems, such as difficulty in attention, behavioral hyperactivity, and impulsivity. Recent studies have shown that complex genetic factors play a role in attention-deficit hyperactivity disorders. Animal models with clear hereditary traits are crucial for studying the molecular, biological, and brain circuit mechanisms underlying ADHD. Owing to their well-managed genetic origins and the relative simplicity with which the function of neuronal circuits is clearly established, models of mice can help learn the mechanisms involved in ADHD. Therefore, in this review, we highlighting the important genetic animal models that can be used to study ADHD.
Collapse
Affiliation(s)
- Daegeon Kim
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea.
| |
Collapse
|
24
|
Mincheva-Tasheva S, Pfitzner C, Kumar R, Kurtsdotter I, Scherer M, Ritchie T, Muhr J, Gecz J, Thomas PQ. Mapping combinatorial expression of non-clustered protocadherins in the developing brain identifies novel PCDH19-mediated cell adhesion properties. Open Biol 2024; 14:230383. [PMID: 38629124 PMCID: PMC11037505 DOI: 10.1098/rsob.230383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.
Collapse
Affiliation(s)
- Stefka Mincheva-Tasheva
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Chandran Pfitzner
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Raman Kumar
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Idha Kurtsdotter
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Michaela Scherer
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Tarin Ritchie
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Jonas Muhr
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
- South Australian Health and Medical Research
Institute, Adelaide, 5000 ,
Australia
| | - Paul Q. Thomas
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| |
Collapse
|
25
|
Corral-Lopez A, Bloch NI, van der Bijl W, Cortazar-Chinarro M, Szorkovszky A, Kotrschal A, Darolti I, Buechel SD, Romenskyy M, Kolm N, Mank JE. Functional convergence of genomic and transcriptomic architecture underlies schooling behaviour in a live-bearing fish. Nat Ecol Evol 2024; 8:98-110. [PMID: 37985898 PMCID: PMC10781616 DOI: 10.1038/s41559-023-02249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
The organization and coordination of fish schools provide a valuable model to investigate the genetic architecture of affiliative behaviours and dissect the mechanisms underlying social behaviours and personalities. Here we used replicate guppy selection lines that vary in schooling propensity and combine quantitative genetics with genomic and transcriptomic analyses to investigate the genetic basis of sociability phenotypes. We show that consistent with findings in collective motion patterns, experimental evolution of schooling propensity increased the sociability of female, but not male, guppies when swimming with unfamiliar conspecifics. This finding highlights a relevant link between coordinated motion and sociability for species forming fission-fusion societies in which both group size and the type of social interactions are dynamic across space and time. We further show that alignment and attraction, the two major traits forming the sociability personality axis in this species, showed heritability estimates at the upper end of the range previously described for social behaviours, with important variation across sexes. The results from both Pool-seq and RNA-seq data indicated that genes involved in neuron migration and synaptic function were instrumental in the evolution of sociability, highlighting a crucial role of glutamatergic synaptic function and calcium-dependent signalling processes in the evolution of schooling.
Collapse
Affiliation(s)
- Alberto Corral-Lopez
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden.
- Division of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Natasha I Bloch
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria Cortazar-Chinarro
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- MEMEG Department of Biology, Lund University, Lund, Sweden
| | - Alexander Szorkovszky
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | - Alexander Kotrschal
- Behavioural Ecology, Wageningen University and Research, Wageningen, the Netherlands
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Severine D Buechel
- Behavioural Ecology, Wageningen University and Research, Wageningen, the Netherlands
| | - Maksym Romenskyy
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Stockholm, Sweden
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Hosseini L, Shahabi P, Fakhari A, Zangbar HS, Seyedaghamiri F, Sadeghzadeh J, Abolhasanpour N. Aging and age-related diseases with a focus on therapeutic potentials of young blood/plasma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1-13. [PMID: 37552316 DOI: 10.1007/s00210-023-02657-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Aging is accompanied by alterations in the body with time-related to decline of physiological integrity and functionality process, responsible for increasing diseases and vulnerability to death. Several ages associated with biomarkers were observed in red blood cells, and consequently plasma proteins have a critical rejuvenating role in the aging process and age-related disorders. Advanced age is a risk factor for a broad spectrum of diseases and disorders such as cardiovascular diseases, musculoskeletal disorders and liver, chronic kidney disease, neurodegenerative diseases, and cancer because of loss of regenerative capacity, correlated to reduced systemic factors and raise of pro-inflammatory cytokines. Most studies have shown that systemic factors in young blood/plasma can strongly protect against age-related diseases in various tissues by restoring autophagy, increasing neurogenesis, and reducing oxidative stress, inflammation, and apoptosis. Here, we focus on the current advances in using young plasma or blood to combat aging and age-related diseases and summarize the experimental and clinical evidence supporting this approach. Based on reports, young plasma or blood is new a therapeutic approach to aging and age-associated diseases.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Sadeghzadeh
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Rudy MJ, Salois G, Cubello J, Newell R, Mayer-Proschel M. Gestational iron deficiency affects the ratio between interneuron subtypes in the postnatal cerebral cortex in mice. Development 2023; 150:dev201068. [PMID: 36805633 PMCID: PMC10110419 DOI: 10.1242/dev.201068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Gestational iron deficiency (gID) is highly prevalent and associated with an increased risk of intellectual and developmental disabilities in affected individuals that are often defined by a disrupted balance of excitation and inhibition (E/I) in the brain. Using a nutritional mouse model of gID, we previously demonstrated a shift in the E/I balance towards increased inhibition in the brains of gID offspring that was refractory to postnatal iron supplementation. We thus tested whether gID affects embryonic progenitor cells that are fated towards inhibitory interneurons. We quantified relevant cell populations during embryonic inhibitory neuron specification and found an increase in the proliferation of Nkx2.1+ interneuron progenitors in the embryonic medial ganglionic eminence at E14 that was associated with increased Shh signaling in gID animals at E12. When we quantified the number of mature inhibitory interneurons that are known to originate from the MGE, we found a persistent disruption of differentiated interneuron subtypes in early adulthood. Our data identify a cellular target that links gID with a disruption of cortical interneurons which play a major role in the establishment of the E/I balance.
