1
|
Galineau L, Claude E, Gulhan Z, Bodard S, Sérrière S, Dupuy C, Monteiro J, Oury A, Bertevello P, Chicheri G, Vercouillie J, Nadal-Desbarats L, Chalon S, Lefèvre A, Emond P. DESI-TQ-MS imaging for ex vivo brain biodistribution assessment: evaluation of LBT-999, a ligand of the dopamine transporter (DAT). EJNMMI Radiopharm Chem 2024; 9:63. [PMID: 39192050 DOI: 10.1186/s41181-024-00289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Selection of the most promising radiotracer candidates for radiolabeling is a difficult step in the development of radiotracer pharmaceuticals, especially for the brain. Mass spectrometry (MS) is an alternative to study ex vivo the characteristics of candidates, but most MS studies are complicated by the pharmacologic doses injected and the dissection of regions to study candidate biodistribution. In this study, we tested the ability of a triple quadrupole analyzer (TQ LC-MS/MS) to quantify low concentrations of a validated precursor of a radiotracer targeting the DAT (LBT-999) in dissected regions. We also investigated its biodistribution on brain slices using MS imaging with desorption electrospray ionization (DESI) coupled to time-of-flight (TOF) vs. TQ mass analyzers. RESULTS TQ LC-MS/MS enabled quantification of LBT-999 injected at sub-tracer doses in dissected striata. DESI-MS imaging (DESI-MSI) with both analyzers provided images of LBT-999 biodistribution on sagittal slices that were consistent with positron emission tomography (PET). However, the TOF analyzer only obtained biodistribution images at a high injected dose of LBT-999, while the TQ analyzer provided biodistribution images at lower injected doses of LBT-999 with a better signal-to-noise ratio. It also allowed simultaneous visualization of endogenous metabolites such as dopamine. CONCLUSIONS Our results show that LC-TQ MS/MS in combination with DESI-MSI can provide important information (biodistribution, specific and selective binding) that can facilitate the selection of the most promising candidates for radiolabeling and support the development of radiotracers.
Collapse
Affiliation(s)
- Laurent Galineau
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | | | - Zuhal Gulhan
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Sylvie Bodard
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Sophie Sérrière
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Camille Dupuy
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Jérémy Monteiro
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Adeline Oury
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Priscila Bertevello
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Gabrielle Chicheri
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Johnny Vercouillie
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Lydie Nadal-Desbarats
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Sylvie Chalon
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Antoine Lefèvre
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Patrick Emond
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France.
- Service de Médecine Nucléaire In Vitro, Hôpital Bretonneau, CHRU Tours, 37044, Tours Cedex 1, France.
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France.
| |
Collapse
|
2
|
Hu S, Habib A, Xiong W, Chen L, Bi L, Wen L. Mass Spectrometry Imaging Techniques: Non-Ambient and Ambient Ionization Approaches. Crit Rev Anal Chem 2024:1-54. [PMID: 38889072 DOI: 10.1080/10408347.2024.2362703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.
Collapse
Affiliation(s)
- Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Wei Xiong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - La Chen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Guo X, Wang X, Tian C, Dai J, Zhao Z, Duan Y. Development of mass spectrometry imaging techniques and its latest applications. Talanta 2023; 264:124721. [PMID: 37271004 DOI: 10.1016/j.talanta.2023.124721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging (MSI) is a novel molecular imaging technology that collects molecular information from the surface of samples in situ. The spatial distribution and relative content of various compounds can be visualized simultaneously with high spatial resolution. The prominent advantages of MSI promote the active development of ionization technology and its broader applications in diverse fields. This article first gives a brief introduction to the vital parts of the processes during MSI. On this basis, provides a comprehensive overview of the most relevant MS-based imaging techniques from their mechanisms, pros and cons, and applications. In addition, a critical issue in MSI, matrix effects is also discussed. Then, the representative applications of MSI in biological, forensic, and environmental fields in the past 5 years have been summarized, with a focus on various types of analytes (e.g., proteins, lipids, polymers, etc.) Finally, the challenges and further perspectives of MSI are proposed and concluded.
Collapse
Affiliation(s)
- Xing Guo
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Xin Wang
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Caiyan Tian
- College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jianxiong Dai
- Aliben Science and Technology Company Limited, Chengdu, 610064, PR China
| | | | - Yixiang Duan
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China; Research Center of Analytical Instrumentation, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
4
|
Soudah T, Zoabi A, Margulis K. Desorption electrospray ionization mass spectrometry imaging in discovery and development of novel therapies. MASS SPECTROMETRY REVIEWS 2023; 42:751-778. [PMID: 34642958 DOI: 10.1002/mas.21736] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) is one of the least specimen destructive ambient ionization mass spectrometry tissue imaging methods. It enables rapid simultaneous mapping, measurement, and identification of hundreds of molecules from an unmodified tissue sample. Over the years, since its first introduction as an imaging technique in 2005, DESI-MSI has been extensively developed as a tool for separating tissue regions of various histopathologic classes for diagnostic applications. Recently, DESI-MSI has also emerged as a versatile technique that enables drug discovery and can guide the efficient development of drug delivery systems. For example, it has been increasingly employed for uncovering unique patterns of in vivo drug distribution, the discovery of potentially treatable biochemical pathways, revealing novel druggable targets, predicting therapeutic sensitivity of diseased tissues, and identifying early tissue response to pharmacological treatment. These and other recent advances in implementing DESI-MSI as the tool for the development of novel therapies are highlighted in this review.
Collapse
Affiliation(s)
- Terese Soudah
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amani Zoabi
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Katherine Margulis
- The Faculty of Medicine, The School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Harkin C, Smith KW, Cruickshank FL, Logan Mackay C, Flinders B, Heeren RMA, Moore T, Brockbank S, Cobice DF. On-tissue chemical derivatization in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022; 41:662-694. [PMID: 33433028 PMCID: PMC9545000 DOI: 10.1002/mas.21680] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) combines molecular and spatial information in a valuable tool for a wide range of applications. Matrix-assisted laser desorption/ionization (MALDI) is at the forefront of MSI ionization due to its wide availability and increasing improvement in spatial resolution and analysis speed. However, ionization suppression, low concentrations, and endogenous and methodological interferences cause visualization problems for certain molecules. Chemical derivatization (CD) has proven a viable solution to these issues when applied in mass spectrometry platforms. Chemical tagging of target analytes with larger, precharged moieties aids ionization efficiency and removes analytes from areas of potential isobaric interferences. Here, we address the application of CD on tissue samples for MSI analysis, termed on-tissue chemical derivatization (OTCD). MALDI MSI will remain the focus platform due to its popularity, however, alternative ionization techniques such as liquid extraction surface analysis and desorption electrospray ionization will also be recognized. OTCD reagent selection, application, and optimization methods will be discussed in detail. MSI with OTCD is a powerful tool to study the spatial distribution of poorly ionizable molecules within tissues. Most importantly, the use of OTCD-MSI facilitates the analysis of previously inaccessible biologically relevant molecules through the adaptation of existing CD methods. Though further experimental optimization steps are necessary, the benefits of this technique are extensive.
