1
|
Maimó-Barceló A, Pérez-Romero K, Rodríguez RM, Huergo C, Calvo I, Fernández JA, Barceló-Coblijn G. To image or not to image: Use of imaging mass spectrometry in biomedical lipidomics. Prog Lipid Res 2025; 97:101319. [PMID: 39765282 DOI: 10.1016/j.plipres.2025.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Lipid imaging mass spectrometry (LIMS) allows for establishing the bidimensional distribution of lipid species within a tissue section. One of the main advantages is the generation of spatial information on lipid species distribution at a spatial (lateral) resolution bordering on single-cell resolution with no need to isolate cells. Thus, LIMS images demonstrate, with a level of detail never described before, that lipid profiles are highly sensitive to cell type and pathophysiological state. The wealth and relevance of the information conveyed by LIMS makes up for the lack of a separation stage before sample injection into the mass analyzer, which can somehow be circumvented by other means. Hence, the possibility of describing the lipidome at the cellular level while preserving the microenvironment offers an incomparable opportunity to investigate physiological and pathological contexts. However, to fully grasp the biological implications of the lipid profiles, it is essential to contextualize LIMS data within the broader multiscale 'omic' landscape, entailing genomics, epigenomics, and proteomics, each offering a unique window into the regulatory layers of the cell. In this line, the number of techniques that can be combined with LIMS to delve into the molecular mechanisms underlying differential lipid profiles is continuously increasing. Herein, we aim to describe the key features of LIMS analyses, from sample preparation to data interpretation, as well as the current methodologies to enrich and complete the final outcome. While the field is rapidly advancing, we consider there is solid evidence to foresee the incorporation of LIMS into clinical environments.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Karim Pérez-Romero
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Ramón M Rodríguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Cristina Huergo
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ibai Calvo
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - José A Fernández
- Department of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa) - Health Research Institute of the Balearic Islands, Ctra. Valldemossa 79, Section G, Floor -1, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra Valldemossa 79, E-07120 Palma, Balearic Islands, Spain.
| |
Collapse
|
2
|
Guan X, Lu Q, Liu S, Yan X. Postionization Mass Spectrometry Imaging: Past, Present, and Future. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39558446 DOI: 10.1002/mas.21918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 11/02/2024] [Indexed: 11/20/2024]
Abstract
Mass spectrometry imaging (MSI) technologies are widely used today to study the in situ spatial distributions for a variety of analytes. As these technologies advance, the pursuit of higher resolution in MSI has intensified. The limitation of direct desorption/ionization is its insufficient ionization, posing a constraint on the advancement of high-resolution MSI technologies. The introduction of postionization process compensates the low ionization efficiency caused by sacrificing the desorption area while pursuing high spatial resolution, resolving the conflict between high spatial resolution and high sensitivity in direct desorption/ionization method. Here, we discuss the sampling and ionization steps of MSI separately, and review the postionization methods in MSI according to three different sampling modes: laser sampling, probe sampling, and ion beam sampling. Postionization technology excels in enhancing ionization efficiency, boosting sensitivity, mitigating discrimination effect, simplifying sample preparation, and expanding the scope of applicability. These advantages position postionization technology as a promising tool for biomedical sciences, materials sciences, forensic analysis and other fields.
Collapse
Affiliation(s)
- Xiaokang Guan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instruments and Equipment, Xiamen University, Xiamen, China
| | - Qiao Lu
- Clinical Molecular Diagnostic Center of Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shuxian Liu
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instruments and Equipment, Xiamen University, Xiamen, China
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instruments and Equipment, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Vats M, Cillero-Pastor B, Cuypers E, Heeren RMA. Mass spectrometry imaging in plants, microbes, and food: a review. Analyst 2024; 149:4553-4582. [PMID: 39196541 DOI: 10.1039/d4an00644e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Plant health, which affects the nutritional quality and safety of derivative food products, is influenced by symbiotic interactions with microorganisms. These interactions influence the local molecular profile at the tissue level. Therefore, studying the distribution of molecules within plants, microbes, and plant-based food is crucial to assess plant health, ensure the safety and quality of the agricultural products that become part of our food supply, and plan agricultural management practices. Within this framework, the molecular distribution within plant-based samples can be visualized with mass spectrometry imaging (MSI). This review describes key MSI methodologies, highlighting the role they play in unraveling the localization of metabolites, lipids, proteins, pigments, and elemental components across plants, microbes, and food products. Furthermore, investigations that involve multimodal molecular imaging approaches combining MSI with other imaging techniques are described. The advantages and limitations of the different MSI techniques that influence their applicability in diverse agro-food studies are described to enable informed choices for tailored analyses. For example, some MSI technologies involve meticulous sample preparation while others compromise spatial resolution to gain throughput. Key parameters such as sensitivity, ionization bias and fragmentation, reference database and compound class specificity are described and discussed in this review. With the ongoing refinements in instrumentation, data analysis, and integration of complementary techniques, MSI deepens our insight into the molecular biology of the agricultural ecosystem. This in turn empowers the quest for sustainable and productive agricultural practices.
Collapse
Affiliation(s)
- Mudita Vats
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
- MERLN Institute for Technology-inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, the Netherlands
| | - Eva Cuypers
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Wang Y, Li S, Qian K. Nanoparticle-based applications by atmospheric pressure matrix assisted desorption/ionization mass spectrometry. NANOSCALE ADVANCES 2023; 5:6804-6818. [PMID: 38059044 PMCID: PMC10697002 DOI: 10.1039/d3na00734k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
Recently, the development of atmospheric pressure matrix assisted desorption/ionization mass spectrometry (AP MALDI MS) has made contributions not only to biomolecule analysis but also to spatial distribution. This has positioned AP MALDI as a powerful tool in multiple domains, thanks to its comprehensive advantages compared to conventional MALDI MS. These developments have addressed challenges associated with previous AP MALDI analysis systems, such as optimization of apparatus settings, synthesis of novel matrices, preconcentration and isolation strategies before analysis. Herein, applications in different fields using AP MALDI MS were described, including peptide and protein analysis, metabolite analysis, pharmaceutical analysis, and mass spectrometry imaging.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University Shanghai 200030 China
| | - Shunxiang Li
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University Shanghai 200030 China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University Shanghai 200030 China
| |
Collapse
|
5
|
Liu D, Shen Y, Di D, Cai S, Huang X, Lin H, Huang Y, Xue J, Liu L, Hu B. Direct mass spectrometry analysis of biological tissue for diagnosis of thyroid cancer using wooden-tip electrospray ionization. Front Chem 2023; 11:1134948. [PMID: 36846859 PMCID: PMC9947238 DOI: 10.3389/fchem.2023.1134948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Direct mass spectrometry (MS) analysis of human tissue at the molecular level could gain insight into biomarker discovery and disease diagnosis. Detecting metabolite profiles of tissue sample play an important role in understanding the pathological properties of disease development. Because the complex matrices in tissue samples, complicated and time-consuming sample preparation processes are usually required by conventional biological and clinical MS methods. Direct MS with ambient ionization technique is a new analytical strategy for direct sample analysis with little sample preparation, and has been proven to be a simple, rapid, and effective analytical tools for direct analysis of biological tissues. In this work, we applied a simple, low-cost, disposable wooden tip (WT) for loading tiny thyroid tissue, and then loading organic solvents to extract biomarkers under electrospray ionization (ESI) condition. Under such WT-ESI, the extract of thyroid was directly sprayed out from wooden tip to MS inlet. In this work, thyroid tissue from normal and cancer parts were analyzed by the established WT-ESI-MS, showing lipids were mainly detectable compounds in thyroid tissue. The MS data of lipids obtained from thyroid tissues were further analyzed with MS/MS experiment and multivariate variable analysis, and the biomarkers of thyroid cancer were also investigated.