Collapse
Affiliation(s)
- Michael J. Rudy
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Colorado Denver – Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| | - Garrick Salois
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Janine Cubello
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Robert Newell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Margot Mayer-Proschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
28
|
Ehlinger JV, Goodrich JM, Dolinoy DC, Watkins DJ, Cantoral A, Mercado-García A, Téllez-Rojo MM, Peterson KE. Associations between blood leukocyte DNA methylation and sustained attention in mid-to-late childhood. Epigenomics 2023; 15:965-981. [PMID: 37942546 PMCID: PMC10718163 DOI: 10.2217/epi-2023-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Aims: To identify associations between DNA methylation (DNAm) across the epigenome and symptoms related to attention-deficit/hyperactivity disorder in a population of Hispanic children. Materials & methods: Among 517 participants in the ELEMENT study aged 9-18 years, we conducted an epigenome-wide association study examining associations between blood leukocyte DNAm and performance on the Conners' continuous performance test (CPT3). Results: DNAm at loci in or near ZNF814, ELF4 and OR6K6 and functional enrichment for gene pathways pertaining to ferroptosis, inflammation, immune response and neurotransmission were significantly related to CPT3 scores. Conclusion: DNAm was associated with CPT3 performance. Further analysis is warranted to understand how these genes and enriched pathways contribute to attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Jessa V Ehlinger
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah J Watkins
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Karen E Peterson
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Guerri L, Dobbs LK, da Silva e Silva DA, Meyers A, Ge A, Lecaj L, Djakuduel C, Islek D, Hipolito D, Martinez AB, Shen PH, Marietta CA, Garamszegi SP, Capobianco E, Jiang Z, Schwandt M, Mash DC, Alvarez VA, Goldman D. Low Dopamine D2 Receptor Expression Drives Gene Networks Related to GABA, cAMP, Growth and Neuroinflammation in Striatal Indirect Pathway Neurons. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1104-1115. [PMID: 37881572 PMCID: PMC10593893 DOI: 10.1016/j.bpsgos.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type 2 receptor availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the Drd2 gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs). Methods Cre-conditional, translating ribosome affinity purification (TRAP) was used to purify and analyze the translatome (ribosome-bound messenger RNA) of iMSNs from mice with low/heterozygous or wild-type Drd2 expression in iMSNs. Complementary electrophysiological recordings and gene expression analysis of postmortem brain tissue from human cocaine users were performed. Results Innate low expression of Drd2 in iMSNs led to differential expression of genes involved in GABA (gamma-aminobutyric acid) and cAMP (cyclic adenosine monophosphate) signaling, neural growth, lipid metabolism, neural excitability, and inflammation. Creb1 was identified as a likely upstream regulator, among others. In human brain, expression of FXYD2, a modulatory subunit of the Na/K pump, was negatively correlated with DRD2 messenger RNA expression. In iMSN-TRAP-Drd2HET mice, increased Cartpt and reduced S100a10 (p11) expression recapitulated previous observations in cocaine paradigms. Electrophysiology experiments supported a higher GABA tone in iMSN-Drd2HET mice. Conclusions This study provides strong molecular evidence that, in addiction, inhibition by the indirect pathway is constitutively enhanced through neural growth and increased GABA signaling.
Collapse
Affiliation(s)
- Lucia Guerri
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Lauren K. Dobbs
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
- Department of Neurology, University of Texas at Austin, Austin, Texas
| | - Daniel A. da Silva e Silva
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
| | - Allen Meyers
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Aaron Ge
- University of Maryland, College Park, Maryland
| | - Lea Lecaj
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Caroline Djakuduel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Damien Islek
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Dionisio Hipolito
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Abdiel Badillo Martinez
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Cheryl A. Marietta
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Susanna P. Garamszegi
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Enrico Capobianco
- Institute for Data Science and Computing, University of Miami, Miami, Florida
| | - Zhijie Jiang
- Institute for Data Science and Computing, University of Miami, Miami, Florida
| | - Melanie Schwandt
- Office of the Clinical Director, NIAAA, National Institutes of Health, Bethesda, Maryland
| | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
- Institute for Data Science and Computing, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Veronica A. Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
- Office of the Clinical Director, NIAAA, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Choi JS, Ayupe AC, Beckedorff F, Catanuto P, McCartan R, Levay K, Park KK. Single-nucleus RNA sequencing of developing superior colliculus identifies neuronal diversity and candidate mediators of circuit assembly. Cell Rep 2023; 42:113037. [PMID: 37624694 PMCID: PMC10592058 DOI: 10.1016/j.celrep.2023.113037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The superior colliculus (SC) is a sensorimotor structure in the midbrain that integrates input from multiple sensory modalities to initiate motor commands. It undergoes well-characterized steps of circuit assembly during development, rendering the mouse SC a popular model to study establishment of neural connectivity. Here we perform single-nucleus RNA-sequencing analysis of the mouse SC isolated at various developmental time points. Our study provides a transcriptomic landscape of the cell types that comprise the SC across murine development with particular emphasis on neuronal heterogeneity. We report a repertoire of genes differentially expressed across the different postnatal ages, many of which are known to regulate axon guidance and synapse formation. Using these data, we find that Pax7 expression is restricted to a subset of GABAergic neurons. Our data provide a valuable resource for interrogating the mechanisms of circuit development and identifying markers for manipulating specific SC neuronal populations and circuits.