Collapse
Affiliation(s)
- Carla Harkin
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | - Karl W. Smith
- National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility (ICR)Florida State UniversityTallahasseeFloridaUSA
| | - Faye L. Cruickshank
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - C. Logan Mackay
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EaStCHEM School of ChemistryUniversity of EdinburghScotlandUK
| | - Bryn Flinders
- Screening Division, Mass Spectrometry, Hair DiagnostixDutch Screening GroupMaastrichtThe Netherlands
| | - Ron M. A. Heeren
- Maastricht Multimodal Molecular Imaging Institute (M4I)University of MaastrichtMaastrichtThe Netherlands
| | - Tara Moore
- Genomic Medicine, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| | | | - Diego F. Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical SciencesUlster UniversityColeraineNorthern IrelandUK
| |
Collapse
|
6
|
Nezhad ZS, Salazar JP, Pryce RS, Munter LM, Chaurand P. Absolute quantification of cholesterol from thin tissue sections by silver-assisted laser desorption ionization mass spectrometry imaging. Anal Bioanal Chem 2022; 414:6947-6954. [PMID: 35953724 DOI: 10.1007/s00216-022-04262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Cholesterol is essential to all animal life, and its dysregulation is observed in many diseases. For some of these, the precise determination of cholesterol's histological location and absolute abundance at cellular length scales within tissue samples would open the door to a more fundamental understanding of the role of cholesterol in disease onset and progression. We have developed a fast and simple method for absolute quantification of cholesterol within brain samples based on the sensitive detection and mapping of cholesterol by silver-assisted laser desorption ionization mass spectrometry imaging (AgLDI MSI) from thin tissue sections. Reproducible calibration curves were generated by depositing a range of cholesterol-D7 concentrations on brain homogenate tissue sections combined with the homogeneous spray deposition of a non-animal steroid reference standard detectable by AgLDI MSI to minimize experimental variability. Results obtained from serial brain sections gave consistent cholesterol quantitative values in very good agreement with those obtained with other mass spectrometry-based methods.
Collapse
Affiliation(s)
- Zari Saadati Nezhad
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Juan Pablo Salazar
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Rachel S Pryce
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Lisa M Munter
- Dept of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
7
|
Armstrong N, Storey CM, Noll SE, Margulis K, Soe MH, Xu H, Yeh B, Fishbein L, Kebebew E, Howitt BE, Zare RN, Sage J, Annes JP. SDHB knockout and succinate accumulation are insufficient for tumorigenesis but dual SDHB/NF1 loss yields SDHx-like pheochromocytomas. Cell Rep 2022; 38:110453. [PMID: 35235785 PMCID: PMC8939053 DOI: 10.1016/j.celrep.2022.110453] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Inherited pathogenic succinate dehydrogenase (SDHx) gene mutations cause the hereditary pheochromocytoma and paraganglioma tumor syndrome. Syndromic tumors exhibit elevated succinate, an oncometabolite that is proposed to drive tumorigenesis via DNA and histone hypermethylation, mitochondrial expansion, and pseudohypoxia-related gene expression. To interrogate this prevailing model, we disrupt mouse adrenal medulla SDHB expression, which recapitulates several key molecular features of human SDHx tumors, including succinate accumulation but not 5hmC loss, HIF accumulation, or tumorigenesis. By contrast, concomitant SDHB and the neurofibromin 1 tumor suppressor disruption yields SDHx-like pheochromocytomas. Unexpectedly, in vivo depletion of the 2-oxoglutarate (2-OG) dioxygenase cofactor ascorbate reduces SDHB-deficient cell survival, indicating that SDHx loss may be better tolerated by tissues with high antioxidant capacity. Contrary to the prevailing oncometabolite model, succinate accumulation and 2-OG-dependent dioxygenase inhibition are insufficient for mouse pheochromocytoma tumorigenesis, which requires additional growth-regulatory pathway activation.
Collapse
Affiliation(s)
- Neali Armstrong
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Claire M Storey
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Sarah E Noll
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Myat Han Soe
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | - Haixia Xu
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA
| | | | - Lauren Fishbein
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Division of Biomedical Informatics and Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Electron Kebebew
- Department of Surgery and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Justin P Annes
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford, CA, USA; Endocrine Oncology Program, Stanford University, Stanford, CA, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Lu Y, Cao Y, Zhang L, Lv Y, Zhang Y, Su Y, Guo Y. Online Quaternized Derivatization Mapping and Glycerides Profiling of Cancer Tissues by Laser Ablation Carbon Fiber Ionization Mass Spectrometry. Anal Chem 2022; 94:3756-3761. [PMID: 35191670 DOI: 10.1021/acs.analchem.1c04926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mass spectrometry imaging has become a hot research field owing to its ability to reflect the distribution of multiple metabolites in tissue. However, not all kinds of metabolites have great ionization efficiency in mass spectrometry imaging. The mass signals of low polar metabolites like monoglycerides and diglycerides may be seriously suppressed. Many strategies have been proposed to fix the problem, such as on-tissue derivatization and online derivatization. Also, some challenges were encountered when implementing these approaches. Herein, a platform coupled online quaternized derivatization and laser ablation carbon fiber ionization mass spectrometry imaging has been developed. The mass signals of monoglycerides and diglycerides were drastically increased in the platform, and high-quality mass images of these metabolites could be acquired readily. In the platform, metabolites were first desorbed by a laser and then reacted online with a derivatization reagent transmitted by carbon fiber ionization, which also undertook the postionization of derivatization products. Pyridine acted as the main derivatization reagent to target metabolites with hydroxyl groups. Remarkably, the derivatization reaction proceeded rapidly without any catalyst owing to the high energy provided by the laser. The mass images of eight monoglycerides and 21 diglycerides were achieved after applying the platform into human ovarian cancer tissues. Notably, a higher mass intensity of these glycerides was captured in cancerous tissues than in para-cancerous tissues, which might infer aberrations in glyceride metabolisms of cancerous tissues.
Collapse
Affiliation(s)
- Yingjie Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China
| | - Yuqi Cao
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Li Zhang
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yuanyuan Lv
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, P. R. China
| | - Ying Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, P. R. China
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Abstract
Mass spectrometry (MS) is an ideal tool for analyzing multiple types of (bio)molecular information simultaneously in complex biological systems. In addition, MS provides structural information on targets, and can easily discriminate between true analytes and background. Therefore, imaging mass spectrometry (IMS) enables not only visualization of tissues to give positional information on targets but also allows for molecular analysis of targets by affording the molecular weights. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS is particularly effective and is generally used for IMS. However, the requirement for an organic matrix raises several limitations that get in the way of accurate and reliable images and hampers imaging of small molecules such as drugs and their metabolites. To overcome these problems, various organic matrix-free LDI IMS systems have been developed, mostly utilizing nanostructured surfaces and inorganic nanoparticles as an alternative to the organic matrix. This minireview highlights and focuses on the progress in organic matrix-free LDI IMS and briefly discusses the use of other IMS techniques such as desorption electrospray ionization, laser ablation electrospray ionization, and secondary ion mass spectrometry.
