1
|
Chen S, Huang J, Zhang X, Hong Z, Ye Y, Lin X, Zhang Z. The effect of flavan-3-ols on ovariectomy-induced bone loss in mice and the potential mechanisms. J Nutr Biochem 2025:110001. [PMID: 40513837 DOI: 10.1016/j.jnutbio.2025.110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 06/07/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
Flavan-3-ols (FLOs) have been reported to confer various health benefits, the majority of which reaching the colon for fermentation by gut microbiota. This study sought to examine the effects of FLOs on bone health and to evaluate the influence of gut microbiota on these effects. Using an ovariectomy-induced bone loss model in mice, the animals were administered either a low or high dose of FLOs, or a combination of FLOs with an antibiotic cocktail (Abs+FLOs). Compared to the control group, serum markers of bone formation, as well as bone quality as determined by micro-CT, were elevated in the groups supplemented with FLOs, particularly when combined with Abs. Furthermore, both FLOs and Abs+FLOs interventions significantly improved the levels of estrogen. However, no additional influence of FLOs on these markers was detected compared to the group supplemented with Abs alone. Analysis of 16S rRNA sequencing data revealed that the abundance of certain operational taxonomic units, such as s__unclassified_Clostridia_UCG_014, s__unclassified_Ruminococcus, and s__unclassified_Lachnospiraceae, was significantly reduced in osteoporotic mice but effectively reversed following the administration of FLOs. Transcriptomic analysis coupled with KEGG enrichment analysis indicated that Adrb3, Gdf10 (BMP3), Fosb, and Cxcl2, along with the PPARα/PGC-1/UCP1 signaling pathway, may potentially mediate the regulation of bone metabolism by flavanols. Collectively, the study uncovers the osteoprotective properties of flavan-3-ols, indicating that these effects may depend on the presence of gut microbiota.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China; Department of Clinical Nutrition, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiapeng Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xuanrui Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Hong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiaoping Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Ramírez-Torres CE, Gómez FCE, Morales-Mávil JE, Mendoza-López MR, Laska M, Hernández-Salazar LT. Salivary response of Geoffroy's spider monkeys ( Ateles geoffroyi) to consumption of plant secondary metabolites. PeerJ 2025; 13:e19354. [PMID: 40492204 PMCID: PMC12147766 DOI: 10.7717/peerj.19354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/01/2025] [Indexed: 06/11/2025] Open
Abstract
Geoffroy's spider monkeys (Ateles geoffroyi) can modulate the acidity-alkalinity (pH) and salivary expression of total proteins (TP) and proline-rich proteins (PRPs) depending on the concentration of tannins in their diet, helping to counteract negative post-ingestive effects. Besides tannins, plants produce a wide variety of secondary metabolites like flavonoids and alkaloids that elicit a bitter taste. Geoffroy's spider monkeys feed on various plant species and consume different concentrations of secondary metabolites. However, it is unclear whether there is salivary modulation of pH, TP, and PRPs to secondary metabolites other than tannins, or whether this effect also occurs towards bitter substances not associated with secondary metabolites. Therefore, we assessed if there are changes in salivary pH, TP, and PRPs expression towards bitter substances or if spider monkeys display a specific response to secondary metabolites present in their diet and substances not associated with secondary metabolites. We determined the concentration of tannic acid, caffeine and rutin in fruits and leaves in different maturity stages reported as a part of the diet of Geoffroy's spider monkeys. We presented six adults Geoffroy's spider monkeys with different concentrations of tannic acid, caffeine, and rutin (0.1, 0.3, 0.6 and one mM) and denatonium benzoate (0.001, 0.003, 0.006 and 0.01 mM) dissolved in a 30 mM sucrose solution. We administered each concentration and collected saliva using swabs (SalivaBio). We used test paper strips to measure the pH and determined the TP concentration using the Bradford method at 595 nm. We also determined the percentage of PRPs using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results showed marked differences in tannic acid, caffeine and rutin concentration depending on the plant part and species. We found an increase in salivary pH in response to consumption of secondary metabolites, no variations in TP concentration, variations in the percentage of PRPs associated with tannic acid concentrations, and no significant changes when the animals consumed denatonium benzoate. Our results showed that spider monkeys specifically modulate acidity-alkalinity towards secondary metabolites and salivary PRPs expression towards tannic acid in their diet, and that they do not have a generalized salivary response to bitter compounds that are typically considered as toxic substances.
Collapse
Affiliation(s)
| | - Fabiola Carolina Espinosa Gómez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Popular Autonóma del Estado de Puebla, Puebla, Puebla, Mexico
- Consejo de Ciencia y Tecnología del Estado de Puebla, Puebla, México, Puebla, Puebla, Mexico
| | | | | | - Matthias Laska
- Department of Physics, Chemistry and Biology, IFM, Biology, Linkoping University, Linkoping, Linkoping, Sweden
| | | |
Collapse
|
3
|
Garofolo IC, Santos PF, Silva MF, Veneza VDM, Veiga TAM, Silveira VLF, Alonso-Vale MIC, Caperuto LC. Kaempferitrin modulates AMPK phosphorylation and PEPCK expression in the liver after a short-term high-fat, high-sucrose diet intervention in mice. Nutr Health 2025:2601060251340447. [PMID: 40390681 DOI: 10.1177/02601060251340447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
BACKGROUND Type 2 Diabetes Mellitus is a metabolic disease characterized by hyperglycemia and hyperinsulinemia, closely linked to obesity. According to the International Diabetes Federation, in 2021, almost 6.7 million adults aged 20-79 died due to complications from diabetes. In light of this concerning statistic, novel alternatives, including bioactive compounds such as flavonoids, are undergoing clinical and scientific evaluation to hinder the advancement of metabolic disorders or maybe avert their onset. Aim: We postulate that kaempferitrin may act on glycemic homeostasis in mice challenged with high-fat, high-sucrose diet (HFHS) for 24 h. Methods: Kaempferitrin at a 100 mg/kg dose was administered to two-month-old male C57BL/6 mice challenged with a HFHS diet for 3, 6, or 24 h. Glucose intolerance was assessed by an oral glucose tolerance test (oGTT). In the liver, AMP-activated protein kinase (AMPK) was measured via western blotting, and gene expression of the phosphoenolpyruvate carboxykinase (PEPCK) enzyme was assessed by quantitative PCR (qPCR). Results: At 6 h, kaempferitrin reduced the PEPCK gene expression compared to the group receiving only the HFHS diet. For the 24 h challenge with the HFHS diet, kaempferitrin did not prevent glucose intolerance (oGTT). However, kaempferitrin reduced the pAMPK/AMPK ratio and the PEPCK gene expression compared to the HFHS group. Conclusions: Kaempferitrin, when administered alongside a hypercaloric and hyperlipidic diet, even for short periods, did not prevent glucose intolerance. Nevertheless, it did lead to significant modulations in AMPK phosphorylation and PEPCK gene expression.
Collapse
Affiliation(s)
- Ingrid Candido Garofolo
- Programa de Pós-Graduação em Biologia Química, Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
| | - Paloma Freire Santos
- Curso de Ciências Farmacêuticas, Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
| | - Milena Ferreira Silva
- Programa de Pós-Graduação em Biologia Química, Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
| | - Viviane de Mello Veneza
- Programa de Pós-Graduação em Química - Ciência e Tecnologia da Sustentabilidade Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
| | - Thiago André Moura Veiga
- Programa de Pós-Graduação em Biologia Química, Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
- Programa de Pós-Graduação em Química - Ciência e Tecnologia da Sustentabilidade Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
- Departamento de Química, Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
| | - Vera Lucia Flor Silveira
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
| | - Maria Isabel Cardoso Alonso-Vale
- Programa de Pós-Graduação em Biologia Química, Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
| | - Luciana Chagas Caperuto
- Programa de Pós-Graduação em Biologia Química, Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas - ICAQF, Diadema, SP, Brazil
| |
Collapse
|
4
|
Mehrparvar Tajoddini M, Gheybi E, Rostami M, Mousavi SH, Hashemy SI, Rashidi R, Soukhtanloo M. Neuroprotective effects of hesperidin and auraptene on 6-hydroxydopamine-induced neurodegeneration in SH-SY5Y cells. AVICENNA JOURNAL OF PHYTOMEDICINE 2025; 15:1082-1090. [PMID: 40365183 PMCID: PMC12068502 DOI: 10.22038/ajp.2024.25214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Objective Destruction of dopaminergic neurons causes diseases. Various compounds with neuroprotective and antioxidant properties have been identified, including Hesperidin (HES) and Auraptene (AUR). We aimed in this study to evaluate the in vitro protective effects of these compounds in SH-SY5Y neuroblastoma cell line against the induced neurotoxicity of 6-hydroxydopamine (6-OHDA). Materials and Methods The MTT test to assess cell viability was used. Flow cytometry was conducted for the cell cycle analysis using propidium iodide (PI) stain. The intracellular production of reactive oxygen species (ROS) was assessed using 2, 7'-dichlorofluorescein diacetate (DCFDA) probe and fluorimetry. Results Following 6-OHDA treatment, cell viability decreased, and G2/M arrest and ROS levels increased. Our intervention demonstrated that only HES has neuroprotective effects against 6-OHDA-induced toxicity. Conclusion HES protects SH-SY5Y cells against 6-OHDA-induced neural damage via inhibiting G2/M arrest, reducing the amount of ROS, and increasing cell viability. However, the different effects and more precise mechanisms are still unknown, and requires new research on animal and human models.
Collapse
Affiliation(s)
- Malihe Mehrparvar Tajoddini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Gheybi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Rashidi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Khan IM, Gul H, Khan S, Nassar N, Khalid A, Swelum AA, Wang Z. Green tea polyphenol epigallocatechin-3-gallate mediates an antioxidant response via Nrf2 pathway in heat-stressed poultry: A review. Poult Sci 2025; 104:105071. [PMID: 40157268 PMCID: PMC11995091 DOI: 10.1016/j.psj.2025.105071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Heat stress is a critical challenge in the poultry industry. It arises when birds are exposed to elevated ambient temperatures beyond their thermoneutral zone, often exacerbated by high humidity and inadequate ventilation. This condition disrupts the birds' ability to maintain thermal homeostasis, leading to physiological and behavioral changes such as increased panting, reduced feed intake, and elevated water consumption. These responses aim to dissipate heat but often result in energy imbalances, oxidative stress, and impaired immune function. Green tea polyphenols (GTPs) mitigate heat stress in poultry birds by modulating oxidative stress pathways, primarily by scavenging reactive oxygen species (ROS) and enhancing antioxidant defense mechanisms. These pathways play a pivotal role in neutralizing ROS generated during oxidative stress, inflammation, and exposure to electrophilic compounds. This action helps restore cellular balance and enhances overall antioxidant defense mechanisms by converting harmful free radicals into less reactive molecules, such as water and oxygen. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a significant character in the activation of the enzymatic antioxidants network. It translocates to the nucleus upon activation, binds to antioxidant response elements (AREs) in the promoter regions of target genes, and upregulates the expression of key antioxidant enzymes. Therefore, the regulation of Nrf2 is considered a critical molecular marker in mitigating the effects of heat stress, as its activation enhances the expression of antioxidant and detoxification enzymes, protecting against oxidative damage and inflammation induced by elevated temperatures. This exploratory review summarizes the antioxidant mechanisms and anti-oxidative stress effects of GTPs in mitigating heat stress in poultry. It highlights the cytoprotective molecular basis of epigallocatechin-3-gallate (EGCG), particularly its role in modulating Nrf2-mediated cellular pathways, which enhance antioxidant defense systems and protect against oxidative damage.
