1
|
Cong M, Carvalho Gontijo Weber R, Sakane S, Zhang V, Jiang C, Taura K, Kodama Y, DeMinicis S, Ganguly S, Brafman D, Chien S, Kramer M, Lupher M, Brenner DA, Xu J, Kisseleva T. Serum amyloid P (PTX2) attenuates hepatic fibrosis in mice by inhibiting the activation of fibrocytes and HSCs. Hepatol Commun 2024; 8:e0557. [PMID: 39761005 PMCID: PMC11495776 DOI: 10.1097/hc9.0000000000000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes. Recombinant human serum amyloid P (hSAP), a natural inhibitor of fibrocyte activation into myofibroblasts, was shown to ameliorate experimental renal, lung, skin, and cardiac fibrosis. We investigated if hSAP can ameliorate the development of liver fibrosis of different etiologies. METHODS Reporter Collagen-α(1)I-GFP mice were subjected to cholestatic liver injury (by ligation of the common bile duct) or toxic liver injury (by carbon tetrachloride administration) and treated prophylactically or therapeutically with hSAP (12.5 μg/g). Primary cultures of mouse fibrocytes and HSCs were stimulated to activate with or without incubation with hSAP. RESULTS We demonstrate that treatment with hSAP suppressed hepatic fibrosis by ≈50% through dual mechanisms. hSAP prevented the recruitment of fibrocytes into the injured liver and their differentiation into myofibroblasts. Remarkably, hSAP also inhibited the activation of HSCs into myofibroblasts. CONCLUSIONS Since HSCs serve as a major source of collagen type I-producing myofibroblasts and fibrocytes stimulate fibrosis, hSAP may become part of the therapy of liver fibrosis of different etiologies.
Collapse
Affiliation(s)
- Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Raquel Carvalho Gontijo Weber
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - Sadatsugu Sakane
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Vivian Zhang
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Surgery, University of California, San Diego, La Jolla, California, USA
| | - Chunyan Jiang
- Department of Internal Medicine and Geriatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kojiro Taura
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, Osaka, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Samuele DeMinicis
- Department of Gastroenterology, Augusto Murri Hospital, Polytechnic University of Marche, Ancona, Italy
| | - Souradipta Ganguly
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Shu Chien
- Jacobs School of Engineering, University of California, San Diego, La Jolla, California, USA
| | - Michael Kramer
- Quanta Therapeutics Inc., Radnor Life Sciences Center, Philadelphia, Pennsylvania, USA
| | - Mark Lupher
- Adverum Biotechnologies, Inc. Redwoods, California, USA
| | - David A. Brenner
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Sanford Burnham Prebys, La Jolla, California, USA
| | - Jun Xu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Gilead Sciences, Foster City, California, USA
| | - Tatiana Kisseleva
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Ryoo H, Kimmel H, Rondo E, Underhill GH. Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications. Bioeng Transl Med 2024; 9:e10627. [PMID: 38818120 PMCID: PMC11135158 DOI: 10.1002/btm2.10627] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 06/01/2024] Open
Abstract
Cellular phenotypes and functional responses are modulated by the signals present in their microenvironment, including extracellular matrix (ECM) proteins, tissue mechanical properties, soluble signals and nutrients, and cell-cell interactions. To better recapitulate and analyze these complex signals within the framework of more physiologically relevant culture models, high throughput culture platforms can be transformative. High throughput methodologies enable scientists to extract increasingly robust and broad datasets from individual experiments, screen large numbers of conditions for potential hits, better qualify and predict responses for preclinical applications, and reduce reliance on animal studies. High throughput cell culture systems require uniformity, assay miniaturization, specific target identification, and process simplification. In this review, we detail the various techniques that researchers have used to face these challenges and explore cellular responses in a high throughput manner. We highlight several common approaches including two-dimensional multiwell microplates, microarrays, and microfluidic cell culture systems as well as unencapsulated and encapsulated three-dimensional high throughput cell culture systems, featuring multiwell microplates, micromolds, microwells, microarrays, granular hydrogels, and cell-encapsulated microgels. We also discuss current applications of these high throughput technologies, namely stem cell sourcing, drug discovery and predictive toxicology, and personalized medicine, along with emerging opportunities and future impact areas.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Hannah Kimmel
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Evi Rondo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Gregory H. Underhill
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
3
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Brougham-Cook A, Jain I, Kukla DA, Masood F, Kimmel H, Ryoo H, Khetani SR, Underhill GH. High throughput interrogation of human liver stellate cells reveals microenvironmental regulation of phenotype. Acta Biomater 2022; 138:240-253. [PMID: 34800715 PMCID: PMC8738161 DOI: 10.1016/j.actbio.2021.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/17/2023]
Abstract
Liver fibrosis is a common feature of progressive liver disease and is manifested as a dynamic series of alterations in both the biochemical and biophysical properties of the liver. Hepatic stellate cells (HSCs) reside within the perisinusoidal space of the liver sinusoid and are one of the main drivers of liver fibrosis, yet it remains unclear how changes to the sinusoidal microenvironment impact HSC phenotype in the context of liver fibrosis. Cellular microarrays were used to examine and deconstruct the impacts of bio-chemo-mechanical changes on activated HSCs in vitro. Extracellular matrix (ECM) composition and stiffness were found to act individually and in combination to regulate HSC fibrogenic phenotype and proliferation. Hyaluronic acid and collagen III promoted elevated collagen I expression while collagen IV mediated a decrease. Previously activated HSCs exhibited reduced lysyl oxidase (Lox) expression as array substrate stiffness increased, with less dependence on ECM composition. Collagens III and IV increased HSC proliferation, whereas hyaluronic acid had the opposite effect. Meta-analysis performed on these data revealed distinct phenotypic clusters (e.g. low fibrogenesis/high proliferation) as a direct function of their microenvironmental composition. Notably, soft microenvironments mimicking healthy tissue (1 kPa), promoted higher levels of intracellular collagen I and Lox expression in activated HSCs, compared to stiff microenvironments mimicking fibrotic tissue (25 kPa). Collectively, these data suggest potential HSC functional adaptations in response to specific bio-chemo-mechanical changes relevant towards the development of therapeutic interventions. These findings also underscore the importance of the microenvironment when interrogating HSC behavior in healthy, disease, and treatment settings. STATEMENT OF SIGNIFICANCE: In this work we utilized high-throughput cellular microarray technology to systematically interrogate the complex interactions between HSCs and their microenvironment in the context of liver fibrosis. We observed that HSC phenotype is regulated by ECM composition and stiffness, and that these phenotypes can be classified into distinct clusters based on their microenvironmental context. Moreover, the range of these phenotypic responses to microenvironmental stimuli is substantial and a direct consequence of the combinatorial pairing of ECM protein and stiffness signals. We also observed a novel role for microenvironmental context in affecting HSC responses to potential fibrosis therapeutics.
Collapse
Affiliation(s)
- Aidan Brougham-Cook
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| | - Ishita Jain
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| | - David A Kukla
- University of Illinois Chicago, Department of Bioengineering, United States.
| | - Faisal Masood
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| | - Hannah Kimmel
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| | - Hyeon Ryoo
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| | - Salman R Khetani
- University of Illinois Chicago, Department of Bioengineering, United States.
| | - Gregory H Underhill
- University of Illinois at Urbana-Champaign, Department of Bioengineering, 1406W Green St, Urbana, IL 61801, United States.
| |
Collapse
|
5
|
Integrin β1 orchestrates the abnormal cell-matrix attachment and invasive behaviour of E-cadherin dysfunctional cells. Gastric Cancer 2022; 25:124-137. [PMID: 34486077 PMCID: PMC8732838 DOI: 10.1007/s10120-021-01239-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumour progression relies on the ability of cancer cells to penetrate and invade neighbouring tissues. E-cadherin loss is associated with increased cell invasion in gastric carcinoma, and germline mutations of the E-cadherin gene are causative of hereditary diffuse gastric cancer. Although E-cadherin dysfunction impacts cell-cell adhesion, cell dissemination also requires an imbalance of adhesion to the extracellular matrix (ECM). METHODS To identify ECM components and receptors relevant for adhesion of E-cadherin dysfunctional cells, we implemented a novel ECM microarray platform coupled with molecular interaction networks. The functional role of putative candidates was determined by combining micropattern traction microscopy, protein modulation and in vivo approaches, as well as transcriptomic data of 262 gastric carcinoma samples, retrieved from the cancer genome atlas (TCGA). RESULTS Here, we show that E-cadherin mutations induce an abnormal interplay of cells with specific components of the ECM, which encompasses increased traction forces and Integrin β1 activation. Integrin β1 synergizes with E-cadherin dysfunction, promoting cell scattering and invasion. The significance of the E-cadherin-Integrin β1 crosstalk was validated in Drosophila models and found to be consistent with evidence from human gastric carcinomas, where increased tumour grade and poor survival are associated with low E-cadherin and high Integrin β1 levels. CONCLUSIONS Integrin β1 is a key mediator of invasion in carcinomas with E-cadherin impairment and should be regarded as a biomarker of poor prognosis in gastric cancer.
