1
|
Song B, Zhang E, Shi Y, Zhu H, Wang W, Gallagher SJ, Cao Z. A Paintable, Scalable, and Durable Zwitterionic Hydrogel Coating for Enhanced Marine Antifouling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3464-3474. [PMID: 39893696 DOI: 10.1021/acs.langmuir.4c04595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Marine biofouling has been a severe challenge since the increase of maritime trade, significantly impacting the efficiency of ships by increasing drag, fuel consumption, hull corrosion, and even problems related to navigational safety and biological invasions. Commercial antifouling coatings have been developed for many years, but a satisfactory solution has yet to be found due to problems, such as high toxicity, environmental pollution, or high costs. Zwitterionic materials, with their superhydrophilic properties, demonstrate excellent resistance to nonspecific adhesion alongside good biocompatibility, making them promising candidates for marine antifouling applications. However, their superhydrophilic nature makes it difficult to anchor onto hydrophobic substrates, limiting their use. In this study, we presented a paintable, scalable, and durable antifouling coating system made by zwitterionic hydrogel (PSDA-Z), which was covalently attached to substrates through an acrylated epoxy resin primer coat and maintained antifouling performance even after 3 months of high-speed water shearing, high-pressure sandpaper abrasion, and sharp scratching. This PSDA-Z could also easily be applied on various substrates without specific treatments, including epoxy resin, poly(vinyl chloride) (PVC), polyurethane (PU), and wood. More importantly, this coating system achieved excellent antifouling performance comparable to self-polishing coatings (SPCs), the current industry standard in marine antifouling coating, in the Atlantic Ocean field tests for 3 months, suggesting its promise as an effective and ecofriendly alternative for marine antifouling applications.
Collapse
Affiliation(s)
- Boyi Song
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Wei Wang
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Sheu-Jane Gallagher
- Repela Tech, LLC, 2222 W Grand River Ave, Ste A, Okemos, Michigan 48864, United States
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, College of Engineering, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Wen HY, Le QV, Liu BL, Srinophakun P, Chiu CY, Wang CY, Ng IS, Chen KH, Chang YK. Alginate and chitosan-based polyamide 56 modified nanofiber membrane for highly effective capture of Escherichia coli: Antibacterial and cytotoxicity studies. Int J Biol Macromol 2024; 279:135464. [PMID: 39250997 DOI: 10.1016/j.ijbiomac.2024.135464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
In recent years, microbial fermentation has become a sustainable alternative to traditional petrochemical processes for producing biomass nylon 56 (i.e., PA56). This study is centered on creating a highly efficient antibacterial nanofiber membrane using bio-nylon 56 as the main material. The membrane was fabricated via a multi-step process involving sodium alginate, chitosan, and poly(hexamethylene biguanide) (PHMB). The PA56 nanofiber was chemically modified by sequential coupling with alginate (AG) and chitosan (CS), introducing a significant number of functional groups (-COOH and -NH2). This process resulted in the formation of PA56-AG and PA56-AG-CS nanofibers. Further modification with PHMB led to obtaining the PA56-AG-PHMB and PA56-AG-CS-PHMB antibacterial nanofiber membranes. The optimal preparation conditions for these membranes were determined, including the pH and concentration of AG, the molecular weight, pH, and concentration of CS, and the pH and concentration of PHMB. The PA56-based membranes demonstrated nearly 100 % antibacterial efficiency within a short time. However, the PA56-AG-PHMB membrane exhibited faster antibacterial rates and higher efficiency in repeated use compared to the PA56-AG-CS-PHMB membrane. The two-step coupling reaction in the preparation of PA56-AG-CS-PHMB may have reduced its surface accessibility to E. coli cells, resulting in slower bacterial attachment. Furthermore, the PA56-related membranes showed excellent biocompatibility, with a 100 % cell survival rate. Despite some limitations in reusability, biomass nylon PA56 stands out as an environmentally friendly material derived from renewable resources through microbial fermentation. It offers significant sustainability advantages over traditional petroleum-based nylons, as evidenced by the favorable cytotoxicity test results.
Collapse
Affiliation(s)
- Hsin-Yu Wen
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Quang-Vinh Le
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Bing-Lan Liu
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan
| | - Penjit Srinophakun
- Department of Chemical Engineering, Kasetsart University, 50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
| | - Chen-Yaw Chiu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Chi-Yun Wang
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan; Bone and Joint Research Centre, Chang Gung Memorial Hospital, Taoyuan City 333423, Taiwan
| | - I-Son Ng
- Departmental of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Kuei-Hsiang Chen
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| | - Yu-Kaung Chang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli Dist., Taoyuan City 320315, Taiwan.
| |
Collapse
|
3
|
Beg MS, Gibbons EN, Gavalas S, Holden MA, Krysmann M, Kelarakis A. Antimicrobial coatings based on amine-terminated graphene oxide and Nafion with remarkable thermal resistance. NANOSCALE ADVANCES 2024; 6:2594-2601. [PMID: 38752132 PMCID: PMC11093269 DOI: 10.1039/d3na01154b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/04/2024] [Indexed: 05/18/2024]
Abstract
We present a novel type of layer-by-layer (LbL) waterborne coating based on Nafion and amine-terminated graphene oxide (GO-NH2) that inhibits the growth of Escherichia coli and Staphylococcus aureus by more than 99% and this performance is not compromised upon extensive thermal annealing at 200 °C. Quartz crystal microbalance (QCM) sensorgrams allow the real time monitoring of the build-up of the LbL assemblies, a process that relies on the strong electrostatic interactions between Nafion (pH = 2.7, ζ = -54.8 mV) and GO-NH2 (pH = 2, ζ = 26.7 mV). Atomic force microscopy (AFM), contact angle and zeta potential measurements were used to characterise the multilayer assemblies. We demonstrate here that Nafion/GO-NH2 advanced coatings can offer drug-free and long-lasting solutions to microbial colonization and can withstand dry heat sterilization, without any decline in their performance.
Collapse
Affiliation(s)
- Mohammed Suleman Beg
- UCLan Research Centre for Smart Materials, School of Pharmacy and Biomedical Sciences, University of Central Lancashire Preston PR1 2HE UK
| | - Ella Nicole Gibbons
- UCLan Research Centre for Smart Materials, School of Pharmacy and Biomedical Sciences, University of Central Lancashire Preston PR1 2HE UK
| | - Spyridon Gavalas
- UCLan Research Centre for Smart Materials, School of Pharmacy and Biomedical Sciences, University of Central Lancashire Preston PR1 2HE UK
| | - Mark A Holden
- UCLan Research Centre for Smart Materials, School of Pharmacy and Biomedical Sciences, University of Central Lancashire Preston PR1 2HE UK
| | - Marta Krysmann
- School of Medicine and Dentistry, University of Central Lancashire Preston PR1 2HE UK
| | - Antonios Kelarakis
- UCLan Research Centre for Smart Materials, School of Pharmacy and Biomedical Sciences, University of Central Lancashire Preston PR1 2HE UK
| |
Collapse
|
4
|
Zadeh Mehrizi T, Mosaffa N, Vodjgani M, Ebrahimi Shahmabadi H. Advances in nanotechnology for improving the targeted delivery and activity of amphotericin B (2011-2023): a systematic review. Nanotoxicology 2024; 18:231-258. [PMID: 38646931 DOI: 10.1080/17435390.2024.2340467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Amphotericin B (AmB) is a broad-spectrum therapeutic and effective drug, but it has serious side effects of toxicity and solubility. Therefore, reducing its toxicity should be considered in therapeutic applications. Nanotechnology has paved the way to improve drug delivery systems and reduce toxicity. The present study, for the first time, comprehensively reviews the studies from 2011 to 2023 on reducing the in vitro toxicity of AmB. The findings showed that loading AmB with micellar structures, nanostructured lipid carriers, liposomes, emulsions, poly lactide-co-glycolide acid, chitosan, dendrimers, and other polymeric nanoparticles increases the biocompatibility and efficacy of the drug and significantly reduces toxicity. In addition, modified carbon nanoparticles (including graphene, carbon nanotubes, and carbon dots) with positively charged amine groups, PEI, and other components showed favorable drug delivery properties. Uncoated and coated magnetic nanoparticles and silver NPs-AmB composites had less cytotoxicity and more antifungal activity than free AmB. Citrate-reduced GNPs and lipoic acid-functionalized GNPs were also effective nanocarriers to reduce AmB cytotoxicity and improve anti-leishmania efficacy. In addition, zinc oxide-NPs and PEGylated zinc oxide-NPs showed favorable antifungal activity and negligible toxicity. According to a review study, carbon-based nanoparticles, metal nanoparticles, and especially polymer nanoparticles caused some reduction in the toxicity and improved solubility of AmB in water. Overall, considering the discussed nanocarriers, further research on the application of nanotechnology as a cost-effective candidate to improve the efficiency and reduce the cytotoxicity of AmB is recommended.
Collapse
Affiliation(s)
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Vodjgani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
5
|
Jitsuhiro A, Maeda T, Ogawa A, Yamada S, Konoeda Y, Maruyama H, Endo F, Kitagawa M, Tanimoto K, Hotta A, Tsuji T. Contact-Killing Antibacterial Polystyrene Polymerized Using a Quaternized Cationic Initiator. ACS OMEGA 2024; 9:9803-9812. [PMID: 38434858 PMCID: PMC10905582 DOI: 10.1021/acsomega.3c10233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Contact-killing antibacterial materials are attracting attention owing to their ability for sustained antibacterial activity. However, contact-killing antibacterial polystyrene (PS) has not been extensively studied because its chemically stable structure impedes chemical modification. In this study, we developed an antibacterial PS sheet with a contact-killing surface using PS synthesized from 2,2'-azobis-[2-(1,3-dimethyl-4,5-dihydro-1H-imidazol-3-ium-2-yl)]propane triflate (ADIP) as a radical initiator with cationic moieties. The PS sheet synthesized with ADIP (ADIP-PS) exhibited antibacterial activity in contrast to PS synthesized with other azo radical initiators. Surface ζ-potential measurements revealed that only ADIP-PS had a cationic surface, which contributed to its contact-killing antibacterial activity. The ADIP-PS sheets also exhibited antibacterial activity after washing. In contrast, PS sheets containing silver, a typical leachable antibacterial agent, lost all antibacterial activity after the same washing treatment. The antibacterial ADIP-PS sheet demonstrated strong broad-spectrum activity against both Gram-positive and Gram-negative bacteria, including drug-resistant bacteria. Cytotoxicity tests using L929 cells showed that the ADIP-PS sheets were noncytotoxic. This contact-killing antibacterial PS synthesized with ADIP thus demonstrated good prospects as an easily producible antimicrobial material.