Collapse
Affiliation(s)
| | - Haji Gul
- District Livestock Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China; Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Anam Khalid
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Paul BM, Sundararajan VV, Raj FJ, Kannan G, Durairajan MB, Thangaraj P. In silico docking, ADMET profiling, and bio-accessibility experimentation on Breynia retusa phytocompounds and in vitro validation for anti-proliferative potencies against ovarian carcinoma. 3 Biotech 2025; 15:121. [PMID: 40225420 PMCID: PMC11981996 DOI: 10.1007/s13205-025-04276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
This study aimed to assess the medicinal properties of Breynia retusa, a plant rich in phytocompounds predominantly used as an ethnomedicinal agent in Western Ghats, which appeared to be promising for therapeutic use, especially in the treatment of ovarian cancer. Herein, its cytotoxic potential on ovarian cancer cell lines SKOV-3, neurotoxicity, antioxidant activity, and molecular docking was determined to aid in explaining the mechanisms of interactions with proteins related to ovarian cancer. B . retusa methanolic extract demonstrated exuberant antioxidant activity, with 81.91% scavenging ability of DPPH radicals and efficient reduction of phosphomolybdenum (22.98 mg ascorbic acid equivalents antioxidant capacity/g extract). The extract proved to be an important anti-inflammatory agent through membrane stabilization inhibition of 83%. The cytotoxicity study against the SKOV-3 cell line indicated an IC50 value of 34.01 µg/mL and a very negligible neurotoxicity in SH-SY5Y cell lines. The GC-MS and HPLC profiling indicated many anticancer compounds in the extract such as secalciferol, methyl gallate, ricinoleic acid, gallic acid, and naringenin. The docking study showed significant interactions of secalciferol molecules with the key ovarian cancer proteins, which include IGF1 (-6.758 kcal/mol) and c-ERBB2 (-4.281 kcal/mol). Fatty acid derivatives and methyl gallate showed efficient dock scores (< -5.0 kcal/mol) with antioxidant (catalase and superoxide dismutase) enzymes and inflammatory cytokines (IL-6 and COX-1), respectively, as evidences of antioxidant and anti-inflammatory potentials. The bio-accessibility of phenolics and their antioxidant activity ranged above 90%, indicating the promising bioavailability of phytochemicals expected in vivo. Hence the current study emphasizes the anticancer potential of B. retusa phytocompounds that appeared to interact very strongly with ovarian cancer targets and confirms the dose-dependent cytotoxic and antioxidant activities of B. retusa methanolic extract. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04276-8.
Collapse
Affiliation(s)
- Benedict Mathews Paul
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Vetri Velavan Sundararajan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Francis Jegan Raj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Gowtham Kannan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Madhu Bala Durairajan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| |
Collapse
|
7
|
Chen JY, Sutaria SR, Xie Z, Kulkarni M, Keith RJ, Bhatnagar A, Sears CG, Lorkiewicz P, Srivastava S. Simultaneous profiling of mercapturic acids, glucuronic acids, and sulfates in human urine. ENVIRONMENT INTERNATIONAL 2025; 199:109516. [PMID: 40344875 PMCID: PMC12090840 DOI: 10.1016/j.envint.2025.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/04/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
Humans are constantly exposed to both naturally-occurring and anthropogenic chemicals. Targeted mass spectrometry approaches are frequently used to measure a small panel of chemicals and their metabolites in environmental or biological matrices, but methods for comprehensive individual-level exposure assessment are limited. In this study, we applied an integrated library-guided analysis (ILGA) with ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) to profile phase II metabolites, specifically mercapturic acids (MAs), glucuronic acids (GAs), and sulfates (SAs) in human urine samples (n = 844). We annotated 424 metabolites (146 MAs, 171 GAs, 107 SAs) by querying chromatographic features with in-house structural libraries, filtering against fragmentation patterns (common neutral loss and ion fragment), and comparing mass spectra with in-silico fragmentations and external spectral libraries. These metabolites were derived from over 200 putative parent compounds of exogenous and endogenous sources, such as dietary compounds, benzene/monocyclic substituted aromatics, pharmaceuticals, polycyclic aromatic hydrocarbons, bile acids/bile salts, and 4-hydroxyalkenals associated with lipid peroxidation process. Further, we performed statistical analyses on 214 metabolites found in more than 75% of samples to examine the association between metabolites and demographic characteristics using integrated network analysis, principal component analysis (PCA), and multivariable linear regression models. The network analysis revealed four distinct communities of 37 positively correlated metabolites, and the PCA (using the 37 metabolites) presented 4 principal components that meaningfully explained at least 80% of the variance in the data. The multivariable linear regression models showed some positive and negative associations between metabolite profiles and certain demographic variables (e.g., age, sex, race, education, income, and tobacco use).
Collapse
Affiliation(s)
- Jin Y Chen
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Saurin R Sutaria
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States; Bellarmine University, Louisville, KY 40205, United States.
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Manjiri Kulkarni
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Rachel J Keith
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Clara G Sears
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Sanjay Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; American Heart Association-Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
8
|
Soto LJ, Del Tufiño C, Macias-Pérez ME, Castro-García S, Jiménez-Cruz E, Bobadilla-Lugo RA. Epicatechin prevents preeclampsia-associated hypertension and oxidative stress. J Obstet Gynaecol Res 2025; 51:e16290. [PMID: 40355116 DOI: 10.1111/jog.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/28/2025] [Indexed: 05/14/2025]
Abstract
Preeclampsia (PE) is a frequent and dangerous multisystemic pregnancy complication, associated with blood pressure control. Some antioxidants, including chocolate-derived epicatechin, can effectively attenuate hypertensive disorders. AIM This study aimed to assess whether epicatechin or dark chocolate (DC) could revert vascular increased reactivity and oxidative stress, both features of an experimental PE model. METHODS Rats from healthy pregnant or PE groups received vehicle, epicatechin (10 mg/kg/day) po, or DC (1 g) po, administered on days 1-14 (early) or days 7-21(late) of pregnancy. Blood pressure was measured by the tail-cuff plethysmography method. Aorta contractility was evaluated using a conventional isolated organ bath, and oxidative stress was determined by nicotine adenine dinucleotide phosphate reduced (NADPH) serum activity. RESULTS Epicatechin and DC significantly reduced hypertension, decreased abdominal aorta contractility, and decreased NADPH activity of the PE animals. The effects were more evident when administered during the last 2 weeks of pregnancy. CONCLUSIONS Results suggest that epicatechin has a significant antihypertensive effect in PE mediated by an antioxidant activity that improves vascular contractility.
Collapse
Affiliation(s)
- Luis J Soto
- Escuela Superior de Medicina IPN, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
9
|
Oliveira-Alves SC, Fernandes TA, Lourenço S, Granja-Soares J, Silva AB, Bronze MR, Catarino S, Canas S. Storage Time in Bottle: Influence on Physicochemical and Phytochemical Characteristics of Wine Spirits Aged Using Traditional and Alternative Technologies. Molecules 2025; 30:2018. [PMID: 40363823 PMCID: PMC12073594 DOI: 10.3390/molecules30092018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Few studies have investigated the influence on physicochemical and phytochemical compositions during storage in the bottle of wine spirits (WSs) aged using alternative ageing technology (AAT) compared to traditional ageing technology (TAT). The aim of this study was to evaluate the effect of the bottle storage over one and four years on the evolution of chromatic characteristics (CIELab method) and physicochemical characteristics (alcoholic strength, acidity, and total dry extract), total phenolic index (TPI), low molecular weight compound contents (HPLC-DAD technique), in vitro antioxidant activities (DPPH, FRAP, and ABTS assays), and phenolic characterisation (HPLC-DAD-ESI-MS/MS technique) of WSs aged with chestnut wood using TAT (barrels, B) and AAT (micro-oxygenation levels (MOX): O15, O30, and O60; and control (N)). The results showed that after four years of storage in the bottle, the O60 modality resulted in smaller changes in physicochemical characteristics, higher preservation of phenolic content, and greater evolution of chromatic characteristics, ensuring its overall quality compared to other modalities. Antioxidant activity decreased similarly in both technologies, such as phenolic acid content, in particular, gallic acid content. According to the findings of this study, alternative ageing technology might be the best alternative for wine spirit quality and ageing process sustainability.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal;
- CEF—Centro de Estudos Florestais, Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Tiago A. Fernandes
- MINDlab—Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- DCeT—Departamento de Ciências e Tecnologia, Universidade Aberta, Rua da Escola Politécnica, 141-147, 1269-001 Lisboa, Portugal
| | - Sílvia Lourenço
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal;
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.C.)
| | - Joana Granja-Soares
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.C.)
- Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Andreia B. Silva
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal (M.R.B.)
| | - Maria Rosário Bronze
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal (M.R.B.)
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB-NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sofia Catarino
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (S.C.)
- Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- CEFEMA—Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Sara Canas
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, Polo de Inovação de Dois Portos, 2565-191 Dois Portos, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research & CHANGE—Global Change and Sustainability Institute, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Evora, Portugal
| |
Collapse
|
10
|
Santana Júnior CC, Santos AM, Oliveira AMS, Nascimento Júnior JAC, Picot L, Frank LA, Menezes PDP, Alves IA, Serafini MR. Green synthesis of antimicrobial nanotechnology using flavonoids: a systematic review. J Microencapsul 2025:1-14. [PMID: 40183348 DOI: 10.1080/02652048.2025.2487033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Antimicrobial resistance (AMR) is a critical public health concern that arises when microorganisms evolve mechanisms to evade the effects of antibiotics, thereby rendering conventional treatments ineffective. This growing challenge underscores the urgent need for novel therapeutic approaches. Nanotechnology, particularly when combined with environmentally sustainable practices such as green synthesis, reduces the use of toxic substances and minimises waste, offering a promising solution. This review explores the green synthesis of antimicrobial nanoparticles using flavonoids-natural compounds with substantial biological activity-as reducing and stabilising agents. By systematically analysing articles from PubMed, Scopus, Web of Science, and Embase, 10 key studies were identified. The primary nanoparticles examined were metallic, including silver, gold, copper, and metallic, which demonstrated notable efficacy against pathogens such as S. aureus, E. coli, and P. aeruginosa. The results support that green-synthesised nanoparticles represent a viable strategy to combat AMR, offering an effective and eco-friendly alternative for developing antimicrobial agents.
Collapse
Affiliation(s)
| | - Anamaria Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Laurent Picot
- La Rochelle Université, UMR CNRS 7266 LIENSs, La Rochelle, France
| | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Núcleo de Terapias Nanotecnológicas (NTnano), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Paula Dos Passos Menezes
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- SejaPhD, Brazil
| | - Izabel Almeida Alves
- Postgraduate Program in Pharmaceutical Sciences, University of the State of Bahia, and Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
11
|
Wu R, Yu H, Xu J, Tan Z, Lan Y, Shi D. Effects of acute low intensity aerobics and blueberry juice on arterial stiffness in young adults. NPJ Sci Food 2025; 9:47. [PMID: 40169604 PMCID: PMC11962078 DOI: 10.1038/s41538-025-00408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Arterial stiffness, a cardiovascular disease (CVD) predictor starting from youth, is under-researched in young adults. Low-intensity aerobic exercise (LAE) is generally more accessible than higher-intensity exercise and may be more sustainable for young individuals. Blueberries, renowned for vascular health benefits, may reduce arterial stiffness. This study examines the effects of LAE and blueberry juice on arterial stiffness in 48 young adults. Participants were randomized into LAE, low-, mid-, or high-volume blueberry juice (LB, MB, HB), LAE + LB, LAE + MB, LAE + HB, and control groups. Arterial stiffness was measured at baseline and at 15-, 30-, 45-, and 60 min post-intervention. Blood samples were collected pre-intervention and 30-min post-intervention for metabolomic analysis. Repeated ANOVA revealed LAE + MB significantly reduced arterial stiffness. Metabolomic analysis revealed changes in linoleic acid, sphingolipid, phenylalanine, nicotinate and nicotinamide, glycerophospholipid, and lysine degradation metabolic pathways. These findings suggest a feasible exercise-diet strategy for CVD prevention in young adults and provide metabolic insights into the mechanisms.