Collapse
Affiliation(s)
- Dasheng Liu
- Department of Vascular Thyroid Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuejian Shen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China,*Correspondence: Li Liu, ; Yuejian Shen, ; Bin Hu,
| | - Dandan Di
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China,Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou, China
| | - Shenhui Cai
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China
| | - Xueyang Huang
- Department of Vascular Thyroid Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongguo Lin
- Department of Vascular Thyroid Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yalan Huang
- Department of Vascular Thyroid Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Xue
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Li Liu
- Health Management Center, The First Affiliated Hospital of Jinan University, Guangzhou, China,*Correspondence: Li Liu, ; Yuejian Shen, ; Bin Hu,
| | - Bin Hu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Jinan University, Guangzhou, China,*Correspondence: Li Liu, ; Yuejian Shen, ; Bin Hu,
| |
Collapse
|
6
|
Boronat Ena MDM, Cowan DA, Abbate V. Ambient ionization mass spectrometry applied to new psychoactive substance analysis. MASS SPECTROMETRY REVIEWS 2023; 42:3-34. [PMID: 34036620 DOI: 10.1002/mas.21695] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
In the past decade a plethora of drugs with similar effects to controlled psychoactive drugs, like cannabis, amfetamine (amphetamine), or lysergic acid diethylamide, have been synthesized. These drugs can collectively be classified under the term new psychoactive substances (NPS) and are used for recreational purposes. The novelty of the substances, alongside the rapid rate of emergence and structural variability, makes their detection as well as their legal control highly challenging, increasing the demand for rapid and easy-to-use analytical techniques for their detection and identification. Therefore, interest in ambient ionization mass spectrometry applied to NPS has grown in recent years, which is largely because it is relatively fast and simple to use and has a low operating cost. This review aims to provide a critique of the suitability of current ambient ionization techniques for the analysis of NPS in the forensic and clinical toxicology fields. Consideration is given to analytical performance and ease of implementation, including ionization efficiency, selectivity, sensitivity, quantification, analyte chemistry, molecular coverage, validation, and practicality.
Collapse
Affiliation(s)
- Maria Del Mar Boronat Ena
- Department of Analytical, Environmental and Forensic Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - David A Cowan
- Department of Analytical, Environmental and Forensic Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| |
Collapse
|
7
|
Michael JA, Mutuku SM, Ucur B, Sarretto T, Maccarone AT, Niehaus M, Trevitt AJ, Ellis SR. Mass Spectrometry Imaging of Lipids Using MALDI Coupled with Plasma-Based Post-Ionization on a Trapped Ion Mobility Mass Spectrometer. Anal Chem 2022; 94:17494-17503. [PMID: 36473074 DOI: 10.1021/acs.analchem.2c03745] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we report the development and optimization of a mass spectrometry imaging (MSI) platform that combines an atmospheric-pressure matrix-assisted laser desorption/ionization platform with plasma postionization (AP-MALDI-PPI) and trapped ion mobility spectrometry (TIMS). We discuss optimal parameters for operating the source, characterize the behavior of a variety of lipid classes in positive- and negative-ion modes, and explore the capabilities for lipid imaging using murine brain tissue. The instrument generates high signal-to-noise for numerous lipid species, with mass spectra sharing many similarities to those obtained using laser postionization (MALDI-2). The system is especially well suited for detecting lipids such as phosphatidylethanolamine (PE), as well as numerous sphingolipid classes and glycerolipids. For the first time, the coupling of plasma-based postionization with ion mobility is presented, and we show the value of ion mobility for the resolution and identification of species within rich spectra that contain numerous isobaric/isomeric signals that are not resolved in the m/z dimension alone, including isomeric PE and demethylated phosphatidylcholine lipids produced by in-source fragmentation. The reported instrument provides a powerful and user-friendly approach for MSI of lipids.
Collapse
Affiliation(s)
- Jesse A Michael
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Shadrack M Mutuku
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Boris Ucur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Tassiani Sarretto
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Alan T Maccarone
- Molecular Horizons and School of Chemistry and Molecular Bioscience Mass Spectrometry Facility, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Marcel Niehaus
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Schneemann J, Schäfer KC, Spengler B, Heiles S. IR-MALDI Mass Spectrometry Imaging with Plasma Post-Ionization of Nonpolar Metabolites. Anal Chem 2022; 94:16086-16094. [DOI: 10.1021/acs.analchem.2c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Julian Schneemann
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Straße 6b, 44139 Dortmund, Germany
- Lipidomics, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
9
|
Wang Y, Hummon AB. MS imaging of multicellular tumor spheroids and organoids as an emerging tool for personalized medicine and drug discovery. J Biol Chem 2021; 297:101139. [PMID: 34461098 PMCID: PMC8463860 DOI: 10.1016/j.jbc.2021.101139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
MS imaging (MSI) is a powerful tool in drug discovery because of its ability to interrogate a wide range of endogenous and exogenous molecules in a broad variety of samples. The impressive versatility of the approach, where almost any ionizable biomolecule can be analyzed, including peptides, proteins, lipids, carbohydrates, and nucleic acids, has been applied to numerous types of complex biological samples. While originally demonstrated with harvested organs from animal models and biopsies from humans, these models are time consuming and expensive, which makes it necessary to extend the approach to 3D cell culture systems. These systems, which include spheroid models, prepared from immortalized cell lines, and organoid cultures, grown from patient biopsies, can provide insight on the intersection of molecular information on a spatial scale. In particular, the investigation of drug compounds, their metabolism, and the subsequent distribution of their metabolites in 3D cell culture systems by MSI has been a promising area of study. This review summarizes the different ionization methods, sample preparation steps, and data analysis methods of MSI and focuses on several of the latest applications of MALDI-MSI for drug studies in spheroids and organoids. Finally, the application of this approach in patient-derived organoids to evaluate personalized medicine options is discussed.
Collapse
Affiliation(s)
- Yijia Wang
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
10
|
Otsuka Y. Direct Liquid Extraction and Ionization Techniques for Understanding Multimolecular Environments in Biological Systems (Secondary Publication). Mass Spectrom (Tokyo) 2021; 10:A0095. [PMID: 34249586 PMCID: PMC8246329 DOI: 10.5702/massspectrometry.a0095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
A combination of direct liquid extraction using a small volume of solvent and electrospray ionization allows the rapid measurement of complex chemical components in biological samples and visualization of their distribution in tissue sections. This review describes the development of such techniques and their application to biological research since the first reports in the early 2000s. An overview of electrospray ionization, ion suppression in samples, and the acceleration of specific chemical reactions in charged droplets is also presented. Potential future applications for visualizing multimolecular environments in biological systems are discussed.