Collapse
Affiliation(s)
- Akiko Jitsuhiro
- Kirin
Central Research Institute, Kirin Holdings Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Tomoki Maeda
- Frontier
Research Center for Applied Atomic Science, Ibaraki University, 162-1 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1106, Japan
- Department
of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akiko Ogawa
- Kirin
Central Research Institute, Kirin Holdings Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Sayuri Yamada
- Kirin
Central Research Institute, Kirin Holdings Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Yuki Konoeda
- Kirin
Central Research Institute, Kirin Holdings Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Hiroki Maruyama
- Kirin
Central Research Institute, Kirin Holdings Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Fuyuaki Endo
- Department
of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Midori Kitagawa
- Department
of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Keishi Tanimoto
- Department
of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Atsushi Hotta
- Department
of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Toshikazu Tsuji
- Kirin
Central Research Institute, Kirin Holdings Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555 Japan
| |
Collapse
|
6
|
Luk AMY, Lo CKY, Chiou JA, Ngai CH, Law K, Lau TL, Chen WX, Hui M, Kan CW. Antiviral and Antibacterial 3D-Printed Products Functionalised with Poly(hexamethylene biguanide). Polymers (Basel) 2024; 16:312. [PMID: 38337200 DOI: 10.3390/polym16030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Infection prevention and public health are a vital concern worldwide, especially during pandemics such as COVID-19 and seasonal influenza. Frequent manual disinfection and use of chemical spray coatings at public facilities are the typical measures taken to protect people from coronaviruses and other pathogens. However, limitations of human resources and coating durability, as well as the safety of disinfectants used are the major concerns in society during a pandemic. Non-leachable antimicrobial agent poly(hexamethylene biguanide) (PHMB) was mixed into photocurable liquid resins to produce novel and tailor-made covers for public facilities via digital light processing, which is a popular 3D printing technique for satisfactory printing resolution. Potent efficacies of the 3D-printed plastics were achieved in standard antibacterial assessments against S. aureus, E. coli and K. pneumoniae. A total of 99.9% of Human coronavirus 229E was killed after being in contact with the 3D-printed samples (containing the promising PHMB formulation) for two hours. In an eight-week field test in Hong Kong Wetland Park, antibacterial performances of the specially designed 3D-printed covers analysed by environmental swabbing were also found to be satisfactory. With these remarkable outcomes, antimicrobial products prepared by digital light processing 3D printing can be regarded as a reliable solution to long-term infection prevention and control.
Collapse
Affiliation(s)
- Anson M Y Luk
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Chris K Y Lo
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jiachi Amber Chiou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chi-Hang Ngai
- University Research Facility in 3D Printing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ki Law
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Tsz-Long Lau
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Wan-Xue Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Matthew Hui
- Immune Materials Limited, Room 05, Unit 107-109, 1/F, 9 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, N.T., Hong Kong SAR, China
| | - Chi-Wai Kan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Hou X, Wang H, Shi Y, Yue Z. Recent advances of antibacterial starch-based materials. Carbohydr Polym 2023; 302:120392. [PMID: 36604070 DOI: 10.1016/j.carbpol.2022.120392] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Starch has attracted a lot of attention because it is biodegradable, renewable, nontoxic and low cost. By adding antibacterial substances to starch, starch-based materials have antibacterial properties. The composite with other materials can improve the comprehensive performance of starch-based materials, thus broadening the application field of the material. In this paper, we focus on antibacterial starch-based materials and review their preparation and applications. It was found that antibacterial starch-based materials were most widely used in packaging, followed by medicine, and the research on smart starch-based materials was relatively less. This review may provide some reference value for subsequent studies of starch-based materials.
Collapse
Affiliation(s)
- Xiurong Hou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China.
| | - Yuting Shi
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Zhouyao Yue
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
8
|
Synthesis and Characterization of a Coumarin Antimicrobial Polymer Fluorescent Coating. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/6213187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Polymer materials are widely used in medical materials, food packaging, coatings, and other fields. However, the surface of the materials is easily contaminated by microorganisms, resulting in serious problems. To solve this issue, a new type of antibacterial polymer fluorescent coating was successfully synthesized by copolymerization of divinylbenzene with 7-methacryloxy-4-methyl coumarin, dodecafluoroheptyl methacrylate, and other monomers. The surface structure and thermal stability of the coating were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Fluorine was polymerized into the polymer, improving the thermal stability compared to polystyrene and polydivinylbenzene. The bactericidal and antibacterial adhesion properties of the coating materials were studied by a contact germicidal test and antibacterial adhesion test. The polymer had a strong inhibitory effect on Staphylococcus aureus. After immersion in room temperature water, the film maintained its strong inhibitory effect on S. aureus fluorescence intensity and had high fluorescence stability.
Collapse
|
9
|
Qiu D, Zhou P, Kang J, Chen Z, Xu Z, Yang H, Tao J, Ai F. ZnO nanoparticle modified chitosan/borosilicate bioglass composite scaffold for inhibiting bacterial infection and promoting bone regeneration. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac99c5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Abstract
The treatment of implant-associated bone infection remains a significant clinical challenge. However, bone scaffolds with antimicrobial activity and osteoinductive properties can prevent these infections and improve clinical outcomes. In this study, borosilicate bioglass and chitosan composite scaffolds were prepared, and then the surface was modified with nano-zinc oxide. In vitro and in vivo experiments showed that the chitosan/borosilicate bioglass scaffolds have good degradation and osteogenic properties, while the oxidized Zinc scaffolds have better antibacterial properties.
Collapse
|
10
|
Tyczkowska-Sieroń E, Kiryszewska-Jesionek A, Kapica R, Tyczkowski J. Anti-Mold Protection of Textile Surfaces with Cold Plasma Produced Biocidal Nanocoatings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6834. [PMID: 36234173 PMCID: PMC9570886 DOI: 10.3390/ma15196834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The permanent anti-mold protection of textile surfaces, particularly those utilized in the manufacture of outdoor sporting goods, is still an issue that requires cutting-edge solutions. This study attempts to obtain antifungal nanocoatings on four selected fabrics used in the production of high-mountain clothing and sleeping bags, and on PET foil as a model substrate, employing the cold plasma technique for this purpose. Three plasma treatment procedures were used to obtain such nanocoatings: plasma-activated graft copolymerization of a biocidal precursor, deposition of a thin-film matrix by plasma-activated graft copolymerization and anchoring biocidal molecules therein, and plasma polymerization of a biocidal precursor. The precursors used represented three important groups of antifungal agents: phenols, amines, and anchored compounds. SEM microscopy and FTIR-ATR spectrometry were used to characterize the produced nanocoatings. For testing antifungal properties, four species of common mold fungi were selected: A. niger, A. fumigatus, A. tenuissima, and P. chrysogenum. It was found that the relatively best nanocoating, both in terms of plasma process performance, durability, and anti-mold activity, is plasma polymerized 2-allylphenol. The obtained results confirm our belief that cold plasma technology is a great tool for modifying the surface of textiles to provide them with antifungal properties.
Collapse
Affiliation(s)
- Ewa Tyczkowska-Sieroń
- Department of Experimental Physiology, Medical University of Lodz, Mazowiecka Str. 6/8, 92-215 Lodz, Poland
| | - Agnieszka Kiryszewska-Jesionek
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Pomorska Str. 251, 92-213 Lodz, Poland
| | - Ryszard Kapica
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska Str. 213, 93-005 Lodz, Poland
| | - Jacek Tyczkowski
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska Str. 213, 93-005 Lodz, Poland
| |
Collapse
|
11
|
Ghosh S, Mukherjee R, Mahajan VS, Boucau J, Pillai S, Haldar J. Permanent, Antimicrobial Coating to Rapidly Kill and Prevent Transmission of Bacteria, Fungi, Influenza, and SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42483-42493. [PMID: 36073910 DOI: 10.1021/acsami.2c11915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbial adhesion and contamination on shared surfaces can lead to life-threatening infections with serious impacts on public health, economy, and clinical practices. The traditional use of chemical disinfectants for sanitization of surfaces, however, comes with its share of health risks, such as hazardous effects on the eyes, skin, and respiratory tract, carcinogenicity, as well as environmental toxicity. To address this, we have developed a nonleaching quaternary small molecule (QSM)-based sprayable coating which can be fabricated on a wide range of surfaces such as nylon, polyethylene, surgical mask, paper, acrylate, and rubber in a one-step, photocuring technique. This contact-active coating killed pathogenic bacteria and fungi including drug-resistant strains of Staphylococcus aureus and Candida albicans within 15-30 min of contact. QSM coatings withstood multiple washes, highlighting their durability. Interestingly, the coated surfaces exhibited rapid killing of pathogens, leading to the prevention of their transmission upon contact. The coating showed membrane disruption of bacterial cells in fluorescence and electron microscopic investigations. Along with bacteria and fungi, QSM-coated surfaces also showed the complete killing of high loads of influenza (H1N1) and SARS-CoV-2 viruses within 30 min of exposure. To our knowledge, this is the first report of a coating for multipurpose materials applied in high-touch public places, hospital equipment, and clinical consumables, rapidly killing drug-resistant bacteria, fungi, influenza virus, and SARS-CoV-2.