Collapse
Affiliation(s)
- James S Choi
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA
| | - Ana C Ayupe
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA
| | - Felipe Beckedorff
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Paola Catanuto
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA
| | - Robyn McCartan
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA
| | - Konstantin Levay
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA
| | - Kevin K Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Ter., Miami, FL 33136, USA.
| |
Collapse
|
31
|
Molloy CJ, Cooke J, Gatford NJF, Rivera-Olvera A, Avazzadeh S, Homberg JR, Grandjean J, Fernandes C, Shen S, Loth E, Srivastava DP, Gallagher L. Bridging the translational gap: what can synaptopathies tell us about autism? Front Mol Neurosci 2023; 16:1191323. [PMID: 37441676 PMCID: PMC10333541 DOI: 10.3389/fnmol.2023.1191323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism.
Collapse
Affiliation(s)
- Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Nicholas J. F. Gatford
- Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Medical Sciences Division, Oxford, United Kingdom
| | - Alejandro Rivera-Olvera
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Joanes Grandjean
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, Galway, Ireland
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Deepak P. Srivastava
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- The Hospital for SickKids, Toronto, ON, Canada
- The Peter Gilgan Centre for Research and Learning, SickKids Research Institute, Toronto, ON, Canada
- The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Ayupe AC, Choi JS, Beckedorff F, Catanuto P, Mccartan R, Levay K, Park KK. Single-Nucleus RNA Sequencing of Developing and Mature Superior Colliculus Identifies Neuronal Diversity and Candidate Mediators of Circuit Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526254. [PMID: 36778361 PMCID: PMC9915630 DOI: 10.1101/2023.02.01.526254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The superior colliculus (SC) is a sensorimotor structure in the midbrain that integrates input from multiple sensory modalities to initiate motor commands. It undergoes well-characterized steps of circuit assembly during development, rendering the mouse SC a popular model to study establishment and refinement of neural connectivity. Here we performed single nucleus RNA-sequencing analysis of the mouse SC isolated at various developmental time points. Our study provides a transcriptomic landscape of the cell types that comprise the SC across murine development with particular emphasis on neuronal heterogeneity. We used these data to identify Pax7 as a marker for an anatomically homogeneous population of GABAergic neurons. Lastly, we report a repertoire of genes differentially expressed across the different postnatal ages, many of which are known to regulate axon guidance and synapse formation. Our data provide a valuable resource for interrogating the mechanisms of circuit development, and identifying markers for manipulating specific SC neuronal populations and circuits.
Collapse
|
33
|
Guo Q, Wang Y, Wang Q, Qian Y, Jiang Y, Dong X, Chen H, Chen X, Liu X, Yu S, Zhu J, Shan S, Wu B, Zhou W, Wang H. In the developing cerebral cortex: axonogenesis, synapse formation, and synaptic plasticity are regulated by SATB2 target genes. Pediatr Res 2023; 93:1519-1527. [PMID: 36028553 DOI: 10.1038/s41390-022-02260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Special AT-rich sequence-binding protein 2 is essential for the development of cerebral cortex and key molecular node for the establishment of proper neural circuitry and function. Mutations in the SATB2 gene lead to SATB2-associated syndrome, which is characterized by abnormal development of skeleton and central nervous systems. METHODS We generated Satb2 knockout mouse model through CRISPR-Cas9 technology and performed RNA-seq and ChIP-seq of embryonic cerebral cortex. We conducted RT-qPCR, western blot, immunofluorescence staining, luciferase reporter assay and behavioral analysis for experimental verification. RESULTS We identified 1363 downstream effector genes of Satb2 and correlation analysis of Satb2-targeted genes and neurological disease genes showed that Satb2 contribute to cognitive and mental disorders from the early developmental stage. We found that Satb2 directly regulate the expression of Ntng1, Cdh13, Kitl, genes important for axon guidance, synaptic formation, neuron migration, and Satb2 directly activates the expression of Mef2c. We also showed that Satb2 heterozygous knockout mice showed impaired spatial learning and memory. CONCLUSIONS Taken together, our study supportsroles of Satb2 in the regulation of axonogenesis and synaptic formation at the early developmental stage and provides new insights into the complicated regulatory mechanism of Satb2 and new evidence to elucidate the pathogen of SATB2-associated syndrome. IMPACT 1363 downstream effector genes of Satb2 were classified into 5 clusters with different temporal expression patterns. We identified Plxnd1, Ntng1, Efnb2, Ephb1, Plxna2, Epha3, Plxna4, Unc5c, and Flrt2 as axon guidance molecules to regulate axonogenesis. 168 targeted genes of Satb2 were found to regulate synaptic formation in the early development of the cerebral cortex. Transcription factor Mef2c is positively regulated by Satb2, and 28 Mef2c-targeted genes can be directly regulated by Satb2. In the Morris water maze test, Satb2+/- mice showed impaired spatial learning and memory, further strengthening that Satb2 can regulate synaptic functions.