Collapse
Affiliation(s)
- Yoichi Otsuka
- Graduate School of Science, Osaka University, 1–1 Machikaneyama-cho, Toyonaka, Osaka 560–0043, Japan
- JST, PRESTO, 4–1–8 Honcho, Kawaguchi, Saitama 332–0012, Japan
| |
Collapse
|
11
|
Brockmann EU, Potthoff A, Tortorella S, Soltwisch J, Dreisewerd K. Infrared MALDI Mass Spectrometry with Laser-Induced Postionization for Imaging of Bacterial Colonies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1053-1064. [PMID: 33780619 DOI: 10.1021/jasms.1c00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultraviolet matrix-assisted laser desorption ionization mass spectrometry imaging (UV-MALDI-MSI) is a powerful tool to visualize bacterial metabolites in microbial colonies and in biofilms. However, a challenge for the method is the efficient extraction of analytes from deeper within the bacterial colonies and from the cytoplasm of individual cells during the matrix coating step. Here, we used a pulsed infrared (IR) laser of 2.94 μm wavelength to disrupt and ablate bacterial cells without a prior coating with a MALDI matrix. Instead, tissue water or, in some experiments, in addition a small amount of glycerol was exploited for the deposition of the IR laser energy and for supporting the ionization of the analytes. Compared to water, glycerol exhibits a lower vapor pressure, which prolonged the available measurement time window within an MSI experiment. Mass spectra were acquired with a hybrid Synapt G2-S HDMS instrument at a pixel size of 120 μm. A frequency-quadrupled q-switched Nd:YAG laser with 266 nm wavelength served for laser-induced postionization (MALDI-2). In this way, the ion abundances of numerous small molecules such as nucleobases, 2-alkyl-quinolones, a prominent class of Pseudomonas aeruginosa signaling molecules involved in one of the three quorum-sensing pathways, and also the signals of various bacterial phospholipids were boosted, partially by orders of magnitude. We analyzed single and cocultured colonies of Gram-negative P. aeruginosa and of Gram-positive Bacillus subtilis and Staphylococcus aureus as exemplary bacterial systems. To enable a rapid (within 5 s) MSI-compatible steam inactivation in a custom-made autoclave filled with hot water steam, bacterial cultures were grown on porous polyamide membranes. Compared to a UV-MALDI-2-MS measurement of the same systems, mass spectra with a reduced low mass background were generally generated. This resulted in the unequivocal detection of numerous metabolites only with the IR laser. In a fundamental part of our study, and to optimize the IR-MALDI-2 approach for the highest analytical sensitivity, we characterized the expansion dynamics of the particle plume as generated by the IR laser. Here, we recorded the total ion count and the intensities of selected signals registered from P. aeruginosa samples as a function of the interlaser delay and buffer gas pressure in the ion source. The data revealed that the IR-MALDI-2 ion signals are primarily generated from slow particles having mean velocities of ∼10 m/s. Interestingly, two different pressure/delay time regimes of the optimized ionization efficiency for phospholipids and smaller metabolites, respectively, were revealed, a result pointing to yet-unknown convoluted reaction cascades. The described IR-MALDI-2 method could be a helpful new tool for a microbial mass spectrometry imaging of small molecules requiring little sample preparation.
Collapse
Affiliation(s)
- Eike U Brockmann
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Alexander Potthoff
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Sara Tortorella
- Molecular Horizon, Via Montelino 30, 06084 Bettona, Perugia, Italy
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
12
|
Su Y, Ma X, Page J, Shi R, Xia Y, Ouyang Z. Mapping Lipid C=C Location Isomers in Organ Tissues by Coupling Photochemical Derivatization and Rapid Extractive Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 445:116206. [PMID: 32256186 PMCID: PMC7133712 DOI: 10.1016/j.ijms.2019.116206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lipid desaturation plays important roles in biological processes and the disease states. Here, we report a simple but efficient method for mapping unsaturated phospholipids including the spatial distribution of lipid C=C location isomers in animal organs by coupling the C=C specific derivatization with direct analysis mass spectrometry (MS). Lipids are sampled directly by a stainless-steel wire from rat brain or kidney, extracted, and derivatized via the Paternò-Büchi reaction in a glass emitter of the nanoelectrospray ionization (nanoESI) source. Subsequent analysis by nanoESI-tandem mass spectrometry reveals C=C locations and relative quantities of lipid C=C location isomers. Unsaturated lipids, such as phospholipids and free fatty acids, have been identified with ion intensities spanning two orders of magnitude in rat brain. Typical sample consumption is less than 10 μg/measurement and the time for each analysis is about 3 min. This method should serve as a complementary method to high spatial resolution mass spectrometry imaging techniques, because it offers a streamlined experimental workflow for rapid profiling of lipids with C=C specificity to enable such applications as point-of-care disease diagnostics.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Jessica Page
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
13
|
Zhou W, Hong Y, Huang C, Shen C, Chu Y. Laser Ablation Electrospray Ionization Time-of-Flight Mass Spectrometry for Direct Analysis of Biological Tissue. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:1417035. [PMID: 31772814 PMCID: PMC6854941 DOI: 10.1155/2019/1417035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/19/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Direct analysis and identification of biological tissue is significant for clinical applications. In this study, porcine liver and kidney have been analyzed using laser ablation electrospray ionization time-of-flight mass spectrometry (LAESI-TOFMS). This method showed good reproducibility for the same types of tissue and is capable of distinguishing different tissue species. The margin assessment was also performed using porcine renal tissue, and the response time was less than 6 s. Furthermore, human hepatocarcinoma tissue and normal tissue were identified using this method. Our results indicate that LAESI-TOFMS is a feasible approach for direct identification of tumor tissue and potential for assessment of the resection margin.
Collapse
Affiliation(s)
- Wenzhao Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yan Hong
- School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
14
|
Astarita G, Dhungana S, Shrestha B, Laiakis EC. Metabolomic approaches to study the tumor microenvironment. Methods Enzymol 2019; 636:93-108. [PMID: 32178829 DOI: 10.1016/bs.mie.2019.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tumors are characterized by metabolic dysregulation, reprogramming, and the presence of metabolites, which can act both as energy mediators and signaling messengers. Measuring the concentration and composition of metabolites in the tumor microenvironment can help to better understand the tumor pathology and might improve therapeutic treatments. Metabolomics can provide a description of the physiological and pathological status, as well as help to identify biomarkers of the disease. Additionally, mass spectrometry-based tissue imaging techniques can show the spatial distribution of metabolites. In this chapter we present protocols for the extraction and analysis of metabolites and lipids, with emphasis on liquid chromatography-mass spectrometry and mass spectrometry imaging.
Collapse
Affiliation(s)
- Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
| | | | | | - Evagelia C Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States.
| |
Collapse
|
15
|
Wang M, Dubiak K, Zhang Z, Huber PW, Chen DDY, Dovichi NJ. MALDI-imaging of early stage Xenopus laevis embryos. Talanta 2019; 204:138-144. [PMID: 31357275 DOI: 10.1016/j.talanta.2019.05.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023]
Abstract
Xenopus laevis is an important model organism for vertebrate development. An extensive literature has developed on changes in transcript expression during development of this organism, and there is a growing literature on the corresponding protein expression changes during development. In contrast, there is very little information on changes in metabolite expression during development. We present the first MALDI mass-spectrometry images of metabolites within the developing embryo. These images were generated for 142 metabolite ions. The images were subjected to an algorithm that revealed three spatially-resolved clusters of metabolites. One small cluster is localized near the outer membrane of the embryo. A large cluster of metabolites is found in cavities destined to form the neural tube and gut, and contains a number of ceramide species, which are associated with cellular signaling, including differentiation, proliferation, and programmed cell death. Another large cluster of metabolites is found in tissue and is dominated by phosphatidylcholines, which are common components of cell membranes. Surprisingly, no metabolites appear to be homogeneously distributed across the slices; metabolites are localized either within tissue or in cavities, but not both.
Collapse
Affiliation(s)
- Man Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kyle Dubiak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Paul W Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David D Y Chen
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
16
|
Shen S, Zhang H, Huang K, Chen H, Shen W, Fang X. Differentiation of cultivation areas and crop years of milled rice using single grain mass spectrometry. NEW J CHEM 2019. [DOI: 10.1039/c8nj02740d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A method for the rapid detection of fatty acids in single rice grain would make the evaluation of rice quality easier.