Collapse
Affiliation(s)
- Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| |
Collapse
|
12
|
Sharma S, Mandhani A, Basu B. Contact-Active Layer-by-Layer Grafted TPU/PDMS Blends as an Antiencrustation and Antibacterial Platform for Next-Generation Urological Biomaterials: Validation in Artificial and Human Urine. ACS Biomater Sci Eng 2022; 8:4497-4523. [PMID: 36094424 DOI: 10.1021/acsbiomaterials.2c00455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Urinary tract infections and urinary encrustation impede the long-term clinical performance of urological implants and medical devices. Together, biofilm formation and encrustation constitute serious complications, driving the development of next-generation urological biomaterials. The currently available bioengineered solutions have limited success during long-term usage in the urinary environment. In addressing this unmet clinical challenge, contact-active, antiencrustation surface grafting were conceived onto a dynamically cross-linked polydimethylsiloxane (PDMS) modified thermoplastic polyurethane (TPU) blend using the layer-by-layer (LbL) assembly route. To the best of the authors' knowledge, the present study is the first to investigate the LbL grafting in developing an antiencrustation platform. These multilayered assemblies strategically employed covalent cross-linking and electrostatic interaction-assisted progressive depositions of branched polyethyleneimine and poly(2-ethyl-2-oxazoline). While polyethyleneimine conferred the contact-killing bactericidal activity, the much-coveted antiencrustation properties were rendered by incorporating a partially hydrolyzed derivative of poly(2-ethyl-2-oxazoline). The performance of the resultant surface-modified TPU/PDMS blends was benchmarked against the conventional urological alloplasts, in a customized lab-scale bioreactor-based dynamic encrustation study and in human urine. After 6 weeks of exposure to an artificial urine medium, simulating urease-positive bacterial infection, the surface-modified blends exhibited a remarkable ability to suppress Ca and Mg encrustation. In addition, these blends also displayed superior grafting stability and antibacterial efficacy against common uropathogens. As high as 4-fold log reduction in the planktonic growth of Gram-negative P. mirabilis and Gram-positive MRSA was recorded with the LbL platform vis-à-vis medical-grade TPU. In conjunction, the in vitro cellular assessment with human keratinocytes (HaCaT) and human embryonic kidney cells (HEK) established the uncompromised cytocompatibility of the multilayered grafted blends. Finally, the physiologically relevant functionality of the LbL grafting has been validated using clinical samples of human urine collected from 129 patients with a broad spectrum of disease conditions. The phase-I pre-clinical study, entailing 6 week-long incubation in human urine, demonstrated significantly improved encrustation resistance of the blends. The collective findings of the present work clearly establish the success of LbL strategies in the development of stable, multifunctional new-generation urological biomaterials.
Collapse
Affiliation(s)
- Swati Sharma
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Anil Mandhani
- Department of Urology and Kidney Transplant, Fortis Memorial Research Institute, Gurugram 122002, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India.,Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Dawson F, Yew WC, Orme B, Markwell C, Ledesma-Aguilar R, Perry JJ, Shortman IM, Smith D, Torun H, Wells G, Unthank MG. Self-Assembled, Hierarchical Structured Surfaces for Applications in (Super)hydrophobic Antiviral Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10632-10641. [PMID: 35977085 PMCID: PMC9434993 DOI: 10.1021/acs.langmuir.2c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
A versatile method for the creation of multitier hierarchical structured surfaces is reported, which optimizes both antiviral and hydrophobic (easy-clean) properties. The methodology exploits the availability of surface-active chemical groups while also manipulating both the surface micro- and nanostructure to control the way the surface coating interacts with virus particles within a liquid droplet. This methodology has significant advantages over single-tier structured surfaces, including the ability to overcome the droplet-pinning effect and in delivering surfaces with high static contact angles (>130°) and good antiviral efficacy (log kill >2). In addition, the methodology highlights a valuable approach for the creation of mechanically robust, nanostructured surfaces which can be prepared by spray application using nonspecialized equipment.
Collapse
Affiliation(s)
- Frances Dawson
- Northumbria
University, Newcastle
upon Tyne NE1 8ST, U.K.
| | - Wen C. Yew
- Northumbria
University, Newcastle
upon Tyne NE1 8ST, U.K.
| | - Bethany Orme
- Northumbria
University, Newcastle
upon Tyne NE1 8ST, U.K.
| | | | - Rodrigo Ledesma-Aguilar
- Institute
for Multiscale Thermofluids (IMT), School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, Scotland, U.K.
| | | | - Ian M. Shortman
- Defence
Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, U.K.
| | - Darren Smith
- Northumbria
University, Newcastle
upon Tyne NE1 8ST, U.K.
| | - Hamdi Torun
- Northumbria
University, Newcastle
upon Tyne NE1 8ST, U.K.
| | - Gary Wells
- Institute
for Multiscale Thermofluids (IMT), School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JL, Scotland, U.K.
| | | |
Collapse
|
14
|
Celesti C, Gervasi T, Cicero N, Giofrè SV, Espro C, Piperopoulos E, Gabriele B, Mancuso R, Lo Vecchio G, Iannazzo D. Titanium Surface Modification for Implantable Medical Devices with Anti-Bacterial Adhesion Properties. MATERIALS 2022; 15:ma15093283. [PMID: 35591617 PMCID: PMC9105612 DOI: 10.3390/ma15093283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 12/14/2022]
Abstract
Pure titanium and titanium alloys are widely used in dentistry and orthopedics. However, despite their outstanding mechanical and biological properties, implant failure mainly due to post-operative infection still remains a significant concern. The possibility to develop inherent antibacterial medical devices was here investigated by covalently inserting bioactive ammonium salts onto the surface of titanium metal substrates. Titanium discs have been functionalized with quaternary ammonium salts (QASs) and with oleic acid (OA), affording the Ti-AEMAC Ti-GTMAC, Ti-AUTEAB, and Ti-OA samples, which were characterized by ATR-FTIR and SEM-EDX analyses and investigated for the roughness and hydrophilic behavior. The chemical modifications were shown to deeply affect the surface properties of the metal substrates and, as a consequence, their bio-interaction. The bacterial adhesion tests against the Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus, at 1.5 and 24 h of bacterial contact, showed good anti-adhesion activity for Ti-AUTEAB and Ti-OA samples, containing a long alkyl chain between the silicon atom and the ammonium functionality. In particular, the Ti-AUTEAB sample showed inhibition of bacteria adhesion against Escherichia Coli of about one log with respect to the other samples, after 1.5 h. The results of this study highlight the importance of chemical functionalization in addressing the antimicrobial activity of metal surfaces and could open new perspectives in the development of inherent antibacterial medical devices.
Collapse
Affiliation(s)
- Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy; (C.C.); (C.E.); (E.P.)
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University Hospital of Messina, Via Consolare Valeria, 1, I-98100 Messina, Italy; (T.G.); (N.C.)
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphological and Functional Images, University Hospital of Messina, Via Consolare Valeria, 1, I-98100 Messina, Italy; (T.G.); (N.C.)
- Science4Life srl, Spin-off Company, University of Messina Viale Ferdinando Stagno D’Alcontres, 31, I-98166 Messina, Italy
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, I-98168 Messina, Italy; (S.V.G.); (G.L.V.)
| | - Claudia Espro
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy; (C.C.); (C.E.); (E.P.)
| | - Elpida Piperopoulos
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy; (C.C.); (C.E.); (E.P.)
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, I-87036 Arcavacata di Rende, Italy; (B.G.); (R.M.)
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, I-87036 Arcavacata di Rende, Italy; (B.G.); (R.M.)
| | - Giovanna Lo Vecchio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, I-98168 Messina, Italy; (S.V.G.); (G.L.V.)
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy; (C.C.); (C.E.); (E.P.)
- Correspondence: ; Tel.: +39-090-6765569
| |
Collapse
|
15
|
Islam MA, Karim A, Ethiraj B, Raihan T, Kadier A. Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnol Adv 2022; 55:107901. [PMID: 34974156 DOI: 10.1016/j.biotechadv.2021.107901] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/19/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023]
Abstract
The detection of pathogenic bacteria using biosensing techniques could be a potential alternative to traditional culture based methods. However, the low specificity and sensitivity of conventional biosensors, critically related to the choice of bio-recognition elements, limit their practical applicability. Mammalian antibodies have been widely investigated as biorecognition ligands due to high specificity and technological advancement in antibody production. However, antibody-based biosensors are not considered as an efficient approach due to the batch-to-batch inconsistencies as well as low stability. In recent years, antimicrobial peptides (AMPs) have been increasingly investigated as ligands as they have demonstrated high stability and possessed multiple sites for capturing bacteria. The conjugation of chemo-selective groups with AMPs has allowed effective immobilization of peptides on biosensor surface. However, the specificity of AMPs is a major concern for consideration as an efficient ligand. In this article, we have reviewed the advances and concerns, particularly the selectivity of AMPs for specific detection of pathogenic bacteria. This review also focuses the state-of-the-art mechanisms, challenges and prospects for designing potential AMP conjugated biosensors. The application of AMP in different biosensing transducers such as electrochemical, optical and piezoelectric varieties has been widely discussed. We argue that this review would provide insights to design and construct AMP conjugated biosensors for the pathogenic bacteria detection.