Collapse
Affiliation(s)
- Ruisi Wu
- Changchun Normal University, Changchun, Jilin, 130032, China
| | - Huali Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun, 130024, China
| | - Jiayuan Xu
- Tonghua Changbaishan Wild Economic Plant Research Institute, Tonghua, Jilin, 134100, China
| | - Zhiqiang Tan
- Tonghua Changbaishan Wild Economic Plant Research Institute, Tonghua, Jilin, 134100, China
| | - Yongsheng Lan
- Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dongfang Shi
- Changchun Normal University, Changchun, Jilin, 130032, China.
| |
Collapse
|
12
|
Zhang Z, Cao M, Shang Z, Xu J, Chen X, Zhu Z, Wang W, Wei X, Zhou X, Bai Y, Zhang J. Research Progress on the Antibacterial Activity of Natural Flavonoids. Antibiotics (Basel) 2025; 14:334. [PMID: 40298463 PMCID: PMC12023951 DOI: 10.3390/antibiotics14040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
The use of antibiotics has greatly improved the treatment of bacterial infections; however, its abuse and misuse has led to a rapid rise in multidrug-resistant (MDR) bacteria. Therefore, the search for new antimicrobial strategies has become critical. Natural flavonoids, a class of widely existing phytochemicals, have gained significant research interest for their diverse biological activities and antibacterial effects on various drug-resistant bacteria. This review summarizes the latest research progress on flavonoids, with a particular focus on several flavonoids exhibiting certain antibacterial activity, and explores their antibacterial mechanisms, including disruption of cell membranes and cell walls, inhibition of proteins and nucleic acids, interference with signal transduction, suppression of efflux pump activity, and inhibition of biofilm formation and virulence factor production. Additionally, we have reviewed the synergistic combinations of flavonoids with antibiotics, such as the combination of quercetin with colistin or EGCG with tetracycline, which significantly enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Zhijin Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Mingze Cao
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
| | - Zixuan Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jing Xu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xu Chen
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhen Zhu
- College of Life Science and Food Engineering, Hebei University of Engineering, Congtai District, Handan 056038, China; (M.C.); (Z.Z.)
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiaojuan Wei
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xuzheng Zhou
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Z.Z.); (Z.S.); (J.X.); (X.C.); (W.W.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| |
Collapse
|
13
|
He Y, Tang X, Peng Z, Bao X, Wei J. Anthocyanin-rich dark-colored berries: A bibliometric analysis and review of natural ally in combating glucolipid metabolic disorders. Nutrition 2025; 131:112669. [PMID: 39778386 DOI: 10.1016/j.nut.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
The risk of glycolipid metabolic disorders (GLMDs)-which encompass type 2 diabetes mellitus, hyperlipidemia, hypertension, obesity, non-alcoholic fatty liver disease, and atherosclerosis--is rising gradually and posing challenges to health care. With the popularity of healthy lifestyles, anthocyanin-rich berries have emerged as a potential dietary intervention. This review uses bibliometric analysis to synthesize current research on the role of anthocyanins in relieving GLMDs. Our examination of the literature underscores the diverse mechanisms by which anthocyanins exert their beneficial effects, including their intricate bioactivity and functional signaling pathways. The insights gleaned from anthocyanin research offer a promising avenue for harnessing the power of nature to support metabolic health and pave the way for integration into clinical strategies for GLMD management.
Collapse
Affiliation(s)
- Yujing He
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Xian Tang
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Ziheng Peng
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Xiaochao Bao
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China
| | - Jie Wei
- School of Life Sciences of Liaoning University, Shenyang, People's Republic of China.
| |
Collapse
|
14
|
Schmidt D, Wohlers A, Kuhnert N. Promiscuity in Polyphenol-Protein Interactions-Monitoring Protein Conformational Change upon Polyphenol-Protein Binding by Nano-Differential Fluorimetry (Nano-DSF). Molecules 2025; 30:965. [PMID: 40005276 PMCID: PMC11858516 DOI: 10.3390/molecules30040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
In this article, we introduce nano-differential fluorimetry (nano-DSF) as an analytical technique that is suitable for investigating polyphenol-protein interactions in solution. Nano-DSF monitors conformational changes in proteins induced by external agents upon interaction at the molecular level. We demonstrate the suitability of this technique to qualitatively monitor an interaction between selected dietary polyphenols and selected proteins including BSA, ovalbumin, amylase, pepsin, trypsin, mucin and ACE-1. Protein conformational changes induced by dietary polyphenols can be investigated. As a major advantage, measurements are carried out at a high dilution, avoiding the precipitation of polyphenol-protein complexes, allowing the rapid and efficient acquisition of quantitative and qualitative binding data. From this concentration, quantitative binding data could be obtained from the fluorescence response curve in line with published values for the association constants. We demonstrate that qualitative interactions can also be established for real food extracts such as cocoa, tea or coffee containing mixtures of dietary polyphenols. Most importantly, we demonstrate that polyphenols of very different structural classes interact with the same protein target. Conversely, multiple protein targets show an affinity to a series of structurally diverse polyphenols, therefore suggesting a dual level of promiscuity with respect to the protein target and polyphenol structure.
Collapse
Affiliation(s)
| | | | - Nikolai Kuhnert
- School of Science, Constructor University, 28759 Bremen, Germany; (D.S.); (A.W.)
| |
Collapse
|
15
|
Xiong Y, Huang X, Li Y, Nie Y, Yu H, Shi Y, Xue J, Ji Z, Rong K, Zhang X. Integrating larval zebrafish model and network pharmacology for screening and identification of edible herbs with therapeutic potential for MAFLD: A promising drug Smilax glabra Roxb. Food Chem 2025; 464:141470. [PMID: 39406145 DOI: 10.1016/j.foodchem.2024.141470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is becoming a prevalent chronic liver disease. Many medicinal and edible herbs exhibit remarkable biological activities in ameliorating MAFLD but lack a comprehensive assessment of their therapeutic efficacy. This study determined total phenolic and flavonoid contents and in vitro antioxidant properties of 34 edible herbs. Smilax glabra Roxb. (SGR), Coreopsis tinctoria Nutt., and Smilax china L. were obtained with the best bioactivity and antioxidant capacity. The high-cholesterol diet-induced larval zebrafish model was established to compare the anti-MAFLD activity of the three herb extracts mentioned above. In vivo experiments revealed that SGR intervention significantly decreased lipid accumulation, alleviated oxidative stress, and modulated intestinal microbiota composition in zebrafish. Furthermore, three potential active components in SGR and their possible mechanisms were explored through network pharmacology and molecular docking. Our study suggested that SGR is a potential candidate for developing new drugs or dietary supplements for MAFLD therapy.
Collapse
Affiliation(s)
- Yinjuan Xiong
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xixuan Huang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuxin Li
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yukang Nie
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yaqi Shi
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiajie Xue
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhehui Ji
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Keming Rong
- Research Institute of Huanong-Tianchen, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Research Institute of Huanong-Tianchen, Wuhan 430070, China.
| |
Collapse
|
16
|
Venkatasai NN, Shetty DN, Vinay CM, Sekar M, Muthusamy A, Rai PS. A comprehensive review of factors affecting growth and secondary metabolites in hydroponically grown medicinal plants. PLANTA 2025; 261:48. [PMID: 39883244 PMCID: PMC11782463 DOI: 10.1007/s00425-025-04619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
MAIN CONCLUSION Optimizing environmental factors can significantly increase the growth and secondary metabolite synthesis of hydroponically grown medicinal plants. This approach can help increase the quality and quantity of pharmacologically important metabolites to enhance therapeutic needs. Medicinal plants are key therapeutic sources for treating various ailments. The increasing demand for medicinal plants has resulted in the overharvesting of these plants in their natural habitat, which can lead to their extinction in the future. Soil-based cultivation faces challenges, such as a lack of arable land, drastic climatic changes, and attacks by soil-borne pathogens. To overcome these challenges, hydroponic cultivation, known as soilless cultivation, is a sustainable method. The yield and quality of medicinal plants depend on environmental factors, such as nutrients, pH, electrical conductivity, temperature, light, nanoparticles, phytohormones, and microorganisms. This article explores the impact of these environmental factors on the growth and secondary metabolite content of hydroponically grown medicinal plants. Our review reveals how environmental factors qualitatively and quantitatively influence the growth and secondary metabolites of medicinal plants grown in hydroponic systems and how these factors can be integrated into the enhancement of therapeutic compounds.
Collapse
Affiliation(s)
| | - Devija N Shetty
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chigateri M Vinay
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Annamalai Muthusamy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
17
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Role of Epigallocatechin Gallate in Selected Malignant Neoplasms in Women. Nutrients 2025; 17:212. [PMID: 39861342 PMCID: PMC11767294 DOI: 10.3390/nu17020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Tea is a significant source of flavonoids in the diet. Due to different production processes, the amount of bioactive compounds in unfermented (green) and (semi-)fermented tea differs. Importantly, green tea has a similar composition of phenolic compounds to fresh, unprocessed tea leaves. It consists primarily of monomeric flavan-3-ols, known as catechins, of which epigallocatechin gallate (EGCG) is the most abundant. Thanks to its antioxidant, antiproliferative, and antiangiogenic properties, EGCG has attracted the scientific community's attention to its potential use in preventing and/or combating cancer. In this review article, we summarize the literature reports found in the Google Scholar and PubMed databases on the anticancer effect of EGCG on selected malignant neoplasms in women, i.e., breast, cervical, endometrial, and ovarian cancers, which have been published over the last two decades. It needs to be emphasized that EGCG concentrations reported as effective against cancer cells are typically higher than those found in plasma after polyphenol administration. Moreover, the low bioavailability and absorption of EGCG appear to be the main reasons for the differences in the effects between in vitro and in vivo studies. In this context, we also decided to look at possible solutions to these problems, consisting of combining the polyphenol with other bioactive components or using nanotechnology. Despite the promising results of the studies conducted so far, mainly in vitro and on animal models, there is no doubt that further, broad-based activities are necessary to unequivocally assess the potential use of EGCG in oncological treatment to combat cancer in women.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland;
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland;
| |
Collapse
|
18
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2025; 287:33-60. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
19
|
Uzelac Božac M, Poljuha D, Dudaš S, Bilić J, Šola I, Mikulič-Petkovšek M, Sladonja B. Phenolic Profile and Antioxidant Capacity of Invasive Solidago canadensis L.: Potential Applications in Phytopharmacy. PLANTS (BASEL, SWITZERLAND) 2024; 14:44. [PMID: 39795304 PMCID: PMC11723282 DOI: 10.3390/plants14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Canadian goldenrod (Solidago canadensis L.), an invasive plant in Europe, is known for its allelopathic activity and is rich in bioactive compounds like flavonoids and phenolic acids, with significant pharmacological potential. This study presents the LC-MS phenolic profiles of leaf and flower extracts from S. canadensis, an invasive alien plant in the Istria region (Croatia). Total phenolics (TP) (45.78-110.68 mg GAE/g DW) and non-flavonoids (TNF) (28.38-72.20 mg GAE/g DW) were found to be more abundant in ethanolic than in methanolic extracts. The antioxidant capacity (AC), as measured by ABTS, DPPH, and FRAP assays, was higher in flower extracts compared to leaf extracts. A non-targeted metabolomics approach was used, and 41 phenolic compounds in leaves and 36 in flowers were identified, with hydroxycinnamic acids and flavonols being the most abundant. 5-caffeoylquinic acid was quantitatively predominant in the leaf extracts, while quercetin-3-rutinoside dominated the flower extracts. Five leaf-specific compounds were identified (dicaffeoylquinic acid 2, 4-p-coumaroylquinic acid 1, p-hydroxybenzoic acid, quercetin-3-rhamnoside, and quercetin acetylhexoside 1), suggesting targeted extraction for different pharmacological applications. This study highlights the therapeutic potential of S. canadensis and underscores the need for further research on the bioavailability, efficacy, and safety of its compounds, potentially transforming this ecological threat into a valuable resource for drug development.