Collapse
Affiliation(s)
- Qiufang Guo
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
- Berry Genomics Co, 102206, Beijing, China
| | - Yaqiong Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Qing Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Yinmo Jiang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Xiang Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Xiuyun Liu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Sha Yu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Jitao Zhu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Shifang Shan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China.
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Key Laboratory of Neonatal Diseases, Ministry of Health, 201102, Shanghai, China.
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, 201102, Shanghai, China.
| |
Collapse
|
34
|
Issler O, van der Zee YY, Ramakrishnan A, Xia S, Zinsmaier AK, Tan C, Li W, Browne CJ, Walker DM, Salery M, Torres-Berrío A, Futamura R, Duffy JE, Labonte B, Girgenti MJ, Tamminga CA, Dupree JL, Dong Y, Murrough JW, Shen L, Nestler EJ. The long noncoding RNA FEDORA is a cell type- and sex-specific regulator of depression. SCIENCE ADVANCES 2022; 8:eabn9494. [PMID: 36449610 PMCID: PMC9710883 DOI: 10.1126/sciadv.abn9494] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/12/2022] [Indexed: 05/31/2023]
Abstract
Women suffer from depression at twice the rate of men, but the underlying molecular mechanisms are poorly understood. Here, we identify marked baseline sex differences in the expression of long noncoding RNAs (lncRNAs), a class of regulatory transcripts, in human postmortem brain tissue that are profoundly lost in depression. One such human lncRNA, RP11-298D21.1 (which we termed FEDORA), is enriched in oligodendrocytes and neurons and up-regulated in the prefrontal cortex (PFC) of depressed females only. We found that virally expressing FEDORA selectively either in neurons or in oligodendrocytes of PFC promoted depression-like behavioral abnormalities in female mice only, changes associated with cell type-specific regulation of synaptic properties, myelin thickness, and gene expression. We also found that blood FEDORA levels have diagnostic implications for depressed women and are associated with clinical response to ketamine. These findings demonstrate the important role played by lncRNAs, and FEDORA in particular, in shaping the sex-specific landscape of the brain and contributing to sex differences in depression.
Collapse
Affiliation(s)
- Orna Issler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yentl Y. van der Zee
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sunhui Xia
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Chunfeng Tan
- Department of Psychiatry, UT Southwestern, Dallas, TX, USA
| | - Wei Li
- Department of Psychiatry, UT Southwestern, Dallas, TX, USA
| | - Caleb J. Browne
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deena M. Walker
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marine Salery
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia E. Duffy
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benoit Labonte
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J. Girgenti
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jeffrey L. Dupree
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - James W. Murrough
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
35
|
Rizavi HS, Chase KA, Liu C, Gavin H, Rosen C, Xia C, Guidotti A, Sharma RP. Differential H3K9me2 heterochromatin levels and concordant mRNA expression in postmortem brain tissue of individuals with schizophrenia, bipolar, and controls. Front Psychiatry 2022; 13:1006109. [PMID: 36386965 PMCID: PMC9644155 DOI: 10.3389/fpsyt.2022.1006109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
The existence of repressive and durable chromatin assemblies along gene promoters or networks, especially in the brain, is of theoretical and therapeutic relevance in a subset of individuals diagnosed with schizophrenia who experience a chronic, persistent, and treatment-resistant trajectory. We used chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to generate an epigenomic map that includes differential sites occupied by di-methylated lysine 9 of histone 3 (H3K9me2), a repressive modification that is yet unexplored in human postmortem brain tissue. We have discovered over 150 significantly differential promoter sites in the postmortem prefrontal cortex tissue of individuals diagnosed with schizophrenia (n = 15) when compared to controls (n = 15). Potentially dysregulated gene categories include postsynaptic proteins, processing enzymes (for proproteins, lipids, and oxidative stress), cadherin family genes, the complement system, and peptide hormones. Ten genes with significantly increased or decreased H3K9me2 promoter occupation were selected through statistical analysis, function, or previous GWAS association, and Quantitative RT-PCR (qRT-PCR) was performed on an extended sample of postmortem brain tissue, adding an additional 17 controls, 7 individuals with schizophrenia, and 19 individuals with bipolar samples (n = 32 control, 22 schizophrenia, 19 bipolar). This approach revealed that mRNA expression levels correlated with chromatin modification levels in eight of 10 selected genes, and mRNA expression in the total sample could be predicted by the occupancy of H3K9me2. Utilization of this method and replication in a larger sample open a pathway to durable and restrictive epigenomic assemblies whose accumulation across the lifespan of individuals diagnosed with schizophrenia may explain treatment resistance, and advance therapeutic options.