Collapse
Affiliation(s)
- Eunjin Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Jisu Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Inseong Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Jeongwook Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
10
|
|
11
|
Duncan KD, Lanekoff I. Spatially Defined Surface Sampling Capillary Electrophoresis Mass Spectrometry. Anal Chem 2019; 91:7819-7827. [DOI: 10.1021/acs.analchem.9b01516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kyle D. Duncan
- Department of Chemistry-BMC, Uppsala University, Uppsala 751 24, Sweden
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
12
|
León M, Ferreira CR, Eberlin LS, Jarmusch AK, Pirro V, Rodrigues ACB, Favaron PO, Miglino MA, Cooks RG. Metabolites and Lipids Associated with Fetal Swine Anatomy via Desorption Electrospray Ionization - Mass Spectrometry Imaging. Sci Rep 2019; 9:7247. [PMID: 31076607 PMCID: PMC6510765 DOI: 10.1038/s41598-019-43698-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chemical imaging by mass spectrometry (MS) has been largely used to study diseases in animals and humans, especially cancer; however, this technology has been minimally explored to study the complex chemical changes associated with fetal development. In this work, we report the histologically-compatible chemical imaging of small molecules by desorption electrospray ionization (DESI) - MS of a complete swine fetus at 50 days of gestation. Tissue morphology was unperturbed by morphologically-friendly DESI-MS analysis while allowing detection of a wide range of small molecules. We observed organ-dependent localization of lipids, e.g. a large diversity of phosphatidylserine lipids in brain compared to other organs, as well as metabolites such as N-acetyl-aspartic acid in the developing nervous system and N-acetyl-L-glutamine in the heart. Some lipids abundant in the lungs, such as PC(32:0) and PS(40:6), were similar to surfactant composition reported previously. Sulfatides were highly concentrated in the fetus liver, while hexoses were barely detected at this organ but were abundant in lung and heart. The chemical information on small molecules recorded via DESI-MS imaging coupled with traditional anatomical evaluation is a powerful source of bioanalytical information which reveals the chemical changes associated with embryonic and fetal development that, when disturbed, causes congenital diseases such as spina bifida and cleft palate.
Collapse
Affiliation(s)
- Marisol León
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Christina R Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - Valentina Pirro
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States
| | - Ana Clara Bastos Rodrigues
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maria Angelica Miglino
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - R Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
13
|
Papathomas TG, Sun N, Chortis V, Taylor AE, Arlt W, Richter S, Eisenhofer G, Ruiz-Babot G, Guasti L, Walch AK. Novel methods in adrenal research: a metabolomics approach. Histochem Cell Biol 2019; 151:201-216. [PMID: 30725173 DOI: 10.1007/s00418-019-01772-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Metabolic alterations have implications in a spectrum of tissue functions and disease. Aided by novel molecular biological and computational tools, our understanding of physiological and pathological processes underpinning endocrine and endocrine-related disease has significantly expanded over the last decade. Herein, we focus on novel metabolomics-related methodologies in adrenal research: in situ metabolomics by mass spectrometry imaging, steroid metabolomics by gas and liquid chromatography-mass spectrometry, energy pathway metabologenomics by liquid chromatography-mass spectrometry-based metabolomics of Krebs cycle intermediates, and cellular reprogramming to generate functional steroidogenic cells and hence to modulate the steroid metabolome. All four techniques to assess and/or modulate the metabolome in biological systems provide tremendous opportunities to manage neoplastic and non-neoplastic disease of the adrenal glands in the era of precision medicine. In this context, we discuss emerging clinical applications and/or promising metabolic-driven research towards diagnostic, prognostic, predictive and therapeutic biomarkers in tumours arising from the adrenal gland and extra-adrenal paraganglia as well as modern approaches to delineate and reprogram adrenal metabolism.
Collapse
Affiliation(s)
- Thomas G Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Vasileios Chortis
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Susan Richter
- Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Gerard Ruiz-Babot
- Department of Internal Medicine III, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, USA
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Axel Karl Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| |
Collapse
|
14
|
Han J, Permentier H, Bischoff R, Groothuis G, Casini A, Horvatovich P. Imaging of protein distribution in tissues using mass spectrometry: An interdisciplinary challenge. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Wang X, Hou Y, Hou Z, Xiong W, Huang G. Mass Spectrometry Imaging of Brain Cholesterol and Metabolites with Trifluoroacetic Acid-Enhanced Desorption Electrospray Ionization. Anal Chem 2019; 91:2719-2726. [PMID: 30645089 DOI: 10.1021/acs.analchem.8b04395] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Imaging of cholesterol and other metabolites simultaneously by ambient mass spectrometry will greatly benefit biological studies, however, it still remains challenging. Herein, by adding acid into the desorption electrospray ionization (DESI) spray solvent, we achieved simultaneous mass spectrometry imaging of cholesterol and other metabolites directly from mouse brain sections. The introduction of acid increased the signal intensity of cholesterol in mouse brain tissues by approximately 21-fold. Additionally, the present strategy provided increased signal intensities for other metabolites up to 62-fold, as well as identification of seven more metabolites (23 vs 16 for acid-enhanced DESI vs DESI). Moreover, increased corelationships for alanine as well as putrescine and spermidine with cholesterol were discovered under acid-enhanced DESI. The potential of the present strategy in the fields of biological and medical research was demonstrated by investigating the level change for cholesterol, alanine, putrescine, and spermidine in Alzheimer's disease (AD) mouse brain.
Collapse
Affiliation(s)
| | | | | | - Wei Xiong
- Center for Excellence in Brain Science and Intelligence Technology , Chinese Academy of Sciences , Shanghai 200031 , People's Republic of China
| | | |
Collapse
|
16
|
Luberto C, Haley JD, Del Poeta M. Imaging with mass spectrometry, the next frontier in sphingolipid research? A discussion on where we stand and the possibilities ahead. Chem Phys Lipids 2019; 219:1-14. [PMID: 30641043 DOI: 10.1016/j.chemphyslip.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
In the last ten years, mass spectrometry (MS) has become the favored analytical technique for sphingolipid (SPL) analysis and measurements. Indeed MS has the unique ability to both acquire sensitive and quantitative measurements and to resolve the molecular complexity characteristic of SPL molecules, both across the different SPL families and within the same SPL family. Currently, two complementary MS-based approaches are used for lipid research: analysis of lipid extracts, mainly by infusion electrospray ionization (ESI), and mass spectrometry imaging (MSI) from a sample surface (i.e. intact tissue sections, cells, model membranes, thin layer chromatography plates) (Fig. 1). The first allows for sensitive and quantitative information about total lipid molecular species from a given specimen from which lipids have been extracted and chromatographically separated prior to the analysis; the second, albeit generally less quantitative and less specific in the identification of molecular species due to the complexity of the sample, allows for spatial information of lipid molecules from biological specimens. In the field of SPL research, MS analysis of lipid extracts from biological samples has been commonly utilized to implicate the role of these lipids in specific biological functions. On the other hand, the utilization of MSI in SPL research represents a more recent development that has started to provide interesting descriptive observations regarding the distribution of specific classes of SPLs within tissues. Thus, it is the aim of this review to discuss how MSI technology has been employed to extend the study of SPL metabolism and the type of information that has been obtained from model membranes, single cells and tissues. We envision this discussion as a complementary compendium to the excellent technical reviews recently published about the specifics of MSI technologies, including their application to SPL analysis (Fuchs et al., 2010; Berry et al., 2011; Ellis et al., 2013; Eberlin et al., 2011; Kraft and Klitzing, 2014).