Collapse
Affiliation(s)
- Mirela Uzelac Božac
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.U.B.); (B.S.)
| | - Danijela Poljuha
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.U.B.); (B.S.)
| | - Slavica Dudaš
- Agricultural Department, Polytechnic of Rijeka, Karla Huguesa 6, 52440 Poreč, Croatia;
| | - Josipa Bilić
- METRIS Research Centre, Istrian University of Applied Sciences, Zagrebačka 30, 52100 Pula, Croatia;
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Maja Mikulič-Petkovšek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Barbara Sladonja
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.U.B.); (B.S.)
| |
Collapse
|
20
|
Longo F, Di Gaudio F, Attanzio A, Marretta L, Luparello C, Indelicato S, Bongiorno D, Barone G, Tesoriere L, Giardina IC, Abruscato G, Perlotti M, Hornsby LB, Arizza V, Vazzana M, Marrone F, Vizzini A, Martino C, Savoca D, Queiroz V, Fabbrizio A, Mauro M. Bioactive Molecules from the Exoskeleton of Procambarus clarkii: Reducing Capacity, Radical Scavenger, and Antitumor and Anti-Inflammatory Activities. Biomolecules 2024; 14:1635. [PMID: 39766342 PMCID: PMC11726989 DOI: 10.3390/biom14121635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
This study evaluates, for the first time, the reducing capacity, radical scavenger activity, and in vitro antitumor and anti-inflammatory effects of chitosan, astaxanthin, and bio-phenols extracted from the exoskeleton of Sicilian Procambarus clarkii, the most widespread species of invasive crayfish in the Mediterranean region. Among the extracted compounds, astaxanthin exhibited the highest antioxidant activity in all assays. Chitosan and polyphenols demonstrated reducing and radical scavenging activity; chitosan showed significant ferric ion reducing capacity in the FRAP test, while bio-phenolic compounds displayed notable radical scavenging activity in the DPPH and ABTS assays. Both astaxanthin and polyphenols showed dose-dependent cytotoxicity on two different cancer cell lines, with IC50 values of 1.45 µg/mL (phenolic extract) and 4.28 µg/mL (astaxanthin extract) for HepG2 cells and 2.45 µg/mL (phenolic extract) and 4.57 µg/mL (astaxanthin extract) for CaCo-2 cells. The bio-phenolic extract also showed potential anti-inflammatory effects in vitro by inhibiting nitric oxide production in inflamed RAW 264.7 macrophages, reducing the treated/control NO ratio to 77% and 74% at concentrations of 1.25 and 1.5 μg/mL, respectively. These results suggest that P. clarkii exoskeletons could be a valuable source of bioactive molecules for biomedical, pharmaceutical, and nutraceutical application while contributing to the sustainable management of this invasive species.
Collapse
Affiliation(s)
- Francesco Longo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Francesca Di Gaudio
- Department PROMISE, University of Palermo, Piazza delle Cliniche, 2, 90127 Palermo, Italy;
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Laura Marretta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Serena Indelicato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - David Bongiorno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Ilenia Concetta Giardina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Giulia Abruscato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Manuela Perlotti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Lucie Branwen Hornsby
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Federico Marrone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| | - Aiti Vizzini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Dario Savoca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Vinicius Queiroz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil;
| | - Antonio Fabbrizio
- Department of Theoretical and Applied Sciences (DiSTA), University e Campus, 22060 Novedrate, Italy;
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (F.L.); (A.A.); (L.M.); (C.L.); (S.I.); (D.B.); (G.B.); (L.T.); (I.C.G.); (M.P.); (L.B.H.); (V.A.); (M.V.); (F.M.); (A.V.); (C.M.); (D.S.)
| |
Collapse
|
21
|
Auger C, Muzammel H, Diouf I, Schini-Kerth VB. Potential of Anthocyanin-rich Products to Prevent and Improve Endothelial Function and Senescence: Focus on Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27590-27618. [PMID: 39629614 DOI: 10.1021/acs.jafc.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Endothelial dysfunction is a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, diabetes, and aging. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors, including nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH), and vasocontracting factors, such as arachidonic acid-derived mediators generated by cyclooxygenases, and an increased level of oxidative stress. Recently, endothelial senescence was reported to be an early trigger of endothelial dysfunction. Preclinical studies indicate that polyphenol-rich food, including anthocyanin-rich products, can activate pathways promoting an increased formation of vasoprotective factors and can prevent the induction of endothelial dysfunction in endothelial cells and isolated blood vessels. Similarly, intake of anthocyanin-rich products has been associated with the prevention and/or the improvement of an endothelial dysfunction in several experimental models of cardiovascular diseases, including physiological aging. Moreover, clinical data indicate that polyphenol-rich and anthocyanin-rich products can improve endothelial function and vascular health in humans with cardiovascular diseases. The present review will discuss both experimental and clinical evidence indicating that several polyphenol-rich foods and natural products, and especially anthocyanin-rich products, can promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- University of Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, 67000 Strasbourg, France
| | - Hira Muzammel
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Ibrahima Diouf
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Valérie B Schini-Kerth
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| |
Collapse
|
22
|
Huang Y, Cai H, Han Y, Yang P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. BIOLOGY 2024; 13:926. [PMID: 39596881 PMCID: PMC11591812 DOI: 10.3390/biology13110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Heat stress (HS) due to high temperatures has adverse effects on poultry, including decreased feed intake, lower feed efficiency, decreased body weight, and higher mortality. There are complex mechanisms behind heat stress in poultry involving the neuroendocrine system, organ damage, and other physiological systems. HS activates endocrine glands, such as the pituitary, adrenal, thyroid, and gonadal, by the action of the hypothalamus and sympathetic nerves, ultimately causing changes in hormone levels: HS leads to increased corticosterone levels, changes in triiodothyronine and thyroxine levels, decreased gonadotropin levels, reduced ovarian function, and the promotion of catecholamine release, which ultimately affects the normal productive performance of poultry. Meanwhile, heat stress also causes damage to the liver, lungs, intestines, and various immune organs, severely impairing organ function in poultry. Nutrient additives to feed are important measures of prevention and treatment, including natural plants and extracts, probiotics, amino acids, and other nutrients, which are effective in alleviating heat stress in poultry. Future studies need to explore the specific mechanisms through which heat stress impacts the neuroendocrine system in poultry and the interrelationships between the axes and organ damage so as to provide an effective theoretical basis for the development of preventive and treatment measures.
Collapse
Affiliation(s)
| | | | | | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (H.C.); (Y.H.)
| |
Collapse
|
23
|
de Castilho ARF, Rosalen PL, Oliveira MY, Burga-Sánchez J, Duarte S, Murata RM, Rontani RMP. Bioactive Compounds Enhance the Biocompatibility and the Physical Properties of a Glass Ionomer Cement. J Funct Biomater 2024; 15:332. [PMID: 39590536 PMCID: PMC11595670 DOI: 10.3390/jfb15110332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
In order to characterize a novel restorative material, knowledge about the toxicological effect on human cells and the physical behavior of a glass ionomer cement (GIC) containing flavonoids was established. The flavonoids apigenin, naringenin, quercetin, and liquiritigenin were manually incorporated into a GIC. In the control group, no incorporation was performed. Two cell culture assays evaluated the toxicity of GICs: SRB and MTT. For both assays, the keratinocyte cell line (HaCaT) was exposed to GIC (n = 3/group) for 24 h. The physical properties of the GICs were evaluated by compressive strength (n = 10), surface roughness (n = 10), and hardness (n = 10) tests. Cell viability by SRB ranged from 103% to 97%. The control revealed a significant decrease in the metabolism of cells (61%) by MTT, while the GIC+apigenin slightly increased the succinic dehydrogenase activity (105%; p > 0.05), also confirmed microscopically. The compressive strength and roughness values were similar among groups, but the hardness increased after the incorporation of naringenin and quercetin into GIC (p < 0.05). The incorporation of flavonoids positively altered the biological and physical properties of the GICs.
Collapse
Affiliation(s)
| | - Pedro Luiz Rosalen
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba 13414-903, SP, Brazil; (P.L.R.); (M.Y.O.); (J.B.-S.)
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, MG, Brazil
| | - Marina Yasbeck Oliveira
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba 13414-903, SP, Brazil; (P.L.R.); (M.Y.O.); (J.B.-S.)
| | - Jonny Burga-Sánchez
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba 13414-903, SP, Brazil; (P.L.R.); (M.Y.O.); (J.B.-S.)
| | - Simone Duarte
- School of Dental Medicine, University at Buffalo, Buffalo, NY 14215, USA;
| | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University (ECU), Greenville, NC 27834, USA;
| | - Regina Maria Puppin Rontani
- Departamento de Ciências da Saúde e Odontologia Infantil, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba 13414-903, SP, Brazil;
- Departamento de Odontologia Restauradora, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba 13414-903, SP, Brazil
| |
Collapse
|
24
|
Bondonno NP, Parmenter BH, Murray K, Bondonno CP, Blekkenhorst LC, Wood AC, Post WS, Allison MA, Criqui MH, Lewis JR, Hodgson JM. Associations Between Flavonoid Intake and Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:2347-2359. [PMID: 39263763 DOI: 10.1161/atvbaha.124.321106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Flavonoids may play a role in mitigating atherosclerotic cardiovascular diseases, with evidence suggesting effects may differ between vascular beds. Studies examining associations with subclinical markers of atherosclerosis between subpopulations with different underlying risks of atherosclerosis are lacking. METHODS Among 5599 participants from the MESA (Multi-Ethnic Study of Atherosclerosis), associations between dietary flavonoid intakes (estimated from a food frequency questionnaire) and subclinical measures of atherosclerosis (ankle-brachial index, carotid plaques and intima-media thickness, and coronary artery calcification) were examined using repeated measures models. Exposures and outcomes were measured at exam 1 (2000-2002) and exam 5 (2010-2011). Stratified analyses and interaction terms were used to explore effect modification by time, sex, race/ethnicity, and smoking status. RESULTS In the analytic population, at baseline, ≈46% were men with a median age of 62 (interquartile range, 53-70) years and total flavonoid intakes of 182 (interquartile range, 98-308) mg/d. After multivariable adjustments, participants with the highest (quartile 4) versus lowest (quartile 1) total flavonoid intakes had 26% lower odds of having an ankle-brachial index <1 (odds ratio, 0.74 [95% CI, 0.60-0.92]) and 18% lower odds of having a carotid plaque (odds ratio, 0.82 [95% CI, 0.69-0.99]), averaged over exams 1 and 5. Moderate (quartile 3) to high (quartile 4) intakes of flavonols, flavanol monomers, and anthocyanins were associated with 19% to 34% lower odds of having an ankle-brachial index <1 and 18% to 20% lower odds of having carotid plaque. Participants with the highest intakes of anthocyanins (quartile 4) at baseline had a marginally slower rate of carotid plaque progression than those with moderate intakes (quartiles 2 and 3). There were no significant associations with intima-media thickness or coronary artery calcification. Observed associations did not differ by sex, race/ethnicity, or smoking status. CONCLUSIONS In this multi-ethnic population, higher dietary flavonoid intakes were associated with lower odds of peripheral and carotid artery atherosclerosis. Increasing intakes of healthy, flavonoid-rich foods may protect against atherosclerosis in the peripheral and carotid arteries.
Collapse
Affiliation(s)
- Nicola P Bondonno
- Nutrition & Health Innovation Research Institute, Royal Perth Hospital Research Foundation, Edith Cowan University, Australia (N.P.B., B.H.P., C.P.B., L.C.B., J.R.L., J.M.H.)
- Diet Cancer and Health Group, Danish Cancer Institute, Copenhagen, Denmark (N.P.B.)
| | - Benjamin H Parmenter
- Nutrition & Health Innovation Research Institute, Royal Perth Hospital Research Foundation, Edith Cowan University, Australia (N.P.B., B.H.P., C.P.B., L.C.B., J.R.L., J.M.H.)
- School of Biomedical Sciences, University of Western Australia, Royal Perth Hospital, Australia (B.H.P.)
| | - Kevin Murray
- School of Population and Global Health (K.M.), University of Western Australia, Perth, Australia
| | - Catherine P Bondonno
- Nutrition & Health Innovation Research Institute, Royal Perth Hospital Research Foundation, Edith Cowan University, Australia (N.P.B., B.H.P., C.P.B., L.C.B., J.R.L., J.M.H.)
- Medical School (C.P.B., L.C.B., J.R.L., J.M.H.), University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, Royal Perth Hospital Research Foundation, Edith Cowan University, Australia (N.P.B., B.H.P., C.P.B., L.C.B., J.R.L., J.M.H.)
- Medical School (C.P.B., L.C.B., J.R.L., J.M.H.), University of Western Australia, Perth, Australia
| | - Alexis C Wood
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX (A.C.W.)
| | - Wendy S Post
- Division of Cardiology, Department of Medicine (W.S.P.), Johns Hopkins University, Baltimore, MD
- Department of Epidemiology, Bloomberg School of Public Health (W.S.P.), Johns Hopkins University, Baltimore, MD
| | - Matthew A Allison
- Department of Family Medicine, University of California San Diego (M.A.A., M.H.C.)
| | - Michael H Criqui
- Department of Family Medicine, University of California San Diego (M.A.A., M.H.C.)
- Division of Cardiology, Department of Medicine, University of California, La Jolla, San Diego (M.H.C.)
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, Royal Perth Hospital Research Foundation, Edith Cowan University, Australia (N.P.B., B.H.P., C.P.B., L.C.B., J.R.L., J.M.H.)