Collapse
|
6
|
Lee J, Ung A, Kim H, Lee K, Cho HJ, Bandaru P, Ahadian S, Dokmeci MR, Khademhosseini A. Engineering liver microtissues to study the fusion of HepG2 with mesenchymal stem cells and invasive potential of fused cells. Biofabrication 2021; 14. [PMID: 34740205 DOI: 10.1088/1758-5090/ac36de] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence from cancer cell fusion with different cell types in the tumor microenvironment has suggested a probable mechanism for how metastasis-initiating cells could be generated in tumors. Although human mesenchymal stem cells (hMSCs) have been known as promising candidates to create hybrid cells with cancer cells, the role of hMSCs in fusion with cancer cells is still controversial. Here, we fabricated a liver-on-a-chip platform to monitor the fusion of liver hepatocellular cells (HepG2) with hMSCs and study their invasive potential. We demonstrated that hMSCs might play dual roles in HepG2 spheroids. The analysis of tumor growth with different fractions of hMSCs in HepG2 spheroids revealed hMSCs' role in preventing HepG2 growth and proliferation, while the hMSCs presented in the HepG2 spheroids led to the generation of HepG2-hMSC hybrid cells with much higher invasiveness compared to HepG2. These invasive HepG2-hMSC hybrid cells expressed high levels of markers associated with stemness, proliferation, epithelial to mesenchymal transition, and matrix deposition, which corresponded to the expression of these markers for hMSCs escaping from hMSC spheroids. In addition, these fused cells were responsible for collective invasion following HepG2 by depositing Collagen I and Fibronectin in their surrounding microenvironment. Furthermore, we showed that hepatic stellate cells (HSCs) could also be fused with HepG2, and the HepG2-HSC hybrid cells possessed similar features to those from HepG2-hMSC fusion. This fusion of HepG2 with liver-resident HSCs may propose a new potential mechanism of hepatic cancer metastasis.
Collapse
Affiliation(s)
- Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Aly Ung
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Hanjun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - KangJu Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Hyun-Jong Cho
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Praveen Bandaru
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States of America.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Radiological Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, United States of America.,Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|
7
|
Tang LJW, Zaseela A, Toh CCM, Adine C, Aydar AO, Iyer NG, Fong ELS. Engineering stromal heterogeneity in cancer. Adv Drug Deliv Rev 2021; 175:113817. [PMID: 34087326 DOI: 10.1016/j.addr.2021.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 02/09/2023]
Abstract
Based on our exponentially increasing knowledge of stromal heterogeneity from advances in single-cell technologies, the notion that stromal cell types exist as a spectrum of unique subpopulations that have specific functions and spatial distributions in the tumor microenvironment has significant impact on tumor modeling for drug development and personalized drug testing. In this Review, we discuss the importance of incorporating stromal heterogeneity and tumor architecture, and propose an overall approach to guide the reconstruction of stromal heterogeneity in vitro for tumor modeling. These next-generation tumor models may support the development of more precise drugs targeting specific stromal cell subpopulations, as well as enable improved recapitulation of patient tumors in vitro for personalized drug testing.
Collapse
Affiliation(s)
- Leon Jia Wei Tang
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ayshath Zaseela
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Christabella Adine
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore
| | - Abdullah Omer Aydar
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore.
| | - Eliza Li Shan Fong
- Department of Biomedical Engineering, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Underhill GH, Khetani SR. Emerging trends in modeling human liver disease in vitro. APL Bioeng 2019; 3:040902. [PMID: 31893256 PMCID: PMC6930139 DOI: 10.1063/1.5119090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The liver executes 500+ functions, such as protein synthesis, xenobiotic metabolism, bile production, and metabolism of carbohydrates/fats/proteins. Such functions can be severely degraded by drug-induced liver injury, nonalcoholic fatty liver disease, hepatitis B and viral infections, and hepatocellular carcinoma. These liver diseases, which represent a significant global health burden, are the subject of novel drug discovery by the pharmaceutical industry via the use of in vitro models of the human liver, given significant species-specific differences in disease profiles and drug outcomes. Isolated primary human hepatocytes (PHHs) are a physiologically relevant cell source to construct such models; however, these cells display a rapid decline in the phenotypic function within conventional 2-dimensional monocultures. To address such a limitation, several engineered platforms have been developed such as high-throughput cellular microarrays, micropatterned cocultures, self-assembled spheroids, bioprinted tissues, and perfusion devices; many of these platforms are being used to coculture PHHs with liver nonparenchymal cells to model complex cell cross talk in liver pathophysiology. In this perspective, we focus on the utility of representative platforms for mimicking key features of liver dysfunction in the context of chronic liver diseases and liver cancer. We further discuss pending issues that will need to be addressed in this field moving forward. Collectively, these in vitro liver disease models are being increasingly applied toward the development of new therapeutics that display an optimal balance of safety and efficacy, with a focus on expediting development, reducing high costs, and preventing harm to patients.
Collapse
Affiliation(s)
- Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Salman R. Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
9
|
Muckom R, McFarland S, Yang C, Perea B, Gentes M, Murugappan A, Tran E, Dordick JS, Clark DS, Schaffer DV. High-throughput combinatorial screening reveals interactions between signaling molecules that regulate adult neural stem cell fate. Biotechnol Bioeng 2019; 116:193-205. [PMID: 30102775 PMCID: PMC6289657 DOI: 10.1002/bit.26815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022]
Abstract
Advancing our knowledge of how neural stem cell (NSC) behavior in the adult hippocampus is regulated has implications for elucidating basic mechanisms of learning and memory as well as for neurodegenerative disease therapy. To date, numerous biochemical cues from the endogenous hippocampal NSC niche have been identified as modulators of NSC quiescence, proliferation, and differentiation; however, the complex repertoire of signaling factors within stem cell niches raises the question of how cues act in combination with one another to influence NSC physiology. To help overcome experimental bottlenecks in studying this question, we adapted a high-throughput microculture system, with over 500 distinct microenvironments, to conduct a systematic combinatorial screen of key signaling cues and collect high-content phenotype data on endpoint NSC populations. This novel application of the platform consumed only 0.2% of reagent volumes used in conventional 96-well plates, and resulted in the discovery of numerous statistically significant interactions among key endogenous signals. Antagonistic relationships between fibroblast growth factor 2, transforming growth factor β (TGF-β), and Wnt-3a were found to impact NSC proliferation and differentiation, whereas a synergistic relationship between Wnt-3a and Ephrin-B2 on neuronal differentiation and maturation was found. Furthermore, TGF-β and bone morphogenetic protein 4 combined with Wnt-3a and Ephrin-B2 resulted in a coordinated effect on neuronal differentiation and maturation. Overall, this study offers candidates for further elucidation of significant mechanisms guiding NSC fate choice and contributes strategies for enhancing control over stem cell-based therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Riya Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | | | - Chun Yang
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - Brian Perea
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - Megan Gentes
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - Abirami Murugappan
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - Eric Tran
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, CA 94720
- Department of Bioengineering, UC Berkeley, CA 94720
| |
Collapse
|
10
|
Underhill GH, Khetani SR. Advances in Engineered Human Liver Platforms for Drug Metabolism Studies. Drug Metab Dispos 2018; 46:1626-1637. [PMID: 30135245 PMCID: PMC6199629 DOI: 10.1124/dmd.118.083295] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022] Open
Abstract
Metabolism in the liver often determines the overall clearance rates of many pharmaceuticals. Furthermore, induction or inhibition of the liver drug metabolism enzymes by perpetrator drugs can influence the metabolism of victim drugs (drug-drug interactions). Therefore, determining liver-drug interactions is critical during preclinical drug development. Unfortunately, studies in animals are often of limited value because of significant differences in the metabolic pathways of the liver across different species. To mitigate such limitations, the pharmaceutical industry uses a continuum of human liver models, ranging from microsomes to transfected cell lines and cultures of primary human hepatocytes (PHHs). Of these models, PHHs provide a balance of high-throughput testing capabilities together with a physiologically relevant cell type that exhibits all the characteristic enzymes, cofactors, and transporters. However, PHH monocultures display a rapid decline in metabolic capacity. Consequently, bioengineers have developed several tools, such as cellular microarrays, micropatterned cocultures, self-assembled and bioprinted spheroids, and perfusion devices, to enhance and stabilize PHH functions for ≥2 weeks. Many of these platforms have been validated for drug studies, whereas some have been adapted to include liver nonparenchymal cells that can influence hepatic drug metabolism in health and disease. Here, we focus on the design features of such platforms and their representative drug metabolism validation datasets, while discussing emerging trends. Overall, the use of engineered human liver platforms in the pharmaceutical industry has been steadily rising over the last 10 years, and we anticipate that these platforms will become an integral part of drug development with continued commercialization and validation for routine screening use.