Collapse
Affiliation(s)
- Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, United States.
| | - John D Haley
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States; Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States; Veterans Administrations Medical Center, Northport, NY, United States
| |
Collapse
|
17
|
Mass Spectrometry Imaging of Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:155-166. [DOI: 10.1007/978-3-030-04278-3_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Kaya I, Brülls SM, Dunevall J, Jennische E, Lange S, Mårtensson J, Ewing AG, Malmberg P, Fletcher JS. On-Tissue Chemical Derivatization of Catecholamines Using 4-( N-Methyl)pyridinium Boronic Acid for ToF-SIMS and LDI-ToF Mass Spectrometry Imaging. Anal Chem 2018; 90:13580-13590. [PMID: 30346141 DOI: 10.1021/acs.analchem.8b03746] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The analysis of small polar compounds with ToF-SIMS and MALDI-ToF-MS have been generally hindered by low detection sensitivity, poor ionization efficiency, ion suppression, analyte in-source fragmentation, and background spectral interferences from either a MALDI matrix and/or endogenous tissue components. Chemical derivatization has been a well-established strategy for improved mass spectrometric detection of many small molecular weight endogenous compounds in tissues. Here, we present a devised strategy to selectively derivatize and sensitively detect catecholamines with both secondary ion ejection and laser desorption ionization strategies, which are used in many imaging mass spectrometry (IMS) experiments. Chemical derivatization of catecholamines was performed by a reaction with a synthesized permanent pyridinium-cation-containing boronic acid molecule, 4-( N-methyl)pyridinium boronic acid, through boronate ester formation (boronic acid-diol reaction). The derivatization facilitates their sensitive detection with ToF-SIMS and LDI-ToF mass spectrometric techniques. 4-( N-Methyl)pyridinium boronic acid worked as a reactive matrix for catecholamines with LDI and improved the sensitivity of detection for both SIMS and LDI, while the isotopic abundances of the boron atom reflect a unique isotopic pattern for derivatized catecholamines in MS analysis. Finally, the devised strategy was applied, as a proof of concept, for on-tissue chemical derivatization and GCIB-ToF-SIMS (down to 3 μm per pixel spatial resolution) and LDI-ToF mass spectrometry imaging of dopamine, epinephrine, and norepinephrine in porcine adrenal gland tissue sections. MS/MS using collision-induced dissociation (CID)-ToF-ToF-SIMS was subsequently employed on the same tissue sections after SIMS and LDI mass spectrometry imaging experiments, which provided tandem MS information for the validation of the derivatized catecholamines in situ. This methodology can be a powerful approach for the selective and sensitive ionization/detection and spatial localization of diol-containing molecules such as aminols, vic-diols, saccharides, and glycans along with catecholamines in tissue sections with both SIMS and LDI/MALDI-MS techniques.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Chemistry and Molecular Biology , University of Gothenburg , Kemivägen 10 , 405 30 Gothenburg , Sweden.,Department of Psychiatry and Neurochemistry , Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital , House V3, 43180 Mölndal , Sweden.,The Gothenburg Imaging Mass Spectrometry (Go: IMS) Laboratory , University of Gothenburg and Chalmers University of Technology , Gothenburg 412 96 , Sweden
| | - Steffen M Brülls
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 412 96 Gothenburg , Sweden
| | - Johan Dunevall
- Department of Chemistry and Molecular Biology , University of Gothenburg , Kemivägen 10 , 405 30 Gothenburg , Sweden.,The Gothenburg Imaging Mass Spectrometry (Go: IMS) Laboratory , University of Gothenburg and Chalmers University of Technology , Gothenburg 412 96 , Sweden
| | - Eva Jennische
- Institute of Biomedicine , University of Gothenburg , Gothenburg 413 90 , Sweden
| | - Stefan Lange
- Institute of Biomedicine , University of Gothenburg , Gothenburg 413 90 , Sweden
| | - Jerker Mårtensson
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 412 96 Gothenburg , Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology , University of Gothenburg , Kemivägen 10 , 405 30 Gothenburg , Sweden.,The Gothenburg Imaging Mass Spectrometry (Go: IMS) Laboratory , University of Gothenburg and Chalmers University of Technology , Gothenburg 412 96 , Sweden
| | - Per Malmberg
- The Gothenburg Imaging Mass Spectrometry (Go: IMS) Laboratory , University of Gothenburg and Chalmers University of Technology , Gothenburg 412 96 , Sweden.,Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 412 96 Gothenburg , Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology , University of Gothenburg , Kemivägen 10 , 405 30 Gothenburg , Sweden.,The Gothenburg Imaging Mass Spectrometry (Go: IMS) Laboratory , University of Gothenburg and Chalmers University of Technology , Gothenburg 412 96 , Sweden
| |
Collapse
|
19
|
Chen X, Wang T, Lin L, Wo F, Liu Y, Liang X, Ye H, Wu J. Tip-Enhanced Photoinduced Electron Transfer and Ionization on Vertical Silicon Nanowires. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14389-14398. [PMID: 29648434 DOI: 10.1021/acsami.8b00506] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanostructured semiconductors are one of the most potent candidates for matrix-free laser desorption/ionization mass spectrometric (LDI-MS) analysis of low-molecular-weight molecules. Herein, the enhanced photoinduced electron transfer and LDI on the tip of a vertical silicon nanowire (SiNW) array were investigated. Theoretical simulation and LDI detection of indigo and isatin molecules in negative ion mode revealed that the electric field can be enhanced on the tip end of SiNWs, thereby promoting the energy and electron transfer to the analytes adsorbed on the tip of SiNWs. On the basis of this finding, a tip-contact sampling method coupled with LDI-MS detection was established. In this strategy, the tip of SiNWs can be regarded as microextraction heads for the sampling of molecules when they come in contact with analytes. Impression of skin, tissue, and pericarp on the vertical SiNW array can effectively transfer endogenous metabolites or exogenous substances onto the tip. Upon laser irradiation, the adsorbed molecules on the SiNW tip can be efficiently ionized and detected in negative ion mode because of the tip-enhanced electron transfer and LDI effect. We believe this work may significantly expand the application of LDI-MS in various fields.