Collapse
Affiliation(s)
- Susu Shen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hua Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Huanwen Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Wenxin Shen
- Jiangxi Institute of Analysis and Testing
- Nanchang 330029
- P. R. China
| | - Xiaowei Fang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| |
Collapse
|
17
|
van Geenen FAG, Franssen MCR, Zuilhof H, Nielen MWF. Reactive Laser Ablation Electrospray Ionization Time-Resolved Mass Spectrometry of Click Reactions. Anal Chem 2018; 90:10409-10416. [PMID: 30063331 PMCID: PMC6127799 DOI: 10.1021/acs.analchem.8b02290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022]
Abstract
Reactions in confined compartments like charged microdroplets are of increasing interest, notably because of their substantially increased reaction rates. When combined with ambient ionization mass spectrometry (MS), reactions in charged microdroplets can be used to improve the detection of analytes or to study the molecular details of the reactions in real time. Here, we introduce a reactive laser ablation electrospray ionization (reactive LAESI) time-resolved mass spectrometry (TRMS) method to perform and study reactions in charged microdroplets. We demonstrate this approach with a class of reactions new to reactive ambient ionization MS: so-called click chemistry reactions. Click reactions are high-yielding reactions with a high atom efficiency, and are currently drawing significant attention from fields ranging from bioconjugation to polymer modification. Although click reactions are typically at least moderately fast (time scale of minutes to a few hours), in a reactive LAESI approach a substantial increase of reaction time is required for these reactions to occur. This increase was achieved using microdroplet chemistry and followed by MS using the insertion of a reaction tube-up to 1 m in length-between the LAESI source and the MS inlet, leading to near complete conversions due to significantly extended microdroplet lifetime. This novel approach allowed for the collection of kinetic data for a model (strain-promoted) click reaction between a substituted tetrazine and a strained alkyne and showed in addition excellent instrument stability, improved sensitivity, and applicability to other click reactions. Finally, the methodology was also demonstrated in a mass spectrometry imaging setting to show its feasibility in future imaging experiments.
Collapse
Affiliation(s)
- Fred A.
M. G. van Geenen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- TI-COAST, Science Park
904, 1098 XH Amsterdam, The Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
| | - Michel W. F. Nielen
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- RIKILT, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
18
|
Wu Z, Khan M, Mao S, Lin L, Lin JM. Combination of nano-material enrichment and dead-end filtration for uniform and rapid sample preparation in matrix-assisted laser desorption/ionization mass spectrometry. Talanta 2018; 181:217-223. [DOI: 10.1016/j.talanta.2018.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/30/2017] [Accepted: 01/07/2018] [Indexed: 11/15/2022]
|
19
|
Tang F, Guo C, Ma X, Zhang J, Su Y, Tian R, Shi R, Xia Y, Wang X, Ouyang Z. Rapid In Situ Profiling of Lipid C═C Location Isomers in Tissue Using Ambient Mass Spectrometry with Photochemical Reactions. Anal Chem 2018; 90:5612-5619. [PMID: 29624380 DOI: 10.1021/acs.analchem.7b04675] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rapid and in situ profiling of lipids using ambient mass spectrometry (AMS) techniques has great potential for clinical diagnosis, biological studies, and biomarker discovery. In this study, the online photochemical reaction involving carbon-carbon double bonds was coupled with a surface sampling technique to develop a direct tissue-analysis method with specificity to lipid C═C isomers. This method enabled the in situ analysis of lipids from the surface of various tissues or tissue sections, which allowed the structural characterization of lipid isomers within 2 min. Under optimized reaction conditions, we have established a method for the relative quantitation of lipid C═C location isomers by comparing the abundances of the diagnostic ions arising from each isomer, which has been proven effective through the established linear relationship ( R2 = 0.999) between molar ratio and diagnostic ion ratio of the FA 18:1 C═C location isomers. This method was then used for the rapid profiling of unsaturated lipid C═C isomers in the sections of rat brain, lung, liver, spleen, and kidney, as well as in normal and diseased rat tissues. Quantitative information on FA 18:1 and PC 16:0-18:1 C═C isomers was obtained, and significant differences were observed between different samples. To the best of our knowledge, this is the first study to report the direct analysis of lipid C═C isomers in tissues using AMS. Our results demonstrated that this method can serve as a rapid analytical approach for the profiling of unsaturated lipid C═C isomers in biological tissues and should contribute to functional lipidomics and clinical diagnosis.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Chengan Guo
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Jian Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Yuan Su
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Ran Tian
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Riyi Shi
- Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States.,Department of Basic Medical Sciences, College of Veterinary Medicine , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yu Xia
- Department of Chemistry , Tsinghua University , Beijing 100084 , China.,Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Xiaohao Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University , Beijing 100084 , China.,Weldon School of Biomedical Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
20
|
Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS). Anal Bioanal Chem 2018; 410:1911-1921. [DOI: 10.1007/s00216-018-0855-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 01/27/2023]
|
21
|
Abstract
Since the introduction of desorption electrospray ionization (DESI) mass spectrometry (MS), ambient MS methods have seen increased use in a variety of fields from health to food science. Increasing its popularity in metabolomics, ambient MS offers limited sample preparation, rapid and direct analysis of liquids, solids, and gases, in situ and in vivo analysis, and imaging. The metabolome consists of a constantly changing collection of small (<1.5 kDa) molecules. These include endogenous molecules that are part of primary metabolism pathways, secondary metabolites with specific functions such as signaling, chemicals incorporated in the diet or resulting from environmental exposures, and metabolites associated with the microbiome. Characterization of the responsive changes of this molecule cohort is the principal goal of any metabolomics study. With adjustments to experimental parameters, metabolites with a range of chemical and physical properties can be selectively desorbed and ionized and subsequently analyzed with increased speed and sensitivity. This review covers the broad applications of a variety of ambient MS techniques in four primary fields in which metabolomics is commonly employed.
Collapse
Affiliation(s)
- Chaevien S. Clendinen
- School of Chemistry and Biochemistry & Petit Institute for Bioengineering & Bioscience (IBB), Georgia Institute of Technology, 901 Atlantic Drive NW. Atlanta, GA
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry & Petit Institute for Bioengineering & Bioscience (IBB), Georgia Institute of Technology, 901 Atlantic Drive NW. Atlanta, GA
| |
Collapse
|
22
|
Ho YN, Shu LJ, Yang YL. Imaging mass spectrometry for metabolites: technical progress, multimodal imaging, and biological interactions. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28488813 DOI: 10.1002/wsbm.1387] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/24/2017] [Accepted: 02/28/2017] [Indexed: 12/19/2022]
Abstract
Imaging mass spectrometry (IMS) allows the study of the spatial distribution of small molecules in biological samples. IMS is able to identify and quantify chemicals in situ from whole tissue sections to single cells. Both vacuum mass spectrometry (MS) and ambient MS systems have advanced considerably over the last decade; however, some limitations are still hard to surmount. Sample pretreatment, matrix or solvent choices, and instrument improvement are the key factors that determine the successful application of IMS to different samples and analytes. IMS with innovative MS analyzers, powerful MS spectrum databases, and analysis tools can efficiently dereplicate, identify, and quantify natural products. Moreover, multimodal imaging systems and multiple MS-based systems provide additional structural, chemical, and morphological information and are applied as complementary tools to explore new fields. IMS has been applied to reveal interactions between living organisms at molecular level. Recently, IMS has helped solve many previously unidentifiable relations between bacteria, fungi, plants, animals, and insects. Other significant interactions on the chemical level can also be resolved using expanding IMS techniques. WIREs Syst Biol Med 2017, 9:e1387. doi: 10.1002/wsbm.1387 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ying-Ning Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lin-Jie Shu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Wang X, Yang M, Wang Z, Zhang H, Wang G, Deng M, Chen H, Luo L. Differentiation Using Microwave Plasma Torch Desorption Mass Spectrometry of Navel Oranges Cultivated in Neighboring Habitats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2488-2494. [PMID: 28269986 DOI: 10.1021/acs.jafc.7b00553] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The molecular fingerprinting of intact fruit samples combined with statistical data analysis can allow the assessment of fruit quality and location of origin. Herein, microwave plasma torch desorption ionization mass spectrometry (MPT-MS) was applied to produce molecular fingerprints for the juice sac and exocarp of navel oranges cultivated in three closely located habitats, and the mass spectrometric fingerprints were differentiated by principal component analysis (PCA). Because of the relatively high temperature and high ionization efficiency of MPT, the volatile aroma compounds and semivolatile chemicals in the navel oranges were sensitively detected and confidently identified by collision induced dissociation (CID). The limit of detection (LOD) of MPT-MS for vanillin was 0.119 μg/L, with the relative standard deviation (RSD, n = 10) of 1.7%. The results showed that MPT-MS could be a powerful analytical platform for the sensitive molecular analysis of fruits at molecular level with high chemical specificity, allowing differentiation between the same sorts grown in neighboring habitats.