- Medical School (C.P.B., L.C.B., J.R.L., J.M.H.), University of Western Australia, Perth, Australia
- Centre for Kidney Research, School of Public Health, The University of Sydney, Australia (J.R.L.)
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, Royal Perth Hospital Research Foundation, Edith Cowan University, Australia (N.P.B., B.H.P., C.P.B., L.C.B., J.R.L., J.M.H.)
- Medical School (C.P.B., L.C.B., J.R.L., J.M.H.), University of Western Australia, Perth, Australia
| |
Collapse
|
25
|
Li H, Li Y, Yin X, Li Z, Qiao X, Mu H, Shen R, Wei T. Studies on the Enzymatic Synthesis and Antioxidant Properties of Phenolic Acid Glycerols. J Oleo Sci 2024; 73:1423-1433. [PMID: 39414461 DOI: 10.5650/jos.ess24065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
The potentially wide application of Phenolic acids (PAs) in industries was severely limited by their inadequate solubility and stability in polar/non-polar media. To overcome these limits, studies on the enzymatic esterification of PAs with glycerol were carried out to reach a yield of 95% of phenolic acid glycerols (PAGs) under the following reaction conditions: 1:150 molar ratio of PAs to glycerol; 25% of Lipozyme 435 relative to the weight of total substrates; 80°C, 500 rpm, 86.7 kPa and 10 h. Three resulting PAGs including caffeoyl glycerol (CG), feruloyl glycerol (FG), and p-hydroxycinnamoyl glycerol (p-HCG) were confirmed by MS, 1H NMR and 13C NMR. Among them, CG showed a comparative free radical scavenging ability to CA, indicating its potential use as a water-soluble antioxidant alternative to CA for food and cosmetic applications.
Collapse
Affiliation(s)
- Hong Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry
| | - Yanyan Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry
| | | | - Ziyi Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry
| | - Xintian Qiao
- College of Food and Bioengineering, Zhengzhou University of Light Industry
| | - Huiling Mu
- Department of Pharmacy, University of Copenhagen
| | - Ruiling Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry
| | - Tao Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry
| |
Collapse
|
26
|
Bonfiglio C, Tatoli R, Donghia R, Guido D, Giannelli G. Exploratory Role of Flavonoids on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in a South Italian Cohort. Antioxidants (Basel) 2024; 13:1286. [PMID: 39594428 PMCID: PMC11591465 DOI: 10.3390/antiox13111286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most recent definition for steatotic liver disease associated with metabolic syndrome. The results of recent metabolic and observational studies suggest a potential beneficial effect of food-derived flavonoids in some chronic diseases, including MASLD. The study aims to evaluate the protective role of diet flavonoids in subjects with and without MASLD belonging to a cohort living in the South of Italy. METHODS The study cohort comprised 1297 participants assessed in the NUTRIHEP cohort (2015-2018), divided into two groups, based on presence or absence of MASLD. RESULTS The results indicated statistically significant flavonoid consumption, showing a protective role against MASLD, at an optimal concentration of 165 mg/day, with an OR value of 0.63, (p = 0.001, 95% C.I.: 0.47; 0.83 t). The OR remained almost unchanged when the intake increased from 165 mg per day to 185 mg per day. CONCLUSIONS In conclusion, our study results show a protective role of flavonoids against MASLD. Consuming only 165 mg of flavonoids daily can activate this protective function, reducing the risk of MASLD.
Collapse
Affiliation(s)
- Caterina Bonfiglio
- Unit of Data Science, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.D.); (D.G.)
| | - Rossella Tatoli
- Unit of Data Science, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.D.); (D.G.)
| | - Rossella Donghia
- Unit of Data Science, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.D.); (D.G.)
| | - Davide Guido
- Unit of Data Science, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.D.); (D.G.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy;
| |
Collapse
|
27
|
Fokuhl V, Gerlach EL, Glomb MA. Singlet Oxygen Produced by Aspalathin and Ascorbic Acid Leads to Fragmentation of Dihydrochalcones and Adduct Formation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22316-22326. [PMID: 39326013 PMCID: PMC11468778 DOI: 10.1021/acs.jafc.4c07633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Singlet oxygen-mediated fragmentation of various dihydrochalcones and chalcones was reported. (Dihydro)cinnamic acids formed in the fragmentation showed a B-ring substitution pattern of the precursor (dihydro)chalcone. For the first time, the intrinsic generation of singlet oxygen by aspalathin and ascorbic acid under mild aqueous conditions (37 °C, pH 7.0) and exclusion of light was verified using HPLC-(+)-APCI-MS2 experiments. If a 4 molar excess of aspalathin or ascorbic acid was used, fragmentation of dihydrochalcones with monohydroxy and o-hydroxymethoxy B-ring substitution was induced up to 2 mol %, respectively. Incubations of the dihydrochalcone phloretin with ascorbic acid not only led to p-dihydrocoumaric acid but also to a novel ascorbyl adduct, which was isolated and identified as 2,4,6-trihydroxy-5-[3-(4-hydroxyphenyl)propanoyl]-2-[(1R, 2S)-1,2,3-trihydroxypropyl]-1-benzofuran-3(2H)-one. The impact of different structural elements on adduct formation was evaluated and verified to be a phloroglucinol structure linked to an acyl moiety. Formation of the ascorbyl adduct was shown to occur in apple puree when both ascorbic acid and phloretin were present at the same time.
Collapse
Affiliation(s)
- Vanessa
K. Fokuhl
- Institute of Chemistry, Food
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Emma L. Gerlach
- Institute of Chemistry, Food
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| | - Marcus A. Glomb
- Institute of Chemistry, Food
Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle/Saale, Germany
| |
Collapse
|
28
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
29
|
Youn J, Li F, Simmons G, Kim S, Tagkopoulos I. FoodAtlas: Automated knowledge extraction of food and chemicals from literature. Comput Biol Med 2024; 181:109072. [PMID: 39216404 DOI: 10.1016/j.compbiomed.2024.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Automated generation of knowledge graphs that accurately capture published information can help with knowledge organization and access, which have the potential to accelerate discovery and innovation. Here, we present an integrated pipeline to construct a large-scale knowledge graph using large language models in an active learning setting. We apply our pipeline to the association of raw food, ingredients, and chemicals, a domain that lacks such knowledge resources. By using an iterative active learning approach of 4120 manually curated premise-hypothesis pairs as training data for ten consecutive cycles, the entailment model extracted 230,848 food-chemical composition relationships from 155,260 scientific papers, with 106,082 (46.0 %) of them never been reported in any published database. To augment the knowledge incorporated in the knowledge graph, we further incorporated information from 5 external databases and ontology sources. We then applied a link prediction model to identify putative food-chemical relationships that were not part of the constructed knowledge graph. Validation of the 443 hypotheses generated by the link prediction model resulted in 355 new food-chemical relationships, while results show that the model score correlates well (R2 = 0.70) with the probability of a novel finding. This work demonstrates how automated learning from literature at scale can accelerate discovery and support practical applications through reproducible, evidence-based capture of latent interactions of diverse entities, such as food and chemicals.
Collapse
Affiliation(s)
- Jason Youn
- Department of Computer Science, University of California, Davis, Davis, CA, 95616, USA; Genome Center, University of California, Davis, Davis, CA, 95616, USA; USDA/NSF AI Institute for Next Generation Food Systems, Davis, CA, 95616, USA
| | - Fangzhou Li
- Department of Computer Science, University of California, Davis, Davis, CA, 95616, USA; Genome Center, University of California, Davis, Davis, CA, 95616, USA; USDA/NSF AI Institute for Next Generation Food Systems, Davis, CA, 95616, USA
| | - Gabriel Simmons
- Department of Computer Science, University of California, Davis, Davis, CA, 95616, USA; Genome Center, University of California, Davis, Davis, CA, 95616, USA; USDA/NSF AI Institute for Next Generation Food Systems, Davis, CA, 95616, USA
| | - Shanghyeon Kim
- Genome Center, University of California, Davis, Davis, CA, 95616, USA; USDA/NSF AI Institute for Next Generation Food Systems, Davis, CA, 95616, USA
| | - Ilias Tagkopoulos
- Department of Computer Science, University of California, Davis, Davis, CA, 95616, USA; Genome Center, University of California, Davis, Davis, CA, 95616, USA; USDA/NSF AI Institute for Next Generation Food Systems, Davis, CA, 95616, USA.
| |
Collapse
|
30
|
Arora B, Lather V, Pathalingappa MB, Walia R. Enhancement of aqueous solubility of hesperidin and naringenin utilizing hydrotropic solubilization technique: characterization and in vitro evaluation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1207-1218. [PMID: 38945159 DOI: 10.1080/10286020.2024.2358831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024]
Abstract
The therapeutic potential of two important flavonoids, i.e. hesperidin and naringenin, remains unutilized due to pharmacokinetics issues, especially poor aqueous solubility. Hydrotropic solid dispersions with different agents like sodium salicylate, niacinamide, benzoic acid, and urea etc. can change the solubility profile of poorly soluble drugs. The current study investigated the potential of different hydrotropic agents in improving the solubility of both natural bioactives. The hydrotropic solid dispersion in 1:3 w/w drug: sodium salicylate ratio showed maximum solubility and dissolution amongst all the tested hydrotropes. This novel and economical approach could be explored for other poorly soluble pharmaceuticals.
Collapse
Affiliation(s)
- Bhawna Arora
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | | | - Ramanpreet Walia
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| |
Collapse
|
31
|
Russo GL, Spagnuolo C, Russo M. Reassessing the role of phytochemicals in cancer chemoprevention. Biochem Pharmacol 2024; 228:116165. [PMID: 38527559 DOI: 10.1016/j.bcp.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
In this comprehensive review we tried to reassess the role of phytochemicals in cancer chemoprevention. The exploration of the "synergistic effect" concept, advocating combined chemopreventive agents, faces challenges like low bioavailability. The review incorporates personal, occasionally controversial, viewpoints on natural compounds' cancer preventive capabilities, delving into mechanisms. Prioritizing significant contributions within the vast research domain, we aim stimulating discussion to provide a comprehensive insight into the evolving role of phytochemicals in cancer prevention. While early years downplayed the role of phytochemicals, the late nineties witnessed a shift, with leaders exploring their potential alongside synthetic compounds. Challenges faced by chemoprevention, such as limited pharmaceutical interest and cost-effectiveness issues, persist despite successful drugs. Recent studies, including the EPIC study, provide nuanced insights, indicating a modest risk reduction for increased fruit and vegetable intake. Phytochemicals, once attributed to antioxidant effects, face scrutiny due to low bioavailability and conflicting evidence. The Nrf2-EpRE signaling pathway and microbiota-mediated metabolism emerge as potential mechanisms, highlighting the complexity of understanding phytochemical mechanisms in cancer chemoprevention.
Collapse
Affiliation(s)
- Gian Luigi Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy.
| | - Carmela Spagnuolo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Maria Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| |
Collapse
|
32
|
Acikgul FC, Duran N, Kutlu T, Ay E, Tek E, Bayraktar S. The therapeutic potential and molecular mechanism of Alpha-pinene, Gamma-terpinene, and P-cymene against melanoma cells. Heliyon 2024; 10:e36223. [PMID: 39281661 PMCID: PMC11402455 DOI: 10.1016/j.heliyon.2024.e36223] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
The purpose of this study is to investigate the potential anticarcinogenic effects of three phytochemicals, namely Alpha-pinene (AP), Gamma-terpinene (GT), and P-cymene (PC), on melanoma cells (A2058 cell line). Additionally, the study aims to explore the synergistic activities of these phytochemicals with Dacarbazine, a chemotherapy drug. To understand the molecular mechanism involved in apoptosis induction in the A-2058 cell line, it was used AO/EB staining for apoptosis detection and cell cycle analysis, monitored through flow cytometry. It also determined the mRNA expression levels of different apoptosis-regulatory genes, including p53, Bax, NF-kB, Bcl-2, Bcl-xl, and caspase-3. The antitumor activities of these phytochemicals and their combinations were investigated in a subcutaneous mouse tumor model. The tumor diameter was 21.4 ± 1.1 mm in the Dacarbazine treatment group and 42.4 ± 3.1 mm in the control group. The antitumoral activities of AP and PC in the tumor model were similar to those of Dacarbazine. On the other hand, GT exhibited remarkable antitumoral activity, with a 1.75-fold reduction in tumor diameter compared to the Dacarbazine group. When different combinations of phytochemicals and Dacarbazine were used, the GT plus Dacarbazine treatment group was found to have a 3.5-fold reduction in tumor diameter compared to the Dacarbazine group. The tumor diameters in the Dacarbazine, AP plus GT, GT plus Dacarbazine, and AP plus Dacarbazine treatment groups were 21.4 ± 1.1, 7.6 ± 2.2, 8.6 ± 0.5, and 6.2 ± 1.9 mm, respectively.