Collapse
Affiliation(s)
- M Amirul Islam
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec J1K 0A5, Canada.
| | - Ahasanul Karim
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Topu Raihan
- Deapartment of Genetic Engineering and Biotechnology, Shahjalal, University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
16
|
Zhai X, Chen B, He Y, An L, Chen S, Yan X, Zhang Y, Meng J. A novel loose nanofiltration membrane with superior anti-biofouling performance prepared from zwitterion-grafted chitosan. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Sarder R, Piner E, Rios DC, Chacon L, Artner MA, Barrios N, Argyropoulos D. Copolymers of starch, a sustainable template for biomedical applications: A review. Carbohydr Polym 2022; 278:118973. [PMID: 34973787 DOI: 10.1016/j.carbpol.2021.118973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The outstanding versatility of starch offers a source of inspiration for the development of high-performance-value-added biomaterials for the biomedical field, including drug delivery, tissue engineering and diagnostic imaging. This is because starch-based materials can be tailored to specific applications via facile grafting or other chemistries, introducing specific substituents, with starch being effectively the "template" used in all the chemical transformations discussed in this review. A considerable effort has been carried out to obtain specific tailored starch-based grafted polymers, taking advantage of its biocompatibility and biodegradability with appealing sustainability considerations. The aim of this review is to critically explore the latest research that use grafting chemistries on starch for the synthesis of products for biomedical applications. An effort is made in reviewing the literature that proposes synthetic "greener" approaches, the use of enzymes and their immobilized analogues and alternative solvent systems, including water emulsions, ionic liquids and supercritical CO2.
Collapse
Affiliation(s)
- Roman Sarder
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Emily Piner
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - David Cruz Rios
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Lisandra Chacon
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Mirela Angelita Artner
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | - Nelson Barrios
- Department of Forest Biomaterials, North Carolina State University, Raleigh NC-27606, USA
| | | |
Collapse
|
18
|
Zwicker P, Schmidt T, Hornschuh M, Lode H, Kramer A, Müller G. In vitro response of THP-1 derived macrophages to antimicrobially effective PHMB-coated Ti6Al4V alloy implant material with and without contamination with S. epidermidis and P. aeruginosa. Biomater Res 2022; 26:1. [PMID: 35000621 PMCID: PMC8744236 DOI: 10.1186/s40824-021-00247-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/05/2021] [Indexed: 12/23/2022] Open
Abstract
AIM Periprosthetic joint infections are a devastating complication after arthroplasty, leading to rejection of the prosthesis. The prevention of septic loosening may be possible by an antimicrobial coating of the implant surface. Poly (hexamethylene) biguanide hydrochloride [PHMB] seems to be a suitable antiseptic agent for this purpose since previous studies revealed a low cytotoxicity and a long-lasting microbicidal effect of Ti6Al4V alloy coated with PHMB. To preclude an excessive activation of the immune system, possible inflammatory effects on macrophages upon contact with PHMB-coated surfaces alone and after killing of S. epidermidis and P. aeruginosa are analyzed. METHODS THP-1 monocytes were differentiated to M0 macrophages by phorbol 12-myristate 13-acetate and seeded onto Ti6Al4V surfaces coated with various amounts of PHMB. Next to microscopic immunofluorescence analysis of labeled macrophages after adhesion on the coated surface, measurement of intracellular reactive oxygen species and analysis of cytokine secretion at different time points without and with previous bacterial contamination were conducted. RESULTS No influence on morphology of macrophages and only slight increases in iROS generation were detected. The cytokine secretion pattern depends on the surface treatment procedure and the amount of adsorbed PHMB. The PHMB coating resulted in a high reduction of viable bacteria, resulting in no significant differences in cytokine secretion as reaction to coated surfaces with and without bacterial burden. CONCLUSION Ti6Al4V specimens after alkaline treatment followed by coating with 5-7 μg PHMB and specimens treated with H2O2 before PHMB-coating (4 μg) had the smallest influence on the macrophage phienotype and thus are considered as the surface with the best cytocompatibility to macrophages tested in the present study.
Collapse
Affiliation(s)
- Paula Zwicker
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany.
| | - Thomas Schmidt
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany
| | - Melanie Hornschuh
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany
| | - Holger Lode
- Department of Pediatric Hematology and Oncology, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany
| | - Gerald Müller
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine, D-17475, Greifswald, Germany
| |
Collapse
|
19
|
Etayash H, Hancock REW. Host Defense Peptide-Mimicking Polymers and Polymeric-Brush-Tethered Host Defense Peptides: Recent Developments, Limitations, and Potential Success. Pharmaceutics 2021; 13:1820. [PMID: 34834239 PMCID: PMC8621177 DOI: 10.3390/pharmaceutics13111820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Amphiphilic antimicrobial polymers have attracted considerable interest as structural mimics of host defense peptides (HDPs) that provide a broad spectrum of activity and do not induce bacterial-drug resistance. Likewise, surface engineered polymeric-brush-tethered HDP is considered a promising coating strategy that prevents infections and endows implantable materials and medical devices with antifouling and antibacterial properties. While each strategy takes a different approach, both aim to circumvent limitations of HDPs, enhance physicochemical properties, therapeutic performance, and enable solutions to unmet therapeutic needs. In this review, we discuss the recent advances in each approach, spotlight the fundamental principles, describe current developments with examples, discuss benefits and limitations, and highlight potential success. The review intends to summarize our knowledge in this research area and stimulate further work on antimicrobial polymers and functionalized polymeric biomaterials as strategies to fight infectious diseases.
Collapse
Affiliation(s)
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
20
|
Andersen C, Madsen J, Daugaard AE. A Synthetic Overview of Preparation Protocols of Nonmetallic, Contact-Active Antimicrobial Quaternary Surfaces on Polymer Substrates. Macromol Rapid Commun 2021; 42:e2100437. [PMID: 34491589 DOI: 10.1002/marc.202100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Indexed: 11/07/2022]
Abstract
Antibacterial surfaces have been researched for more than 30 years and remain highly desirable. In particular, there is an interest in providing antimicrobial properties to commodity plastics, because these, in their native state, are excellent substrates for pathogens to adhere and proliferate on. Therefore, efficient strategies for converting surfaces of commodity plastics into contact-active antimicrobial surfaces are of significant interest. Many systems have been prepared and tested for their efficacy. Here, the synthetic approaches to such active surfaces are reviewed, with the restriction to only include systems with tested antibacterial properties. The review focuses on the synthetic approach to surface functionalization of the most common materials used and tested for biomedical applications, which effectively has limited the study to quaternary materials. For future developments in the field, it is evident that there is a need for development of simple methods that permit scalable production of active surfaces. Furthermore, in terms of efficacy, there is an outstanding concern of a lack of universal antimicrobial action as well as rapid deactivation of the antibacterial effect through surface fouling.
Collapse
Affiliation(s)
- Christian Andersen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads, building 229, Kgs. Lyngby, 2800, Denmark.,Coloplast A/S, Holtedam 1-3, Humlebaek, 3050, Denmark
| | - Jeppe Madsen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads, building 229, Kgs. Lyngby, 2800, Denmark
| | - Anders E Daugaard
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads, building 229, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
21
|
Xu FX, Ooi CW, Liu BL, Song CP, Chiu CY, Wang CY, Chang YK. Antibacterial efficacy of poly(hexamethylene biguanide) immobilized on chitosan/dye-modified nanofiber membranes. Int J Biol Macromol 2021; 181:508-520. [PMID: 33775766 DOI: 10.1016/j.ijbiomac.2021.03.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to develop a novel electrospun polyacrylonitrile (PAN) nanofiber membrane with the enhanced antibacterial property. The PAN nanofiber membrane was first subjected to alkaline hydrolysis treatment, and the treated membrane was subsequently grafted with chitosan (CS) to obtain a CS-modified nanofiber membrane (P-COOH-CS). The modified membrane was then coupled with different dye molecules to form P-COOH-CS-Dye membranes. Lastly, poly(hexamethylene biguanide) hydrochloride (PHMB) was immobilized on the modified membrane to produce P-COOH-CS-Dye-PHMB. Physical characterization studies were conducted on all the synthesized nanofiber membranes. The antibacterial efficacies of nanofiber membranes prepared under different synthesis conditions were evaluated systematically. Under the optimum synthesis conditions, P-COOH-CS-Dye-PHMB was highly effective in disinfecting a high concentration of Escherichia coli, with an antibacterial efficacy of approximately 100%. Additionally, the P-COOH-CS-Dye-PHMB exhibited an outstanding wash durability as its antibacterial efficacy was only reduced in the range of 5%-7% even after 5 repeated cycles of treatment. Overall, the experimental results of this study suggested that the P-COOH-CS-Dye-PHMB is a promising antibacterial nanofiber membrane that can be adopted in the food, pharmaceutical, and textile industries.
Collapse
Affiliation(s)
- Fan-Xuan Xu
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Chien Wei Ooi
- Chemical Engineering Discipline and Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Bing-Lan Liu
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 413310, Taiwan
| | - Cher Pin Song
- Chemical Engineering Discipline and Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chen-Yaw Chiu
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Chi-Yun Wang
- International Ph. D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Yu-Kaung Chang
- Department of Chemical Engineering, Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| |
Collapse
|
22
|
Yan Y, Li Y, Zhang Z, Wang X, Niu Y, Zhang S, Xu W, Ren C. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces 2021; 202:111682. [PMID: 33714188 DOI: 10.1016/j.colsurfb.2021.111682] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
In the past few decades, peptide antibacterial products with unique antibacterial mechanisms have attracted widespread interest. They can effectively reduce the probability of drug resistance of bacteria and are biocompatible, so they possess tremendous development prospects. This review provides recent research and analysis on the basic types of antimicrobial peptides (including poly (amino acid)s, short AMPs, and lipopeptides) and factors to optimize antimicrobial effects. It also summarizes the two most important modes of action of antimicrobial peptides and the latest developments in the application of AMPs, including antimicrobial agent, wound healing, preservative, antibacterial coating and others. Finally, we discuss the remaining challenges to improve the antibacterial peptides and propose prospects in the field.