Collapse
Affiliation(s)
- Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Ding Y, Xu X, Sharma S, Floren M, Stenmark K, Bryant SJ, Neu CP, Tan W. Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle. Acta Biomater 2018; 74:121-130. [PMID: 29753912 DOI: 10.1016/j.actbio.2018.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/22/2023]
Abstract
The ability to assess changes in smooth muscle contractility and pharmacological responsiveness in normal or pathological-relevant vascular tissue environments is critical to enable vascular drug discovery. However, major challenges remain in both capturing the complexity of in vivo vascular remodeling and evaluating cell contractility in complex, tissue-like environments. Herein, we developed a biomimetic fibrous hydrogel with tunable structure, stiffness, and composition to resemble the native vascular tissue environment. This hydrogel platform was further combined with the combinatory protein array technology as well as advanced approaches to measure cell mechanics and contractility, thus permitting evaluation of smooth muscle functions in a variety of tissue-like microenvironments. Our results demonstrated that biomimetic fibrous structure played a dominant role in smooth muscle function, while the presentation of adhesion proteins co-regulated it to various degrees. Specifically, fibre networks enabled cell infiltration and upregulated expression of actomyosin proteins in contrast to flat hydrogels. Remarkably, fibrous structure and physiologically relevant stiffness of hydrogels cooperatively enhanced smooth muscle contractility and pharmacological responses to vasoactive drugs at both the single cell and intact tissue levels. Together, this study is the first to demonstrate alterations of human vascular smooth muscle contractility and pharmacological responsiveness in biomimetic soft, fibrous environments with a cellular array platform. The integrated platform produced here could enable investigations for pathobiology and pharmacological interventions by developing a broad range of patho-physiologically relevant in vitro tissue models. STATEMENT OF SIGNIFICANCE Engineering functional smooth muscle in vitro holds the great potential for diseased tissue replacement and drug testing. A central challenge is recapitulating the smooth muscle contractility and pharmacological responses given its significant phenotypic plasticity in response to changes in environment. We present a biomimetic fibrous hydrogel with tunable structure, stiffness, and composition that enables the creation of functional smooth muscle tissues in the native-like vascular tissue microenvironment. Such fibrous hydrogel is further combined with the combinatory protein array technology to construct a cellular array for evaluation of smooth muscle phenotype, contraction, and cell mechanics. The integrated platform produced here could be promising for developing a broad range of normal or diseased in vitro tissue models.
Collapse
Affiliation(s)
- Yonghui Ding
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Sadhana Sharma
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Michael Floren
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA; Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA; BioFrontiers Institute, Material Science and Engineering Program, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
12
|
Underhill GH, Khetani SR. Bioengineered Liver Models for Drug Testing and Cell Differentiation Studies. Cell Mol Gastroenterol Hepatol 2018; 5:426-439.e1. [PMID: 29675458 PMCID: PMC5904032 DOI: 10.1016/j.jcmgh.2017.11.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022]
Abstract
In vitro models of the human liver are important for the following: (1) mitigating the risk of drug-induced liver injury to human beings, (2) modeling human liver diseases, (3) elucidating the role of single and combinatorial microenvironmental cues on liver cell function, and (4) enabling cell-based therapies in the clinic. Methods to isolate and culture primary human hepatocytes (PHHs), the gold standard for building human liver models, were developed several decades ago; however, PHHs show a precipitous decline in phenotypic functions in 2-dimensional extracellular matrix-coated conventional culture formats, which does not allow chronic treatment with drugs and other stimuli. The development of several engineering tools, such as cellular microarrays, protein micropatterning, microfluidics, biomaterial scaffolds, and bioprinting, now allow precise control over the cellular microenvironment for enhancing the function of both PHHs and induced pluripotent stem cell-derived human hepatocyte-like cells; long-term (4+ weeks) stabilization of hepatocellular function typically requires co-cultivation with liver-derived or non-liver-derived nonparenchymal cell types. In addition, the recent development of liver organoid culture systems can provide a strategy for the enhanced expansion of therapeutically relevant cell types. Here, we discuss advances in engineering approaches for constructing in vitro human liver models that have utility in drug screening and for determining microenvironmental determinants of liver cell differentiation/function. Design features and validation data of representative models are presented to highlight major trends followed by the discussion of pending issues that need to be addressed. Overall, bioengineered liver models have significantly advanced our understanding of liver function and injury, which will prove useful for drug development and ultimately cell-based therapies.
Collapse
Key Words
- 3D, 3-dimensional
- BAL, bioartificial liver
- Bioprinting
- CRP, C-reactive protein
- CYP450, cytochrome P450
- Cellular Microarrays
- DILI, drug-induced liver injury
- ECM, extracellular matrix
- HSC, hepatic stellate cell
- Hepatocytes
- IL, interleukin
- KC, Kupffer cell
- LSEC, liver sinusoidal endothelial cell
- MPCC, micropatterned co-culture
- Microfluidics
- Micropatterned Co-Cultures
- NPC, nonparenchymal cell
- PEG, polyethylene glycol
- PHH, primary human hepatocyte
- Spheroids
- iHep, induced pluripotent stem cell-derived human hepatocyte-like cell
- iPS, induced pluripotent stem
Collapse
Affiliation(s)
- Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Salman R. Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Meseguer-Ripolles J, Khetani SR, Blanco JG, Iredale M, Hay DC. Pluripotent Stem Cell-Derived Human Tissue: Platforms to Evaluate Drug Metabolism and Safety. AAPS J 2017; 20:20. [PMID: 29270863 PMCID: PMC5804345 DOI: 10.1208/s12248-017-0171-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Despite the improvements in drug screening, high levels of drug attrition persist. Although high-throughput screening platforms permit the testing of compound libraries, poor compound efficacy or unexpected organ toxicity are major causes of attrition. Part of the reason for drug failure resides in the models employed, most of which are not representative of normal organ biology. This same problem affects all the major organs during drug development. Hepatotoxicity and cardiotoxicity are two interesting examples of organ disease and can present in the late stages of drug development, resulting in major cost and increased risk to the patient. Currently, cell-based systems used within industry rely on immortalized or primary cell lines from donated tissue. These models possess significant advantages and disadvantages, but in general display limited relevance to the organ of interest. Recently, stem cell technology has shown promise in drug development and has been proposed as an alternative to current industrial systems. These offerings will provide the field with exciting new models to study human organ biology at scale and in detail. We believe that the recent advances in production of stem cell-derived hepatocytes and cardiomyocytes combined with cutting-edge engineering technologies make them an attractive alternative to current screening models for drug discovery. This will lead to fast failing of poor drugs earlier in the process, delivering safer and more efficacious medicines for the patient.