Collapse
Affiliation(s)
- Funda Cimen Acikgul
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
- Department of Medical Microbiology, Medical Faculty, Agri İbrahim Cecen University, Agri 04100, Turkiye
| | - Nizami Duran
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
| | - Tuncer Kutlu
- Department of Pathology, Veterinary Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
| | - Emrah Ay
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
| | - Erhan Tek
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
| | - Suphi Bayraktar
- Department of Medical Microbiology, Medical Faculty, Mustafa Kemal University, Antakya-Hatay, 31060, Turkey
| |
Collapse
|
33
|
Carreira RB, Dos Santos CC, de Oliveira JVR, da Silva VDA, David JM, Butt AM, Costa SL. Neuroprotective Effect of Flavonoid Agathisflavone in the Ex Vivo Cerebellar Slice Neonatal Ischemia. Molecules 2024; 29:4159. [PMID: 39275007 PMCID: PMC11396859 DOI: 10.3390/molecules29174159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Agathisflavone is a flavonoid that exhibits anti-inflammatory and anti-oxidative properties. Here, we investigated the neuroprotective effects of agathisflavone on central nervous system (CNS) neurons and glia in the cerebellar slice ex vivo model of neonatal ischemia. Cerebellar slices from neonatal mice, in which glial fibrillary acidic protein (GFAP) and SOX10 drive expression of enhanced green fluorescent protein (EGFP), were used to identify astrocytes and oligodendrocytes, respectively. Agathisflavone (10 μM) was administered preventively for 60 min before inducing ischemia by oxygen and glucose deprivation (OGD) for 60 min and compared to controls maintained in normal oxygen and glucose (OGN). The density of SOX-10+ oligodendrocyte lineage cells and NG2 immunopositive oligodendrocyte progenitor cells (OPCs) were not altered in OGD, but it resulted in significant oligodendroglial cell atrophy marked by the retraction of their processes, and this was prevented by agathisflavone. OGD caused marked axonal demyelination, determined by myelin basic protein (MBP) and neurofilament (NF70) immunofluorescence, and this was blocked by agathisflavone preventative treatment. OGD also resulted in astrocyte reactivity, exhibited by increased GFAP-EGFP fluorescence and decreased expression of glutamate synthetase (GS), and this was prevented by agathisflavone pretreatment. In addition, agathisflavone protected Purkinje neurons from ischemic damage, assessed by calbindin (CB) immunofluorescence. The results demonstrate that agathisflavone protects neuronal and myelin integrity in ischemia, which is associated with the modulation of glial responses in the face of ischemic damage.
Collapse
Affiliation(s)
- Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Cleonice Creusa Dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
| | - Jorge Maurício David
- Department of General and Inorganic Chemistry, Institute of Chemistry, University Federal da Bahia, Salvador 40170-110, BA, Brazil
| | - Arthur Morgan Butt
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon S/N, Salvador 40231-300, BA, Brazil
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
34
|
Madkour M, Aboelenin MM, Habashy WS, Matter IA, Shourrap M, Hemida MA, Elolimy AA, Aboelazab O. Effects of oregano and/or rosemary extracts on growth performance, digestive enzyme activities, cecal bacteria, tight junction proteins, and antioxidants-related genes in heat-stressed broiler chickens. Poult Sci 2024; 103:103996. [PMID: 39024691 PMCID: PMC11315179 DOI: 10.1016/j.psj.2024.103996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
The study examined the impact of adding oregano extract and/or rosemary to broiler diets to counteract the growth inhibition caused by heat stress (HS). It also investigated the effects on the activity of digestive enzymes, microbiological composition, and the expression of antioxidant and tight junction-related proteins. Three hundred- and fifty-day-old male broilers, were randomly assigned to 7 treatment groups, with each group comprising 5 replicates, and each replicate containing 10 chicks in a cage. The diets were: 1) a basal diet, 2) a diet supplemented with 50 mg/kg of rosemary, 3) a diet supplemented with 100 mg/kg of rosemary, 4) a diet supplemented with 50 mg/kg of oregano, 5) a diet supplemented with 100 mg/kg of oregano, 6) a combination diet containing 50 mg/kg each of rosemary and oregano, and 7) a combination diet containing 100 mg/kg each of rosemary and oregano. Dietary oregano extract enhanced the growth and feed utilization of heat-stressed birds, especially at a concentration of 50 mg/kg. Moreover, oregano extract improved jejunal protease and amylase activities. The extracts of rosemary and oregano significantly reduced IgG and IgM levels. Dietary 50 mg oregano extract significantly upregulated intestinal integrity-related genes including jejunal CLDNI, ZO-1, ZO-2, and MUC2. Dietary 50 mg oregano extract significantly downregulated hepatic NADPH oxidase 4 (NOX4) and nitric oxide synthase 2 (NOS2) expressions. Our results suggest that incorporating oregano leaf extract into the diet at a concentration of 50 mg/kg improves the growth performance of broilers exposed to heat stress. This improvement could be attributed to enhanced gut health and the modulation of genes associated with oxidative stress and tight junction proteins.
Collapse
Affiliation(s)
- Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | | | - Walid S Habashy
- Department of Animal and Poultry Production, Damanhour University, Damanhour, Al-Behira, Egypt
| | - Ibrahim A Matter
- Agricultural Microbiology Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed Shourrap
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo 11241, Egypt
| | - Mona A Hemida
- Poultry Production Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo 11241, Egypt
| | - Ahmed A Elolimy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, Abu Dhabi, 15551, United Arab Emirates; Animal Production Department, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Osama Aboelazab
- Animal Production Department, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
35
|
Tang X, Wang L, Zhang Y, Sun C, Huang Z. Enhancing the antioxidant potential of ESIPT-based naringenin flavonoids based on excited state hydrogen bond dynamics: A theoretical study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112996. [PMID: 39094239 DOI: 10.1016/j.jphotobiol.2024.112996] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Exploring antioxidant potential of flavonoid derivatives after ESIPT process provides a theoretical basis for discovering compounds with higher antioxidant capacity. In this work, employing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods, the antioxidant potential of two citrus-derived naringenin flavonoids after ESIPT process is explored. Based on studies of ESIPT process including IMHB intensity variations, potential energy curves, and transition state, these molecules exist only in enol and keto⁎ forms due to ultra-fast ESIPT. The HOMOs are utilized to explore electron-donating capacity, demonstrating that the molecules in keto⁎ form is stronger than that in enol form. Furthermore, the atomic dipole moment corrected Hirshfeld population (ADCH) and Fukui functions indicate that the sites attacked by the electrophilic free radical of the two molecules in the keto⁎ form are O3 and O5' respectively, and both are more active than in the enol form. Overall, a comprehensive consideration of the ESIPT process and antioxidant potential of flavonoid derivatives will facilitate the exploration and design of substances with higher antioxidant capacity.
Collapse
Affiliation(s)
- Xingzhu Tang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, China.
| | - Yajie Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, China.
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
36
|
Wisniewski J, Hacke ACM, Mazer Etto R, Boligon AA, Takeda I, Marques JA, Pereira RP. Evaluation of the Antioxidant Activity and Phenolic Composition of Different Monofloral and Polyfloral Brazilian Honey Extracts. Chem Biodivers 2024; 21:e202400971. [PMID: 38965059 DOI: 10.1002/cbdv.202400971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
This study aimed to evaluate the chemical composition and antioxidant activity of phenolic extracts from monofloral and polyfloral honey samples obtained from different Brazilian regions. The chemical composition (total content of phenolic compounds and flavonoids) of extracts were measured by using colorimetric assays and analyzed by high performance liquid chromatographic (HPLC-DAD). The antioxidant activity was evaluated by chemical and biochemical assays (reducing power assay, 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS⋅+) scavenger assays. It was also investigated the ability of extracts in attenuate lipid peroxidation induced by Fe2+ in phospholipids. The obtained results clearly demonstrated that the botanical origin and geographical region of honey collection influenced the chemical composition and antioxidant activity of extracts. Furthermore, the samples were constituted by phenolic acids and flavonoids, which p-coumaric acid was predominant among the compounds identified. All samples were able to scavenge free radicals and inhibit lipid peroxidation, and good correlations were obtained between the flavonoid content and honey color. In conclusion, the obtained extracts were constituted by antioxidant compounds, which reinforce the usage of honey in human diets, and demonstrated that the region of honey collection strong influenced in the chemical composition and, consequently, its biological effect.
Collapse
Affiliation(s)
- Julie Wisniewski
- Departamento de Química, Universidade Estadual de Ponta Grossa, UEPG, Ponta Grossa, PR, Brazil
| | | | - Rafael Mazer Etto
- Departamento de Química, Universidade Estadual de Ponta Grossa, UEPG, Ponta Grossa, PR, Brazil
| | - Aline Augusti Boligon
- Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, UFSM, Santa Maria, RS, Brazil
| | - Inês Takeda
- Departamento de Meio Ambiente, Universidade Estadual de Maringá, UEM, Maringá, PR, Brazil
| | | | - Romaiana Picada Pereira
- Departamento de Química, Universidade Estadual de Ponta Grossa, UEPG, Ponta Grossa, PR, Brazil
| |
Collapse
|
37
|
Acosta-Vega L, Moreno DA, Cuéllar Álvarez LN. Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food. Foods 2024; 13:2310. [PMID: 39123500 PMCID: PMC11311875 DOI: 10.3390/foods13152310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 08/12/2024] Open
Abstract
Arazá is a fruit native to the Amazonian region with characteristic properties such as aroma, texture, color, and marked acidity. Additionally, the fruit is rich in bioactive compounds in its three fractions (seed, pulp, and peel), such as ascorbic acid, phenolic compounds (and their derivatives), and carotenoids, which have been extensively investigated in the literature for their beneficial properties for human health. However, it is a little-known fruit, and the role it can play in health-promoting activities related to the treatment and prevention of non-communicable diseases (NCDs) when incorporated into the diet is also unknown. Therefore, it is necessary to know the profile of bioactive compounds and the biological properties Arazá possesses, which is the aim of this review.
Collapse
Affiliation(s)
- Luis Acosta-Vega
- Grupo de Investigación en Productos Naturales Amazónicos-GIPRONAZ, Universidad de la Amazonia, Florencia 180001, Colombia;
| | - Diego A. Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), CEBAS, CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain;
| | - Liceth N. Cuéllar Álvarez
- Grupo de Investigación en Productos Naturales Amazónicos-GIPRONAZ, Universidad de la Amazonia, Florencia 180001, Colombia;
| |
Collapse
|
38
|
Shen YX, Lee PS, Wang CC, Teng MC, Huang JH, Fan HF. Exploring the Cellular Impact of Size-Segregated Cigarette Aerosols: Insights into Indoor Particulate Matter Toxicity and Potential Therapeutic Interventions. Chem Res Toxicol 2024; 37:1171-1186. [PMID: 38870402 PMCID: PMC11256904 DOI: 10.1021/acs.chemrestox.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Exposure to anthropogenic aerosols has been associated with a variety of adverse health effects, increased morbidity, and premature death. Although cigarette smoke poses one of the most significant public health threats, the cellular toxicity of particulate matter contained in cigarette smoke has not been systematically interrogated in a size-segregated manner. In this study, we employed a refined particle size classification to collect cigarette aerosols, enabling a comprehensive assessment and comparison of the impacts exerted by cigarette aerosol extract (CAE) on SH-SY5Y, HEK293T, and A549 cells. Exposure to CAE reduced cell viability in a dose-dependent manner, with organic components having a greater impact and SH-SY5Y cells displaying lower tolerance compared to HEK293T and A549 cells. Moreover, CAE was found to cause increased oxidative stress, mitochondrial dysfunction, and increased levels of apoptosis, pyroptosis, and autophagy, leading to increased cell death. Furthermore, we found that rutin, a phytocompound with antioxidant potential, could reduce intracellular reactive oxygen species and protect against CAE-triggered cell death. These findings underscore the therapeutic potential of antioxidant drugs in mitigating the adverse effects of cigarette aerosol exposure for better public health outcomes.