Collapse
Affiliation(s)
- Yuhan Yan
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuanze Li
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Zhiwen Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Xinhao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Shaohua Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai, 264000, China.
| |
Collapse
|
23
|
Ricardo SIC, Anjos IIL, Monge N, Faustino CMC, Ribeiro IAC. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infect Dis 2020; 6:3109-3130. [PMID: 33245664 DOI: 10.1021/acsinfecdis.0c00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary and intravascular catheters are two of the most used invasive medical devices; however, microbial colonization of catheter surfaces is responsible for most healthcare-associated infections (HAIs). Several antimicrobial-coated catheters are available, but recurrent antibiotic therapy can decrease their potential activity against resistant bacterial strains. The aim of this Review is to question the actual effectiveness of currently used (coated) catheters and describe the progress and promise of alternative antimicrobial coatings. Different strategies have been reviewed with the common goal of preventing biofilm formation on catheters, including release-based approaches using antibiotics, antiseptics, nitric oxide, 5-fluorouracil, and silver as well as contact-killing approaches employing quaternary ammonium compounds, chitosan, antimicrobial peptides, and enzymes. All of these strategies have given proof of antimicrobial efficacy by modifying the physiology of pathogens or disrupting their structural integrity. The aim for synergistic approaches using multitarget processes and the combination of both antifouling and bactericidal properties holds potential for the near future. Despite intensive research in biofilm preventive strategies, laboratorial studies still present some limitations since experimental conditions usually are not the same and also differ from biological conditions encountered when the catheter is inserted in the human body. Consequently, in most cases, the efficacy data obtained from in vitro studies is not properly reflected in the clinical setting. Thus, further well-designed clinical trials and additional cytotoxicity studies are needed to prove the efficacy and safety of the developed antimicrobial strategies in the prevention of biofilm formation at catheter surfaces.
Collapse
Affiliation(s)
- Susana I. C. Ricardo
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês I. L. Anjos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Célia M. C. Faustino
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel A. C. Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
24
|
Zhao C, Zhou L, Chiao M, Yang W. Antibacterial hydrogel coating: Strategies in surface chemistry. Adv Colloid Interface Sci 2020; 285:102280. [PMID: 33010575 DOI: 10.1016/j.cis.2020.102280] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Hydrogels have emerged as promising antimicrobial materials due to their unique three-dimensional structure, which provides sufficient capacity to accommodate various materials, including small molecules, polymers and particles. Coating substrates with antibacterial hydrogel layers has been recognized as an effective strategy to combat bacterial colonization. To prevent possible delamination of hydrogel coatings from substrates, it is crucial to attach hydrogel layers via stronger links, such as covalent bonds. To date, various surface chemical strategies have been developed to introduce hydrogel coatings on different substrates. In this review, we first give a brief introduction of the major strategies for designing antibacterial coatings. Then, we summarize the chemical methods used to fix the antibacterial hydrogel layer on the substrate, which include surface-initiated graft crosslinking polymerization, anchoring the hydrogel layer on the surface during crosslinking, and chemical crosslinking of layer-by-layer coating. The reaction mechanisms of each method and matched pretreatment strategies are systemically documented with the aim of introducing available protocols to researchers in related fields for designing hydrogel-coated antibacterial surfaces.
Collapse
|
25
|
Cheriker H, Stern Bauer T, Oren Y, Nir S, Hayouka Z. Immobilized random peptide mixtures exhibit broad antimicrobial activity with high selectivity. Chem Commun (Camb) 2020; 56:11022-11025. [PMID: 32959824 DOI: 10.1039/d0cc04759g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current study, we evaluated the antimicrobial activity of randomly-sequenced peptide mixtures (RPMs) bearing hydrophobic and cationic residues that were immobilized on beads. We showed that these beads exhibit high and broad bactericidal activity against various pathogenic bacteria while possessing minimal hemolytic activity.
Collapse
Affiliation(s)
- Hadar Cheriker
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Tal Stern Bauer
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Yuval Oren
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Shlomo Nir
- The Department of Soil and Water Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
26
|
Chen C, Enrico A, Pettersson T, Ek M, Herland A, Niklaus F, Stemme G, Wågberg L. Bactericidal surfaces prepared by femtosecond laser patterning and layer-by-layer polyelectrolyte coating. J Colloid Interface Sci 2020; 575:286-297. [PMID: 32380320 DOI: 10.1016/j.jcis.2020.04.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/15/2022]
Abstract
Antimicrobial surfaces are important in medical, clinical, and industrial applications, where bacterial infection and biofouling may constitute a serious threat to human health. Conventional approaches against bacteria involve coating the surface with antibiotics, cytotoxic polymers, or metal particles. However, these types of functionalization have a limited lifetime and pose concerns in terms of leaching and degradation of the coating. Thus, there is a great interest in developing long-lasting and non-leaching bactericidal surfaces. To obtain a bactericidal surface, we combine micro and nanoscale patterning of borosilicate glass surfaces by ultrashort pulsed laser irradiation and a non-leaching layer-by-layer polyelectrolyte modification of the surface. The combination of surface structure and surface charge results in an enhanced bactericidal effect against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. The laser patterning and the layer-by-layer modification are environmentally friendly processes that are applicable to a wide variety of materials, which makes this method uniquely suited for fundamental studies of bacteria-surface interactions and paves the way for its applications in a variety of fields, such as in hygiene products and medical devices.
Collapse
Affiliation(s)
- Chao Chen
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.
| | - Alessandro Enrico
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44 Stockholm, Sweden.
| | - Torbjörn Pettersson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden; Department of Fiber and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.
| | - Monica Ek
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.
| | - Anna Herland
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44 Stockholm, Sweden; Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Frank Niklaus
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44 Stockholm, Sweden.
| | - Göran Stemme
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 100 44 Stockholm, Sweden.
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden; Department of Fiber and Polymer Technology, Wallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.
| |
Collapse
|
27
|
Liu C, Wei Z, Huo Z, Fu S, Li S, Yang Y, Shi J, Wu Q. Constructing a Contact-Active Antimicrobial Surface Based on Quarternized Amphiphilic Carbonaceous Particles against Biofilms. ACS APPLIED BIO MATERIALS 2020; 3:5048-5055. [DOI: 10.1021/acsabm.0c00551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chaoqun Liu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Zhihong Wei
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Zhiyuan Huo
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Shuang Fu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Shanshan Li
- Kaifeng Health School (Medical Department of Kaifeng University), Kaifeng 475004, China
| | - Yingying Yang
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Qiang Wu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| |
Collapse
|
28
|
Positively Charged Polymers as Promising Devices against Multidrug Resistant Gram-Negative Bacteria: A Review. Polymers (Basel) 2020; 12:polym12051195. [PMID: 32456255 PMCID: PMC7285334 DOI: 10.3390/polym12051195] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance has increased markedly in Gram-negative bacteria, causing severe infections intractable with traditional drugs and amplifying mortality and healthcare costs. Consequently, to find novel antimicrobial compounds, active on multidrug resistant bacteria, is mandatory. In this regard, cationic antimicrobial peptides (CAMPs)—able to kill pathogens on contact—could represent an appealing solution. However, low selectivity, hemolytic toxicity and cost of manufacturing, hamper their massive clinical application. In the recent years—starting from CAMPs as template molecules—less toxic and lower-cost synthetic mimics of CAMPs, including cationic peptides, polymers and dendrimers, have been developed. Although the pending issue of hemolytic toxicity and biodegradability is still left not completely solved, cationic antimicrobial polymers (CAPs), compared to small drug molecules, thanks to their high molecular weight, own appreciable selectivity, reduced toxicity toward eukaryotic cells, more long-term activity, stability and non-volatility. With this background, an updated overview concerning the main manufactured types of CAPs, active on Gram-negative bacteria, is herein reported, including synthetic procedure and action’s mechanism. Information about their structures, antibacterial activity, advantages and drawbacks, was reported in the form of tables, which allow faster consultation and quicker learning concerning current CAPs state of the art, in order not to retrace reviews already available.
Collapse
|
29
|
Song B, Zhang E, Han X, Zhu H, Shi Y, Cao Z. Engineering and Application Perspectives on Designing an Antimicrobial Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21330-21341. [PMID: 32011846 PMCID: PMC7534184 DOI: 10.1021/acsami.9b19992] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Infections, contaminations, and biofouling resulting from micro- and/or macro-organisms remained a prominent threat to the public health, food industry, and aqua-/marine-related applications. Considering environmental and drug resistance concerns as well as insufficient efficacy on biofilms associated with conventional disinfecting reagents, developing an antimicrobial surface potentially improved antimicrobial performance by directly working on the microbes surrounding the surface area. Here we provide an engineering perspective on the logic of choosing materials and strategies for designing antimicrobial surfaces, as well as an application perspective on their potential impacts. In particular, we analyze and discuss requirements and expectations for specific applications and provide insights on potential misconnection between the antimicrobial solution and its targeted applications. Given the high translational barrier for antimicrobial surfaces, future research would benefit from a comprehensive understanding of working mechanisms for potential materials/strategies, and challenges/requirements for a targeted application.