Collapse
Affiliation(s)
| | - Salman R Khetani
- University of Illinois at Chicago, Bioengineering (MC 063) 851 S Morgan St, 218 SEO, Chicago, Illinois, 60607, USA
| | - Javier G Blanco
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Mairi Iredale
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
15
|
Zhang D, Lee J, Kilian KA. Synthetic Biomaterials to Rival Nature's Complexity-a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis. Adv Healthc Mater 2017; 6. [PMID: 28841770 DOI: 10.1002/adhm.201700535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Cells in tissue receive a host of soluble and insoluble signals in a context-dependent fashion, where integration of these cues through a complex network of signal transduction cascades will define a particular outcome. Biomaterials scientists and engineers are tasked with designing materials that can at least partially recreate this complex signaling milieu towards new materials for biomedical applications. In this progress report, recent advances in high throughput techniques and high content imaging approaches that are facilitating the discovery of efficacious biomaterials are described. From microarrays of synthetic polymers, peptides and full-length proteins, to designer cell culture systems that present multiple biophysical and biochemical cues in tandem, it is discussed how the integration of combinatorics with high content imaging and analysis is essential to extracting biologically meaningful information from large scale cellular screens to inform the design of next generation biomaterials.
Collapse
Affiliation(s)
- Douglas Zhang
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Junmin Lee
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Bioengineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| |
Collapse
|
16
|
Combinatorial Extracellular Matrix Microenvironments for Probing Endothelial Differentiation of Human Pluripotent Stem Cells. Sci Rep 2017; 7:6551. [PMID: 28747756 PMCID: PMC5529516 DOI: 10.1038/s41598-017-06986-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/21/2017] [Indexed: 12/02/2022] Open
Abstract
Endothelial cells derived from human pluripotent stem cells are a promising cell type for enhancing angiogenesis in ischemic cardiovascular tissues. However, our understanding of microenvironmental factors that modulate the process of endothelial differentiation is limited. We examined the role of combinatorial extracellular matrix (ECM) proteins on endothelial differentiation systematically using an arrayed microscale platform. Human pluripotent stem cells were differentiated on the arrayed ECM microenvironments for 5 days. Combinatorial ECMs composed of collagen IV + heparan sulfate + laminin (CHL) or collagen IV + gelatin + heparan sulfate (CGH) demonstrated significantly higher expression of CD31, compared to single-factor ECMs. These results were corroborated by fluorescence activated cell sorting showing a 48% yield of CD31+/VE-cadherin+ cells on CHL, compared to 27% on matrigel. To elucidate the signaling mechanism, a gene expression time course revealed that VE-cadherin and FLK1 were upregulated in a dynamically similar manner as integrin subunit β3 (>50 fold). To demonstrate the functional importance of integrin β3 in promoting endothelial differentiation, the addition of neutralization antibody inhibited endothelial differentiation on CHL-modified dishes by >50%. These data suggest that optimal combinatorial ECMs enhance endothelial differentiation, compared to many single-factor ECMs, in part through an integrin β3-mediated pathway.
Collapse
|
17
|
Ding Y, Floren M, Tan W. High-Throughput Screening of Vascular Endothelium-Destructive or Protective Microenvironments: Cooperative Actions of Extracellular Matrix Composition, Stiffness, and Structure. Adv Healthc Mater 2017; 6:10.1002/adhm.201601426. [PMID: 28337850 PMCID: PMC6707073 DOI: 10.1002/adhm.201601426] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/16/2017] [Indexed: 01/13/2023]
Abstract
Pathological modification of the subendothelial extracellular matrix (ECM) has closely been associated with endothelial activation and subsequent cardiovascular disease progression. To understand regulatory mechanisms of these matrix modifications, the majority of previous efforts have focused on the modulation of either chemical composition or matrix stiffness on 2D smooth surfaces without simultaneously probing their cooperative effects on endothelium function on in vivo like 3D fibrous matrices. To this end, a high-throughput, combinatorial microarray platform on 2D and 3D hydrogel settings to resemble the compositions, stiffness, and structure of healthy and diseased subendothelial ECM has been established, and further their respective and combined effects on endothelial attachment, proliferation, inflammation, and junctional integrity have been investigated. For the first time, the results demonstrate that 3D fibrous structure resembling native ECM is a critical endothelium-protective microenvironmental factor by maintaining the stable, quiescent endothelium with strong resistance to proinflammatory stimuli. It is also revealed that matrix stiffening, in concert with chemical compositions resembling diseased ECM, particularly collagen III, could aggravate activation of nuclear factor kappa B, disruption of endothelium integrity, and susceptibility to proinflammatory stimuli. This study elucidates cooperative effects of various microenvironmental factors on endothelial activation and sheds light on new in vitro model for cardiovascular diseases.
Collapse
Affiliation(s)
- Yonghui Ding
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Michael Floren
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO, 80309, USA
- Cardiovascular Pulmonary Research and Developmental Lung Biology Laboratories, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
18
|
Kaylan KB, Kourouklis AP, Underhill GH. A High-throughput Cell Microarray Platform for Correlative Analysis of Cell Differentiation and Traction Forces. J Vis Exp 2017:55362. [PMID: 28287589 PMCID: PMC5408965 DOI: 10.3791/55362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microfabricated cellular microarrays, which consist of contact-printed combinations of biomolecules on an elastic hydrogel surface, provide a tightly controlled, high-throughput engineered system for measuring the impact of arrayed biochemical signals on cell differentiation. Recent efforts using cell microarrays have demonstrated their utility for combinatorial studies in which many microenvironmental factors are presented in parallel. However, these efforts have focused primarily on investigating the effects of biochemical cues on cell responses. Here, we present a cell microarray platform with tunable material properties for evaluating both cell differentiation by immunofluorescence and biomechanical cell-substrate interactions by traction force microscopy. To do so, we have developed two different formats utilizing polyacrylamide hydrogels of varying Young's modulus fabricated on either microscope slides or glass-bottom Petri dishes. We provide best practices and troubleshooting for the fabrication of microarrays on these hydrogel substrates, the subsequent cell culture on microarrays, and the acquisition of data. This platform is well-suited for use in investigations of biological processes for which both biochemical (e.g., extracellular matrix composition) and biophysical (e.g., substrate stiffness) cues may play significant, intersecting roles.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Department of Bioengineering, University of Illinois at Urbana-Champaign
| | | | | |
Collapse
|
19
|
Hou L, Coller J, Natu V, Hastie TJ, Huang NF. Combinatorial extracellular matrix microenvironments promote survival and phenotype of human induced pluripotent stem cell-derived endothelial cells in hypoxia. Acta Biomater 2016; 44:188-99. [PMID: 27498178 DOI: 10.1016/j.actbio.2016.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/14/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Recent developments in cell therapy using human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) hold great promise for treating ischemic cardiovascular tissues. However, poor post-transplantation viability largely limits the potential of stem cell therapy. Although the extracellular matrix (ECM) has become increasingly recognized as an important cell survival factor, conventional approaches primarily rely on single ECMs for in vivo co-delivery with cells, even though the endothelial basement membrane is comprised of a milieu of different ECMs. To address this limitation, we developed a combinatorial ECM microarray platform to simultaneously interrogate hundreds of micro-scale multi-component chemical compositions of ECMs on iPSC-EC response. After seeding iPSC-ECs onto ECM microarrays, we performed high-throughput analysis of the effects of combinatorial ECMs on iPSC-EC survival, endothelial phenotype, and nitric oxide production under conditions of hypoxia (1% O2) and reduced nutrients (1% fetal bovine serum), as is present in ischemic injury sites. Using automated image acquisition and analysis, we identified combinatorial ECMs such as collagen IV+gelatin+heparan sulfate+laminin and collagen IV+fibronectin+gelatin+heparan sulfate+laminin that significantly improved cell survival, nitric oxide production, and CD31 phenotypic expression, in comparison to single-component ECMs. These results were further validated in conventional cell culture platforms and within three-dimensional scaffolds. Furthermore, this approach revealed complex ECM interactions and non-intuitive cell behavior that otherwise could not be easily determined using conventional cell culture platforms. Together these data suggested that iPSC-EC delivery within optimal combinatorial ECMs may improve their survival and function under the condition of hypoxia with reduced nutrients. STATEMENT OF SIGNIFICANCE Human endothelial cells (ECs) derived from induced pluripotent stem cells (iPSC-ECs) are promising for treating diseases associated with reduced nutrient and oxygen supply like heart failure. However, diminished iPSC-EC survival after implantation into diseased environments limits their therapeutic potential. Since native ECs interact with numerous extracellular matrix (ECM) proteins for functional maintenance, we hypothesized that combinatorial ECMs may improve cell survival and function under conditions of reduced oxygen and nutrients. We developed a high-throughput system for simultaneous screening of iPSC-ECs cultured on multi-component ECM combinations under the condition of hypoxia and reduced serum. Using automated image acquisition and analytical algorithms, we identified combinatorial ECMs that significantly improved cell survival and function, in comparison to single ECMs. Furthermore, this approach revealed complex ECM interactions and non-intuitive cell behavior that otherwise could not be easily determined.