Collapse
Affiliation(s)
- Hooriyah S. Rizavi
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Kayla A. Chase
- Department of Biochemistry and Molecular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Chunyu Liu
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hannah Gavin
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cherise Rosen
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cuihua Xia
- School of Life Sciences, Central South University, Changsha, China
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Rajiv P. Sharma
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
36
|
Radtke F, Palladino VS, McNeill RV, Chiocchetti AG, Haslinger D, Leyh M, Gersic D, Frank M, Grünewald L, Klebe S, Brüstle O, Günther K, Edenhofer F, Kranz TM, Reif A, Kittel-Schneider S. ADHD-associated PARK2 copy number variants: A pilot study on gene expression and effects of supplementary deprivation in patient-derived cell lines. Am J Med Genet B Neuropsychiatr Genet 2022; 189:257-270. [PMID: 35971782 DOI: 10.1002/ajmg.b.32918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
Recent studies show an association of Parkin RBR E3 ubiquitin protein ligase (PARK2) copy number variations (CNVs) with attention deficit hyperactivity disorder (ADHD). The aim of our pilot study to investigate gene expression associated with PARK2 CNVs in human-derived cellular models. We investigated gene expression in fibroblasts, hiPSC and dopaminergic neurons (DNs) of ADHD PARK2 deletion and duplication carriers by qRT PCR compared with healthy and ADHD cell lines without PARK2 CNVs. The selected 10 genes of interest were associated with oxidative stress response (TP53, NQO1, and NFE2L2), ubiquitin pathway (UBE3A, UBB, UBC, and ATXN3) and with a function in mitochondrial quality control (PINK1, MFN2, and ATG5). Additionally, an exploratory RNA bulk sequencing analysis in DNs was conducted. Nutrient deprivation as a supplementary deprivation stress paradigm was used to enhance potential genotype effects. At baseline, in fibroblasts, hiPSC, and DNs, there was no significant difference in gene expression after correction for multiple testing. After nutrient deprivation in fibroblasts NAD(P)H-quinone-dehydrogenase 1 (NQO1) expression was significantly increased in PARK2 CNV carriers. In a multivariate analysis, ubiquitin C (UBC) was significantly upregulated in fibroblasts of PARK2 CNV carriers. RNA sequencing analysis of DNs showed the strongest significant differential regulation in Neurontin (NNAT) at baseline and after nutrient deprivation. Our preliminary results suggest differential gene expression in pathways associated with oxidative stress, ubiquitine-proteasome, immunity, inflammation, cell growth, and differentiation, excitation/inhibition modulation, and energy metabolism in PARK2 CNV carriers compared to wildtype healthy controls and ADHD patients.
Collapse
Affiliation(s)
- Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Viola Stella Palladino
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Rhiannon V McNeill
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Denise Haslinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Matthias Leyh
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Danijel Gersic
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Markus Frank
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Lena Grünewald
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Katharina Günther
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, University of Innsbruck, Innsbruck, Austria
| | - Thorsten M Kranz
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, Goethe University, Frankfurt, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
38
|
Irigoien I, Cormand B, Soler-Artigas M, Sanchez-Mora C, Ramos-Quiroga JA, Arenas C. New Distance-Based approach for Genome-Wide Association Studies. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2938-2949. [PMID: 34181548 DOI: 10.1109/tcbb.2021.3092812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the rise of genome-wide association studies (GWAS), the analysis of typical GWAS data sets with thousands of single-nucleotide polymorphisms (SNPs) has become crucial in biomedicine research. Here, we propose a new method to identify SNPs related to disease in case-control studies. The method, based on genetic distances between individuals, takes into account the possible population substructure, and avoids the issues of multiple testing. The method provides two ordered lists of SNPs; one with SNPs which minor alleles can be considered risk alleles for the disease, and another one with SNPs which minor alleles can be considered as protective. These two lists provide a useful tool to help the researcher to decide where to focus attention in a first stage.
Collapse
|
39
|
Abdel-Hamid M, Yang P, Mostafa I, Osman A, Romeih E, Yang Y, Huang Z, Awad AA, Li L. Changes in Whey Proteome between Mediterranean and Murrah Buffalo Colostrum and Mature Milk Reflect Their Pharmaceutical and Medicinal Value. Molecules 2022; 27:1575. [PMID: 35268677 PMCID: PMC8912021 DOI: 10.3390/molecules27051575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Milk represents an integrated meal for newborns; its whey protein is rich in many health beneficial components and proteins. The current study aimed to investigate the differences between colostrum and mature milk from Mediterranean and Murrah buffaloes using labeled proteomics and bioinformatics tools. In the current work, LC-MS/MS analysis led to identification of 780 proteins from which 638 were shared among three independent TMT experiments. The significantly changed proteins between the studied types were analyzed using gene ontology enrichment and KEGG pathways, and their interactions were generated using STRING database. Results indicated that immunological, muscular development and function, blood coagulation, heme related, neuronal, translation, metabolic process, and binding proteins were the main terms. Overall, colostrum showed higher levels of immunoglobulins, myosins, actin, neurofascin, syntaxins, thyroglobulins, and RNA-binding proteins, reflecting its importance in the development and activity of immunological, muscular, cardiac, neuronal, and thyroid systems, while lactoferrin and ferritin were increased in mature milk, highlighting its role in iron storage and hemoglobin formation.
Collapse
Affiliation(s)
- Mahmoud Abdel-Hamid
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.R.); (A.A.A.)
| | - Pan Yang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Ehab Romeih
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.R.); (A.A.A.)