Collapse
Affiliation(s)
- Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| |
Collapse
|
30
|
Hornschuh M, Zwicker P, Schmidt T, Kramer A, Müller G. In vitro evaluation of contact-active antibacterial efficacy of Ti-Al-V alloys coated with the antimicrobial agent PHMB. Acta Biomater 2020; 106:376-386. [PMID: 32068136 DOI: 10.1016/j.actbio.2020.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Immobilized polycationic substances on biomaterial surfaces kill adhering bacteria upon contact and are considered a promising non-antibiotic alternative. Unfortunately, there is no generally accepted in vitro method for quantitatively evaluating the antibacterial efficacy of contact-active non-leachable antimicrobial surfaces. Moreover, guidelines of generally accepted international industrial standards do not reflect the basic principle of bacterial contamination and/or are performed in the presence of a solid covering material. Therefore, in the present study, six bacterial adherence tests on non-porous surfaces with no covering material were compared with respect to their efficacy and reproducibility, as well as to evaluate the bactericidal contact-killing of relevant device-associated slime-producing bacteria using antimicrobially coated Ti6Al4V surfaces with positively-charged poly(hexamethylene biguanide) hydrochloride (PHMB). After direct bacterial inoculation to simulate a perioperative infection, non-leaching PHMB reacts bactericidally against the slime-producing bacteria Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa after surface contact. The 6-h drop technique was found to be a suitable method to quantitatively evaluate contact-active antibacterial surfaces. Adjunctively, however, damage of bacterial membrane integrity should be confirmed by LIVE/DEAD staining and the presence of non-leaching agents. STATEMENT OF SIGNIFICANCE: Unintentional perioperative bacterial adhesion to implant surfaces can generate biomaterial-associated infections. Adhered bacteria produce biofilms that protect them from antibiotic attack, which may be complicated by possible antibiotic resistance. Polycationic surfaces can prevent such unwanted biofilm formation by killing bacteria upon initial contact. Unfortunately, no reliable in vitro methods exist to evaluate the efficacy of contact-active antimicrobial surfaces. In this study, we show that the 6-h drop technique may be a suitable method to evaluate positively-charged contact-killing surfaces. Identification of suitable screening assays for evaluating the bactericidal efficacy of non-leachable antimicrobial agents will greatly improve this newly developing field as a prophylactic alternative to postoperative treatment of implant-associated infections by antibiotics.
Collapse
|
31
|
Jomaa MB, Bourguiba NF, Chebbi H, Abdelbaky MSM, García-Granda S, Korbi N, Ouzari HI. Structural study, spectroscopic characterization, thermal behavior, DFT calculations and antimicrobial properties of a new hybrid compound, (C7H9N2)2[HgCl4]·H2O. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1735631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mariem Ben Jomaa
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, Tunis, Tunisia
| | - Noura Fakher Bourguiba
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, Tunis, Tunisia
| | - Hammouda Chebbi
- Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, University of Tunis El Manar, Tunis, Tunisia
- Preparatory Institute for Engineering Studies of Tunis, University of Tunis, Tunis, Tunisia
| | | | - Santiago García-Granda
- Department of Physical and Analytical Chemistry, University of Oviedo-CINN, Oviedo, Spain
| | - Nedra Korbi
- Faculty of Sciences of Tunis, Laboratoire Microorganismes et Biomolécules Actives (LR03ES03), University of Tunis El Manar, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Faculty of Sciences of Tunis, Laboratoire Microorganismes et Biomolécules Actives (LR03ES03), University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
32
|
Ojogbo E, Ward V, Mekonnen TH. Functionalized starch microparticles for contact-active antimicrobial polymer surfaces. Carbohydr Polym 2020; 229:115422. [DOI: 10.1016/j.carbpol.2019.115422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023]
|
33
|
Hornschuh M, Zwicker P, Schmidt T, Finke B, Kramer A, Müller G. Poly (hexamethylene biguanide), adsorbed onto Ti-Al-V alloys, kills slime-producing Staphylococci and Pseudomonas aeruginosa without inhibiting SaOs-2 cell differentiation. J Biomed Mater Res B Appl Biomater 2019; 108:1801-1813. [PMID: 31774237 DOI: 10.1002/jbm.b.34522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/01/2019] [Accepted: 11/09/2019] [Indexed: 11/10/2022]
Abstract
Antimicrobial coating of implant material with poly(hexamethylene biguanide) hydrochloride (PHMB) may be an eligible method for preventing implant-associated infections. In the present study, an antibacterial effective amount of PHMB is adsorbed on the surface of titanium alloy after simple chemical pretreatment. Either oxidation with 5% H2 O2 for 24 hr or processing for 2 hr in 5 M NaOH provides the base for the subsequent formation of a relatively stable self-assembled PHMB layer. Compared with an untreated control group, adsorbed PHMB produces no adverse effects on SaOs-2 cells within 48 hr cell culture, but promotes the initial attachment and spreading of the osteoblasts within 15 min. Specimens were inoculated with slime-producing bacteria to simulate a perioperative infection. Adsorbed PHMB reacts bactericidally against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa after surface contact. Adhered SaOs-2 cells differentiate and produce alkaline phosphatase and deposit calcium within 4 days in a mineralization medium on PHMB-coated Ti6Al4V surfaces, which have been precontaminated with S. epidermidis. The presented procedures provide a simple method for generating biocompatibly and antimicrobially effective implant surfaces that may be clinically important.
Collapse
Affiliation(s)
- Melanie Hornschuh
- Institute of Hygiene and Environmental Medicine, University Medicine, Greifswald, Germany
| | - Paula Zwicker
- Institute of Hygiene and Environmental Medicine, University Medicine, Greifswald, Germany
| | - Thomas Schmidt
- Institute of Hygiene and Environmental Medicine, University Medicine, Greifswald, Germany
| | - Birgit Finke
- Leibniz-Institute for Plasma Science and Technology (INP e.V.), Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine, Greifswald, Germany
| | - Gerald Müller
- Institute of Hygiene and Environmental Medicine, University Medicine, Greifswald, Germany
| |
Collapse
|
34
|
Riordan L, Smith EF, Mills S, Hudson J, Stapley S, Nikoi ND, Edmondson S, Blair J, Peacock AF, Scurr D, Forster G, de Cogan F. Directly bonding antimicrobial peptide mimics to steel and the real world applications of these materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:299-304. [DOI: 10.1016/j.msec.2019.03.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/18/2019] [Indexed: 11/24/2022]
|
35
|
Chen C, Petterson T, Illergård J, Ek M, Wågberg L. Influence of Cellulose Charge on Bacteria Adhesion and Viability to PVAm/CNF/PVAm-Modified Cellulose Model Surfaces. Biomacromolecules 2019; 20:2075-2083. [DOI: 10.1021/acs.biomac.9b00297] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chao Chen
- Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology. Teknikringen 56-58, Stockholm 100 44, Sweden
| | - Torbjörn Petterson
- Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology. Teknikringen 56-58, Stockholm 100 44, Sweden
| | - Josefin Illergård
- Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology. Teknikringen 56-58, Stockholm 100 44, Sweden
| | - Monica Ek
- Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology. Teknikringen 56-58, Stockholm 100 44, Sweden
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, School of Engineering Science in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology. Teknikringen 56-58, Stockholm 100 44, Sweden
| |
Collapse
|
36
|
Andrén OCJ, Ingverud T, Hult D, Håkansson J, Bogestål Y, Caous JS, Blom K, Zhang Y, Andersson T, Pedersen E, Björn C, Löwenhielm P, Malkoch M. Antibiotic-Free Cationic Dendritic Hydrogels as Surgical-Site-Infection-Inhibiting Coatings. Adv Healthc Mater 2019; 8:e1801619. [PMID: 30735288 DOI: 10.1002/adhm.201801619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/19/2019] [Indexed: 11/10/2022]
Abstract
A non-toxic hydrolytically fast-degradable antibacterial hydrogel is herein presented to preemptively treat surgical site infections during the first crucial 24 h period without relying on conventional antibiotics. The approach capitalizes on a two-component system that form antibacterial hydrogels within 1 min and consist of i) an amine functional linear-dendritic hybrid based on linear poly(ethylene glycol) and dendritic 2,2-bis(hydroxymethyl)propionic acid, and ii) a di-N-hydroxysuccinimide functional poly(ethylene glycol) cross-linker. Broad spectrum antibacterial effect is achieved by multivalent representation of catatonically charged β-alanine on the dendritic periphery of the linear dendritic component. The hydrogels can be applied readily in an in vivo setting using a two-component syringe delivery system and the mechanical properties can accurately be tuned in the range equivalent to fat tissue and cartilage (G' = 0.5-8 kPa). The antibacterial effect is demonstrated both in vitro toward a range of relevant bacterial strains and in an in vivo mouse model of surgical site infection.