Collapse
Affiliation(s)
- Xinchen Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology , Nanchang 330013, People's Republic of China
| | - Meiling Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology , Nanchang 330013, People's Republic of China
| | - Zhiyuan Wang
- Nanchang County the First Secondary School in Liantang , Nanchang 330046, People's Republic of China
| | - Hua Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology , Nanchang 330013, People's Republic of China
| | - Guofeng Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology , Nanchang 330013, People's Republic of China
| | - Min Deng
- School of Life Sciences, Nanchang University , Nanchang 330031, People's Republic of China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology , Nanchang 330013, People's Republic of China
| | - Liping Luo
- School of Life Sciences, Nanchang University , Nanchang 330031, People's Republic of China
| |
Collapse
|
24
|
Zhou W, Xia L, Huang C, Yang J, Shen C, Jiang H, Chu Y. Rapid analysis and identification of meat species by laser-ablation electrospray mass spectrometry (LAESI-MS). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:116-121. [PMID: 27539425 DOI: 10.1002/rcm.7647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) was applied to analyze fresh meat species without sample pretreatment. The study demonstrates that the LAESI-MS technique is a promising, rapid and accurate method for meat identification using a protocol combining principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). METHODS A focused IR-laser was used for meat sample ablation at a wavelength of 2940 nm. The ablated particulates were carried through a transfer PTFE tube using air as carrier gas, delivered to the electrospray plume and ionized. A TOF-MS was used to detect the ion signal. The raw mass spectra were analyzed using the PCA and PLS-DA protocol. RESULTS Five fresh meat samples, chicken, duck, pork, beef and mutton, were identified by the developed LAESI-MS technique using the protocol combining PCA and PLS-DA. The discrimination accuracy of all meat species is 100%, and the score plot also shows good identifying ability. CONCLUSIONS Five fresh meat samples were analyzed using the LAESI-MS technique. Each set of raw mass data was collected within 30 s and analyzed by the PCA and PLS-DA protocol. Eighteen, 19, 18, 17, and 15 markers for chicken, duck, pork, beef, and mutton, respectively, have been selected successfully for meat identification. The results demonstrate that LAESI-MS is a new reliable and rapid method for meat identification. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wenzhao Zhou
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei, 230031, China
- University of Science and Technology of China, JinZhai Road 96, Hefei, 230026, China
| | - Lei Xia
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei, 230031, China
| | - Chaoqun Huang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei, 230031, China
| | | | - Chengyin Shen
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei, 230031, China
| | - Haihe Jiang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei, 230031, China
| | - Yannan Chu
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350 Shushanhu Road, Hefei, 230031, China
| |
Collapse
|
25
|
Shi F, Flanigan PM, Archer JJ, Levis RJ. Ambient Molecular Analysis of Biological Tissue Using Low-Energy, Femtosecond Laser Vaporization and Nanospray Postionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:542-551. [PMID: 26667178 DOI: 10.1007/s13361-015-1302-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Direct analysis of plant and animal tissue samples by laser electrospray mass spectrometry (LEMS) was investigated using low-energy, femtosecond duration laser vaporization at wavelengths of 800 and 1042 nm followed by nanospray postionization. Low-energy (<50 μJ), fiber-based 1042 nm LEMS (F-LEMS) allowed interrogation of the molecular species in fresh flower petal and leaf samples using 435 fs, 10 Hz bursts of 20 pulses from a Ytterbium-doped fiber laser and revealed comparable results to high energy (75-1120 μJ), 45 fs, 800 nm Ti:Sapphire-based LEMS (Ti:Sapphire-LEMS) measurements. Anthocyanins, sugars, and other metabolites were successfully detected and revealed the anticipated metabolite profile for the petal and leaf samples. Phospholipids, especially phosphatidylcholine, were identified from a fresh mouse brain section sample using Ti:Sapphire-LEMS without the application of matrix. These lipid features were suppressed in both the fiber-based and Ti:Sapphire-based LEMS measurements when the brain sample was prepared using the optimal cutting temperature compounds that are commonly used in animal tissue cryosections.
Collapse
Affiliation(s)
- Fengjian Shi
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| | - Paul M Flanigan
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Signature Science, LLC., 2819 Fire Rd, Egg Harbor Township, NJ, 08234, USA
| | - Jieutonne J Archer
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| | - Robert J Levis
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
- Center for Advanced Photonics Research, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA.
| |
Collapse
|
26
|
Correa DN, Santos JM, Eberlin LS, Eberlin MN, Teunissen SF. Forensic Chemistry and Ambient Mass Spectrometry: A Perfect Couple Destined for a Happy Marriage? Anal Chem 2016; 88:2515-26. [DOI: 10.1021/acs.analchem.5b02397] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deleon N. Correa
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
- Technical-Scientific Police Superintendence—IC-SPTC-SP, São Paulo, São Paulo 05507-06, Brazil
| | - Jandyson M. Santos
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Livia S. Eberlin
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712 United States
| | - Marcos N. Eberlin
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Sebastiaan F. Teunissen
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
27
|
Handberg E, Chingin K, Wang N, Dai X, Chen H. Mass spectrometry imaging for visualizing organic analytes in food. MASS SPECTROMETRY REVIEWS 2015; 34:641-58. [PMID: 24687728 DOI: 10.1002/mas.21424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 05/27/2023]
Abstract
The demand for rapid chemical imaging of food products steadily increases. Mass spectrometry (MS) is featured by excellent molecular specificity of analysis and is, therefore, a very attractive method for chemical profiling. MS for food imaging has increased significantly over the past decade, aided by the emergence of various ambient ionization techniques that allow direct and rapid analysis in ambient environment. In this article, the current status of food imaging with MSI is reviewed. The described approaches include matrix-assisted laser desorption/ionization (MALDI), but emphasize desorption atmospheric pressure photoionization (DAPPI), electrospray-assisted laser desorption/ionization (ELDI), probe electrospray ionization (PESI), surface desorption atmospheric pressure chemical ionization (SDAPCI), and laser ablation flowing atmospheric pressure afterglow (LA-FAPA). The methods are compared with regard to spatial resolution; analysis speed and time; limit of detection; and technical aspects. The performance of each method is illustrated with the description of a related application. Specific requirements in food imaging are discussed.
Collapse
Affiliation(s)
- Eric Handberg
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Nannan Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Ximo Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| |
Collapse
|
28
|
Liu X, Hummon AB. Mass spectrometry imaging of therapeutics from animal models to three-dimensional cell cultures. Anal Chem 2015; 87:9508-19. [PMID: 26084404 PMCID: PMC4766864 DOI: 10.1021/acs.analchem.5b00419] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful label-free technique for the investigation of the spatial distribution of molecules at complex surfaces and has been widely used in the pharmaceutical sciences to understand the distribution of different drugs and their metabolites in various biological samples, ranging from cell-based models to tissues. Here, we review the current applications of MSI for drug studies in animal models, followed by a discussion of the novel advances of MSI in three-dimensional (3D) cell cultures for accurate, efficient, and high-throughput analyses to evaluate therapeutics.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
29
|
Sumner LW, Lei Z, Nikolau BJ, Saito K. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 2015; 32:212-29. [PMID: 25342293 DOI: 10.1039/c4np00072b] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This review covers the approximate period of 2000 to 2014, and highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and X-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.