Collapse
|
20
|
Larrick JW, Larrick JW, Mendelsohn AR. Reversal of Aged Muscle Stem Cell Dysfunction. Rejuvenation Res 2016; 19:423-429. [PMID: 27612523 DOI: 10.1089/rej.2016.1875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The loss of muscle stem cell (MuSC) numbers and function in the elderly results in a dramatic delay or incomplete repair of muscle following injury or surgery. Prolonged immobility can exacerbate the loss of muscle mass with increased morbidity of affected patients. Stem cells and their niche cooperate to regulate the activation, self-renewal, differentiation, and return to quiescence of MuSCs. Extracellular matrix fibronectin (FN) and MuSC β1-integrin have been identified as critical factors in the dysfunction of aging muscle. Reduced amounts and/or function of β1-integrin and fibronectin are critical factors in the decline in MuSC regeneration and homeostasis with aging. Replacement of fibronectin and/or stimulation of β1-integrin may provide a novel means to augment the decline in MuSC function with age.
Collapse
Affiliation(s)
- James W Larrick
- 1 Panorama Research Institute, Sunnyvale, California.,2 Regenerative Sciences Institute, Sunnyvale, California
| | | | - Andrew R Mendelsohn
- 1 Panorama Research Institute, Sunnyvale, California.,2 Regenerative Sciences Institute, Sunnyvale, California
| |
Collapse
|
21
|
Kourouklis AP, Kaylan KB, Underhill GH. Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells. Biomaterials 2016; 99:82-94. [DOI: 10.1016/j.biomaterials.2016.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
|
22
|
Lukjanenko L, Jung MJ, Hegde N, Perruisseau-Carrier C, Migliavacca E, Rozo M, Karaz S, Jacot G, Schmidt M, Li L, Metairon S, Raymond F, Lee U, Sizzano F, Wilson DH, Dumont NA, Palini A, Fässler R, Steiner P, Descombes P, Rudnicki MA, Fan CM, von Maltzahn J, Feige JN, Bentzinger CF. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med 2016; 22:897-905. [PMID: 27376579 DOI: 10.1038/nm.4126] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
Age-related changes in the niche have long been postulated to impair the function of somatic stem cells. Here we demonstrate that the aged stem cell niche in skeletal muscle contains substantially reduced levels of fibronectin (FN), leading to detrimental consequences for the function and maintenance of muscle stem cells (MuSCs). Deletion of the gene encoding FN from young regenerating muscles replicates the aging phenotype and leads to a loss of MuSC numbers. By using an extracellular matrix (ECM) library screen and pathway profiling, we characterize FN as a preferred adhesion substrate for MuSCs and demonstrate that integrin-mediated signaling through focal adhesion kinase and the p38 mitogen-activated protein kinase pathway is strongly de-regulated in MuSCs from aged mice because of insufficient attachment to the niche. Reconstitution of FN levels in the aged niche remobilizes stem cells and restores youth-like muscle regeneration. Taken together, we identify the loss of stem cell adhesion to FN in the niche ECM as a previously unknown aging mechanism.
Collapse
Affiliation(s)
- Laura Lukjanenko
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland.,École Polytechnique Fédérale de Lausanne, Doctoral Program in Biotechnology and Bioengineering, Lausanne, Switzerland
| | - M Juliane Jung
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Nagabhooshan Hegde
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Claire Perruisseau-Carrier
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Eugenia Migliavacca
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Michelle Rozo
- Department of Embryology, Carnegie Institution of Washington, Baltimore, USA
| | - Sonia Karaz
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Guillaume Jacot
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Manuel Schmidt
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Liangji Li
- Department of Embryology, Carnegie Institution of Washington, Baltimore, USA
| | - Sylviane Metairon
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Frederic Raymond
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Umji Lee
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Federico Sizzano
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - David H Wilson
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Nicolas A Dumont
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alessio Palini
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Pascal Steiner
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Michael A Rudnicki
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute Regenerative Medicine Program, Ottawa, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, USA
| | - Julia von Maltzahn
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Jerome N Feige
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - C Florian Bentzinger
- Nestlé Institute of Health Sciences (NIHS), Campus École Polytechnique Fédérale de Lausanne, École Polytechnique Fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| |
Collapse
|
23
|
Malta DFB, Reticker-Flynn NE, da Silva CL, Cabral JMS, Fleming HE, Zaret KS, Bhatia SN, Underhill GH. Extracellular matrix microarrays to study inductive signaling for endoderm specification. Acta Biomater 2016; 34:30-40. [PMID: 26883775 DOI: 10.1016/j.actbio.2016.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 12/31/2022]
Abstract
During tissue development, stem and progenitor cells are faced with fate decisions coordinated by microenvironmental cues. Although insights have been gained from in vitro and in vivo studies, the role of the microenvironment remains poorly understood due to the inability to systematically explore combinations of stimuli at a large scale. To overcome such restrictions, we implemented an extracellular matrix (ECM) array platform that facilitates the study of 741 distinct combinations of 38 different ECM components in a systematic, unbiased and high-throughput manner. Using embryonic stem cells as a model system, we derived definitive endoderm progenitors and applied them to the array platform to study the influence of ECM, including the interactions of ECM with growth factor signaling, on the specification of definitive endoderm cells towards the liver and pancreas fates. We identified ECM combinations that influence endoderm fate decisions towards these lineages, and demonstrated the utility of this platform for studying ECM-mediated modifications to signal activation during liver specification. In particular, defined combinations of fibronectin and laminin isoforms, as well as combinations of distinct collagen subtypes, were shown to influence SMAD pathway activation and the degree of hepatic differentiation. Overall, our systematic high-throughput approach suggests that ECM components of the microenvironment have modulatory effects on endoderm differentiation, including effects on lineage fate choice and cell adhesion and survival during the differentiation process. This platform represents a robust tool for analyzing effects of ECM composition towards the continued improvement of stem cell differentiation protocols and further elucidation of tissue development processes. STATEMENT OF SIGNIFICANCE Cellular microarrays can provide the capability to perform high-throughput investigations into the role of microenvironmental signals in a variety of cell functions. This study demonstrates the utility of a high-throughput cellular microarray approach for analyzing the effects of extracellular matrix (ECM) in liver and pancreas differentiation of endoderm progenitor cells. Despite an appreciation that ECM is likely involved in these processes, the influence of ECM, particularly combinations of matrix proteins, had not been systematically explored. In addition to the identification of relevant ECM compositions, this study illustrates the capability of the cellular microarray platform to be integrated with a diverse range of cell fate measurements, which could be broadly applied towards the investigation of cell fate regulation in other tissue development and disease contexts.
Collapse
Affiliation(s)
- D F Braga Malta
- Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | | | - C L da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - J M S Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - H E Fleming
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - K S Zaret
- University of Pennsylvania, Philadelphia, PA, United States
| | - S N Bhatia
- Massachusetts Institute of Technology, Cambridge, MA, United States; The Howard Hughes Medical Institute, Cambridge, MA, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 021392, United States; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - G H Underhill
- University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
24
|
Wang Z, Calpe B, Zerdani J, Lee Y, Oh J, Bae H, Khademhosseini A, Kim K. High-throughput investigation of endothelial-to-mesenchymal transformation (EndMT) with combinatorial cellular microarrays. Biotechnol Bioeng 2015; 113:1403-12. [PMID: 26666585 DOI: 10.1002/bit.25905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 01/09/2023]
Abstract
In the developing heart, a specific subset of endocardium undergoes an endothelial-to-mesenchymal transformation (EndMT) thus forming nascent valve leaflets. Extracellular matrix (ECM) proteins and growth factors (GFs) play important roles in regulating EndMT but the combinatorial effect of GFs with ECM proteins is less well understood. Here we use microscale engineering techniques to create single, binary, and tertiary component microenvironments to investigate the combinatorial effects of ECM proteins and GFs on the attachment and transformation of adult ovine mitral valve endothelial cells to a mesenchymal phenotype. With the combinatorial microenvironment microarrays, we utilized 60 different combinations of ECM proteins (Fibronectin, Collagen I, II, IV, Laminin) and GFs (TGF-β1, bFGF, VEGF) and were able to identify new microenvironmental conditions capable of modulating EndMT in MVECs. Experimental results indicated that TGF-β1 significantly upregulated the EndMT while either bFGF or VEGF downregulated EndMT process markedly. Also, ECM proteins could influence both the attachment of MVECs and the response of MVECs to GFs. In terms of attachment, fibronectin is significantly better for the adhesion of MVECs among the five tested proteins. Overall collagen IV and fibronectin appeared to play important roles in promoting EndMT process. Great consistency between macroscale and microarrayed experiments and present studies demonstrates that high-throughput cellular microarrays are a promising approach to study the regulation of EndMT in valvular endothelium. Biotechnol. Bioeng. 2016;113: 1403-1412. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zongjie Wang
- School of Engineering, University of British Columbia, Kelowna, BC, V1V1V7, Canada
| | - Blaise Calpe
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.,Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Jalil Zerdani
- Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Youngsang Lee
- Department of Mathematics and Statistics, University of British Columbia, Kelowna, BC, Canada
| | - Jonghyun Oh
- Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts.,Division of Mechanical Design Engineering, Chonbuk National University, Jeonjoo, Republic of Korea.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Hojae Bae
- Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts. .,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts. .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139. .,Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| | - Keekyoung Kim
- School of Engineering, University of British Columbia, Kelowna, BC, V1V1V7, Canada. .,Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts. .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.
