1
|
Kang Z, Lu J, Zheng S, Hu X, Wang L, Jiang L, Zheng Y, Lv L, Gardea-Torresdey JL, White JC, Zhao L. Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield. ACS NANO 2025; 19:3752-3763. [PMID: 39818733 DOI: 10.1021/acsnano.4c14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO2) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics. It was revealed that the unique surface chemistry of amorphous silica, characterized by an enrichment of silanol and siloxane groups, can catalyze the production of reactive oxygen species. This, in turn, initiates redox signaling and activates downstream drought-responsive genes. In addition, silica-primed seeds exhibited a significant enrichment of 18 amino acids and 6 sugars compared to those undergoing hydropriming, suggesting the accelerated mobilization of stored energy reserves. The drought-tolerance trait was observed in vegetative tissues of 35 day-old plants, where this tolerance was associated with an accelerated catabolism of amino acids and an enhanced anabolism of antioxidants. A separated field trial showed that SiO2NPs seed priming not only increased rice grain yield by 7.77% (p = 0.051) and 6.48% (p = 0.066), respectively, under normal and drought conditions but also increased the grain amino acid content. These results demonstrate that a simple and cost-effective nanoseed-priming approach can convey life cycle-long drought tolerance while simultaneously increasing rice grain yield and nutrition quality, providing an effective and sustainable strategy to cultivate climate-resilient crops.
Collapse
Affiliation(s)
- Zhao Kang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jiankang Lu
- Jiangsu Zhongjiang Seed Co., Ltd, Nanjing 211500, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaojie Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lianhong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuqi Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lecheng Lv
- Jiangsu Zhongjiang Seed Co., Ltd, Nanjing 211500, China
| | - Jorge L Gardea-Torresdey
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Tanasa (Acretei) MV, Negreanu-Pirjol T, Olariu L, Negreanu-Pirjol BS, Lepadatu AC, Anghel (Cireasa) L, Rosoiu N. Bioactive Compounds from Vegetal Organs of Taraxacum Species (Dandelion) with Biomedical Applications: A Review. Int J Mol Sci 2025; 26:450. [PMID: 39859166 PMCID: PMC11764760 DOI: 10.3390/ijms26020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Taraxacum officinale (dandelion) is a perennial flowering plant of the Asteraceae family that has spread globally and is well-known for its traditional uses. The aim of this work is to provide a detailed review of scientific literature on the genus Taraxacum from the last two decades, with particular emphasis on the biological and pharmacological characteristics of dandelions. The traditional use of Taraxacum species and their potential use in medicine are assessed. In addition, individual papers describing principal pathways and molecules modulated by Taraxacum in antitumoral, anti-inflammatory, antidiabetic, hepatoprotective, immunomodulatory, antimicrobial, and antioxidant activities are presented. This review of phytochemical studies reveals that dandelions contain a wide range of bioactive compounds, such as polyphenols, phytosterols, flavonoids, carotenoids, terpene, and coumarins, whose biological activities are actively explored in various areas of human health, some constituents having synergistic activities, including antioxidant, antimicrobial, anti-inflammatory and anticancer activities. The study provides a screening of Taraxacum sp. chemical composition, an assessment of the main pharmacological properties, and a description of relevant studies supporting the use of dandelion for its particularly valuable and diversified therapeutic potential in different diseases.
Collapse
Affiliation(s)
- Maria-Virginia Tanasa (Acretei)
- Institute of Doctoral Studies, Doctoral School of Applied Sciences, Doctoral Field:Biology, “Ovidius” University of Constanta, 58, Ion Voda Street, 900573 Constanta, Romania; (M.-V.T.); (L.A.); (N.R.)
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Building C, 900470 Constanta, Romania
- Academy of Romanian Scientists, Biological Sciences Section, 3, Ilfov Street, 50044 Bucharest, Romania;
| | - Laura Olariu
- Academy of Romanian Scientists, Biological Sciences Section, 3, Ilfov Street, 50044 Bucharest, Romania;
- S.C. Biotehnos S.A., Gorunului Street, No. 3-5, Ilfov County, 075100 Bucharest, Romania
| | - Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, “Ovidius” University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Building C, 900470 Constanta, Romania
| | - Anca-Cristina Lepadatu
- Faculty of Natural Sciences and Agricultural Sciences, “Ovidius” University of Constanta, 1, University Alley, Campus, Building B, 900470 Constanta, Romania;
| | - Larisa Anghel (Cireasa)
- Institute of Doctoral Studies, Doctoral School of Applied Sciences, Doctoral Field:Biology, “Ovidius” University of Constanta, 58, Ion Voda Street, 900573 Constanta, Romania; (M.-V.T.); (L.A.); (N.R.)
| | - Natalia Rosoiu
- Institute of Doctoral Studies, Doctoral School of Applied Sciences, Doctoral Field:Biology, “Ovidius” University of Constanta, 58, Ion Voda Street, 900573 Constanta, Romania; (M.-V.T.); (L.A.); (N.R.)
- Academy of Romanian Scientists, Biological Sciences Section, 3, Ilfov Street, 50044 Bucharest, Romania;
| |
Collapse
|
3
|
Fang WZ, Chen JQ, Mao JD, Zhang BF, Lou LP, Lin Q. Cadmium translocation combined with metabolomics analysis revealed potential mechanisms of MT@MSN-CS and GSH@MSN-CS in reducing cadmium accumulation in rice (Oryza sativa L.) grains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2479-2491. [PMID: 39799254 DOI: 10.1007/s11356-025-35888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
Applying nano-delivery systems for phytohormones via foliar application has proven effective in reducing grain cadmium (Cd) levels in crops. However, the mechanisms underlying this reduction remain inadequately understood. This study integrated the determination of leaf photosynthetic parameters, Cd translocation analysis, and metabolomics to elucidate the effects of reduced glutathione (GSH) and melatonin (MT), delivered with or without chitosan-encapsulated mesoporous silica nanoparticles (MSN-CS), on grain Cd levels in rice. Our findings revealed that the foliar application of MT@MSN-CS significantly outperformed MT alone in reducing grain Cd levels and enhancing leaf photosynthesis under Cd stress. Conversely, GSH@MSN-CS showed comparable effects to GSH alone. Foliar-applied GSH@MSN-CS and MT@MSN-CS both decreased the Cd transport coefficients from panicle nodes to brown rice by 26.2-53.3%, with MT@MSN-CS demonstrating superior efficiency in reducing Cd concentrations across roots, stems, leaves, panicle nodes, and grains. Metabolomic analysis revealed substantial shifts in rice metabolite profiles following GSH@MSN-CS and MT@MSN-CS treatments. Foliar application of MT@MSN-CS or GSH@MSN-CS may rapidly and effectively activate the primary antioxidant defense system and alleviate membrane lipid peroxidation in rice grown on low-to-moderately Cd-contaminated soils by upregulating amino acid metabolism. The secondary defense mechanism, phenylpropanoid biosynthesis, was reprogrammed to reduce energy expenditure and decrease Cd translocation.