Collapse
Affiliation(s)
- Xiaoming Chen
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Tao Wang
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Leimiao Lin
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Fangjie Wo
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Yaqin Liu
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine , Zhejiang University , Hangzhou 310016 , P. R. China
| | - Hui Ye
- College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Jianmin Wu
- Institute of Analytical Chemistry, Department of Chemistry , Zhejiang University , Hangzhou 310058 , P. R. China
| |
Collapse
|
20
|
Sun N, Wu Y, Nanba K, Sbiera S, Kircher S, Kunzke T, Aichler M, Berezowska S, Reibetanz J, Rainey WE, Fassnacht M, Walch A, Kroiss M. High-Resolution Tissue Mass Spectrometry Imaging Reveals a Refined Functional Anatomy of the Human Adult Adrenal Gland. Endocrinology 2018; 159:1511-1524. [PMID: 29385420 PMCID: PMC5839739 DOI: 10.1210/en.2018-00064] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
In the adrenal gland, neuroendocrine cells that synthesize catecholamines and epithelial cells that produce steroid hormones are united beneath a common organ capsule to function as a single stress-responsive organ. The functional anatomy of the steroid hormone-producing adrenal cortex and the catecholamine-producing medulla is ill defined at the level of small molecules. Here, we report a comprehensive high-resolution mass spectrometry imaging (MSI) map of the normal human adrenal gland. A large variety of biomolecules was accessible by matrix-assisted laser desorption/ionization-Fourier transform-ion cyclotron resonance MSI, including nucleoside phosphates indicative of oxidative phosphorylation, sterol and steroid metabolites, intermediates of glycolysis and the tricarboxylic acid cycle, lipids, and fatty acids. Statistical clustering analyses yielded a molecularly defined adrenal anatomy of 10 distinct molecular zones including a highly structured corticomedullary interface. By incorporating pathway information, activities of carbohydrate, amino acid, and lipid metabolism as well as endocrine bioactivity were revealed to be highly spatially organized, which could be visualized as different molecularly defined zones. Together, these findings provide a molecular definition of human adult adrenal gland structure beyond classical histological anatomy.
Collapse
Affiliation(s)
- Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Yin Wu
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Silviu Sbiera
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany
| | - Stefan Kircher
- Institut für Pathologie, University of Würzburg, 97080 Würzburg, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | | | - Joachim Reibetanz
- Department of General, Visceral, Vascular and Paediatric Surgery, University Hospital Würzburg, 97080 Würzburg, Germany
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Martin Fassnacht
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
- Correspondence: Axel Walch, MD, Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany. E-mail:
| | - Matthias Kroiss
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
21
|
WANG S, WANG Z, HOU KY, LI HY. Thermal Desorption Low Temperature Plasma Ionization Mass Spectrometry for Rapid and Sensitive Detection of Pesticides in Broomcorn. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(16)60993-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Fernandes AMAP, Vendramini PH, Galaverna R, Schwab NV, Alberici LC, Augusti R, Castilho RF, Eberlin MN. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1944-1951. [PMID: 27704473 DOI: 10.1007/s13361-016-1475-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/30/2016] [Accepted: 07/31/2016] [Indexed: 05/12/2023]
Abstract
Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Anna Maria A P Fernandes
- Thomson Mass Spectrometry Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Pedro H Vendramini
- Thomson Mass Spectrometry Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Nicolas V Schwab
- Thomson Mass Spectrometry Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luciane C Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodinei Augusti
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, UNICAMP, Campinas, SP, Brazil
| | - Marcos N Eberlin
- Thomson Mass Spectrometry Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
23
|
Rocha B, Ruiz-Romero C, Blanco FJ. Mass spectrometry imaging: a novel technology in rheumatology. Nat Rev Rheumatol 2016; 13:52-63. [DOI: 10.1038/nrrheum.2016.184] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Shariatgorji M, Strittmatter N, Nilsson A, Källback P, Alvarsson A, Zhang X, Vallianatou T, Svenningsson P, Goodwin RJA, Andren PE. Simultaneous imaging of multiple neurotransmitters and neuroactive substances in the brain by desorption electrospray ionization mass spectrometry. Neuroimage 2016; 136:129-38. [PMID: 27155126 DOI: 10.1016/j.neuroimage.2016.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 02/07/2023] Open
Abstract
With neurological processes involving multiple neurotransmitters and neuromodulators, it is important to have the ability to directly map and quantify multiple signaling molecules simultaneously in a single analysis. By utilizing a molecular-specific approach, namely desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we demonstrated that the technique can be used to image multiple neurotransmitters and their metabolites (dopamine, dihydroxyphenylacetic acid, 3-methoxytyramine, serotonin, glutamate, glutamine, aspartate, γ-aminobutyric acid, adenosine) as well as neuroactive drugs (amphetamine, sibutramine, fluvoxamine) and drug metabolites in situ directly in brain tissue sections. The use of both positive and negative ionization modes increased the number of identified molecular targets. Chemical derivatization by charge-tagging the primary amines of molecules significantly increased the sensitivity, enabling the detection of low abundant neurotransmitters and other neuroactive substances previously undetectable by MSI. The sensitivity of the imaging approach of neurochemicals has a great potential in many diverse applications in fields such as neuroscience, pharmacology, drug discovery, neurochemistry, and medicine.
Collapse
Affiliation(s)
- Mohammadreza Shariatgorji
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | | | - Anna Nilsson
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Patrik Källback
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Alexandra Alvarsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Xiaoqun Zhang
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Theodosia Vallianatou
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Per Svenningsson
- Center for Molecular Medicine, Department of Neurology and Clinical Neuroscience, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | | | - Per E Andren
- Biomolecular Imaging and Proteomics, National Resource for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden.
| |
Collapse
|
25
|
Biological Desorption Electrospray Ionization Mass Spectrometry (DESI MS) – unequivocal role of crucial ionization factors, solvent system and substrates. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Affiliation(s)
- Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, WA 99352
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| |
Collapse
|
27
|
Handberg E, Chingin K, Wang N, Dai X, Chen H. Mass spectrometry imaging for visualizing organic analytes in food. MASS SPECTROMETRY REVIEWS 2015; 34:641-58. [PMID: 24687728 DOI: 10.1002/mas.21424] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 05/27/2023]
Abstract
The demand for rapid chemical imaging of food products steadily increases. Mass spectrometry (MS) is featured by excellent molecular specificity of analysis and is, therefore, a very attractive method for chemical profiling. MS for food imaging has increased significantly over the past decade, aided by the emergence of various ambient ionization techniques that allow direct and rapid analysis in ambient environment. In this article, the current status of food imaging with MSI is reviewed. The described approaches include matrix-assisted laser desorption/ionization (MALDI), but emphasize desorption atmospheric pressure photoionization (DAPPI), electrospray-assisted laser desorption/ionization (ELDI), probe electrospray ionization (PESI), surface desorption atmospheric pressure chemical ionization (SDAPCI), and laser ablation flowing atmospheric pressure afterglow (LA-FAPA). The methods are compared with regard to spatial resolution; analysis speed and time; limit of detection; and technical aspects. The performance of each method is illustrated with the description of a related application. Specific requirements in food imaging are discussed.