Collapse
Affiliation(s)
- Yu-Xin Shen
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Pe-Shuen Lee
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Chia C. Wang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Ming-Chu Teng
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Jhih-Hong Huang
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department
of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Aerosol
Science Research Center, National Sun Yat-sen
University, Kaohsiung 804, Taiwan
| |
Collapse
|
39
|
Wang Y, Zhang M, Bao L, Long J, Cui X, Zheng Z, Zhao X, Huang Y, Jiao F, Su C, Qian Y. Metabolomic and transcriptomic analysis of flavonoids biosynthesis mechanisms in mulberry fruit (Hongguo 2) under exogenous hormone treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108773. [PMID: 38820912 DOI: 10.1016/j.plaphy.2024.108773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
The mulberry fruit is prized for its superior nutrition value and abundant color due to its high flavone content. To enhance comprehension of flavone biogenesis induced by external hormones, we sprayed exogenous ethylene (ETH), indoleacetic acid (IAA) and spermine (SPM) on mulberry fruit (Hongguo 2) during its color-changed period. The levels of anthocyanin, titratable acid, soluble sugar and endogenous hormones were determined after hormone treatment, integrated transcriptome and metabolome analysis were performed for mechanism exploration. Our results indicated that exogenous ETH, SPM, and IAA play important roles in mulberry ripening, including acid reduction, sugar increase and flavonoid synthesis.
Collapse
Affiliation(s)
- Yifang Wang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaopeng Cui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zelin Zheng
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoxiao Zhao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yanzhen Huang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
40
|
Peng H, Shahidi F. Metabolic, toxicological, chemical, and commercial perspectives on esterification of dietary polyphenols: a review. Crit Rev Food Sci Nutr 2024; 64:7465-7504. [PMID: 36908213 DOI: 10.1080/10408398.2023.2185589] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Molecular modifications have been practiced for more than a century and nowadays they are widely applied in food, pharmaceutical, or other industries to manipulate the physicochemical, bioactivity, metabolic/catabolic, and pharmacokinetic properties. Among various structural modifications, the esterification/O-acylation has been well-established in altering lipophilicity and bioactivity of parent bioactive compounds, especially natural polyphenolics, while maintaining their high biocompatibility. Meanwhile, various classic chemical and enzymatic protocols and other recently emerged cell factory technology are being employed as viable esterification strategies. In this contribution, the main motivations of phenolic esterification, including the tendency to replace synthetic alkyl phenolics with safer alternatives in the food industry to improve the bioavailability of phenolics as dietary supplements/pharmaceuticals, are discussed. In addition, the toxicity, metabolism, and commercial application of synthetic and natural phenolics are briefly introduced. Under these contexts, the mechanisms and reaction features of several most prevalent chemical and enzymatic esterification pathways are demonstrated. In addition, insights into the studies of esterification modification of natural phenolic compounds and specific pros/cons of various reaction systems with regard to their practical application are provided.
Collapse
Affiliation(s)
- Han Peng
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
41
|
Mognetti B, Franco F, Castrignano C, Bovolin P, Berta GN. Mechanisms of Phytoremediation by Resveratrol against Cadmium Toxicity. Antioxidants (Basel) 2024; 13:782. [PMID: 39061851 PMCID: PMC11273497 DOI: 10.3390/antiox13070782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Cadmium (Cd) toxicity poses a significant threat to human health and the environment due to its widespread occurrence and persistence. In recent years, considerable attention has been directed towards exploring natural compounds with potential protective effects against Cd-induced toxicity. Among these compounds, resveratrol (RV) has emerged as a promising candidate, demonstrating a range of beneficial effects attributed to its antioxidant and anti-inflammatory properties. This literature review systematically evaluates the protective role of RV against Cd toxicity, considering the various mechanisms of action involved. A comprehensive analysis of both in vitro and in vivo studies is conducted to provide a comprehensive understanding of RV efficacy in mitigating Cd-induced damage. Additionally, this review highlights the importance of phytoremediation strategies in addressing Cd contamination, emphasizing the potential of RV in enhancing the efficiency of such remediation techniques. Through the integration of diverse research findings, this review underscores the therapeutic potential of RV in combating Cd toxicity and underscores the need for further investigation to elucidate its precise mechanisms of action and optimize its application in environmental and clinical settings.
Collapse
Affiliation(s)
- Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (F.F.); (C.C.); (G.N.B.)
| |
Collapse
|
42
|
Wang Y, Zhang Y, Qiao X, Sun S. Synthesis of lipophilic antioxidant tyrosol laurate using imidazolium ionic liquid [Bmim]HSO 4 as a catalyst. Food Chem 2024; 442:138418. [PMID: 38237293 DOI: 10.1016/j.foodchem.2024.138418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Tyrosol is a natural phenolic compound with potent antioxidant properties in the field of food manufacturing. However, the low lipophilicity of tyrosol limited its application. Therefore, the construction of tyrosol laurate (Tyr-L) could effectively overcome the limitations of tyrosol. In this work, four ionic liquids (ILs) were applied for TYr-L preparation. Among them, the 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) showed the best catalytic performance. The maximum TYr-L yield was achieved (94.24 ± 1.23 %) under the optimal conditions (reaction temperature 119 °C, substrate ratio 1:6.7, IL dosage 9.2 %, and reaction time 12 h). The kinetic and thermodynamic parameters were also evaluated and it was found that Ea, ΔH, ΔS, and ΔG were 80.81 kJ·mol-1, 77.63 kJ·mol-1, -82.08 J·(mol·K)-1, and 109.89 kJ·mol-1, respectively. The acidic [Bmim]HSO4 demonstrated excellent reusability and stability, even after 6 cycles. Furthermore, TYr-L showed superior ABTS radical scavenging ability, which could be further applied in various industrial processes.
Collapse
Affiliation(s)
- Yimei Wang
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Yaoyao Zhang
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Xing Qiao
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| | - Shangde Sun
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
43
|
Vieira RV, Peiter GC, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. In silico prospective analysis of the medicinal plants activity on the CagA oncoprotein from Helicobacter pylori. World J Clin Oncol 2024; 15:653-663. [PMID: 38835850 PMCID: PMC11145963 DOI: 10.5306/wjco.v15.i5.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Colonization with Helicobacter pylori (H. pylori) has a strong correlation with gastric cancer, and the virulence factor CagA is implicated in carcinogenesis. Studies have been conducted using medicinal plants with the aim of eliminating the pathogen; however, the possibility of blocking H. pylori-induced cell differentiation to prevent the onset and/or progression of tumors has not been addressed. This type of study is expensive and time-consuming, requiring in vitro and/or in vivo tests, which can be solved using bioinformatics. Therefore, prospective computational analyses were conducted to assess the feasibility of interaction between phenolic compounds from medicinal plants and the CagA oncoprotein. AIM To perform a computational prospecting of the interactions between phenolic compounds from medicinal plants and the CagA oncoprotein of H. pylori. METHODS In this in silico study, the structures of the phenolic compounds (ligands) kaempferol, myricetin, quercetin, ponciretin (flavonoids), and chlorogenic acid (phenolic acid) were selected from the PubChem database. These phenolic compounds were chosen based on previous studies that suggested medicinal plants as non-drug treatments to eliminate H. pylori infection. The three-dimensional structure model of the CagA oncoprotein of H. pylori (receptor) was obtained through molecular modeling using computational tools from the I-Tasser platform, employing the threading methodology. The primary sequence of CagA was sourced from GenBank (BAK52797.1). A screening was conducted to identify binding sites in the structure of the CagA oncoprotein that could potentially interact with the ligands, utilizing the GRaSP online platform. Both the ligands and receptor were prepared for molecular docking using AutoDock Tools 4 (ADT) software, and the simulations were carried out using a combination of ADT and AutoDock Vina v.1.2.0 software. Two sets of simulations were performed: One involving the central region of CagA with phenolic compounds, and another involving the carboxy-terminus region of CagA with phenolic compounds. The receptor-ligand complexes were then analyzed using PyMol and BIOVIA Discovery Studio software. RESULTS The structure model obtained for the CagA oncoprotein exhibited high quality (C-score = 0.09) and was validated using parameters from the MolProbity platform. The GRaSP online platform identified 24 residues (phenylalanine and leucine) as potential binding sites on the CagA oncoprotein. Molecular docking simulations were conducted with the three-dimensional model of the CagA oncoprotein. No complexes were observed in the simulations between the carboxy-terminus region of CagA and the phenolic compounds; however, all phenolic compounds interacted with the central region of the oncoprotein. Phenolic compounds and CagA exhibited significant affinity energy (-7.9 to -9.1 kcal/mol): CagA/kaempferol formed 28 chemical bonds, CagA/myricetin formed 18 chemical bonds, CagA/quercetin formed 16 chemical bonds, CagA/ponciretin formed 13 chemical bonds, and CagA/chlorogenic acid formed 17 chemical bonds. Although none of the phenolic compounds directly bound to the amino acid residues of the K-Xn-R-X-R membrane binding motif, all of them bound to residues, mostly positively or negatively charged, located near this region. CONCLUSION In silico, the tested phenolic compounds formed stable complexes with CagA. Therefore, they could be tested in vitro and/or in vivo to validate the findings, and to assess interference in CagA/cellular target interactions and in the oncogenic differentiation of gastric cells.
Collapse
Affiliation(s)
| | | | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde-Campus Anísio Teixeira, Vitória da Conquista 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Universidade Federal do Paraná, Campus Toledo, Toledo 85919-899, Brazil
- Universidade Federal do Paraná-Setor Palotina, Programa de Pós-graduação em Biotecnologia, Palotina 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Universidade Federal do Paraná, Campus Toledo, Toledo 85919-899, Brazil
- Universidade Federal do Paraná-Setor Palotina, Programa de Pós-graduação em Biotecnologia, Palotina 85950-000, Brazil
| |
Collapse
|
44
|
Tomar R, Das SS, Balaga VK, Tambe S, Sahoo J, Rath SK, Ruokolainen J, Kesari KK. Therapeutic Implications of Dietary Polyphenols-Loaded Nanoemulsions in Cancer Therapy. ACS APPLIED BIO MATERIALS 2024; 7:2036-2053. [PMID: 38525971 PMCID: PMC11530091 DOI: 10.1021/acsabm.3c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Cancer is one of the major causes of death worldwide, even the second foremost cause related to non-communicable diseases. Cancer cells typically possess several cellular and biological processes including, persistence, propagation, differentiation, cellular death, and expression of cellular-type specific functions. The molecular picture of carcinogenesis and progression is unwinding, and it appears to be a tangled combination of processes occurring within and between cancer cells and their surrounding tissue matrix. Polyphenols are plant secondary metabolites abundant in fruits, vegetables, cereals, and other natural plant sources. Natural polyphenols have implicated potential anticancer activity by various mechanisms involved in their antitumor action, including modulation of signaling pathways majorly related to cellular proliferation, differentiation, relocation, angiogenesis, metastatic processes, and cell death. The applications of polyphenols have been limited due to the hydrophobic nature and lower oral bioavailability that could be possibly overcome through encapsulating them into nanocarrier-mediated delivery systems, leading to improved anticancer activity. Nanoemulsions (NEs) possess diverse feasible properties, including greater surface area, modifiable surficial charge, higher half-life, site-specific targeting, and formulation imaging capability necessary to create a practical therapeutic impact, and have drawn increased attention in cancer therapy research. This review has summarized and discussed the basic concepts, classification, delivery approaches, and anticancer mechanism of various polyphenols and polyphenols-encapsulated nanoemulsions with improved cancer therapy.