Collapse
Affiliation(s)
- Wen-Ze Fang
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China
| | - Jun-Qiao Chen
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China
| | - Jing-Dong Mao
- Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA, 23529, USA
| | - Bao-Feng Zhang
- Hangzhou Environmental Monitoring Central Station, Zhejiang Province, Hangzhou, 310007, P.R. China
| | - Li-Ping Lou
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China
| | - Qi Lin
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Department of Environmental Engineering, Zhejiang University, Zhejiang Province, Hangzhou, 310058, P.R. China.
| |
Collapse
|
4
|
Laila U, Kaur J, Sharma K, Singh J, Rasane P, Kaur S, Bhadariya V. Dandelion ( Taraxacum officinale): A Promising Source of Nutritional and Therapeutic Compounds. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2025; 16:41-56. [PMID: 38425109 DOI: 10.2174/012772574x293072240217185616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Taraxacum officinale, commonly referred to as dandelion, is a selfgrowing plant/ weed in various parts of India and the rest of the world (particularly the northern hemisphere). The plant's chemical composition, including sesquiterpene lactones, saponins, flavonoids, phenols, and many other compounds, contributes positively to the human body, promoting overall health. AIM This review aims to shed light on the therapeutic potential of dandelion by summarizing its nutritional benefits, phytochemical constituents, and effectiveness in addressing health conditions like diabetes, inflammation, and cancer. It also provides insights into the applications of this plant beyond the food industry to gain researchers' attention to unravel the unexplored aspects of this therapeutic plant. It will further help in laying specific considerations, which are required to be taken into account before the development of functional foods incorporated with dandelion. Scope and approach: Being rich in essential vitamins, minerals, and other phytoconstituents, dandelion is a natural remedy for various ailments. Whether consumed raw or cooked, the plant's inclusion in the diet poses potential therapeutic effects on conditions such as diabetes, inflammation, liver disease, and tumors. It also aids in immune system modulation and fights infections by targeting microbes at their root. Researchers have developed various value-added food products by incorporating different parts of dandelion. CONCLUSION This review highlights the therapeutic potential of dandelion, emphasizing its effectiveness against various health conditions. Insights into dosage, toxicity, and diverse applications further underscore its role as a versatile and promising natural remedy.
Collapse
Affiliation(s)
- Umi Laila
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Kartik Sharma
- Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkla 90110, Thailand
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab- 144411, India
| | - Vishesh Bhadariya
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK-74078, USA
| |
Collapse
|
5
|
Karahüseyin S, Özsoy N, Özbek Çelik B, Sarı A. Investigations on the Endemic Species Taraxacum mirabile Wagenitz: HPLC-MS and GC-MS Studies, Evaluation of Antioxidant, Anti-Inflammatory, and Antimicrobial Properties, and Isolation of Several Phenolic Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:3304. [PMID: 39683097 DOI: 10.3390/plants13233304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
In this study, the aim was to investigate the chemical content and in vitro antioxidant, antimicrobial, and anti-inflammatory activities of petroleum ether (PE), dichloromethane (DCM), ethyl acetate (EA), and n-butanol (n-BuOH) fractions obtained from ethanol extracts of the aerial parts and roots of the endemic Taraxacum mirabile Wagenitz. This plant is found in the Aksaray-Eskil region and has not been studied in phytochemical studies before. In this context, the chemical content of the aerial parts and root PE fractions was analyzed by GC-MS analysis in terms of terpenes and steroid substances. The composition of phenolic compounds in the aerial parts and root DCM and EA fractions was determined by HPLC-MS analysis. Apigenin, luteolin, and caffeic acid were isolated from the EA fraction of aerial parts. The total amounts of phenolic substances and the DPPH, ABTS, and FRAP antioxidant activities of PE, DCM, EA, and n-BuOH fractions were investigated, and it was found that the fractions had the ability to scavenge DPPH• and ABTS•+ radicals, as well as to reduce Fe (III) to Fe (II); however, all of the fractions were significantly less effective (p < 0.05) than the reference antioxidant quercetin. Considering that antioxidants can also exert an anti-inflammatory effect, these fractions were evaluated for their ability to inhibit cyclooxygenases (COX-1 and COX-2), the key enzymes of arachidonic acid metabolism that lead to the production of important mediators of inflammation. It was observed that fractions had the ability to inhibit both enzymes, suggesting their possible beneficial effects against inflammation. However, no extract had greater inhibitory activity than the positive control, indomethacin. The antimicrobial activity was determined against different bacterial and fungal strains. It was observed that the aerial parts and root n-BuOH and EA fractions showed weak antibacterial effects. No antifungal activity has been detected against Candida sp.