| |
Collapse
|
25
|
Tsai Y, Cutts J, Kimura A, Varun D, Brafman DA. A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Stem Cell Res 2015; 15:75-87. [DOI: 10.1016/j.scr.2015.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/27/2023] Open
|
26
|
van Swaay D, Tang TYD, Mann S, de Mello A. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502886] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
van Swaay D, Tang TYD, Mann S, de Mello A. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water. Angew Chem Int Ed Engl 2015; 54:8398-401. [PMID: 26012895 DOI: 10.1002/anie.201502886] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Indexed: 11/11/2022]
Abstract
We report on the formation of coacervate droplets from poly(diallyldimethylammonium chloride) with either adenosine triphosphate or carboxymethyl-dextran using a microfluidic flow-focusing system. The formed droplets exhibit improved stability and narrower size distributions for both coacervate compositions when compared to the conventional vortex dispersion techniques. We also demonstrate the use of two parallel flow-focusing channels for the simultaneous formation and co-location of two distinct populations of coacervate droplets containing different DNA oligonucleotides, and that the populations can coexist in close proximity up to 48 h without detectable exchange of genetic information. Our results show that the observed improvements in droplet stability and size distribution may be scaled with ease. In addition, the ability to encapsulate different materials into coacervate droplets using a microfluidic channel structure allows for their use as cell-mimicking compartments.
Collapse
Affiliation(s)
- Dirk van Swaay
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland)
| | - T-Y Dora Tang
- Centre for Protolife Research, Centre for Organized Matter, School of Chemistry, University of Bristol, Bristol, BS8 1TS (UK)
| | - Stephen Mann
- Centre for Protolife Research, Centre for Organized Matter, School of Chemistry, University of Bristol, Bristol, BS8 1TS (UK).
| | - Andrew de Mello
- Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland).
| |
Collapse
|
28
|
Labarge MA, Parvin B, Lorens JB. Molecular deconstruction, detection, and computational prediction of microenvironment-modulated cellular responses to cancer therapeutics. Adv Drug Deliv Rev 2014; 69-70:123-31. [PMID: 24582543 DOI: 10.1016/j.addr.2014.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/21/2022]
Abstract
The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments have revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes and in a number of cases have revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus, introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery.
Collapse
Affiliation(s)
- Mark A Labarge
- Life Science Division of Lawrence Berkeley National Laboratory, University of California, 1 Cylcotron Rd, MS977, Berkeley, CA 94720, USA.
| | - Bahram Parvin
- Life Science Division of Lawrence Berkeley National Laboratory, University of California, 1 Cylcotron Rd, MS977, Berkeley, CA 94720, USA.
| | - James B Lorens
- Department of Biomedicine and Center for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, NO-5020 Bergen, Norway.
| |
Collapse
|
29
|
Titmarsh DM, Ovchinnikov DA, Wolvetang EJ, Cooper-White JJ. Full factorial screening of human embryonic stem cell maintenance with multiplexed microbioreactor arrays. Biotechnol J 2014; 8:822-34. [PMID: 23813764 DOI: 10.1002/biot.201200375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/09/2013] [Accepted: 06/03/2013] [Indexed: 11/07/2022]
Abstract
Use of human pluripotent stem cells (hPSCs) in regenerative medicine applications relies on control of cell fate decisions by exogenous factors. This control can be hindered by the use of undefined culture components, poorly understood autocrine/paracrine effects, spatiotemporal variations in microenvironmental composition inherent to static culture formats, and signal cross-talk between multiple factors. We recently described microbioreactor arrays that provide a full factorial spectrum of exogenous factors, and allow gradual accumulation of paracrine factors through serial culture chambers. We combined these with defined biochemical conditions, and in situ reporter gene- and immunofluorescence-based readouts to create an hPSC screening platform with enhanced data throughput and microenvironmental control. HES3-EOS-C(3+)-EiP reporter hESCs were screened against FGF-2, TGF-β1, and retinoic acid in a modified mTeSR-1 medium background. Differential pluripotency marker expression reflected mTeSR-1's maintenance capacity, and differentiation in response to removal of maintenance factors or addition of retinoic acid. Interestingly, pluripotency marker expression was downregulated progressively through serial chambers. Since downstream chambers are exposed to greater levels of paracrine factors under continuous flow, this effect is thought to result from secreted factors that negatively influence pluripotency. The microbioreactor array platform decodes factor interplay, and has a broad application in deciphering microenvironmental control of cell fate.
Collapse
Affiliation(s)
- Drew M Titmarsh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | | | | | | |
Collapse
|
30
|
Abstract
Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.
Collapse
Affiliation(s)
- David A Brafman
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California at San Diego, La Jolla, California
| |
Collapse
|
31
|
Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie 2013; 95:2326-35. [PMID: 24036368 DOI: 10.1016/j.biochi.2013.09.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022]
Abstract
Liver fibrosis is a common wound-healing response to chronic liver injuries, including alcoholic or drug toxicity, persistent viral infection, and genetic factors. Myofibroblastic transdifferentiation (MTD) is the pivotal event during liver fibrogenesis, and research in the past few years has identified key mediators and molecular mechanisms responsible for MTD of hepatic stellate cells (HSCs). HSCs are undifferentiated cells which play an important role in liver regeneration. Recent evidence demonstrates that HSCs derive from mesoderm and at least in part via septum transversum and mesothelium, and HSCs express markers for different cell types which derive from multipotent mesenchymal progenitors. There is a regulatory commonality between differentiation of adipocytes and that of HSC, and the shift from adipogenic to myogenic or neuronal phenotype characterizes HSC MTD. Central of this shift is a loss of expression of the master adipogenic regulator peroxisome proliferator activated receptor γ (PPARγ). Restored expression of PPARγ and/or other adipogenic transcription genes can reverse myofibroblastic HSCs to differentiated cells. Vertebrate Wnt and Drosophila wingless are homologous genes, and their translated proteins have been shown to participate in the regulation of cell proliferation, cell polarity, cell differentiation, and other biological roles. More recently, Wnt signaling is implicated in human fibrosing diseases, such as pulmonary fibrosis, renal fibrosis, and liver fibrosis. Blocking the canonical Wnt signal pathway with the co-receptor antagonist Dickkopf-1 (DKK1) abrogates these epigenetic repressions and restores the gene PPARγ expression and HSC differentiation. The identified morphogen mediated epigenetic regulation of PPARγ and HSC differentiation also serves as novel therapeutic targets for liver fibrosis and liver regeneration. In conclusion, the Wnt signaling promotes liver fibrosis by enhancing HSC activation and survival, and we herein discuss what we currently know and what we expect will come in this field in the next future.