Collapse
Affiliation(s)
- Ritu Tomar
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand 248009, India
| | - Sabya Sachi Das
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand 248009, India
| | - Venkata Krishna
Rao Balaga
- School
of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Srusti Tambe
- Department
of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Jagannath Sahoo
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’S
NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Santosh Kumar Rath
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand 248009, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 00076, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 00076, Finland
| |
Collapse
|
45
|
Squires E, Walshe IH, Cheung W, Bowerbank SL, Dean JR, Wood J, McHugh MP, Plattner S, Howatson G. Plasma-Induced Changes in the Metabolome Following Vistula Tart Cherry Consumption. Nutrients 2024; 16:1023. [PMID: 38613057 PMCID: PMC11013268 DOI: 10.3390/nu16071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Evidence suggests that tart cherry (TC) supplementation has beneficial effects on health indices and recovery following strenuous exercise. However, little is known about the mechanisms and how TC might modulate the human metabolome. The aim of this study was to evaluate the influence of an acute high- and low-dose of Vistula TC supplementation on the metabolomic profile in humans. In a randomised, double-blind, placebo controlled, cross-over design, 12 healthy participants (nine male and three female; mean ± SD age, stature, and mass were 29 ± 7 years old, 1.75 ± 0.1 m, and 77.3 ± 10.5 kg, respectively) visited the laboratory on three separate occasions (high dose; HI, low dose; LO, or placebo), separated by at least seven days. After an overnight fast, a baseline venous blood sample was taken, followed by consumption of a standardised breakfast and dose conditions (HI, LO, or placebo). Subsequent blood draws were taken 1, 2, 3, 5, and 8 h post consumption. Following sample preparation, an untargeted metabolomics approach was adopted, and the extracts analysed by LCMS/MS. When all time points were collated, a principal component analysis showed a significant difference between the conditions (p < 0.05), such that the placebo trial had homogeneity, and HI showed greater heterogeneity. In a sub-group analysis, cyanidine-3-O-glucoside (C3G), cyanidine-3-O-rutinoside (C3R), and vanillic acid (VA) were detected in plasma and showed significant differences (p < 0.05) following acute consumption of Vistula TC, compared to the placebo group. These results provide evidence that phenolics are bioavailable in plasma and induce shifts in the metabolome following acute Vistula TC consumption. These data could be used to inform future intervention studies where changes in physiological outcomes could be influenced by metabolomic shifts following acute supplementation.
Collapse
Affiliation(s)
- Emma Squires
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - Ian H. Walshe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - William Cheung
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - Samantha L. Bowerbank
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - John R. Dean
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - Jacob Wood
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
| | - Malachy P. McHugh
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
- Nicholas Institute of Sports Medicine and Athletic Trauma, Northwell Health, New York, NY 10065, USA
| | | | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (E.S.); (I.H.W.); (W.C.); (S.L.B.); (J.R.D.); (J.W.); (M.P.M.)
- Water Research Group, North West University, Potchefstroom 2531, South Africa
| |
Collapse
|
46
|
Cao Y, Mei Y, Zhang R, Zhong Z, Yang X, Xu C, Chen K, Li X. Transcriptional regulation of flavonol biosynthesis in plants. HORTICULTURE RESEARCH 2024; 11:uhae043. [PMID: 38623072 PMCID: PMC11017525 DOI: 10.1093/hr/uhae043] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Flavonols are a class of flavonoids that play a crucial role in regulating plant growth and promoting stress resistance. They are also important dietary components in horticultural crops due to their benefits for human health. In past decades, research on the transcriptional regulation of flavonol biosynthesis in plants has increased rapidly. This review summarizes recent progress in flavonol-specific transcriptional regulation in plants, encompassing characterization of different categories of transcription factors (TFs) and microRNAs as well as elucidation of different transcriptional mechanisms, including direct and cascade transcriptional regulation. Direct transcriptional regulation involves TFs, such as MYB, AP2/ERF, and WRKY, which can directly target the key flavonol synthase gene or other early genes in flavonoid biosynthesis. In addition, different regulation modules in cascade transcriptional regulation involve microRNAs targeting TFs, regulation between activators, interaction between activators and repressors, and degradation of activators or repressors induced by UV-B light or plant hormones. Such sophisticated regulation of the flavonol biosynthetic pathway in response to UV-B radiation or hormones may allow plants to fine-tune flavonol homeostasis, thereby balancing plant growth and stress responses in a timely manner. Based on orchestrated regulation, molecular design strategies will be applied to breed horticultural crops with excellent health-promoting effects and high resistance.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yuyang Mei
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Ruining Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Zelong Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
47
|
Ilie CI, Spoiala A, Geana EI, Chircov C, Ficai A, Ditu LM, Oprea E. Bee Bread: A Promising Source of Bioactive Compounds with Antioxidant Properties-First Report on Some Antimicrobial Features. Antioxidants (Basel) 2024; 13:353. [PMID: 38539885 PMCID: PMC10968473 DOI: 10.3390/antiox13030353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
Bee bread has received attention due to its high nutritional value, especially its phenolic composition, which enhances life quality. The present study aimed to evaluate the chemical and antimicrobial properties of bee bread (BB) samples from Romania. Initially, the bee bread alcoholic extracts (BBEs) were obtained from BB collected and prepared by Apis mellifera carpatica bees. The chemical composition of the BBE was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and the total phenols and flavonoid contents were determined. Also, a UHPLC-DAD-ESI/MS analysis of phenolic compounds (PCs) and antioxidant activity were evaluated. Furthermore, the antimicrobial activity of BBEs was evaluated by qualitative and quantitative assessments. The BBs studied in this paper are provided from 31 families of plant species, with the total phenols content and total flavonoid content varying between 7.10 and 18.30 mg gallic acid equivalents/g BB and between 0.45 and 1.86 mg quercetin equivalents/g BB, respectively. Chromatographic analysis revealed these samples had a significant content of phenolic compounds, with flavonoids in much higher quantities than phenolic acids. All the BBEs presented antimicrobial activity against all clinical and standard pathogenic strains tested. Salmonella typhi, Candida glabrata, Candida albicans, and Candida kefyr strains were the most sensitive, while BBEs' antifungal activity on C. krusei and C. kefyr was not investigated in any prior research. In addition, this study reports the BBEs' inhibitory activity on microbial (bacterial and fungi) adhesion capacity to the inert substratum for the first time.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Elisabeta-Irina Geana
- National R&D Institute for Cryogenics and Isotopic Technologies (ICIT), 240050 Râmnicu Vâlcea, Romania;
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
- Academy of Romanian Scientists, 010719 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, Research Institute, University of Bucharest, 060101 Bucharest, Romania; (L.-M.D.)
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, Research Institute, University of Bucharest, 060101 Bucharest, Romania; (L.-M.D.)
| |
Collapse
|
48
|
Varga I, Kristić M, Lisjak M, Tkalec Kojić M, Iljkić D, Jović J, Kristek S, Markulj Kulundžić A, Antunović M. Antioxidative Response and Phenolic Content of Young Industrial Hemp Leaves at Different Light and Mycorrhiza. PLANTS (BASEL, SWITZERLAND) 2024; 13:840. [PMID: 38592854 PMCID: PMC10976054 DOI: 10.3390/plants13060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Due to the increasing presence of industrial hemp (Cannabis sativa L.) and its multiple possibilities of use, the influence of different light and several biopreparations based on beneficial fungi and bacteria on hemp's morphological and physiological properties were examined. Different biopreparations and their combinations were inoculated on hemp seed and/or substrate and grown under blue and white light. A completely randomized block design was conducted in four replications within 30 days. For biopreparation treatment, vesicular arbuscular mycorrhiza (VAM) in combination with Azotobacter chroococum and Trichoderma spp. were inoculated only on seed or both on seed and in the substrate. Generally, the highest morphological parameters (stem, root and plant length) were recorded on plants in white light and on treatment with applied Trichoderma spp., both on seed and substrate. Blue light negatively affected biopreparation treatments, resulting in lower values of all morphological parameters compared to control. Leaves pigments were higher under blue light, as compared to the white light. At the same time, 1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), flavonoids, total flavanol content and phenolic acids were not influenced by light type. Biopreparation treatments did not significantly influence the leaves' pigments content (Chl a, Chl b and Car), nor the phenolic and flavanol content.
Collapse
Affiliation(s)
- Ivana Varga
- Department of Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.T.K.); (D.I.) (M.A.)
| | - Marija Kristić
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.K.); (M.L.); (J.J.); (S.K.)
| | - Miroslav Lisjak
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.K.); (M.L.); (J.J.); (S.K.)
| | - Monika Tkalec Kojić
- Department of Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.T.K.); (D.I.) (M.A.)
| | - Dario Iljkić
- Department of Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.T.K.); (D.I.) (M.A.)
| | - Jurica Jović
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.K.); (M.L.); (J.J.); (S.K.)
| | - Suzana Kristek
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.K.); (M.L.); (J.J.); (S.K.)
| | - Antonela Markulj Kulundžić
- Department of Industrial Plants Breeding and Genetics, Agricultural Institute Osijek, 31000 Osijek, Croatia;
| | - Manda Antunović
- Department of Plant Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia; (M.T.K.); (D.I.) (M.A.)
| |
Collapse
|
49
|
Wickramasinghe ASD, Attanayake AP, Kalansuriya P. Gelatine nanoparticles encapsulating three edible plant extracts as potential nanonutraceutical agents against type 2 diabetes mellitus. J Microencapsul 2024; 41:94-111. [PMID: 38410890 DOI: 10.1080/02652048.2024.2313230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
AIM To optimise, and characterise gelatine nanoparticles (GNPs) encapsulating plant extracts and evaluate the glucose-lowering potential. METHODS GNPs encapsulating plant extracts were prepared by desolvation method followed by adsorption. The GNPs were characterised by loading efficiency, loading capacity, particle size, zeta potential, SEM and FTIR. The glucose-lowering activity of GNPs was determined using oral glucose tolerance test in high-fat diet fed streptozotocin-induced Wistar rats. RESULTS Loading efficiency and capacity, particle mean diameter, and zeta potential of optimised GNPs 72.45 ± 13.03% w/w, 53.05 ± 26.16% w/w, 517 ± 48 nm and (-)23.43 ± 9.96 mV respectively. GNPs encapsulating aqueous extracts of C. grandis, S. auriculata, and ethanol 70% v/v extracts of M. koenigii showed glucose-lowering activity by 17.62%, 11.96% and 13.73% (p < 0.05) compared to the non-encapsulated extracts. FTIR analysis confirmed the encapsulation of phytoconstituents into GNPs. SEM imaging showed spherical GNPs (174 ± 46 nm). CONCLUSION GNPs encapsulating plant extracts show promising potential to be developed as nanonutraceuticals against diabetes.
Collapse
Affiliation(s)
| | | | - Pabasara Kalansuriya
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
50
|
Lessard-Lord J, Roussel C, Guay V, Desjardins Y. Assessing the Gut Microbiota's Ability to Metabolize Oligomeric and Polymeric Flavan-3-ols from Aronia and Cranberry. Mol Nutr Food Res 2024; 68:e2300641. [PMID: 38350729 DOI: 10.1002/mnfr.202300641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Indexed: 02/15/2024]
Abstract
Clinical trials investigating the health effects of flavan-3-ols yield heterogeneous results due to interindividual variability in the gut microbiota metabolism. In fact, different groups in the population have similar metabolic profiles following (-)-epicatechin and (+)-catechin gut microbial metabolism and can be regrouped into so-called metabotypes. In this study, the capacity of 34 donors to metabolize polymeric B-type flavan-3-ols from aronia and oligomeric A-type flavan-3-ols from cranberry is investigated by in vitro fecal batch fermentations. Less than 1% of the flavan-3-ols from both sources are converted into microbial metabolites, such as phenyl-γ-valerolactones (PVLs). To further confirm this result, gut microbial metabolites from flavan-3-ols are quantified in urine samples collected from participants, before and after a 4-day supplementation of cranberry extract providing 82.3 mg of flavan-3-ols per day. No significant difference is observed in the urinary excretion of flavan-3-ols microbial metabolites. Hence, it demonstrates by both in vitro and in vivo approaches that flavan-3-ols from aronia and cranberry are poorly degraded by the gut microbiota. The beneficial health impacts of these molecules likely stem from their capacity to affect gut microbiota and their interactions with the gut epithelium, rather than from their breakdown into smaller metabolites.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, G1V 0A6, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, G1V 0A6, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, G1V 0A6, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, G1V 0A6, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, G1V 0A6, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Québec, QC, G1V 0A6, Canada
| | - Valérie Guay
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, G1V 0A6, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, G1V 0A6, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, G1V 0A6, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, G1V 0A6, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, G1V 0A6, Canada
| |
Collapse
|