Collapse
Affiliation(s)
- Oliver C. J. Andrén
- Division of Coating TechnologyDepartment of Fibre and Polymer TechnologySchool of Chemistry, Biotechnology and HealthKTH Royal Institute of Technology SE‐100 44 Stockholm Sweden
| | - Tobias Ingverud
- Division of Coating TechnologyDepartment of Fibre and Polymer TechnologySchool of Chemistry, Biotechnology and HealthKTH Royal Institute of Technology SE‐100 44 Stockholm Sweden
- Wallenberg Wood Science CenterDepartment of Fibre and Polymer TechnologySchool of Chemistry, Biotechnology and HealthKTH Royal Institute of Technology SE‐100 44 Stockholm Sweden
| | - Daniel Hult
- Division of Coating TechnologyDepartment of Fibre and Polymer TechnologySchool of Chemistry, Biotechnology and HealthKTH Royal Institute of Technology SE‐100 44 Stockholm Sweden
| | - Joakim Håkansson
- RISE Research Institutes of SwedenDivision Biosciences and MaterialsSection for Medical Device Technology Box 857 50115 Borås Sweden
| | - Yalda Bogestål
- RISE Research Institutes of SwedenDivision Biosciences and MaterialsSection for Medical Device Technology Box 857 50115 Borås Sweden
| | - Josefin S. Caous
- RISE Research Institutes of SwedenDivision Biosciences and MaterialsSection for Medical Device Technology Box 857 50115 Borås Sweden
| | | | - Yuning Zhang
- Division of Coating TechnologyDepartment of Fibre and Polymer TechnologySchool of Chemistry, Biotechnology and HealthKTH Royal Institute of Technology SE‐100 44 Stockholm Sweden
| | - Therese Andersson
- RISE Research Institutes of SwedenDivision Biosciences and MaterialsSection for Medical Device Technology Box 857 50115 Borås Sweden
| | - Emma Pedersen
- RISE Research Institutes of SwedenDivision Biosciences and MaterialsSection for Medical Device Technology Box 857 50115 Borås Sweden
| | - Camilla Björn
- RISE Research Institutes of SwedenDivision Biosciences and MaterialsSection for Medical Device Technology Box 857 50115 Borås Sweden
| | - Peter Löwenhielm
- RISE Research Institutes of SwedenDivision Biosciences and MaterialsSection for Medical Device Technology Box 857 50115 Borås Sweden
| | - Michael Malkoch
- Division of Coating TechnologyDepartment of Fibre and Polymer TechnologySchool of Chemistry, Biotechnology and HealthKTH Royal Institute of Technology SE‐100 44 Stockholm Sweden
| |
Collapse
|
37
|
Development of multiactive antibacterial multilayers of hyaluronic acid and chitosan onto poly(ethylene terephthalate). Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Chen CK, Lee MC, Lin ZI, Lee CA, Tung YC, Lou CW, Law WC, Chen NT, Lin KYA, Lin JH. Intensifying the Antimicrobial Activity of Poly[2-( tert-butylamino)ethyl Methacrylate]/Polylactide Composites by Tailoring Their Chemical and Physical Structures. Mol Pharm 2019; 16:709-723. [PMID: 30589552 DOI: 10.1021/acs.molpharmaceut.8b01011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Poly[2-( tert-butylaminoethyl) methacrylate] (PTA), an important class of antimicrobial polymers, has demonstrated its great biocidal efficiency, favorable nontoxicity, and versatile applicability. To further enhance its antimicrobial efficiency, an optimization of the chemical structure of PTA polymers is performed via atom transfer radical polymerization (ATRP) in terms of the antimicrobial ability against Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). After the optimization, the resulting PTA is blended into a polylactide (PLA) matrix to form PTA/PLA composite thin films. It is first found, that the antimicrobial efficiency of PTA/PLA composites was significantly enhanced by controlling the PLA crystallinity and the PLA spherulite size. A possible mechanistic route regarding this new finding has been rationally discussed. Lastly, the cytotoxicity and mechanical properties of a PTA/PLA composite thin film exhibiting the best biocidal effect are evaluated for assessing its potential as a new material for creating antimicrobial biomedical devices.
Collapse
Affiliation(s)
- Chih-Kuang Chen
- Department of Chemical Engineering and Materials Engineering , National Yunlin University of Science and Technology , Yunlin 64002 , Taiwan
| | - Mong-Chuan Lee
- Graduate Institute of Biotechnology and Biomedical Engineering , Central Taiwan University of Science and Technology , Taichung 40601 , Taiwan
| | - Zheng-Ian Lin
- Department of Chemical Engineering and Materials Engineering , National Yunlin University of Science and Technology , Yunlin 64002 , Taiwan
| | - Chun-An Lee
- Department of Fiber and Composite Materials , Feng Chia University , Taichung 40724 , Taiwan
| | - Yu-Chieh Tung
- Department of Fiber and Composite Materials , Feng Chia University , Taichung 40724 , Taiwan
| | - Ching-Wen Lou
- College of Textile and Clothing , Qingdao University , Shangdong 266071 , China.,Department of Chemical Engineering and Materials , Ocean College, Minjiang University , Fuzhou 350108 , China.,Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles , Tianjin Polytechnic University , Tianjin 300387 , China.,Department of Bioinformatics and Medical Engineering , Asia University , Taichung 41354 , Taiwan
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong SAR , China
| | - Nai-Tzu Chen
- Institute of New Drug Development , China Medical University , Taichung 40402 , Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering , National Chung Hsing University , Taichung 40227 , Taiwan
| | - Jia-Horng Lin
- Department of Fiber and Composite Materials , Feng Chia University , Taichung 40724 , Taiwan.,College of Textile and Clothing , Qingdao University , Shangdong 266071 , China.,Department of Chemical Engineering and Materials , Ocean College, Minjiang University , Fuzhou 350108 , China.,Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles , Tianjin Polytechnic University , Tianjin 300387 , China.,School of Chinese Medicine , China Medical University , Taichung 40402 , Taiwan.,Department of Fashion Design , Asia University , Taichung 41354 , Taiwan
| |
Collapse
|
39
|
Imidazole-molecule-capped chitosan–gold nanocomposites with enhanced antimicrobial activity for treating biofilm-related infections. J Colloid Interface Sci 2018; 531:269-281. [DOI: 10.1016/j.jcis.2018.07.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 12/25/2022]
|
40
|
Naderi J, Giles C, Saboohi S, Griesser HJ, Coad BR. Surface-grafted antimicrobial drugs: Possible misinterpretation of mechanism of action. Biointerphases 2018; 13:06E409. [PMID: 30482023 PMCID: PMC6905654 DOI: 10.1116/1.5050043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial surface coatings that act through a contact-killing mechanism (not diffusive release) could offer many advantages to the design of medical device coatings that prevent microbial colonization and infections. However, as the authors show here, to prevent arriving at an incorrect conclusion about their mechanism of action, it is essential to employ thorough washing protocols validated by surface analytical data. Antimicrobial surface coatings were fabricated by covalently attaching polyene antifungal drugs to surface coatings. Thorough washing (often considered to be sufficient to remove noncovalently attached molecules) was used after immobilization and produced samples that showed a strong antifungal effect, with a log 6 reduction in Candida albicans colony forming units. However, when an additional washing step using surfactants and warmed solutions was used, more firmly adsorbed compounds were eluted from the surface as evidenced by XPS and ToF-SIMS, resulting in reduction and complete elimination of in vitro antifungal activity. Thus, polyene molecules covalently attached to surfaces appear not to have a contact-killing effect, probably because they fail to reach their membrane target. Without additional stringent washing and surface analysis, the initial favorable antimicrobial testing results could have been misinterpreted as evidencing activity of covalently grafted polyenes, while in reality activity arose from desorbing physisorbed molecules. To avoid unintentional confirmation bias, they suggest that binding and washing protocols be analytically verified by qualitative/quantitative instrumental methods, rather than relying on false assumptions of the rigors of washing/soaking protocols.
Collapse
Affiliation(s)
- Javad Naderi
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| | - Carla Giles
- Department of Primary Industries Parks Water and Environment Tasmania, Centre for Aquatic Animal Health and Vaccines, 165 Westbury Road, Prospect, Tasmania 7250, Australia
| | - Solmaz Saboohi
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| | - Bryan R Coad
- Future Industries Institute, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
41
|
Li L, Zhang F, Gai F, Zhou H, Chi X, Wang H, Zhao (Kent) Z. Novel N-chloramine precursors for antimicrobial application: synthesis and facile covalent immobilization on polyurethane surface based on perfluorophenyl azide (PFPA) chemistry. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To control the pathogen cross contaminations on medical material surface, there is a pressing need to develop antimicrobial materials with highly efficacious surface biocidal activity. In this work, N-chloramine precursors containing a quaternary ammonium unit and perfluorophenyl azide unit were synthesized and covalently immobilized on inert polyurethane (PU) film upon UV light irradiation. The surface modification was confirmed by contact angle, Fourier transform infrared (ATR FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) analyses. After bleaching treatment, satisfactory biocidal activity was achieved for the surface-modified PU films. It was found that the introduced surface QA center contributed an even faster surface contact killing behavior and that precursors with a longer structural linker caused higher surface chlorine content and higher antimicrobial efficacy. This approach provides a novel and facile method that enables the covalent immobilization of N-chloramine precursors on inert polymeric surface to produce durable antimicrobial materials.
Collapse
Affiliation(s)
- Lingdong Li
- School of Petroleum and Chemical Engineering, Dalian University of Technology, State Key Laboratory of Fine Chemicals, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China
| | - Fengxiang Zhang
- School of Petroleum and Chemical Engineering, Dalian University of Technology, State Key Laboratory of Fine Chemicals, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China
| | - Fangyuan Gai
- College of Chemistry and Life Science, Jilin Province Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, Changchun 130012, China
| | - Hao Zhou
- School of Food and Environment, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China
| | - Xiaofang Chi
- School of Petroleum and Chemical Engineering, Dalian University of Technology, State Key Laboratory of Fine Chemicals, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China
| | - Hande Wang
- School of Petroleum and Chemical Engineering, Dalian University of Technology, State Key Laboratory of Fine Chemicals, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China
| | - Zongbao Zhao (Kent)
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| |
Collapse
|
42
|
Elena P, Miri K. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds. Colloids Surf B Biointerfaces 2018; 169:195-205. [DOI: 10.1016/j.colsurfb.2018.04.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022]
|
43
|
Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals (Basel) 2018; 11:ph11030068. [PMID: 29996512 PMCID: PMC6161137 DOI: 10.3390/ph11030068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/07/2023] Open
Abstract
This review article provides an overview of recent developments in antimicrobial peptides (AMPs), summarizing structural diversity, potential new applications, activity targets and microbial killing responses in general. The use of artificial and natural AMPs as templates for rational design of peptidomimetics are also discussed and some strategies are put forward to curtail cytotoxic effects against eukaryotic cells. Considering the heat-resistant nature, chemical and proteolytic stability of AMPs, we attempt to summarize their molecular targets, examine how these macromolecules may contribute to potential environmental risks vis-à-vis the activities of the peptides. We further point out the evolutional characteristics of the macromolecules and indicate how they can be useful in designing target-specific peptides. Methods are suggested that may help to assess toxic mechanisms of AMPs and possible solutions are discussed to promote the development and application of AMPs in medicine. Even if there is wide exposure to the environment like in the hospital settings, AMPs may instead contribute to prevent healthcare-associated infections so long as ecotoxicological aspects are considered.