Collapse
Affiliation(s)
- Lloyd W Sumner
- The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Parkway, Ardmore, OK, USA.
| | | | | | | |
Collapse
|
30
|
Saha-Shah A, Weber AE, Karty JA, Ray SJ, Hieftje GM, Baker LA. Nanopipettes: probes for local sample analysis. Chem Sci 2015; 6:3334-3341. [PMID: 28706697 PMCID: PMC5490420 DOI: 10.1039/c5sc00668f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/02/2015] [Indexed: 01/02/2023] Open
Abstract
Nanopipettes are demonstrated as probes for local mass spectrometric analysis with potential for small-scale extraction of analytes from single cells, tissue and organisms.
Nanopipettes (pipettes with diameters <1 μm) were explored as pressure-driven fluid manipulation tools for sampling nanoliter volumes of fluids. The fundamental behavior of fluids confined in the narrow channels of the nanopipette shank was studied to optimize sampling volume and probe geometry. This method was utilized to collect nanoliter volumes (<10 nL) of sample from single Allium cepa cells and live Drosophila melanogaster first instar larvae. Matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was utilized to characterize the collected sample. The use of nanopipettes for surface sampling of mouse brain tissue sections was also explored. Lipid analyses were performed on mouse brain tissues with spatial resolution of sampling as small as 50 μm. Nanopipettes were shown to be a versatile tool that will find further application in studies of sample heterogeneity and population analysis for a wide range of samples.
Collapse
Affiliation(s)
- Anumita Saha-Shah
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , IN 47405 , USA .
| | - Anna E Weber
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , IN 47405 , USA .
| | - Jonathan A Karty
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , IN 47405 , USA .
| | - Steven J Ray
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , IN 47405 , USA .
| | - Gary M Hieftje
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , IN 47405 , USA .
| | - Lane A Baker
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , IN 47405 , USA .
| |
Collapse
|
31
|
O'Brien JT, Williams ER, Holman HYN. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) of live plant tissue with plume capture by continuous flow solvent probe. Anal Chem 2015; 87:2631-8. [PMID: 25622206 DOI: 10.1021/ac503383p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new experimental setup for spatially resolved ambient infrared laser ablation-mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is ∼50%. This transfer efficiency is significantly higher than values reported for similar techniques. Laser desorption does not induce fragmentation of biomolecules in droplets containing bradykinin, leucine enkephalin and myoglobin, but loss of the heme group from myoglobin occurs as a result of the denaturing solution used. An application of AIRLAB-MS to biological materials is demonstrated for tobacco leaves. Chemical components are identified from the spatially resolved mass spectra of the ablated plant material, including nicotine and uridine. The reproducibility of measurements made using AIRLAB-MS on plant material was demonstrated by the ablation of six closely spaced areas (within 2 × 2 mm) on a young tobacco leaf, and the results indicate a standard deviation of <10% in the uridine signal obtained for each area. The spatial distribution of nicotine was measured for selected leaf areas and variation in the relative nicotine levels (15-100%) was observed. Comparative analysis of the nicotine distribution was demonstrated for two tobacco plant varieties, a genetically modified plant and its corresponding wild-type, indicating generally higher nicotine levels in the mutant.
Collapse
Affiliation(s)
- Jeremy T O'Brien
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720-0001, United States
| | | | | |
Collapse
|
32
|
Barceló-Coblijn G, Fernández JA. Mass spectrometry coupled to imaging techniques: the better the view the greater the challenge. Front Physiol 2015; 6:3. [PMID: 25657625 PMCID: PMC4302787 DOI: 10.3389/fphys.2015.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/06/2015] [Indexed: 11/13/2022] Open
Abstract
These are definitively exciting times for membrane lipid researchers. Once considered just as the cell membrane building blocks, the important role these lipids play is steadily being acknowledged. The improvement occurred in mass spectrometry techniques (MS) allows the establishment of the precise lipid composition of biological extracts. However, to fully understand the biological function of each individual lipid species, we need to know its spatial distribution and dynamics. In the past 10 years, the field has experienced a profound revolution thanks to the development of MS-based techniques allowing lipid imaging (MSI). Images reveal and verify what many lipid researchers had already shown by different means, but none as convincing as an image: each cell type presents a specific lipid composition, which is highly sensitive to its physiological and pathological state. While these techniques will help to place membrane lipids in the position they deserve, they also open the black box containing all the unknown regulatory mechanisms accounting for such tailored lipid composition. Thus, these results urges to different disciplines to redefine their paradigm of study by including the complexity revealed by the MSI techniques.
Collapse
Affiliation(s)
- Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa) Palma, Spain
| | - José A Fernández
- Departamento de Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU) Leioa, Spain
| |
Collapse
|
33
|
Wang B, Dearring CL, Wager-Miller J, Mackie K, Trimpin S. Drug detection and quantification directly from tissue using novel ionization methods for mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:201-10. [PMID: 26307700 PMCID: PMC4762651 DOI: 10.1255/ejms.1338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Solvent assisted ionization inlet (SAII) and matrix assisted ionization vacuum (MAIV) were used to quantify rapidly an antipsychotic drug, clozapine, directly from surfaces with minimal sample preparation. This simple surface analysis method based on SAII- and MAIV-mass spectrometry (MS) was developed to allow the detection of endogenous lipids, metabolites, and clozapine directly from sections of mouse brain tissue. A rapid surface assessment was achieved by SAII with the assistance of heat applied to the mass spectrometer inlet. MAIV provided an improved reproducibility without the need of a heated inlet. In addition, isotope dilution and standard addition were used without sample clean-up, and the results correlate well with liquid chromatography tandem MS using sample work-up. Using the simple surface methods, standard solutions containing clozapine and a deuterated internal standard (clozapine-d8) at different concentration ratios were used in the extraction and quantification of clozapine from brain tissue sections of a drug-treated mouse using different tissue thicknesses. The amount of clozapine extracted by these surface methods was independent of tissue thickness.
Collapse
Affiliation(s)
- Beixi Wang
- Department of Chemistry, Wayne State University, Detroit, MI 48202.
| | | | - James Wager-Miller
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405.
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405.
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI 48202. Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201.
| |
Collapse
|
34
|
Bartels B, Svatoš A. Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI. FRONTIERS IN PLANT SCIENCE 2015; 6:471. [PMID: 26217345 PMCID: PMC4498035 DOI: 10.3389/fpls.2015.00471] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This short review aims to summarize the current developments and applications of mass spectrometry-based methods for in situ profiling and imaging of plants with minimal or no sample pre-treatment or manipulation. Infrared-laser ablation electrospray ionization and UV-laser desorption/ionization methods are reviewed. The underlying mechanisms of the ionization techniques-namely, laser ablation of biological samples and electrospray ionization-as well as variations of the LAESI ion source for specific targets of interest are described.
Collapse
Affiliation(s)
| | - Aleš Svatoš
- *Correspondence: Aleš Svatoš,Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Max-Planck-Gesellschaft, Hans-Knöll-Straße 8, Jena D-07745, Germany,
| |
Collapse
|
35
|
Shrestha B, Sripadi P, Reschke BR, Henderson HD, Powell MJ, Moody SA, Vertes A. Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry. PLoS One 2014; 9:e115173. [PMID: 25506922 PMCID: PMC4266676 DOI: 10.1371/journal.pone.0115173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/19/2014] [Indexed: 01/04/2023] Open
Abstract
Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis.