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
| | - Zizhen Huang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
| | - Awad A. Awad
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; (E.R.); (A.A.A.)
| | - Ling Li
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (M.A.-H.); (P.Y.); (Z.H.)
| |
Collapse
|
40
|
Cadherin-13 is a critical regulator of GABAergic modulation in human stem-cell-derived neuronal networks. Mol Psychiatry 2022; 27:1-18. [PMID: 33972691 PMCID: PMC8960401 DOI: 10.1038/s41380-021-01117-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Activity in the healthy brain relies on a concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders; however, obtaining mechanistic insight into these disruptions, with translational value for the patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has been associated with autism and attention-deficit/hyperactivity disorder. CDH13 localizes at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human-induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and MEF2C (PV-precursor marker protein) expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13 deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-β1 and Integrin-β3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type-specific contribution of disease genes to the E/I balance.
Collapse
|
41
|
Moussa AJ, Wester JC. Cell-type specific transcriptomic signatures of neocortical circuit organization and their relevance to autism. Front Neural Circuits 2022; 16:982721. [PMID: 36213201 PMCID: PMC9545608 DOI: 10.3389/fncir.2022.982721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
A prevailing challenge in neuroscience is understanding how diverse neuronal cell types select their synaptic partners to form circuits. In the neocortex, major classes of excitatory projection neurons and inhibitory interneurons are conserved across functionally distinct regions. There is evidence these classes form canonical circuit motifs that depend primarily on their identity; however, regional cues likely also influence their choice of synaptic partners. We mined the Allen Institute's single-cell RNA-sequencing database of mouse cortical neurons to study the expression of genes necessary for synaptic connectivity and physiology in two regions: the anterior lateral motor cortex (ALM) and the primary visual cortex (VISp). We used the Allen's metadata to parse cells by clusters representing major excitatory and inhibitory classes that are common to both ALM and VISp. We then performed two types of pairwise differential gene expression analysis: (1) between different neuronal classes within the same brain region (ALM or VISp), and (2) between the same neuronal class in ALM and VISp. We filtered our results for differentially expressed genes related to circuit connectivity and developed a novel bioinformatic approach to determine the sets uniquely enriched in each neuronal class in ALM, VISp, or both. This analysis provides an organized set of genes that may regulate synaptic connectivity and physiology in a cell-type-specific manner. Furthermore, it identifies candidate mechanisms for circuit organization that are conserved across functionally distinct cortical regions or that are region dependent. Finally, we used the SFARI Human Gene Module to identify genes from this analysis that are related to risk for autism spectrum disorder (ASD). Our analysis provides clear molecular targets for future studies to understand neocortical circuit organization and abnormalities that underlie autistic phenotypes.
Collapse
Affiliation(s)
- Anthony J Moussa
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jason C Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
42
|
van Rhijn JR, Shi Y, Bormann M, Mossink B, Frega M, Recaioglu H, Hakobjan M, Klein Gunnewiek T, Schoenmaker C, Palmer E, Faivre L, Kittel-Schneider S, Schubert D, Brunner H, Franke B, Nadif Kasri N. Brunner syndrome associated MAOA mutations result in NMDAR hyperfunction and increased network activity in human dopaminergic neurons. Neurobiol Dis 2021; 163:105587. [PMID: 34923109 DOI: 10.1016/j.nbd.2021.105587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 01/15/2023] Open
Abstract
Monoamine neurotransmitter abundance affects motor control, emotion, and cognitive function and is regulated by monoamine oxidases. Among these, Monoamine oxidase A (MAOA) catalyzes the degradation of dopamine, norepinephrine, and serotonin into their inactive metabolites. Loss-of-function mutations in the X-linked MAOA gene have been associated with Brunner syndrome, which is characterized by various forms of impulsivity, maladaptive externalizing behavior, and mild intellectual disability. Impaired MAOA activity in individuals with Brunner syndrome results in bioamine aberration, but it is currently unknown how this affects neuronal function, specifically in dopaminergic (DA) neurons. Here we generated human induced pluripotent stem cell (hiPSC)-derived DA neurons from three individuals with Brunner syndrome carrying different mutations and characterized neuronal properties at the single cell and neuronal network level in vitro. DA neurons of Brunner syndrome patients showed reduced synaptic density but exhibited hyperactive network activity. Intrinsic functional properties and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission were not affected in DA neurons of individuals with Brunner syndrome. Instead, we show that the neuronal network hyperactivity is mediated by upregulation of the GRIN2A and GRIN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), resulting in increased NMDAR-mediated currents. By correcting a MAOA missense mutation with CRISPR/Cas9 genome editing we normalized GRIN2A and GRIN2B expression, NMDAR function and neuronal population activity to control levels. Our data suggest that MAOA mutations in Brunner syndrome increase the activity of dopaminergic neurons through upregulation of NMDAR function, which may contribute to the etiology of Brunner syndrome associated phenotypes.