Collapse
|
44
|
Konai MM, Bhattacharjee B, Ghosh S, Haldar J. Recent Progress in Polymer Research to Tackle Infections and Antimicrobial Resistance. Biomacromolecules 2018; 19:1888-1917. [PMID: 29718664 DOI: 10.1021/acs.biomac.8b00458] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Global health is increasingly being threatened by the rapid emergence of drug-resistant microbes. The ability of these microbes to form biofilms has further exacerbated the scenario leading to notorious infections that are almost impossible to treat. For addressing this clinical threat, various antimicrobial polymers, polymer-based antimicrobial hydrogels and polymer-coated antimicrobial surfaces have been developed in the recent past. This review aims to discuss such polymer-based antimicrobial strategies with a focus on their current advancement in the field. Antimicrobial polymers, whose designs are inspired from antimicrobial peptides (AMPs), are described with an emphasis on structure-activity analysis. Additionally, antibiofilm activity and in vivo efficacy are delineated to elucidate the real potential of these antimicrobial polymers as possible therapeutics. Antimicrobial hydrogels, prepared from either inherently antimicrobial polymers or biocide-loaded into polymer-derived hydrogel matrix, are elaborated followed by various strategies to engineer polymer-coated antimicrobial surfaces. In the end, the current challenges are accentuated along with future directions for further expansion of the field toward tackling infections and antimicrobial resistance.
Collapse
Affiliation(s)
- Mohini Mohan Konai
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| | - Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560064 , Karnataka , India
| |
Collapse
|
45
|
Wang X, Yan S, Song L, Shi H, Yang H, Luan S, Huang Y, Yin J, Khan AF, Zhao J. Temperature-Responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40930-40939. [PMID: 29111641 DOI: 10.1021/acsami.7b09968] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unlike conventional poly(N-isopropylacrylamide) (PNIPAM)-based surfaces switching from bactericidal activity to bacterial repellency upon decreasing temperature, we developed a hierarchical polymer architecture, which could maintain bactericidal activities at room temperature while presenting bacterial repellency at physiological temperature. In this architecture, a thermoresponsive bactericidal upper layer consisting of PNIPAM-based copolymer and vancomycin (Van) moieties was built on an antifouling poly(sulfobetaine methacrylate) (PSBMA) bottom layer via sequential surface-initiated photoiniferter-mediated polymerization. At room temperature below the lower critical solution temperature (LCST), the PNIPAM-based upper layer was stretchable, facilitating contact killing of bacteria by Van. At physiological temperature (above the LCST), the PNIPAM-based layer collapsed, thus leading to the burial of Van and exposure of bottom PSBMA brushes, finally displaying notable performances in bacterial inhibition, dead bacteria detachment, and biocompatibility, simultaneously. Our strategy provides a novel pathway in the rational design of temperature-sensitive switchable surfaces, which shows great advantages in the real-world infection-resistant applications.
Collapse
Affiliation(s)
- Xianghong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Huawei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology , Defence Road, Off. Raiwind Road, Lahore 54000, Pakistan
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, People's Republic of China
| |
Collapse
|
46
|
|
47
|
Strassburg A, Petranowitsch J, Paetzold F, Krumm C, Peter E, Meuris M, Köller M, Tiller JC. Cross-Linking of a Hydrophilic, Antimicrobial Polycation toward a Fast-Swelling, Antimicrobial Superabsorber and Interpenetrating Hydrogel Networks with Long Lasting Antimicrobial Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36573-36582. [PMID: 28952307 DOI: 10.1021/acsami.7b10049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A hemocompatible, antimicrobial 3,4en-ionene (PBI) derived by polyaddition of trans-1,4-dibromo-2-butene and N,N,N',N'-tetramethyl-1,3-propanediamine was cross-linked via its bromine end groups using tris(2-aminoethyl)amine (TREN) to form a fast-swelling, antimicrobial superabsorber. This superabsorber is taking up the 30-fold of its weight in 60 s and the granulated material is taking up 96-fold of its weight forming a hydrogel. It fully prevents growth of the bacterium Staphylococcus aureus. The PBI network was swollen with 2-hydroxyethyl acrylate and glycerol dimethacrylate followed by photopolymerization to form an interpenetrating hydrogel (IPH) with varying PBI content in the range of 2.0 to 7.8 wt %. The nanophasic structure of the IPH was confirmed by atomic force microscopy and transmission electron microscopy. The bacterial cells of the nosocomial strains Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa are killed on the IPH even at the lowest PBI concentration. The antimicrobial activity was retained after washing the hydrogels for up to 4 weeks. The IPHs show minor leaching of PBI far below its antimicrobial active concentration using a new quantitative test for PBI detection in solution. This leaching was shown to be insufficient to form an inhibition zone and killing bacterial cells in the surroundings of the IPH.
Collapse
Affiliation(s)
- Arne Strassburg
- Chair of Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Johanna Petranowitsch
- Chair of Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Florian Paetzold
- Chair of Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Christian Krumm
- Chair of Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Elvira Peter
- Surgical Research, Bergmannsheil University Hospital, Ruhr-University Bochum , Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Monika Meuris
- Chair of Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | - Manfred Köller
- Surgical Research, Bergmannsheil University Hospital, Ruhr-University Bochum , Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Joerg C Tiller
- Chair of Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund , Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| |
Collapse
|
48
|
Demir B, Broughton RM, Huang TS, Bozack MJ, Worley SD. Polymeric Antimicrobial N-Halamine-Surface Modification of Stainless Steel. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02412] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Buket Demir
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - R. M. Broughton
- Center for Polymers and Advanced Composites, Department of Mechanical
Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - T. S. Huang
- Department of Poultry Science, Auburn University, Auburn, Alabama 36849, United States
| | - M. J. Bozack
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - S. D. Worley
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
49
|
Riga EK, Vöhringer M, Widyaya VT, Lienkamp K. Polymer-Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Long-Term Applications. Macromol Rapid Commun 2017; 38:10.1002/marc.201700216. [PMID: 28846821 PMCID: PMC7611510 DOI: 10.1002/marc.201700216] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/28/2017] [Indexed: 12/22/2022]
Abstract
Contact-active antimicrobial polymer surfaces bear cationic charges and kill or deactivate bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). The exact mechanism of this interaction is still under debate. While cationic antimicrobial polymer surfaces can be very useful for short-term applications, they lose their activity once they are contaminated by a sufficiently thick layer of adhering biomolecules or bacterial cell debris. This layer shields incoming bacteria from the antimicrobially active cationic surface moieties. Besides discussing antimicrobial surfaces, this feature article focuses on recent strategies that were developed to overcome the contamination problem. This includes bifunctional materials with simultaneously presented antimicrobial and protein-repellent moieties; polymer surfaces that can be switched from an antimicrobial, cell-attractive to a cell-repellent state; polymer surfaces that can be regenerated by enzyme action; degradable antimicrobial polymers; and antimicrobial polymer surfaces with removable top layers.
Collapse
Affiliation(s)
- E. K. Riga
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - M. Vöhringer
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - V. T. Widyaya
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - K. Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
50
|
Porosa L, Caschera A, Bedard J, Mocella A, Ronan E, Lough AJ, Wolfaardt G, Foucher DA. UV-Curable Contact Active Benzophenone Terminated Quaternary Ammonium Antimicrobials for Applications in Polymer Plastics and Related Devices. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27491-27503. [PMID: 28777541 DOI: 10.1021/acsami.7b07363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A series of UV active benzophenone ([C6H5COC6H4-O-(CH2)n-N+Me2R][X-]; 4, R = C12H25, n = 3, X- = Br-; 5a-c, R = C18H37, n = 3, X- = Cl-, Br-, I-; 6a-c, R = C18H37, n = 4, X- = Cl-, Br-, I-; 7a-c, R = C18H37, n = 6, X- = Cl-, Br-, I-) terminated C12 and C18 quaternary ammonium salts (QACs) were prepared by thermal or microwave-driven Menshutkin protocols of the appropriate benzophenone alkyl halide (1a-c, 2a-c, 3a-c) with the corresponding dodecyl- or octadecyl N,N-dimethylamine. All new compounds were characterized by NMR spectroscopy, HRMS spectrometry, and, in one instance (4), by single-crystal X-ray crystallography. Representative C12 and C18 benzophenone QACs were formulated into 1% (w/v) water or water/ethanol-based aerosol spray coatings and then UV-cured onto plastic substrates (polypropylene, polyethylene, polystyrene, polyvinyl chloride, and polyether ether ketone) with exposure to low to moderate doses of UV (20-30 J cm-2). Confirmation as to the presence of the coatings was detected by advancing water contact angle measurements, which revealed a more hydrophilic surface after coating. Further confirmation was gained by X-ray photoelectron spectroscopy analysis, time of flight secondary ion mass spectrometry, and bromophenol blue staining, all of which showed the presence of the attached quaternary ammonium molecule. Analysis of surfaces treated with the C18 benzophenone 5b by atomic force microscopy and surface profilometry revealed a coating thickness of ∼350 nm. The treated samples along with controls were then evaluated for their antimicrobial efficacy against Gram-positive (Arthrobacter sp., Listeria monocytogenes) and Gram-negative (Pseudomonas aeruginosa) bacteria at a solid/air interface using the large drop inoculum protocol; this technique gave no evidence for cell adhesion after a 3 h time frame. These antimicrobial materials show promise for their use as coatings on plastic biomedical devices with the aim of preventing biofilm formation and preventing the spread of hospital acquired infections.
Collapse
Affiliation(s)
- Lukas Porosa
- Department of Chemistry and Biology, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Alexander Caschera
- Department of Chemistry and Biology, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Joseph Bedard
- Department of Chemistry and Biology, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Amanda Mocella
- Department of Chemistry and Biology, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Evan Ronan
- Department of Chemistry and Biology, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Alan J Lough
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gideon Wolfaardt
- Department of Chemistry and Biology, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Stellenbosch University Water Institute Secretariat, Faculty of Natural Science, Stellenbosch Central , Stellenbosch 7599, South Africa
| | - Daniel A Foucher
- Department of Chemistry and Biology, Ryerson University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|