Collapse
Affiliation(s)
- Bindesh Shrestha
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, D.C., United States of America
| | - Prabhakar Sripadi
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, D.C., United States of America
| | - Brent R. Reschke
- Protea Biosciences, Morgantown, West Virginia, United States of America
| | | | - Matthew J. Powell
- Protea Biosciences, Morgantown, West Virginia, United States of America
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, Washington, D.C., United States of America
| | - Akos Vertes
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
36
|
Meier F, Garrard KP, Muddiman DC. Silver dopants for targeted and untargeted direct analysis of unsaturated lipids via infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2461-70. [PMID: 25303475 PMCID: PMC4197142 DOI: 10.1002/rcm.7041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 05/12/2023]
Abstract
RATIONALE Unsaturated lipids play a crucial role in cellular processes as signaling factors, membrane building blocks or energy storage molecules. However, adequate mass spectrometry imaging of this diverse group of molecules remains challenging. In this study we implemented silver cationization for direct analysis by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) to enhance the ion abundances for olefinic lipids and facilitate peak assignment. METHODS Trace amounts of silver nitrate were doped into the electrospray solvent of an IR-MALDESI imaging source coupled to an Orbitrap mass analyzer. Calcifediol was examined as a model compound to demonstrate the effect of silver dopants on sensitivity and assay robustness. Dried human serum spots were subsequently analyzed to compare Ag-doped solvents with previously described solvent compositions. Mass differences as well as ion abundance ratio filters were employed to interpret results based on the characteristic isotopic pattern of silver. RESULTS Olefinic lipids were readily observed as silver adducts in IR-MALDESI analyses. Silver cationization decreased the limit of detection for calcifediol by at least one order of magnitude and was not affected in complex biological matrices. The ion abundance ratio and mass difference of [M + (107) Ag(+)](+) and [M + (109) Ag(+)](+) were successfully applied to facilitate the spectral assignment of silver adducts. Overall, silver cationization increased the analyte coverage in human serum by 43% compared with a standard IR-MALDESI approach. CONCLUSIONS Silver cationization has been shown to enhance IR-MALDESI sensitivity and selectivity for unsaturated lipids, even when applied to complex samples. Increased compound coverage, enhanced robustness as well as the developed tools for peak assignment and mapping of isotopic patterns will clearly benefit future mass spectrometry imaging studies.
Collapse
Affiliation(s)
- Florian Meier
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Kenneth P. Garrard
- Precision Engineering Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - David C. Muddiman
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
- Author for Correspondence. David C. Muddiman, Ph.D., W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA, Phone: 919-513-0084,
| |
Collapse
|
37
|
Nielen MWF, van Beek TA. Macroscopic and microscopic spatially-resolved analysis of food contaminants and constituents using laser-ablation electrospray ionization mass spectrometry imaging. Anal Bioanal Chem 2014; 406:6805-15. [PMID: 24961635 PMCID: PMC4196196 DOI: 10.1007/s00216-014-7948-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
Laser-ablation electrospray ionization (LAESI) mass spectrometry imaging (MSI) does not require very flat surfaces, high-precision sample preparation, or the addition of matrix. Because of these features, LAESI-MSI may be the method of choice for spatially-resolved food analysis. In this work, LAESI time-of-flight MSI was investigated for macroscopic and microscopic imaging of pesticides, mycotoxins, and plant metabolites on rose leaves, orange and lemon fruit, ergot bodies, cherry tomatoes, and maize kernels. Accurate mass ion-map data were acquired at sampling locations with an x–y center-to-center distance of 0.2–1.0 mm and were superimposed onto co-registered optical images. The spatially-resolved ion maps of pesticides on rose leaves suggest co-application of registered and banned pesticides. Ion maps of the fungicide imazalil reveal that this compound is only localized on the peel of citrus fruit. However, according to three-dimensional LAESI-MSI the penetration depth of imazalil into the peel has significant local variation. Ion maps of different plant alkaloids on ergot bodies from rye reveal co-localization in accordance with expectations. The feasibility of using untargeted MSI for food analysis was revealed by ion maps of plant metabolites in cherry tomatoes and maize-kernel slices. For tomatoes, traveling-wave ion mobility (TWIM) was used to discriminate between different lycoperoside glycoalkaloid isomers; for maize quadrupole time-of-flight tandem mass spectrometry (MS–MS) was successfully used to elucidate the structure of a localized unknown. It is envisaged that LAESI-MSI will contribute to future research in food science, agriforensics, and plant metabolomics. ᅟ ![]()
Collapse
Affiliation(s)
- Michel W F Nielen
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, The Netherlands,
| | | |
Collapse
|
38
|
Shrestha B, Vertes A. High-Throughput Cell and Tissue Analysis with Enhanced Molecular Coverage by Laser Ablation Electrospray Ionization Mass Spectrometry Using Ion Mobility Separation. Anal Chem 2014; 86:4308-15. [DOI: 10.1021/ac500007t] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bindesh Shrestha
- Department
of Chemistry,
W. M. Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, District of Columbia 20052, United States
| | - Akos Vertes
- Department
of Chemistry,
W. M. Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
39
|
Lorenz M, Ovchinnikova OS, Kertesz V, Van Berkel GJ. Controlled-resonant surface tapping-mode scanning probe electrospray ionization mass spectrometry imaging. Anal Chem 2014; 86:3146-52. [PMID: 24606410 DOI: 10.1021/ac404249j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This paper reports on the advancement of a controlled-resonant surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to spot sample, lane scan, and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types, including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 μm based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.
Collapse
Affiliation(s)
- Matthias Lorenz
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6131, United States
| | | | | | | |
Collapse
|
40
|
Robichaud G, Barry JA, Muddiman DC. IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:319-28. [PMID: 24385399 PMCID: PMC3950934 DOI: 10.1007/s13361-013-0787-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 05/04/2023]
Abstract
Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging of biological tissue sections using a layer of deposited ice as an energy-absorbing matrix was investigated. Dynamics of plume ablation were first explored using a nanosecond exposure shadowgraphy system designed to simultaneously collect pictures of the plume with a camera and collect the Fourier transform ion cyclotron resonance FT-ICR mass spectrum corresponding to that same ablation event. Ablation of fresh tissue analyzed with and without using ice as a matrix were compared using this technique. Effect of spot-to-spot distance, number of laser shots per pixel, and tissue condition (matrix) on ion abundance were also investigated for 50 μm-thick tissue sections. Finally, the statistical method called design of experiments was used to compare source parameters and determine the optimal conditions for IR-MALDESI of tissue sections using deposited ice as a matrix. With a better understanding of the fundamentals of ablation dynamics and a systematic approach to explore the experimental space, it was possible to improve ion abundance by nearly one order of magnitude.
Collapse
Affiliation(s)
| | | | - David C. Muddiman
- Author for Correspondence. David C. Muddiman, Ph.D., W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, Phone: 919-513-0084,
| |
Collapse
|
41
|
Kiss A, Smith DF, Reschke BR, Powell MJ, Heeren RMA. Top-down mass spectrometry imaging of intact proteins by laser ablation ESI FT-ICR MS. Proteomics 2014; 14:1283-9. [PMID: 24375984 DOI: 10.1002/pmic.201300306] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 09/02/2013] [Indexed: 11/06/2022]
Abstract
Laser ablation ESI (LAESI) is a recent development in MS imaging. It has been shown that lipids and small metabolites can be imaged in various samples such as plant material, tissue sections or bacterial colonies without any sample pretreatment. Further, LAESI has been shown to produce multiply charged protein ions from liquids or solid surfaces. This presents a means to address one of the biggest challenges in MS imaging; the identification of proteins directly from biological tissue surfaces. Such identification is hindered by the lack of multiply charged proteins in common MALDI ion sources and the difficulty of performing tandem MS on such large, singly charged ions. We present here top-down identification of intact proteins from tissue with a LAESI ion source combined with a hybrid ion-trap FT-ICR mass spectrometer. The performance of the system was first tested with a standard protein with electron capture dissociation and infrared multiphoton dissociation fragmentation to prove the viability of LAESI FT-ICR for top-down proteomics. Finally, the imaging of a tissue section was performed, where a number of intact proteins were measured and the hemoglobin α chain was identified directly from tissue using CID and infrared multiphoton dissociation fragmentation.