Collapse
Affiliation(s)
- Seçil Karahüseyin
- Department of Pharmacognosy, Faculty of Pharmacy, Cukurova University, 01330 Adana, Türkiye
- Department of Pharmacognosy, Institute of Health Sciences, Istanbul University, 34116 Istanbul, Türkiye
| | - Nurten Özsoy
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye
| | - Berna Özbek Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye
| | - Aynur Sarı
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
6
|
Wang T, Huang RJ, Jing M, Che J, Xing J, Yang L, Yuan W, Wang Y, Guo J, Zhong H, Huang DD, Huang C, Xu W. Overlooked Trace Molecules in Organic Aerosol Revealed by Gas Chromatography-Orbitrap Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18264-18272. [PMID: 39221859 DOI: 10.1021/acs.est.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Molecular characterization of organic aerosol (OA) is crucial for understanding its sources and atmospheric processes. However, the chemical components of OA remain not well constrained. This study used gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap MS) and GC-Quadrupole MS (GC-qMS) to investigate the organic composition in PM2.5 from Xi'an, Northwest China. GC-Orbitrap MS identified 335 organic tracers, including overlooked isomers and low-concentration molecules, approximately 1.6 times more than GC-qMS. The "molecular corridor" assessment shows the superior capability of GC-Orbitrap MS in identifying an expansive range of compounds with higher volatility and oxidation states, such as furanoses/pyranoses, di/hydroxy/ketonic acids, di/poly alcohols, aldehydes/ketones, and amines/amides. Seasonal variations in OA composition reflect diverse sources: increased di/poly alcohols in winter are derived from indoor emissions, furanoses/pyranoses and heterocyclics in spring and summer might be from biogenic emissions and secondary formation, and amides in autumn are probably from biomass burning. Integrating partial least squares discriminant analysis (PLS-DA) and potential source contribution function (PSCF) models, the source similarities and differences are further elucidated, highlighting the role of local emissions and transport from southern cities. This study offers new insights into the OA composition aided by the high mass resolution and sensitivity of GC-Orbitrap MS.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Jing
- Thermo Fisher Scientific, Shanghai 200136, China
| | - Jinshui Che
- Thermo Fisher Scientific, Shanghai 200136, China
| | | | - Lu Yang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yuan
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ying Wang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jie Guo
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Haobin Zhong
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Dan Dan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Cheng Huang
- State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China
| | - Wei Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361000, China
| |
Collapse
|
7
|
Yan Q, Xing Q, Liu Z, Zou Y, Liu X, Xia H. The phytochemical and pharmacological profile of dandelion. Biomed Pharmacother 2024; 179:117334. [PMID: 39180794 DOI: 10.1016/j.biopha.2024.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Dandelion (Taraxacum genus), a perennial herb belonging to the Asteraceae family is widely distributed in hillside grasslands, roadsides, fields, and river beaches in middle and low-altitude areas. It has a long history of traditional Chinese medicine usage as a heat-clearing and detoxifying agent, often consumed as tea or vegetable. Multiple pharmacological studies have demonstrated the antiviral, antibacterial, anti-inflammatory, immune-regulating, antioxidant, anti-tumor, and other effects of the Taraxacum genus. Bioactive compounds associated with these effects include triterpenes and their saponins, phenolic acids, sterols and their glycosides, flavonoids, organic acids, volatile oils, and saccharides.
Collapse
Affiliation(s)
- Qingzi Yan
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Qichang Xing
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Zheng Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Yang Zou
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China.
| | - Hong Xia
- School of Biomedical Sciences, Hunan University, Changsha, China.
| |
Collapse
|
8
|
Santos JP, Li W, Keller AA, Slaveykova VI. Mercury species induce metabolic reprogramming in freshwater diatom Cyclotella meneghiniana. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133245. [PMID: 38150761 DOI: 10.1016/j.jhazmat.2023.133245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Mercury is a hazardous pollutant of global concern. While advances have been made in identifying the detrimental effects caused by Hg species in phytoplankton, knowledge gaps remain regarding the metabolomic perturbations induced by inorganic mercury (Hg(II)) and monomethylmercury (MeHg) in these organisms. Diatoms represent a major phytoplankton group essential in various global biogeochemical cycles. The current study combined targeted metabolomics, bioaccumulation, and physiological response assays to investigate metabolic perturbations in diatom Cyclotella meneghiniana exposed for 2 h to nanomolar concentrations of Hg(II) and MeHg. Our findings highlight that such exposures induce reprogramming of the metabolism of amino acids, nucleotides, fatty acids, carboxylic acids and antioxidants. These alterations were primarily mercury-species dependent. MeHg exposure induced more pronounced reprogramming of the metabolism of diatoms than Hg(II), which led to less pronounced effects on ROS generation, membrane permeability and chlorophyll concentrations. Hg(II) treatments presented distinct physiological responses, with more robust metabolic perturbations at higher exposures. The present study provides first-time insights into the main metabolic alterations in diatom C. meneghiniana during short-term exposure to Hg species, deepening our understanding of the molecular basis of these perturbations.
Collapse
Affiliation(s)
- João P Santos
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland.
| | - Weiwei Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93106-5131, United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA 93106-5131, United States
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland.
| |
Collapse
|
9
|
Hao F, Deng X, Yu X, Wang W, Yan W, Zhao X, Wang X, Bai C, Wang Z, Han L. Taraxacum: A Review of Ethnopharmacology, Phytochemistry and Pharmacological Activity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:183-215. [PMID: 38351703 DOI: 10.1142/s0192415x24500083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Taraxacum refers to the genus Taraxacum, which has a long history of use as a medicinal plant and is widely distributed around the world. There are over 2500 species in the genus Taraxacum recorded as medicinal plants in China, Central Asia, Europe, and the Americas. It has traditionally been used for detoxification, diuresis, liver protection, the treatment of various inflammations, antimicrobial properties, and so on. We used the most typically reported Taraxacum officinale as an example and assembled its chemical makeup, including sesquiterpene, triterpene, steroids, flavone, sugar and its derivatives, phenolic acids, fatty acids, and other compounds, which are also the material basis for its pharmacological effects. Pharmacological investigations have revealed that Taraxacum crude extracts and chemical compounds contain antimicrobial infection, anti-inflammatory, antitumor, anti-oxidative, liver protective, and blood sugar and blood lipid management properties. These findings adequately confirm the previously described traditional uses and aid in explaining its therapeutic applications.