Collapse
Affiliation(s)
- Jon-Ruben van Rhijn
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yan Shi
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maren Bormann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Britt Mossink
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Monica Frega
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical neurophysiology, University of Twente, 7522 NB Enschede, Netherlands
| | - Hatice Recaioglu
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marina Hakobjan
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Teun Klein Gunnewiek
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Chantal Schoenmaker
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elizabeth Palmer
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - Laurence Faivre
- Centre de Référence Anomalies du développement et Syndromes malformatifs and FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; INSERM UMR1231 GAD, Faculté de Médecine, Université de Bourgogne, Dijon, France
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University, Frankfurt, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, MUMC+, GROW School of Oncology and Developmental Biology, and MHeNS School of Neuroscience and Maastricht University, Maastricht, the Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
43
|
Della Vecchia A, Arone A, Piccinni A, Mucci F, Marazziti D. GABA System in Depression: Impact on Pathophysiology and Psychopharmacology. Curr Med Chem 2021; 29:5710-5730. [PMID: 34781862 DOI: 10.2174/0929867328666211115124149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The pathophysiology of major depressive disorder (MDD), one of the major causes of worldwide disability, is still largely unclear, despite the increasing data reporting evidence of multiple alterations of different systems. Recently, there was a renewed interest in the signalling of gamma aminobutyric acid (GABA) - the main inhibitory neurotransmitter. OBJECTIVE The aim of this study was to review and comment on the available literature about the involvement of GABA in MDD, as well as on novel GABAergic compounds possibly useful as antidepressants. METHODS We carried out a narrative review through Pubmed, Google Scholar and Scopus, by using specific keywords. RESULTS The results, derived from various research tools, strongly support the presence of a deficiency of the GABA system in MDD, which appears to be restored by common antidepressant treatments. More recent publications would indicate the complex interactions between GABA and all the other processes involved in MDD, such as monoamine neurotransmission, hypothalamus-pituitary adrenal axis functioning, neurotrophism, and immune response. Taken together, all these findings seem to further support the complexity of the pathophysiology of MDD, possibly reflecting the heterogeneity of the clinical pictures. CONCLUSION Although further data are necessary to support the specificity of GABA deficiency in MDD, the available findings would suggest that novel GABAergic compounds might constitute innovative therapeutic strategies in MDD.
Collapse
Affiliation(s)
- Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| | - Armando Piccinni
- Saint Camillus International University of Health and Medical Sciences, Rome. Italy
| | - Federico Mucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena. Italy
| | - Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa. Italy
| |
Collapse
|
44
|
Increased locomotor activity via regulation of GABAergic signalling in foxp2 mutant zebrafish-implications for neurodevelopmental disorders. Transl Psychiatry 2021; 11:529. [PMID: 34650032 PMCID: PMC8517032 DOI: 10.1038/s41398-021-01651-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the genetics of neurodevelopmental disorders (NDDs) have identified the transcription factor FOXP2 as one of numerous risk genes, e.g. in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). FOXP2 function is suggested to be involved in GABAergic signalling and numerous studies demonstrate that GABAergic function is altered in NDDs, thus disrupting the excitation/inhibition balance. Interestingly, GABAergic signalling components, including glutamate-decarboxylase 1 (Gad1) and GABA receptors, are putative transcriptional targets of FOXP2. However, the specific role of FOXP2 in the pathomechanism of NDDs remains elusive. Here we test the hypothesis that Foxp2 affects behavioural dimensions via GABAergic signalling using zebrafish as model organism. We demonstrate that foxp2 is expressed by a subset of GABAergic neurons located in brain regions involved in motor functions, including the subpallium, posterior tuberculum, thalamus and medulla oblongata. Using CRISPR/Cas9 gene-editing we generated a novel foxp2 zebrafish loss-of-function mutant that exhibits increased locomotor activity. Further, genetic and/or pharmacological disruption of Gad1 or GABA-A receptors causes increased locomotor activity, resembling the phenotype of foxp2 mutants. Application of muscimol, a GABA-A receptor agonist, rescues the hyperactive phenotype induced by the foxp2 loss-of-function. By reverse translation of the therapeutic effect on hyperactive behaviour exerted by methylphenidate, we note that application of methylphenidate evokes different responses in wildtype compared to foxp2 or gad1b loss-of-function animals. Together, our findings support the hypothesis that foxp2 regulates locomotor activity via GABAergic signalling. This provides one targetable mechanism, which may contribute to behavioural phenotypes commonly observed in NDDs.
Collapse
|
45
|
A Common CDH13 Variant Is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD. Genes (Basel) 2021; 12:genes12091356. [PMID: 34573337 PMCID: PMC8471784 DOI: 10.3390/genes12091356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The cell—cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD.