Collapse
Affiliation(s)
- Eric Handberg
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Nannan Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Ximo Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| |
Collapse
|
28
|
Li T, He J, Mao X, Bi Y, Luo Z, Guo C, Tang F, Xu X, Wang X, Wang M, Chen J, Abliz Z. In situ biomarker discovery and label-free molecular histopathological diagnosis of lung cancer by ambient mass spectrometry imaging. Sci Rep 2015; 5:14089. [PMID: 26404114 PMCID: PMC4585892 DOI: 10.1038/srep14089] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022] Open
Abstract
Sensitive and spatial exploration of the metabolism of tumors at the metabolome level is highly challenging. In this study, we developed an in situ metabolomics method based on ambient mass spectrometry imaging using air flow-assisted desorption electrospray ionization (AFADESI), which can spatially explore the alteration of global metabolites in tissues with high sensitivity. Using this method, we discovered potential histopathological diagnosis biomarkers (including lipids, amino acids, choline, peptides, and carnitine) from 52 postoperative lung cancer tissue samples and then subsequently used these biomarkers to generate images for rapid and label-free histopathological diagnosis. These biomarkers were validated with a sensitivity and a specificity of 93.5% and 100%, respectively. Moreover, a single imaging analysis of a cryosection that visualized all these biomarkers, taking tens of minutes, revealed the type and subtype of the cancer. This method could potentially be used as a molecular pathological tool for rapid clinical lung cancer diagnosis and immediate image-guided surgery.
Collapse
Affiliation(s)
- Tiegang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Ying Bi
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Chengan Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Fei Tang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Xiaohao Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P. R. China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
29
|
Abstract
Ambient ionization MS has become very popular in analytical science and has now evolved as an effective analytical tool in metabolomics, biological tissue imaging, protein and small molecule drug analysis, where biological samples are probed in a rapid and direct fashion with minimal sample preparation at ambient conditions. However, certain inherent challenges continue to hinder the vibrant prospects of these methods for in situ analyses or to replace conventional methods in bioanalysis. This review provides an introduction to the field and its application in bioanalysis, with an emphasis on the most recent developments and applications. Furthermore, ongoing challenges or limitations related to quantitation, sensitivity, selectivity, instrumentation and mass range of these ambient methods will also be discussed.
Collapse
|
30
|
Tata A, Perez CJ, Hamid TS, Bayfield MA, Ifa DR. Analysis of metabolic changes in plant pathosystems by imprint imaging DESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:641-8. [PMID: 25510927 DOI: 10.1007/s13361-014-1039-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 05/24/2023]
Abstract
The response of plants to microbial pathogens is based on the production of secondary metabolites. The complexity of plant-pathogen interactions makes their understanding a challenging task for metabolomic studies requiring powerful analytical approaches. In this paper, the ability of ambient mass spectrometry to provide a snapshot of plant metabolic response to pathogen invasion was tested. The fluctuations of glycoalkaloids present in sprouted potatoes infected by the phytopathogen Pythium ultimum were monitored by imprint imaging desorption electrospray ionization mass spectrometry (DESI-MS). After 8 d from the inoculation, a decrease of the relative abundance of potato glycoalkaloids α-solanine (m/z 706) and α-chaconine (m/z 722) was observed, whereas the relative intensity of solanidine (m/z 398), solasodenone (m/z 412), solanaviol (m/z 430), solasodiene (m/z 396), solaspiralidine (m/z 428), γ-solanine/γ-chaconine (m/z 560) , β-solanine (m/z 706), and β-chaconine (m/z 722) increased. The progression of the disease, expressed by the development of brown necrotic lesions on the potato, led to the further decrease of all the glycoalkaloid metabolites. Therefore, the applicability of imprint imaging DESI-MS in studying the plant metabolic changes in a simple pathosystem was demonstrated with minimal sample preparation.
Collapse
Affiliation(s)
- Alessandra Tata
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
31
|
Romero-Perez GA, Takei S, Yao I. Imaging Mass Spectrometric Analysis of Neurotransmitters: A Review. Mass Spectrom (Tokyo) 2015; 3:S0049. [PMID: 26819893 PMCID: PMC4353836 DOI: 10.5702/massspectrometry.s0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/22/2015] [Indexed: 01/19/2023] Open
Abstract
Imaging mass spectrometry (IMS) is a toolbox of versatile techniques that enable us to investigate analytes in samples at molecular level. In recent years, IMS, and especially matrix-assisted laser desorption/ionisation (MALDI), has been used to visualise a wide range of metabolites in biological samples. Simultaneous visualisation of the spatial distribution of metabolites in a single sample with little tissue disruption can be considered as one important advantage of MALDI over other techniques. However, several technical hurdles including low concentrations and rapid degradation rates of small molecule metabolites, matrix interference of signals and poor ionisation, need to be addressed before MALDI can be considered as a reliable tool for the analysis of metabolites such as neurotransmitters in brain tissues from different sources including humans. In the present review we will briefly describe current MALDI IMS techniques used to study neurotransmitters and discuss their current status, challenges, as well as future prospects.
Collapse
Affiliation(s)
| | | | - Ikuko Yao
- Hamamatsu University School of Medicine
| |
Collapse
|
32
|
Barceló-Coblijn G, Fernández JA. Mass spectrometry coupled to imaging techniques: the better the view the greater the challenge. Front Physiol 2015; 6:3. [PMID: 25657625 PMCID: PMC4302787 DOI: 10.3389/fphys.2015.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/06/2015] [Indexed: 11/13/2022] Open
Abstract
These are definitively exciting times for membrane lipid researchers. Once considered just as the cell membrane building blocks, the important role these lipids play is steadily being acknowledged. The improvement occurred in mass spectrometry techniques (MS) allows the establishment of the precise lipid composition of biological extracts. However, to fully understand the biological function of each individual lipid species, we need to know its spatial distribution and dynamics. In the past 10 years, the field has experienced a profound revolution thanks to the development of MS-based techniques allowing lipid imaging (MSI). Images reveal and verify what many lipid researchers had already shown by different means, but none as convincing as an image: each cell type presents a specific lipid composition, which is highly sensitive to its physiological and pathological state. While these techniques will help to place membrane lipids in the position they deserve, they also open the black box containing all the unknown regulatory mechanisms accounting for such tailored lipid composition. Thus, these results urges to different disciplines to redefine their paradigm of study by including the complexity revealed by the MSI techniques.