Collapse
Affiliation(s)
- Fusheng Hao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xinxin Deng
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, P. R. China
| | - Xin Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Wen Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Wei Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xi Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xiaofei Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Changcai Bai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Lu Han
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| |
Collapse
|
10
|
Zhang S, Zhao B, Zhang X, Wu F, Zhao Q. The Metabolomics Response of Solanum melongena L. Leaves to Various Forms of Pb. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2911. [PMID: 37999265 PMCID: PMC10675538 DOI: 10.3390/nano13222911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023]
Abstract
Due to activities like mining and smelting, lead (Pb) enters the atmosphere in various forms in coarse and fine particles. It enters plants mainly through leaves, and goes up the food chain. In this study, PbXn (nano-PbS, mic-PbO and PbCl2) was applied to eggplant (Solanum melongena L.) leaves, and 379 differential metabolites were identified and analyzed in eggplant leaves using liquid chromatography-mass spectrometry. Multivariate statistical analysis revealed that all three Pb treatments significantly altered the metabolite profile. Compared with nano-PbS, mic-PbO and PbCl2 induced more identical metabolite changes. However, the alterations in metabolites related to the TCA cycle and pyrimidine metabolism, such as succinic acid, citric acid and cytidine, were specific to PbCl2. The number of differential metabolites induced by mic-PbO and PbCl2 was three times that of nano-PbS, even though the amount of nano-PbS absorbed by leaves was ten times that of PbO and seven times that of PbCl2. This suggests that the metabolic response of eggplant leaves to Pb is influenced by both concentration and form. This study enhances the current understanding of plants' metabolic response to Pb, and demonstrates that the metabolomics map provides a more comprehensive view of a plant's response to specific metals.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
| | - Bing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
11
|
Yan D, Xue S, Zhang Z, Xu G, Zhang Y, Shi Y, Xing M, Zhang W. Physiological Changes and Antioxidative Mechanisms of Alternanthera philoxeroides in Phytoremediation of Cadmium. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:90-101. [PMID: 39473585 PMCID: PMC11503678 DOI: 10.1021/envhealth.3c00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 03/29/2025]
Abstract
This study evaluated the physiological characteristics (e.g., growth parameters, chlorophyll content, metabolites and antioxidative enzymes activity) of Alternanthera philoxeroides (A. philoxeroides), as a hyperaccumulator plant, during the phytoremediation of cadmium (Cd) from water. After cultivating A. philoxeroides in a Cd-containing medium for 30 days, the growth rate was inhibited by up to 33.5% as the exposed Cd concentration increased to 0.80 mmol·L-1. Cd exposure interfered with the photosynthesis of A. philoxeroides and caused oxidative stress as indicated by the rise of malondialdehyde (MDA) and H2O2, which increased by 8 times and 3 times compared to the control group. Moreover, high exposure concentrations of Cd also reduced the activities of multiple antioxidants (e.g., GSH and AsA), indicating the inhibition of Cd on the plant's ability to mitigate oxidative damage. Finally, the fluorescent patterns of the rhizosphere dissolved organic matter (rDOM) revealed three major components (humic, fulvic substances and protein-like substances) well correlated with the changes in antioxidant activities. Partial least-squares discriminant analysis (PLS-DA) visualized the difference in the activity of the antioxidative enzymes between different groups. The study unravelled deep insights into the potential mechanisms of tolerance and resistance of A. philoxeroides for phytoremediation of Cd pollution.
Collapse
Affiliation(s)
- Dajiang Yan
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Shan Xue
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, USA
| | - Zhibin Zhang
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Guodong Xu
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yanhao Zhang
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yanfeng Shi
- School
of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Menglong Xing
- Shandong
Remedy Environmental Technology Company, Jinan 250101, China
| | - Wen Zhang
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, USA
| |
Collapse
|
12
|
Chen S, Pan Z, Zhao W, Zhou Y, Rui Y, Jiang C, Wang Y, White JC, Zhao L. Engineering Climate-Resilient Rice Using a Nanobiostimulant-Based "Stress Training" Strategy. ACS NANO 2023. [PMID: 37256700 DOI: 10.1021/acsnano.3c02215] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Under a changing climate, cultivating climate-resilient crops will be critical to maintaining food security. Here, we propose the application of reactive oxygen species (ROS)-generating nanoparticles as nanobiostimulants to trigger stress/immune responses and subsequently increase the stress resilience of plants. We established three regimens of silver nanoparticles (AgNPs)-based "stress training": seed training (ST), leaf training (LT), and combined seed and leaf training (SLT). Trained rice seedlings were then exposed to either rice blast fungus (Magnaporthe oryzae) or chilling stress (10 °C). The results show that all "stress training" regimes, particularly SLT, significantly enhanced the resistance of rice against the fungal pathogen (lesion size reduced by 82% relative to untrained control). SLT also significantly enhanced rice tolerance to cold stress. The mechanisms for the enhanced resilience were investigated with metabolomics and transcriptomics, which show that "stress training" induced considerable metabolic and transcriptional reprogramming in rice leaves. AgNPs boosted ROS-activated stress signaling pathways by oxidative post-translational modifications of stress-related kinases, hormones, and transcriptional factors (TFs). These signaling pathways subsequently modulated the expression of defense genes, including specialized metabolites (SMs) biosynthesis genes, cell membrane lipid metabolism genes, and pathogen-plant interaction genes. Importantly, results showed that the "stress memory" can be transferred transgenerationally, conferring offspring seeds with improved seed germination and seedling vigor. This may provide an epigenetic breeding strategy to fortify stress resilience of crops. This nanobiostimulant-based stress training strategy will increase yield vigor against a changing climate and will contribute to sustainable agriculture by reducing agrochemical use.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhengyan Pan
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110101, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanlian Zhou
- Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&FUniversity, Yangling 712100, China
| | - Yi Wang
- The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06511, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Neagu OM, Ghitea T, Marian E, Vlase L, Vlase AM, Ciavoi G, Fehér P, Pallag A, Bácskay I, Nemes D, Vicaș LG, Teușdea A, Jurca T. Formulation and Characterization of Mucoadhesive Polymeric Films Containing Extracts of Taraxaci Folium and Matricariae Flos. Molecules 2023; 28:molecules28104002. [PMID: 37241746 DOI: 10.3390/molecules28104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Taraxaci folium and Matricariae flos plant extracts contain a wide range of bioactive compounds with antioxidant and anti-inflammatory effects. The aim of the study was to evaluate the phytochemical and antioxidant profile of the two plant extracts to obtain a mucoadhesive polymeric film with beneficial properties in acute gingivitis. The chemical composition of the two plant extracts was determined by high-performance liquid chromatography coupled with mass spectrometry. To establish a favourable ratio in the combination of the two extracts, the antioxidant capacity was determined by the method of reduction of copper ions Cu2+ from neocuprein and by reduction of the compound 1.1-diphenyl-2-2picril-hydrazyl. Following preliminary analysis, we selected the plant mixture Taraxaci folium/matricariae flos in the ratio of 1:2 (m/m), having an antioxidant capacity of 83.92% ± 0.02 reduction of free nitrogen radical of 1.1-diphenyl-2-2picril-hydrazyl reagent. Subsequently, bioadhesive films of 0.2 mm thickness were obtained using various concentrations of polymer and plant extract. The mucoadhesive films obtained were homogeneous and flexible, with pH ranging from 6.634 to 7.016 and active ingredient release capacity ranging from 85.94-89.52%. Based on in vitro analysis, the film containing 5% polymer and 10% plant extract was selected for in vivo study. The study involved 50 patients undergoing professional oral hygiene followed by a 7-day treatment with the chosen mucoadhesive polymeric film. The study showed that the film used helped accelerate the healing of acute gingivitis after treatment, with anti-inflammatory and protective action.