Collapse
|
46
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
47
|
Li Y, Haber A, Preuss C, John C, Uyar A, Yang HS, Logsdon BA, Philip V, Karuturi RKM, Carter GW. Transfer learning-trained convolutional neural networks identify novel MRI biomarkers of Alzheimer's disease progression. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12140. [PMID: 34027015 PMCID: PMC8120261 DOI: 10.1002/dad2.12140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Genome-wide association studies (GWAS) for late onset Alzheimer's disease (AD) may miss genetic variants relevant for delineating disease stages when using clinically defined case/control as a phenotype due to its loose definition and heterogeneity. METHODS We use a transfer learning technique to train three-dimensional convolutional neural network (CNN) models based on structural magnetic resonance imaging (MRI) from the screening stage in the Alzheimer's Disease Neuroimaging Initiative consortium to derive image features that reflect AD progression. RESULTS CNN-derived image phenotypes are significantly associated with fasting metabolites related to early lipid metabolic changes as well as insulin resistance and with genetic variants mapped to candidate genes enriched for amyloid beta degradation, tau phosphorylation, calcium ion binding-dependent synaptic loss, APP-regulated inflammation response, and insulin resistance. DISCUSSION This is the first attempt to show that non-invasive MRI biomarkers are linked to AD progression characteristics, reinforcing their use in early AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Yi Li
- The Jackson LaboratoryFarmingtonConnecticutUSA
| | - Annat Haber
- The Jackson LaboratoryFarmingtonConnecticutUSA
| | | | - Cai John
- The Jackson LaboratoryFarmingtonConnecticutUSA
| | - Asli Uyar
- The Jackson LaboratoryFarmingtonConnecticutUSA
| | | | | | | | | | - Gregory W. Carter
- The Jackson LaboratoryFarmingtonConnecticutUSA
- The Jackson LaboratoryBar HarborMaineUSA
| | | |
Collapse
|
48
|
Klune CB, Jin B, DeNardo LA. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. eLife 2021; 10:e64567. [PMID: 33949949 PMCID: PMC8099425 DOI: 10.7554/elife.64567] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.
Collapse
Affiliation(s)
- Cassandra B Klune
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Neuroscience Interdepartmental Graduate Program, UCLALos AngelesUnited States
| | - Benita Jin
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Molecular, Cellular and Integrative Physiology Graduate Program, UCLALos AngelesUnited States
| | - Laura A DeNardo
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
49
|
Matsunaga H, Aruga J. Trans-Synaptic Regulation of Metabotropic Glutamate Receptors by Elfn Proteins in Health and Disease. Front Neural Circuits 2021; 15:634875. [PMID: 33790745 PMCID: PMC8005653 DOI: 10.3389/fncir.2021.634875] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Trans-regulation of G protein-coupled receptors (GPCRs) by leucine-rich repeat (LRR) transmembrane proteins has emerged as a novel type of synaptic molecular interaction in the last decade. Several studies on LRR–GPCR interactions have revealed their critical role in synapse formation and in establishing synaptic properties. Among them, LRR–GPCR interactions between extracellular LRR fibronectin domain-containing family proteins (Elfn1 and Elfn2) and metabotropic glutamate receptors (mGluRs) are particularly interesting as they can affect a broad range of synapses through the modulation of signaling by glutamate, the principal excitatory transmitter in the mammalian central nervous system (CNS). Elfn–mGluR interactions have been investigated in hippocampal, cortical, and retinal synapses. Postsynaptic Elfn1 in the hippocampus and cerebral cortex mediates the tonic regulation of excitatory input onto somatostatin-positive interneurons (INs) through recruitment of presynaptic mGluR7. In the retina, presynaptic Elfn1 binds to mGluR6 and is necessary for synapse formation between rod photoreceptor cells and rod-bipolar cells. The repertoire of binding partners for Elfn1 and Elfn2 includes all group III mGluRs (mGluR4, mGluR6, mGluR7, and mGluR8), and both Elfn1 and Elfn2 can alter mGluR-mediated signaling through trans-interaction. Importantly, both preclinical and clinical studies have provided support for the involvement of the Elfn1–mGluR7 interaction in attention-deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), and epilepsy. In fact, Elfn1–mGluR7-associated disorders may reflect the altered function of somatostatin-positive interneuron inhibitory neural circuits, the mesolimbic and nigrostriatal dopaminergic pathway, and habenular circuits, highlighting the need for further investigation into this interaction.
Collapse
Affiliation(s)
- Hayato Matsunaga
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Jun Aruga
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
50
|
Vitale MR, Zöller JEM, Jansch C, Janz A, Edenhofer F, Klopocki E, van den Hove D, Vanmierlo T, Rivero O, Nadif Kasri N, Ziegler GC, Lesch KP. Generation of induced pluripotent stem cell (iPSC) lines carrying a heterozygous (UKWMPi002-A-1) and null mutant knockout (UKWMPi002-A-2) of Cadherin 13 associated with neurodevelopmental disorders using CRISPR/Cas9. Stem Cell Res 2021; 51:102169. [PMID: 33486346 DOI: 10.1016/j.scr.2021.102169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Fibroblasts isolated from a skin biopsy of a healthy 46-year-old female were infected with Sendai virus containing the Yamanaka factors to produce transgene-free human induced pluripotent stem cells (iPSCs). CRISPR/Cas9 was used to generate isogenic cell lines with a gene dose-dependent deficiency of CDH13, a risk gene associated with neurodevelopmental and psychiatric disorders. Thereby, a heterozygous CDH13 knockout (CDH13+/-) and a CDH13 null mutant (CDH13-/-) iPSC line was obtained. All three lines showed expression of pluripotency-associated markers, the ability to differentiate into cells of the three germ layers in vitro, and a normal female karyotype.
Collapse
Affiliation(s)
- Maria Rosaria Vitale
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Johanna Eva Maria Zöller
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Germany; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Charline Jansch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Germany
| | - Anna Janz
- Comprehensive Heart Failure Center (CHFC) and Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Eva Klopocki
- Institute of Human Genetics, Biocentre, University of Würzburg, Germany
| | - Daniel van den Hove
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Germany; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Neuro-immune Connect and Repair Lab, Biomedical Research Institute, Hasselt University, Belgium
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Germany
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Georg Christoph Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M Sechenov First Moscow State Medical University, Moscow, Russia; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|