Collapse
Affiliation(s)
- Cheng-gui Miao
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Mei Shan Road, Hefei 230032, Anhui Province, China; School of Food and Drug, Anhui Science and Technology University, Bengbu 233100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis. Nat Commun 2013; 3:1122. [PMID: 23047680 PMCID: PMC3794716 DOI: 10.1038/ncomms2128] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/06/2012] [Indexed: 12/23/2022] Open
Abstract
Extracellular matrix interactions play essential roles in normal physiology and many pathological processes. While the importance of ECM interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Here we report a novel screening platform capable of measuring phenotypic responses to combinations of ECM molecules. Using a genetic mouse model of lung adenocarcinoma, we measure the ECM-dependent adhesion of tumor-derived cells. Hierarchical clustering of the adhesion profiles differentiates metastatic cell lines from primary tumor lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8, or laminin. We show that these molecules correlate with human disease and that their interactions are mediated in part by α3β1 integrin. Thus, our platform allowed us to interrogate interactions between metastatic cells and their microenvironments, and identified ECM and integrin interactions that could serve as therapeutic targets.
Collapse
|
33
|
Rodríguez-Seguí SA, Ortuño MJ, Ventura F, Martínez E, Samitier J. Simplified microenvironments and reduced cell culture size influence the cell differentiation outcome in cellular microarrays. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:189-198. [PMID: 23080375 DOI: 10.1007/s10856-012-4785-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
Cellular microarrays present a promising tool for multiplex evaluation of the signalling effect of substrate-immobilized factors on cellular differentiation. In this paper, we compare the early myoblast-to-osteoblast cell commitment steps in response to a growth factor stimulus using standard well plate differentiation assays or cellular microarrays. Our results show that restraints on the cell culture size, inherent to cellular microarrays, impair the differentiation outcome. Also, while cells growing on spots with immobilised BMP-2 are early biased towards the osteoblast fate, longer periods of cell culturing in the microarrays result in cell proliferation and blockage of osteoblast differentiation. The results presented here raise concerns about the efficiency of cell differentiation when the cell culture dimensions are reduced to a simplified microspot environment. Also, these results suggest that further efforts should be devoted to increasing the complexity of the microspots composition, aiming to replace signalling cues missing in this system.
Collapse
|
34
|
Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ 2012; 20:369-81. [PMID: 23154389 PMCID: PMC3569984 DOI: 10.1038/cdd.2012.138] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many cellular responses during development are regulated by interactions between integrin receptors and extracellular matrix proteins (ECMPs). Although the majority of recent studies in human embryonic stem cell (hESC) differentiation have focused on the role of growth factors, such as FGF, TGFβ, and WNT, relatively little is known about the role of ECMP-integrin signaling in this process. Moreover, current strategies to direct hESC differentiation into various lineages are inefficient and have yet to produce functionally mature cells in vitro. This suggests that additional factors, such as ECMPs, are required for the efficient differentiation of hESCs. Using a high-throughput multifactorial cellular array technology, we investigated the effect of hundreds of ECMP combinations and concentrations on differentiation of several hPSC lines to definitive endoderm (DE), an early embryonic cell population fated to give rise to internal organs such as the lung, liver, pancreas, stomach, and intestine. From this screen we identified fibronectin (FN) and vitronectin (VTN) as ECMP components that promoted DE differentiation. Analysis of integrin expression revealed that differentiation toward DE led to an increase in FN-binding integrin α5 (ITGA5) and VTN-binding integrin αV (ITGAV). Conditional short hairpin RNA-mediated knockdown of ITGA5 and ITGAV disrupted hESC differentiation toward DE. Finally, fluorescence-based cell sorting for ITGA5 and ITGAV significantly enriched cells with gene expression signatures associated with DE, demonstrating that these cell surface proteins permit isolation and enrichment of DE from hESCs. These data provide evidence that FN and VTN promote endoderm differentiation of hESCs through interaction with ITGA5 and ITGAV, and that ECMP-integrin interactions are required for hESC differentiation into functionally mature cells.
Collapse
|
35
|
Underhill GH, Peter G, Chen CS, Bhatia SN. Bioengineering Methods for Analysis of Cells In Vitro. Annu Rev Cell Dev Biol 2012; 28:385-410. [DOI: 10.1146/annurev-cellbio-101011-155709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Galie Peter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sangeeta N. Bhatia
- Division of Health Sciences and Technology,
- Department of Electrical Engineering and Computer Science,
- The Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
36
|
De Minicis S, Candelaresi C, Agostinelli L, Taffetani S, Saccomanno S, Rychlicki C, Trozzi L, Marzioni M, Benedetti A, Svegliati-Baroni G. Endoplasmic Reticulum stress induces hepatic stellate cell apoptosis and contributes to fibrosis resolution. Liver Int 2012; 32:1574-84. [PMID: 22938186 DOI: 10.1111/j.1478-3231.2012.02860.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 07/07/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Survival of hepatic stellate cells (HSCs) is a hallmark of liver fibrosis, while the induction of HSC apoptosis may induce recovery. Activated HSC are resistant to many pro-apoptotic stimuli. To this issue, the role of Endoplasmic Reticulum (ER) stress in promoting apoptosis of HSCs and consequently fibrosis resolution is still debated. AIM To evaluate the potential ER stress-mediated apoptosis of HSCs and fibrosis resolution METHODS HSCs were incubated with the ER stress agonists, tunicamycin or thapsigargin. In vivo, HSC were isolated from normal, bile duct-ligated (BDL) and bile duct-diverted (BDD) rats. RESULTS In activated HSC, the specific inhibitor of ER stress-induced apoptosis, calpastatin, is significantly increased vs. quiescent HSCs. Calpain is conversely reduced in activated HSCs. This pattern of protein expression provides HSCs resistance to the ER stress signals of apoptosis (apoptosis-resistant phenotype). However, both tunicamycin and thapsigargin are able to induce apoptosis in HSCs in vitro, completely reversing the calpain/calpastatin pattern expression. Furthermore, in vivo, the fibrosis resolution observed in rat livers subjected to bile duct ligation (BDL) and subsequent bile duct diversion (BDD), leads to fibrosis resolution through a mechanism of HSCs apoptosis, potentially associated with ER stress: in fact, BDD rat liver shows an increased number of apoptotic HSCs associated with reduced calapstatin and increased calpain protein expression, leading to an apoptosis-sensible phenotype. CONCLUSIONS ER stress sensitizes HSC to apoptosis both in vitro and in vivo. Thus, ER stress represents a key target to trigger cell death in activated HSC and promotes fibrosis resolution.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Underhill GH. Stem cell bioengineering at the interface of systems-based models and high-throughput platforms. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:525-45. [DOI: 10.1002/wsbm.1189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Titmarsh DM, Chen H, Wolvetang EJ, Cooper-White JJ. Arrayed cellular environments for stem cells and regenerative medicine. Biotechnol J 2012; 8:167-79. [PMID: 22890848 DOI: 10.1002/biot.201200149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/02/2012] [Accepted: 07/17/2012] [Indexed: 12/26/2022]
Abstract
The behavior and composition of both multipotent and pluripotent stem cell populations are exquisitely controlled by a complex, spatiotemporally variable interplay of physico-chemical, extracellular matrix, cell-cell interaction, and soluble factor cues that collectively define the stem cell niche. The push for stem cell-based regenerative medicine models and therapies has fuelled demands for increasingly accurate cellular environmental control and enhanced experimental throughput, driving an evolution of cell culture platforms away from conventional culture formats toward integrated systems. Arrayed cellular environments typically provide a set of discrete experimental elements with variation of one or several classes of stimuli across elements of the array. These are based on high-content/high-throughput detection, small sample volumes, and multiplexing of environments to increase experimental parameter space, and can be used to address a range of biological processes at the cell population, single-cell, or subcellular level. Arrayed cellular environments have the capability to provide an unprecedented understanding of the molecular and cellular events that underlie expansion and specification of stem cell and therapeutic cell populations, and thus generate successful regenerative medicine outcomes. This review focuses on recent key developments of arrayed cellular environments and their contribution and potential in stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Drew M Titmarsh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
39
|
Bauer M, Kim K, Qiu Y, Calpe B, Khademhosseini A, Liao R, Wheeldon I. Spot identification and quality control in cell-based microarrays. ACS COMBINATORIAL SCIENCE 2012; 14:471-7. [PMID: 22850537 DOI: 10.1021/co300039w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell-based microarrays are being increasingly used as a tool for combinatorial and high throughput screening of cellular microenvironments. Analysis of microarrays requires several steps, including microarray imaging, identification of cell spots, quality control, and data exploration. While high content image analysis, cell counting, and cell pattern recognition methods are established, there is a need for new postprocessing and quality control methods for cell-based microarrays used to investigate combinatorial microenvironments. Previously, microarrayed cell spot identification and quality control were performed manually, leading to excessive processing time and potentially resulting in human bias. This work introduces an automated approach to identify cell-based microarray spots and spot quality control. The approach was used to analyze the adhesion of murine cardiac side population cells on combinatorial arrays of extracellular matrix proteins. Microarrays were imaged by automated fluorescence microscopy and cells were identified using open-source image analysis software (CellProfiler). From these images, clusters of cells making up single cell spots were reliably identified by analyzing the distances between cells using a density-based clustering algorithm (OPTICS). Naïve Bayesian classifiers trained on manually scored training sets identified good and poor quality spots using spot size, number of cells per spot, and cell location as quality control criteria. Combined, the approach identified 78% of high quality spots and 87% of poor quality spots. Full factorial analysis of the resulting microarray data revealed that collagen IV exhibited the highest positive effect on cell attachment. This data processing approach allows for fast and unbiased analysis of cell-based microarray data.