Collapse
Affiliation(s)
- Oana Mihaela Neagu
- Doctoral School of Biomedical Sciences, University of Oradea, 1 Universității Street, 410073 Oradea, Romania
| | - Timea Ghitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410028 Oradea, Romania
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410028 Oradea, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania
| | - Gabriela Ciavoi
- Dental Medicine Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Annamária Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410028 Oradea, Romania
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Dániel Nemes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410028 Oradea, Romania
| | - Alin Teușdea
- Faculty of Environmental Protection, University of Oradea, No. 26 General Magheru Avenue, 410087 Oradea, Romania
| | - Tünde Jurca
- Doctoral School of Biomedical Sciences, University of Oradea, 1 Universității Street, 410073 Oradea, Romania
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410028 Oradea, Romania
| |
Collapse
|
14
|
Xu Q, Qiu W, Lin T, Yang Y, Jiang Y. Cadmium tolerance in Elodea canadensis Michx: Subcellular distribution and metabolomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114905. [PMID: 37060802 DOI: 10.1016/j.ecoenv.2023.114905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
The aquatic plant Elodea canadensis is considered a good candidate for ecotoxicological investigations. Cadmium (Cd) is a widespread contaminant in aquatic systems. In this study, to better elucidate the underlying tolerance mechanism and molecular impact of environmentally relevant Cd concentration in aquatic plants, subcellular distribution, chemical forms, and gas chromatography-mass spectrometry-based non-targeted metabolomics profiles were comprehensively analyzed in E. canadensis subjected to 0 and 10 µM Cd treatment for 5 d. Subcellular fractionation analysis of Cd-containing leaves showed that 67% of Cd was compartmentalized in cell wall followed by the soluble fraction (24 %) and organelles (9 %). The majority of Cd (90 %) was found in the extraction using 1 M NaCl. Metabolomic analysis using unsupervised principal component analyses and a supervised partial least squares discriminant analysis revealed clear differences in metabolic profiles between the two groups, demonstrating the metabolic effects of Cd. The 155 identified compounds altered by Cd were mainly from primary metabolism, including sugars, amino acids, organic acids, and their derivatives. Secondary metabolites such as polyphenols and phenolamides were also detected. The massive up-regulation of metabolites, including trehalose, proline, sarcosine, nicotianamine, putrescine, α-ketoglutaric acid, citric acid, and phytol might represent a detoxification mechanism. These findings highlighted the mechanistic strategies that E. canadensis employs to defend against Cd toxicity.
Collapse
Affiliation(s)
- Qinsong Xu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wenjing Qiu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Tinting Lin
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yeyuping Yang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| |
Collapse
|
15
|
Yan X, Chen S, Pan Z, Zhao W, Rui Y, Zhao L. AgNPs-Triggered Seed Metabolic and Transcriptional Reprogramming Enhanced Rice Salt Tolerance and Blast Resistance. ACS NANO 2023; 17:492-504. [PMID: 36525364 DOI: 10.1021/acsnano.2c09181] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Seeds are facing harsher environments due to the changing climate. Improving seeds' stress resilience is critical to reduce yield loss. Here, we propose that using ROS-generating nanoparticles (NPs) to prestimulate seeds would enhance the stress resilience of seeds and seedlings through triggering stress/immune responses. We examined this hypothesis by exposing AgNPs-primed rice (Oryza sativa L.) seeds under salt conditions (NaCl). The results showed that primed seeds exhibit accelerated germination speed, increased seedling vigor (from 22.5 to 47.6), biomass (11%), and root length (83%) compared to seeds with hydropriming treatment. Multiomics (metabolomics and transcriptomics) analyses reveal that AgNPs-priming triggered metabolic and transcriptional reprogramming in rice seeds. Signaling metabolites, such as salicylic acid, niacinamide, and glycerol-3-phosphate, dramatically increased upon AgNPs-priming. KEGG pathway analysis reveals that AgNPs-priming activated stress signaling and defense related pathways, such as plant hormone signal transduction, glutathione metabolism, flavone and flavonol biosynthesis, MAPK signaling pathway, and plant-pathogen interaction. These metabolic and transcriptional changes indicate that AgNPs-priming triggered stress/immune responses. More importantly, this "stress memory" can last weeks, providing protection to rice seedlings against salt stress and rice blast fungus (Magnaporthe oryzae). Overall, we show that prestimulated seeds with ROS-generating AgNPs not only enable faster and better germination under stress conditions, but also increase seedling resistance to biotic and abiotic stresses. This simple nanobiostimulant-based strategy may contribute to sustainable agriculture by maintaining agricultural production and reducing the use of pesticides.
Collapse
Affiliation(s)
- Xin Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| | - Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| | - Zhengyan Pan
- Liaoning Rice Research Institute, Shenyang110101, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing100193, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
16
|
Liu W, Li M, Li W, Keller AA, Slaveykova VI. Metabolic alterations in alga Chlamydomonas reinhardtii exposed to nTiO 2 materials. ENVIRONMENTAL SCIENCE. NANO 2022; 9:2922-2938. [PMID: 36093215 PMCID: PMC9367718 DOI: 10.1039/d2en00260d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022]
Abstract
Nano-sized titanium dioxide (nTiO2) is one of the most commonly used materials, however the knowledge about the molecular basis for metabolic and physiological changes in phytoplankton is yet to be explored. In the present study we use a combination of targeted metabolomics, transcriptomics and physiological response studies to decipher the metabolic perturbation in green alga Chlamydomonas reinhardtii exposed for 72 h to increasing concentrations (2, 20, 100 and 200 mg L-1) of nTiO2 with primary sizes of 5, 15 and 20 nm. Results show that the exposure to all three nTiO2 materials induced perturbation of the metabolism of amino acids, nucleotides, fatty acids, tricarboxylic acids, antioxidants but not in the photosynthesis. The alterations of the most responsive metabolites were concentration and primary size-dependent despite the significant formation of micrometer-size aggregates and their sedimentation. The metabolic perturbations corroborate the observed physiological responses and transcriptomic results and confirmed the importance of oxidative stress as a major toxicity mechanism for nTiO2. Transcriptomics revealed also an important influence of nTiO2 treatments on the transport, adenosine triphosphate binding cassette transporters, and metal transporters, suggesting a perturbation in a global nutrition of the microalgal cell, which was most pronounced for exposure to 5 nm nTiO2. The present study provides for the first-time evidence for the main metabolic perturbations in green alga C. reinhardtii exposed to nTiO2 and helps to improve biological understanding of the molecular basis of these perturbations.