Collapse
Affiliation(s)
- Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa) Palma, Spain
| | - José A Fernández
- Departamento de Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU) Leioa, Spain
| |
Collapse
|
33
|
Abstract
Desorption electrospray ionization (DESI) allows the direct analysis of ordinary objects or preprocessed samples under ambient conditions. Among other applications, DESI is used to identify and to record spatial distributions of small molecules in situ, sliced or imprinted biological tissue. Manipulation of the chemistry accompanying ambient analysis ionization can be used to optimize chemical analysis, including molecular imprinting. Images are obtained by continuously moving the sample relative to the DESI sprayer and the inlet of the mass spectrometer. The acquisition time depends on the size of the surface to be analyzed and on the desired resolution.
Collapse
Affiliation(s)
- Elaine C Cabral
- Department of Chemistry, Faculty of Science, Centre for Research in Mass Spectrometry (CRMS), York University, 256 Chemistry Building, 4700 Keele Street, Toronto, ON, Canada, M3J 1P3
| | | |
Collapse
|
34
|
Liu J, Xiong X, Ouyang Z. Data processing and analysis for mass spectrometry imaging. Methods Mol Biol 2015; 1203:195-209. [PMID: 25361679 DOI: 10.1007/978-1-4939-1357-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mass spectrometry imaging produces large numbers of spectra that need to be efficiently stored, processed, and analyzed. In this chapter, we describe the protocol and methods for data processing, visualization, and statistical analysis, with related techniques and tools available presented. Examples are given with data collected for a 3D MS imaging of a mouse brain and 2D MS imaging of human bladder tissues.
Collapse
Affiliation(s)
- Jiangjiang Liu
- Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | | | | |
Collapse
|
35
|
Challenges and recent advances in mass spectrometric imaging of neurotransmitters. Bioanalysis 2014; 6:525-40. [PMID: 24568355 DOI: 10.4155/bio.13.341] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. Herein, we briefly review new MSI studies of neurotransmitters, focusing specifically on the challenges and recent advances of MSI of neurotransmitters.
Collapse
|
36
|
Manier ML, Spraggins JM, Reyzer ML, Norris JL, Caprioli RM. A derivatization and validation strategy for determining the spatial localization of endogenous amine metabolites in tissues using MALDI imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:665-73. [PMID: 25044893 PMCID: PMC4126081 DOI: 10.1002/jms.3411] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/03/2014] [Accepted: 06/12/2014] [Indexed: 05/18/2023]
Abstract
Imaging mass spectrometry (IMS) studies increasingly focus on endogenous small molecular weight metabolites and consequently bring special analytical challenges. Since analytical tissue blanks do not exist for endogenous metabolites, careful consideration must be given to confirm molecular identity. Here, we present approaches for the improvement in detection of endogenous amine metabolites such as amino acids and neurotransmitters in tissues through chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) IMS. Chemical derivatization with 4-hydroxy-3-methoxycinnamaldehyde (CA) was used to improve sensitivity and specificity. CA was applied to the tissue via MALDI sample targets precoated with a mixture of derivatization reagent and ferulic acid as a MALDI matrix. Spatial distributions of chemically derivatized endogenous metabolites in tissue were determined by high-mass resolution and MS(n) IMS. We highlight an analytical strategy for metabolite validation whereby tissue extracts are analyzed by high-performance liquid chromatography (HPLC)-MS/MS to unambiguously identify metabolites and distinguish them from isobaric compounds.
Collapse
Affiliation(s)
- M. Lisa Manier
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232
| | | | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232
| | - Jeremy L. Norris
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
37
|
Li L, Schug KA. Continuous-flow extractive desorption electrospray ionization coupled to normal phase separations and for direct lipid analysis from cell extracts. J Sep Sci 2014; 37:2357-63. [DOI: 10.1002/jssc.201400361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Li Li
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; Arlington TX USA
| | - Kevin A. Schug
- Department of Chemistry and Biochemistry; The University of Texas at Arlington; Arlington TX USA
| |
Collapse
|
38
|
Espy RD, Wleklinski M, Yan X, Cooks RG. Beyond the flask: Reactions on the fly in ambient mass spectrometry. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Bennett RV, Gamage CM, Galhena AS, Fernández FM. Contrast-Enhanced Differential Mobility-Desorption Electrospray Ionization-Mass Spectrometry Imaging of Biological Tissues. Anal Chem 2014; 86:3756-63. [DOI: 10.1021/ac5007816] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rachel V. Bennett
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Chaminda M. Gamage
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Asiri S. Galhena
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Facundo M. Fernández
- School of Chemistry
and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
40
|
Shariatgorji M, Svenningsson P, Andrén PE. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology. Neuropsychopharmacology 2014; 39:34-49. [PMID: 23966069 PMCID: PMC3857656 DOI: 10.1038/npp.2013.215] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 01/03/2023]
Abstract
Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience.
Collapse
Affiliation(s)
- Mohammadreza Shariatgorji
- Department of Pharmaceutical Biosciences, Biomolecular Imaging and Proteomics, National Laboratory for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Department of Neurology and Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Biomolecular Imaging and Proteomics, National Laboratory for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Wang X, Han J, Pan J, Borchers CH. Comprehensive Imaging of Porcine Adrenal Gland Lipids by MALDI-FTMS Using Quercetin as a Matrix. Anal Chem 2013; 86:638-46. [DOI: 10.1021/ac404044k] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaodong Wang
- University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park,
#3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Jun Han
- University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park,
#3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Jingxi Pan
- University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park,
#3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Christoph H. Borchers
- University of Victoria - Genome British Columbia Proteomics Centre, Vancouver Island Technology Park,
#3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
- Department
of Biochemistry and Microbiology, University of Victoria, Petch Building
Room 207, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada
| |
Collapse
|
42
|
Bennet RV, Gamage CM, Fernández FM. Imaging of biological tissues by desorption electrospray ionization mass spectrometry. J Vis Exp 2013:e50575. [PMID: 23892773 DOI: 10.3791/50575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mass spectrometry imaging (MSI) provides untargeted molecular information with the highest specificity and spatial resolution for investigating biological tissues at the hundreds to tens of microns scale. When performed under ambient conditions, sample pre-treatment becomes unnecessary, thus simplifying the protocol while maintaining the high quality of information obtained. Desorption electrospray ionization (DESI) is a spray-based ambient MSI technique that allows for the direct sampling of surfaces in the open air, even in vivo. When used with a software-controlled sample stage, the sample is rastered underneath the DESI ionization probe, and through the time domain, m/z information is correlated with the chemical species' spatial distribution. The fidelity of the DESI-MSI output depends on the source orientation and positioning with respect to the sample surface and mass spectrometer inlet. Herein, we review how to prepare tissue sections for DESI imaging and additional experimental conditions that directly affect image quality. Specifically, we describe the protocol for the imaging of rat brain tissue sections by DESI-MSI.