Collapse
Affiliation(s)
- Michael Bauer
- Cardiovascular Division, Department
of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United
States
| | - Keekyoung Kim
- Center for Biomedical
Engineering,
Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115,
United States
- Wyss Institute
for Biologically
Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Yiling Qiu
- Cardiovascular Division, Department
of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United
States
| | - Blaise Calpe
- Center for Biomedical
Engineering,
Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115,
United States
- Wyss Institute
for Biologically
Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Laboratory of Stem Cell Bioengineering
(LSCB) and Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ali Khademhosseini
- Center for Biomedical
Engineering,
Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115,
United States
- Wyss Institute
for Biologically
Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health
Sciences and Technology, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| | - Ronglih Liao
- Cardiovascular Division, Department
of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United
States
| | - Ian Wheeldon
- Center for Biomedical
Engineering,
Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115,
United States
- Wyss Institute
for Biologically
Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
Brafman DA, Chien S, Willert K. Arrayed cellular microenvironments for identifying culture and differentiation conditions for stem, primary and rare cell populations. Nat Protoc 2012; 7:703-17. [PMID: 22422316 DOI: 10.1038/nprot.2012.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During the development of an organism, cells are exposed to a myriad of signals, structural components and scaffolds, which collectively make up the cellular microenvironment. The majority of current developmental biology studies examine the effect of individual or small subsets of molecules and parameters on cellular behavior, and they consequently fail to explore the complexity of factors to which cells are exposed. Here we describe a technology, referred to as arrayed cellular microenvironments (ACMEs), that allows for a high-throughput examination of the effects of multiple extracellular components in a combinatorial manner on any cell type of interest. We will specifically focus on the application of this technology to human pluripotent stem cells (hPSCs), a population of cells with tremendous therapeutic potential, and one for which growth and differentiation conditions are poorly characterized and far from defined and optimized. A standard ACME screen uses the technologies previously applied to the manufacture and analysis of DNA microarrays, requires standard cell-culture facilities and can be performed from beginning to end within 5-10 days.
Collapse
Affiliation(s)
- David A Brafman
- Cellular and Molecular Medicine, Stem Cell Program, University of California, San Diego, California, USA.
| | | | | |
Collapse
|
41
|
Crawford JM, Burt AD. Anatomy, pathophysiology and basic mechanisms of disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2012:1-77. [DOI: 10.1016/b978-0-7020-3398-8.00001-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Jung JP, Moyano JV, Collier JH. Multifactorial optimization of endothelial cell growth using modular synthetic extracellular matrices. Integr Biol (Camb) 2011; 3:185-96. [PMID: 21249249 DOI: 10.1039/c0ib00112k] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrices (ECMs) are complex materials, containing at least dozens of different macromolecules that are assembled together, thus complicating their optimization towards applications in 3D cell culture or tissue engineering. The natural complexity of ECMs has limited cell-matrix investigations predominantly to experiments where only one matrix component is adjusted at a time, making it difficult to uncover interactions between different matrix components or to efficiently determine optimal matrix compositions for specific desired biological responses. Here we have developed modular synthetic ECMs based on peptide self-assembly whose incorporation of multiple different peptide ligands can be adjusted. The peptides can co-assemble in a wide range of combinations to form hydrogels of uniform morphology and consistent mechanical properties, but with precisely varied mixtures of peptide ligands. The modularity of this system in turn enabled multi-factorial experimental designs for investigating interactions between these ligands and for determining a multi-peptide matrix formulation that maximized endothelial cell growth. In cultures of HUVECs, we observed a previously unknown antagonistic interaction between the laminin-derived peptide YIGSR and RGDS-mediated cell attachment and growth. We also identified an optimized combination of self-assembled peptides bearing the ligands RGDS and IKVAV that led to endothelial cell growth equivalent to that on native full-length fibronectin. Both of these findings would have been challenging to uncover using more traditional one-factor-at-a-time analyses.
Collapse
Affiliation(s)
- Jangwook P Jung
- Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Mail code 5032, Chicago, IL 60637, USA
| | | | | |
Collapse
|
43
|
Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 2010; 31:9135-44. [PMID: 20817292 DOI: 10.1016/j.biomaterials.2010.08.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/04/2010] [Indexed: 01/22/2023]
Abstract
Realization of the full potential of human pluripotent stem cells (hPSCs) in regenerative medicine requires the development of well-defined culture conditions for their long-term growth and directed differentiation. Current practices for maintaining hPSCs generally utilize empirically determined combinations of feeder cells and other animal-based products, which are expensive, difficult to isolate, subject to batch-to-batch variations, and unsuitable for cell-based therapies. Using a high-throughput screening approach, we identified several polymers that can support self-renewal of hPSCs. While most of these polymers provide support for only a short period of time, we identified a synthetic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-alt-MA) that supported the long-term attachment, proliferation and self-renewal of HUES1, HUES9, and iPSCs. The hPSCs cultured on PMVE-alt-MA maintained their characteristic morphology, expressed high levels of markers of pluripotency, and retained a normal karyotype. Such cost-effective, polymer-based matrices that support long-term self-renewal and proliferation of hPSCs will not only help to accelerate the translational perspectives of hPSCs, but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- David A Brafman
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0695, United States
| | | | | | | | | | | |
Collapse
|
44
|
Cultivating hepatocytes on printed arrays of HGF and BMP7 to characterize protective effects of these growth factors during in vitro alcohol injury. Biomaterials 2010; 31:5936-44. [PMID: 20488537 DOI: 10.1016/j.biomaterials.2010.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 04/05/2010] [Indexed: 02/06/2023]
Abstract
The goal of the present study was to investigate hepato-protective effects of growth factor (GF) arrays during alcohol injury. Hepatocyte growth factor (HGF) and bone morphogenetic protein (BMP)7 were mixed with collagen (I) and robotically printed onto standard glass slides to create arrays of 500 microm diameter spots. Primary rat hepatocytes were seeded on top of the arrays forming clusters corresponding in size to the underlying protein spots. Cell arrays were then injured in culture by exposure to 100 mm ethanol for 48 h. Hepatocytes residing on GF spots were found to have less apoptosis then cells cultured on collagen-only spots. Least apoptosis (0.3% as estimated by TUNEL assay) was observed on HGF/BMP7/collagen spots whereas most apoptosis (17.3%) was seen on collagen-only arrays. Interestingly, the extent of alcohol-induced apoptosis in hepatocytes varied based on the concentration of printed GF. In addition to preventing apoptosis, printed GFs contributed to maintenance of epithelial phenotype during alcohol injury as evidenced by higher levels of E-cadherin expression in HGF-protected hepatocytes. Importantly, GF microarrays could be used to investigate heterotypic interactions in the context of liver injury. To highlight this, stellate cells - nonparenchymal liver cells involved in fibrosis - were added to hepatocytes residing on arrays of either HGF/collagen or collagen-only spots. Exposure of these cocultures to ethanol followed by RT-PCR analysis revealed that stellate cells residing alongside HGF-protected hepatocytes were significantly less activated (less fibrotic) compared to controls. Overall, our results demonstrate that GF microarray format can be used to screen anti-fibrotic and anti-apoptotic effects of growth factors as well as to investigate how signals delivered to a specific cell type modulate heterotypic cellular interactions.
Collapse
|