Collapse
Affiliation(s)
- Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology Uni Carl Vogt, 66 Blvd Carl-Vogt CH 1211 Geneva Switzerland
| | - Mengting Li
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology Uni Carl Vogt, 66 Blvd Carl-Vogt CH 1211 Geneva Switzerland
| | - Weiwei Li
- Bren School of Environmental Science & Management, University of California Santa Barbara California 93106-5131 USA
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California Santa Barbara California 93106-5131 USA
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology Uni Carl Vogt, 66 Blvd Carl-Vogt CH 1211 Geneva Switzerland
| |
Collapse
|
17
|
Chen S, Shi N, Huang M, Tan X, Yan X, Wang A, Huang Y, Ji R, Zhou D, Zhu YG, Keller AA, Gardea-Torresdey JL, White JC, Zhao L. MoS 2 Nanosheets-Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism. ACS NANO 2021; 15:16344-16356. [PMID: 34569785 DOI: 10.1021/acsnano.1c05656] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fully understanding the environmental implications of engineered nanomaterials is crucial for their safe and sustainable use. Cyanobacteria, as the pioneers of the planet earth, play important roles in global carbon and nitrogen cycling. Here, we evaluated the biological effects of molybdenum disulfide (MoS2) nanosheets on a N2-fixation cyanobacteria (Nostoc sphaeroides) by monitoring growth and metabolome changes. MoS2 nanosheets did not exert overt toxicity to Nostoc at the tested doses (0.1 and 1 mg/L). On the contrary, the intrinsic enzyme-like activities and semiconducting properties of MoS2 nanosheets promoted the metabolic processes of Nostoc, including enhancing CO2-fixation-related Calvin cycle metabolic pathway. Meanwhile, MoS2 boosted the production of a range of biochemicals, including sugars, fatty acids, amino acids, and other valuable end products. The altered carbon metabolism subsequently drove proportional changes in nitrogen metabolism in Nostoc. These intracellular metabolic changes could potentially alter global C and N cycles. The findings of this study shed light on the nature and underlying mechanisms of bio-nanoparticle interactions, and offer the prospect of utilization bio-nanomaterials for efficient CO2 sequestration and sustainable biochemical production.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Nibin Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xianjun Tan
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xin Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aodi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuxiong Huang
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Arturo A Keller
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Jorge L Gardea-Torresdey
- Bren School of Environmental Science & Management and Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, California 93106, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06504, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
18
|
Slaveykova VI, Majumdar S, Regier N, Li W, Keller AA. Metabolomic Responses of Green Alga Chlamydomonas reinhardtii Exposed to Sublethal Concentrations of Inorganic and Methylmercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3876-3887. [PMID: 33631933 DOI: 10.1021/acs.est.0c08416] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metabolomics characterizes low-molecular-weight molecules involved in different biochemical reactions and provides an integrated assessment of the physiological state of an organism. By using liquid chromatography-mass spectrometry targeted metabolomics, we examined the response of green alga Chlamydomonas reinhardtii to sublethal concentrations of inorganic mercury (IHg) and monomethylmercury (MeHg). We quantified the changes in the levels of 93 metabolites preselected based on the disturbed metabolic pathways obtained in a previous transcriptomics study. Metabolites are downstream products of the gene transcription; hence, metabolite quantification provided information about the biochemical status of the algal cells exposed to Hg compounds. The results showed that the alga adjusts its metabolism during 2 h exposure to 5 × 10-9 and 5 × 10-8 mol L-1 IHg and MeHg by increasing the level of various metabolites involved in amino acid and nucleotide metabolism, photorespiration, and tricarboxylic acid (TCA) cycle, as well as the metabolism of fatty acids, carbohydrates, and antioxidants. Most of the metabolic perturbations in the alga were common for IHg and MeHg treatments. However, the exposure to IHg resulted in more pronounced perturbations in the fatty acid and TCA metabolism as compared with the exposure to MeHg. The observed metabolic perturbations were generally consistent with our previously published transcriptomics results for C. reinhardtii exposed to the comparable level of IHg and MeHg. The results highlight the potential of metabolomics for toxicity evaluation, especially to detect effects at an early stage of exposure prior to their physiological appearance.
Collapse
Affiliation(s)
- Vera I Slaveykova
- Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, Geneva CH 1211, Switzerland
| | - Sanghamitra Majumdar
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, California 93106-5131, United States
| | - Nicole Regier
- Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, Geneva CH 1211, Switzerland
| | - Weiwei Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, California 93106-5131, United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, California 93106-5131, United States
| |
Collapse
|
19
|
Lara-Jacobo LR, Gauthier C, Xin Q, Dupont F, Couture P, Triffault-Bouchet G, Dettman HD, Langlois VS. Fate and Fathead Minnow Embryotoxicity of Weathering Crude Oil in a Pilot-Scale Spill Tank. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:127-138. [PMID: 33017057 DOI: 10.1002/etc.4891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
For several years now, the Natural Resources Canada research facility at CanmetENERGY Devon (AB, Canada) has been performing experiments in a pilot-scale spill tank using 1200 L of river water to examine the physical and chemical behaviors of various crude oil/water mixtures under varying water temperature regimes. Because oil toxicity can be modulated by weathering of the petroleum products, the present study aimed to assess changes in fish embryotoxicity to mixed sweet blend crude oil as it weathered at air and water temperatures of 14 °C and 15 °C, respectively, for 28 d. The physicochemical behavior of the oil was also monitored. Water samples were taken from the spill tank 5 times during the 28-d experiment on days 1, 6, 14, 21, and 28 and were used to perform toxicity exposures using fathead minnow embryos (Pimephales promelas). For each water sampling day, newly fertilized embryos were exposed to a serial dilution of the spill tank water, noncontaminated river water (used in the spill tank), and a reconstituted water laboratory control. Embryos were raised until hatching. Although mortality was not significantly altered by the oil contamination over the time period, malformation occurrence and severity showed concentration-dependent responses to all contaminated water collected. The results suggest that days 14, 21, and 28 were the most toxic time periods for the fish embryos, which corresponded to increasing concentrations of unidentified oxidized organic compounds detected by a quadropole-time-of-flight system. The present study highlights a novel area for oil research, which could help us to better understand the toxicity associated with oil weathering for aquatic species. Environ Toxicol Chem 2021;40:127-138. © 2020 Her Majesty the Queen in Right of Canada. Reproduced with the permission of the Minister of Natural Resources Canada.