Collapse
Affiliation(s)
- Rachel V Bennet
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
| | | | | |
Collapse
|
43
|
Cabral EC, Mirabelli MF, Perez CJ, Ifa DR. Blotting assisted by heating and solvent extraction for DESI-MS imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:956-65. [PMID: 23605686 DOI: 10.1007/s13361-013-0616-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 05/24/2023]
Abstract
Imprints of potato sprout (Solanum tuberosum L.), gingko leaves (Gingko biloba L.) and strawberries (Fragaria x ananassa Duch.) were successfully imaged by desorption electrospray ionization mass spectrometry (DESI-MS) on TLC plates through blotting assisted by heating and/or solvent extraction. Ion images showing the distribution of significant compounds such as glycoalkaloid toxins in potato sprout, ginkgolic acids and flavonoids in ginkgo leaves, and sugars and anthocyanidin in strawberry were obtained. Practical implications of this work include analysis of a wide range of irregular or soft materials by different imprinting conditions without requiring the addition of matrices or use of specific kinds of surfaces.
Collapse
Affiliation(s)
- Elaine C Cabral
- Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
44
|
Zhang T, Zhou W, Jin W, Jin Q, Chen H. Direct detection of aromatic amines and observation of intermediates of Schiff-base reactions by reactive desorption electrospray ionization mass spectrometry. Microchem J 2013. [DOI: 10.1016/j.microc.2012.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR. Mass spectrometry imaging under ambient conditions. MASS SPECTROMETRY REVIEWS 2013; 32:218-43. [PMID: 22996621 PMCID: PMC3530640 DOI: 10.1002/mas.21360] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI for example the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information on the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue diagnostic purposes. Finally, we discuss the challenges in ambient MSI and include perspectives on the future of the field.
Collapse
Affiliation(s)
- Chunping Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Allison L. Dill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Livia S. Eberlin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
- ,
| | - Demian R. Ifa
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
- ,
| |
Collapse
|
46
|
Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res 2013; 52:329-53. [PMID: 23623802 DOI: 10.1016/j.plipres.2013.04.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/19/2013] [Accepted: 04/12/2013] [Indexed: 11/22/2022]
Abstract
Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated.
Collapse
|
47
|
Masyuko R, Lanni EJ, Sweedler JV, Bohn PW. Correlated imaging--a grand challenge in chemical analysis. Analyst 2013; 138:1924-39. [PMID: 23431559 PMCID: PMC3718397 DOI: 10.1039/c3an36416j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Correlated chemical imaging is an emerging strategy for acquisition of images by combining information from multiplexed measurement platforms to track, visualize, and interpret in situ changes in the structure, organization, and activities of interesting chemical systems, frequently spanning multiple decades in space and time. Acquiring and correlating information from complementary imaging experiments has the potential to expose complex chemical behavior in ways that are simply not available from single methods applied in isolation, thereby greatly amplifying the information gathering power of imaging experiments. However, in order to correlate image information across platforms, a number of issues must be addressed. First, signals are obtained from disparate experiments with fundamentally different figures of merit, including pixel size, spatial resolution, dynamic range, and acquisition rates. In addition, images are often acquired on different instruments in different locations, so the sample must be registered spatially so that the same area of the sample landscape is addressed. The signals acquired must be correlated in both spatial and temporal domains, and the resulting information has to be presented in a way that is readily understood. These requirements pose special challenges for image cross-correlation that go well beyond those posed in single technique imaging approaches. The special opportunities and challenges that attend correlated imaging are explored by specific reference to correlated mass spectrometric and Raman imaging, a topic of substantial and growing interest.
Collapse
Affiliation(s)
- Rachel Masyuko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
48
|
Luo C, Ma Y, Li H, Chen F, Uchiyama K, Lin JM. Generation of picoliter droplets of liquid for electrospray ionization with piezoelectric inkjet. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:321-328. [PMID: 23494787 DOI: 10.1002/jms.3159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/08/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
We report the association of inkjet and electrospray ionization MS to detect picoliter droplet, where the liquid volume and its position onto the tip can be precisely controlled to form ultrafine droplets for successive ionization of the analyte. Single rectangle pulse was applied to piezoelectric device on inkjet microchip for the ejection of each picoliter droplet, and it was controlled by a computer. The voltage and width of driving pulse for the inkjet were optimized to make reproducible ejection of the solvent with low viscosity. The volume of each droplet was about 600 pl, and a trigger of 10 droplets was selected as the best inlet mode taking relative standard derivation of the droplets into consideration. The target substrate used with high voltage to form ionization was graphite, after several attempts with some materials. High-speed camera was used to capture the breaking-up process of a droplet. The distance between the inkjet nozzle and the tip was set at 2 cm to avoid short circuit. The influences on the mass intensity of the diameter of the tip, the volume and the concentration of the sample were examined. The tip with a small diameter performed greater intensity, and the limit of detection decreased, whereas the small volume of liquid played high ionization efficiency. Linear regression in the range between 1 and 200 ppm for caffeine was conducted, where internal standard theobromine was used. Some real samples were also detected with the instrument.
Collapse
Affiliation(s)
- Chen Luo
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
49
|
Badu-Tawiah AK, Eberlin LS, Ouyang Z, Cooks RG. Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu Rev Phys Chem 2013; 64:481-505. [PMID: 23331308 DOI: 10.1146/annurev-physchem-040412-110026] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ambient ionization techniques allow complex chemical samples to be analyzed in their native state with minimal sample preparation. This brings the obvious advantages of simplicity, speed, and versatility to mass spectrometry: Desorption electrospray ionization (DESI), for example, is used in chemical imaging for tumor margin diagnosis. This review on the extractive methods of ambient ionization focuses on chemical aspects, mechanistic considerations, and the accelerated chemical reactions occurring in charged liquid droplets generated in the spray process. DESI uses high-velocity solvent droplets to extract analytes from surfaces. Nano-DESI employs liquid microjunctions for analyte dissolution, whereas paper-spray ionization uses DC potentials applied to wet porous material such as paper or biological tissue to field emit charged analyte-containing solvent droplets. These methods also operate in a reactive mode in which added reagents allow derivatization during ionization. The accelerated reaction rates seen in charged microdroplets are useful in small-scale rapid chemical synthesis.
Collapse
|
50
|
Bennett RV, Cleaves HJ, Davis JM, Sokolov DA, Orlando TM, Bada JL, Fernández FM. Desorption Electrospray Ionization Imaging Mass Spectrometry as a Tool for Investigating Model Prebiotic Reactions on Mineral Surfaces. Anal Chem 2013; 85:1276-9. [DOI: 10.1021/ac303202n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachel V. Bennett
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - H. James Cleaves
- Blue Marble Space Institute of Science, Washington, DC 20016, United States
| | - Jeffrey M. Davis
- National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - Denis A. Sokolov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas M. Orlando
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeffrey L. Bada
- Scripps Institution of Oceanography, La Jolla, California
92093, United States
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|