Collapse
Affiliation(s)
- András Kiss
- FOM Institute AMOLF, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR. Mass spectrometry imaging under ambient conditions. MASS SPECTROMETRY REVIEWS 2013; 32:218-43. [PMID: 22996621 PMCID: PMC3530640 DOI: 10.1002/mas.21360] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI for example the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information on the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue diagnostic purposes. Finally, we discuss the challenges in ambient MSI and include perspectives on the future of the field.
Collapse
Affiliation(s)
- Chunping Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Allison L. Dill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Livia S. Eberlin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
- ,
| | - Demian R. Ifa
- Department of Chemistry, York University, Toronto, Ontario M3J1P3, Canada
- ,
| |
Collapse
|
43
|
Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res 2013; 52:329-53. [PMID: 23623802 DOI: 10.1016/j.plipres.2013.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/19/2013] [Accepted: 04/12/2013] [Indexed: 11/22/2022]
Abstract
Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated.
Collapse
|
44
|
Mandal MK, Yoshimura K, Saha S, Ninomiya S, Rahman MO, Yu Z, Chen LC, Shida Y, Takeda S, Nonami H, Hiraoka K. Solid probe assisted nanoelectrospray ionization mass spectrometry for biological tissue diagnostics. Analyst 2013; 137:4658-61. [PMID: 22937532 DOI: 10.1039/c2an36006c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To perform remote and direct sampling for mass spectrometry, solid probe assisted nanoelectrospray ionization (SPA-nanoESI) has been newly developed. After capturing the sample on the tip of the needle by sticking it to the biological tissue, the needle was inserted into the solvent-preloaded nanoESI capillary from the backside. NanoESI gave abundant ion signals for human kidney tissues and the liver of a living mouse. The method is easy to operate and versatile because any biological specimen could be sampled away from the mass spectrometer. Minimal invasiveness is another merit of this method.
Collapse
|
45
|
Liu J, Zhang C, Sun J, Ren X, Luo H. Laser desorption dual spray post-ionization mass spectrometry for direct analysis of samples via two informative channels. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:250-254. [PMID: 23378098 DOI: 10.1002/jms.3145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/08/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
A laser desorption dual spray post-ionization mass spectrometry method is described, and its usefulness is demonstrated with the examples of selective detection of food components, manipulation of protein charge state distribution and investigation on the formation of magic number clusters. The method is carried out by adopting two spray emitters for post-ionization of analytes desorbed by a pulsed infrared laser. Various components in a complex sample or distinct behavior of an analyte in two different spray reagents can be rapidly probed by the method quasi-simultaneously, highlighting the potential applications of this method for protein characterization, reaction study and food analysis.
Collapse
Affiliation(s)
- Jia Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
46
|
Smith MJP, Cameron NR, Mosely JA. Evaluating Atmospheric pressure Solids Analysis Probe (ASAP) mass spectrometry for the analysis of low molecular weight synthetic polymers. Analyst 2013; 137:4524-30. [PMID: 22890238 DOI: 10.1039/c2an35556f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atmospheric pressure Solids Analysis Probe (ASAP) mass spectrometry has facilitated the ionisation of oligomers from low molecular weight synthetic polymers, poly(ethylene glycol) (PEG: M(n) = 1430) and poly(styrene) (PS: M(n) = 1770), directly from solids, providing a fast and efficient method of identification. Ion source conditions were evaluated and it was found that the key instrument parameter was the ion source desolvation temperature which, when set to 600 °C was sufficient to vapourise the heavier oligomers for ionisation. PS, a non-polar polymer that is very challenging to analyse by MALDI or ESI without the aid of metal salts to promote cationisation, was ionised promptly by ASAP resulting in the production of radical cations. A small degree of in-source dissociation could be eliminated by control of the instrument ion source voltages. The fragmentation observed through in-source dissociation could be duplicated in a controlled manner through Collision-Induced Dissociation (CID) of the radical cations. PEG, which preferentially ionises through adduction with alkali metal cations in MALDI and ESI, was observed as a protonated molecular ion by ASAP. In-source dissociation could not be eliminated entirely and the fragmentation observed resulted from cleavage of the C-C and C-O backbone bonds, as opposed to only C-O bond cleavage observed from tandem mass spectrometry.
Collapse
Affiliation(s)
- Michael J P Smith
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | | | | |
Collapse
|
47
|
Lanekoff I, Thomas M, Carson JP, Smith JN, Timchalk C, Laskin J. Imaging nicotine in rat brain tissue by use of nanospray desorption electrospray ionization mass spectrometry. Anal Chem 2013; 85:882-9. [PMID: 23256596 DOI: 10.1021/ac302308p] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Imaging mass spectrometry offers simultaneous spatially resolved detection of drugs, drug metabolites, and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nanospray desorption electrospray ionization, nano-DESI, is a new ambient technique that enables spatially resolved analysis of a variety of samples without special sample pretreatment. This study introduces an experimental approach for accurate spatial mapping of drugs and metabolites in tissue sections by nano-DESI imaging. In this approach, an isotopically labeled standard is added to the nano-DESI solvent to compensate for matrix effects and ion suppression. The analyte image is obtained by normalizing the analyte signal to the signal of the standard in each pixel. We demonstrate that the presence of internal standard enables online quantification of analyte molecules extracted from tissue sections. Ion images are subsequently mapped to the anatomical brain regions in the analyzed section by use of an atlas mesh deformed to match the optical image of the section. Atlas-based registration accounts for the physical variability between animals, which is important for data interpretation. The new approach was used for mapping the distribution of nicotine in rat brain tissue sections following in vivo drug administration. We demonstrate the utility of nano-DESI imaging for sensitive detection of the drug in tissue sections with subfemtomole sensitivity in each pixel of a 27 μm × 150 μm area. Such sensitivity is necessary for spatially resolved detection of low-abundance molecules in complex matrices.
Collapse
Affiliation(s)
- Ingela Lanekoff
- Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Shrestha B, Javonillo R, Burns JR, Pirger Z, Vertes A. Comparative local analysis of metabolites, lipids and proteins in intact fish tissues by LAESI mass spectrometry. Analyst 2013; 138:3444-9. [DOI: 10.1039/c3an00631j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Vaikkinen A, Shrestha B, Nazarian J, Kostiainen R, Vertes A, Kauppila TJ. Simultaneous Detection of Nonpolar and Polar Compounds by Heat-Assisted Laser Ablation Electrospray Ionization Mass Spectrometry. Anal Chem 2012. [DOI: 10.1021/ac302432h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anu Vaikkinen
- Division of Pharmaceutical Chemistry,
Faculty of Pharmacy, P.O. Box 56, 00014, University of Helsinki, Finland
- Department of Chemistry, W.
M. Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, D.C. 20052,
United States
| | - Bindesh Shrestha
- Department of Chemistry, W.
M. Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, D.C. 20052,
United States
| | - Javad Nazarian
- Research Center
for Genetic Medicine,
Children’s National Medical Center, Washington, D.C. 20010,
United States
- Department
of Integrative Systems
Biology, School of Medicine and Health Sciences, George Washington University, Washington, D.C. 20037, United
States
| | - Risto Kostiainen
- Division of Pharmaceutical Chemistry,
Faculty of Pharmacy, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Akos Vertes
- Department of Chemistry, W.
M. Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, D.C. 20052,
United States
| | - Tiina J. Kauppila
- Division of Pharmaceutical Chemistry,
Faculty of Pharmacy, P.O. Box 56, 00014, University of Helsinki, Finland
| |
Collapse
|
50
|
Prideaux B, Stoeckli M. Mass spectrometry imaging for drug distribution studies. J Proteomics 2012; 75:4999-5013. [DOI: 10.1016/j.jprot.2012.07.028] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 01/13/2023]
|