Collapse
Affiliation(s)
- Lara R Lara-Jacobo
- Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec City, Québec, Canada
| | - Charles Gauthier
- Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec City, Québec, Canada
| | - Qin Xin
- CanmetENERGY, Natural Resources Canada, Devon, Alberta, Canada
| | - Félix Dupont
- Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec City, Québec, Canada
| | - Patrice Couture
- Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec City, Québec, Canada
| | - Gaëlle Triffault-Bouchet
- Centre d'expertise en analyse environnementale du Québec, Ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec City, Québec, Canada
| | | | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut national de la recherche scientifique, Québec City, Québec, Canada
| |
Collapse
|
20
|
Huang M, Keller AA, Wang X, Tian L, Wu B, Ji R, Zhao L. Low Concentrations of Silver Nanoparticles and Silver Ions Perturb the Antioxidant Defense System and Nitrogen Metabolism in N 2-Fixing Cyanobacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15996-16005. [PMID: 33232140 DOI: 10.1021/acs.est.0c05300] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although toxic effects of silver nanoparticles (AgNPs) on aquatic organisms have been extensively reported, responses of nitrogen-fixing cyanobacteria to AgNPs/Ag+ under environmentally relevant concentrations are largely unknown. Here, cyanobacteria were exposed to different concentrations of AgNPs (0.01, 0.1, and 1 mg/L) or Ag+ (0.1, 1, and 10 μg/L) for 96 h. The impacts of AgNPs and Ag+ on photosynthesis and N2 fixation in cyanobacteria (Nostoc sphaeroides) were evaluated. In addition, gas chromatography-mass spectrometry (GC-MS)-based metabolomics was employed to give an instantaneous snapshot of the physiological status of the cells under AgNP/Ag+ exposure. Exposure to high doses of AgNPs (1 mg/L) or Ag+ (10 μg/L) caused growth inhibition, reactive oxygen species overproduction, malondialdehyde accumulation, and decreased N2 fixation. In contrast, low doses of AgNPs (0.01 and 0.1 mg/L) and Ag+ (0.1 and 1 μg/L) did not induce observable responses. However, metabolomics revealed that metabolic reprogramming occurred even at low concentrations of AgNP and Ag+ exposure. Levels of a number of antioxidant defense-related metabolites, especially phenolic acid and polyphenols (gallic acid, resveratrol, isochlorogenic acid, chlorogenic acid, cinnamic acid, 3-hydroxybenzoic acid, epicatechin, catechin, and ferulic acid), significantly decreased in response to AgNPs or Ag+. This indicates that AgNPs and Ag+ can disrupt the antioxidant defense system and disturb nitrogen metabolism even at low-dose exposure. Metabolomics was shown to be a powerful tool to detect "invisible" changes, not observable by typical phenotypic-based endpoints.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Arturo A Keller
- Bren School of Environmental Science & Management and Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, California 93106, United States
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liyan Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Metabolomics for early detection of stress in freshwater alga Poterioochromonas malhamensis exposed to silver nanoparticles. Sci Rep 2020; 10:20563. [PMID: 33239722 PMCID: PMC7689461 DOI: 10.1038/s41598-020-77521-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) are one of the most used engineered nanomaterials. Despite progress in assessing their environmental implications, knowledge gaps exist concerning the metabolic perturbations induced by AgNPs on phytoplankton, essential organisms in global biogeochemical cycles and food-web dynamics. We combine targeted metabolomics, biouptake and physiological response studies to elucidate metabolic perturbations in alga Poterioochromonas malhamensis induced by AgNPs and dissolved Ag. We show time-dependent perturbation of the metabolism of amino acids, nucleotides, fatty acids, tricarboxylic acids, photosynthesis and photorespiration by both Ag-treatments. The results suggest that dissolved Ag ions released by AgNPs are the major toxicity driver; however, AgNPs internalized in food vacuoles contributed to the perturbation of amino acid metabolism, TCA cycle and oxidative stress. The metabolic perturbations corroborate the observed physiological responses. We highlight the potential of metabolomics as a tool for understanding the molecular basis for these metabolic and physiological changes, and for early detection of stress.
Collapse
|
22
|
Du W, Liu X, Zhao L, Xu Y, Yin Y, Wu J, Ji R, Sun Y, Guo H. Response of cucumber (Cucumis sativus) to perfluorooctanoic acid in photosynthesis and metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138257. [PMID: 32247119 DOI: 10.1016/j.scitotenv.2020.138257] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
A mechanistic understanding of perfluorooctanoic acid (PFOA) toxicity to plants is essential for future risk assessment of PFOA in agricultural soil. In this study, soil-grown cucumber (Cucumis sativus) was exposed to 0, 0.2, and 5 mg/kg of PFOA for 60 days. At harvest, contaminant accumulation, cucumber biomass, photosynthesis profiles and metabolites were measured. Results showed that PFOA depressed cucumber biomass and accumulated highest in leaves. Photosynthesis analysis revealed that PFOA at both doses reduced the chlorophyll contents and net photosynthesis rate of cucumber leaves. Gas chromatography-mass spectrometry-based non-targeted metabolomics revealed that PFOA induced metabolic reprogramming in cucumber leaves, including up-regulation of phenols (at 0.2 and 5 mg/kg) and down-regulation of amino acids (at 5 mg/kg), indicating disrupted nitrogen and carbon metabolism. Results revealed how PFOA represses plant growth by down-regulating photosynthetic pigments and disturbing the metabolism of carbohydroxides, phenols and amino acids. These findings provide valuable information for understanding the molecular mechanisms involved in plant responses to PFOA-induced stress.
Collapse
Affiliation(s)
- Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Xing Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yanwen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Zhang H, Huang M, Zhang W, Gardea-Torresdey JL, White JC, Ji R, Zhao L. Silver Nanoparticles Alter Soil Microbial Community Compositions and Metabolite Profiles in Unplanted and Cucumber-Planted Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3334-3342. [PMID: 32088952 DOI: 10.1021/acs.est.9b07562] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The rapid development of nanotechnology makes the environmental impact assessment a necessity to ensure the sustainable use of engineered nanomaterials. Here, silver nanoparticles (AgNPs) at 100 mg/kg were added to soils in the absence or presence of cucumber (Cucumis sativa) plants for 60 days. The response of the soil microbial community and associated soil metabolites was investigated by 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS)-based metabolomics, respectively. The results show that AgNP exposure significantly increased the soil pH in both unplanted and cucumber-planted soils. The soil bacterial community structure was altered upon Ag exposure in both soils. Several functionally significant bacterial groups, which are associated with carbon, nitrogen, and phosphorus cycling, were compromised by AgNPs in both unplanted and cucumber-planted soils. Generally, plants played a limited role in mediating the impact of AgNPs on the bacterial community. Soil metabolomic analysis showed that AgNPs altered the metabolite profile in both unplanted and cucumber-planted soils. The significantly changed metabolites are involved in sugar and amino acid-related metabolic pathways, indicating the perturbation of C and N metabolism, which is consistent with the bacterial community structure results. In addition, several fatty acids were significantly decreased upon exposure to AgNPs in both unplanted and cucumber-planted soils, suggesting the possible oxidative stress imposed on microbial cell membranes. These results provide valuable information for understanding the biological and biochemical impact of AgNP exposure on both plant species and on soil microbial communities; such understanding is needed to understand the risk posed by these materials in the environment.
Collapse
Affiliation(s)
- Huiling Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Min Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Jason C White
- Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06504, United States
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Enhancement of corrosion resistance of the cooling systems in desalination plants by green inhibitor. Sci Rep 2020; 10:4812. [PMID: 32179877 PMCID: PMC7075887 DOI: 10.1038/s41598-020-61810-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Taraxacum officinale extract (TOE) has been tested for preventing the corrosion of cooling systems in desalination plants. The inhibition of corrosion effects has been characterized by chemical and electrochemical methods (Mass loss, potentiodynamic polarization and electrochemical impedance spectroscopy) and surface observations. Tests on cooling systems were carried out in seawater environment. The presence of TOE in the re-circulation loop decreases the corrosion of carbon steel by adsorption of TOE compounds on the surface of metal pipes. The optimum TOE concentration was reached at 400 mg L-1 and the inhibition efficiency was higher than 94%. TOE allowed increasing the energy barrier of the corrosion process. SEM, FT-IR and UV spectra observations confirmed that TOE prevents corrosion attacks at the surface of the pipes. HPLC analyses identified the presence of saccharides, organic acids, phenol antioxidant and caffeic acid derivatives in TOE, which may be the active promoters of corrosion inhibition.
Collapse
|
25
|
Grauso L, Emrick S, Bonanomi G, Lanzotti V. Metabolomics of the alimurgic plants Taraxacum officinale, Papaver rhoeas and Urtica dioica by combined NMR and GC-MS analysis. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:535-546. [PMID: 31177603 DOI: 10.1002/pca.2845] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION The phytoalimurgic plants, common dandelion (Taraxacum officinale), corn poppy (Papaver rhoeas) and stinging nettle (Urtica dioica) are a source of nutraceuticals. OBJECTIVES To apply a combined metabolomic fingerprinting approach by nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) to common dandelion, corn poppy and stinging nettles to obtain simultaneous identification and quantitation of the major classes of organic compounds. METHODOLOGY The whole plants collected in the Cilento National Park were dried and then extracted to obtain non-polar and polar organic extracts. GC-MS was used for non-polar extracts while 1 H-NMR spectroscopy was used for polar extracts. In both cases, simultaneous identification and quantification of the bioactive metabolites was obtained. RESULTS Non-polar organic extracts of all plants were mainly composed of palmitic, stearic and oleic acids. The two pentacyclic triterpenols α- and β-amyrin were detected in nettle extract. The analysis of polar organic extracts allowed to detect and quantify organic acids and sugars as main metabolites along with amino acids, caffeoyl derivatives, flavonoids, and nucleotides. In particular, corn poppy leaves contained a huge amount of glyceric acid (55.7% of the total extract). Stinging nettles, instead, exhibited a large amount of choline (19.5%). CONCLUSION Metabolomic approach coupling GC-MS with NMR spectroscopy allowed to provide a detailed metabolite profile of three alimurgic plants, common dandelion, corn poppy and stinging nettle, from both a qualitative and quantitative point of view.
Collapse
Affiliation(s)
- Laura Grauso
- Dipartimento di Agraria, Università di Napoli Federico II, Portici, Naples, Italy
| | - Stefano Emrick
- Dipartimento di Agraria, Università di Napoli Federico II, Portici, Naples, Italy
| | - Giuliano Bonanomi
- Dipartimento di Agraria, Università di Napoli Federico II, Portici, Naples, Italy
| | - Virginia Lanzotti
- Dipartimento di Agraria, Università di Napoli Federico II, Portici, Naples, Italy
| |
Collapse
|
26
|
Ivanov I, Petkova N, Tumbarski J, Dincheva I, Badjakov I, Denev P, Pavlov A. GC-MS characterization of n-hexane soluble fraction from dandelion (Taraxacum officinale Weber ex F.H. Wigg.) aerial parts and its antioxidant and antimicrobial properties. ACTA ACUST UNITED AC 2019; 73:41-47. [PMID: 28902635 DOI: 10.1515/znc-2017-0107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/20/2017] [Indexed: 11/15/2022]
Abstract
A comparative investigation of n-hexane soluble compounds from aerial parts of dandelion (Taraxacum officinale Weber ex F.H. Wigg.) collected during different vegetative stages was carried out. The GC-MS analysis of the n-hexane (unpolar) fraction showed the presence of 30 biologically active compounds. Phytol [14.7% of total ion current (TIC)], lupeol (14.5% of TIC), taraxasteryl acetate (11.4% of TIC), β-sitosterol (10.3% of TIC), α-amyrin (9.0% of TIC), β-amyrin (8.3% of TIC), and cycloartenol acetate (5.8% of TIC) were identified as the major components in n-hexane fraction. The unpolar fraction exhibited promising antioxidant activity - 46.7 mmol Trolox equivalents/g extract (determined by 1,1-diphenyl-2-picrylhydrazyl method). This fraction demonstrated insignificant antimicrobial activity and can be used in cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Ivan Ivanov
- Department Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria
| | - Nadezhda Petkova
- Department Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria
| | - Julian Tumbarski
- Department Microbiology, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria
| | - Ivayla Dincheva
- AgroBioInstitute Agricultural Academy, 8 Dr. Tsankov Blvd., Sofia, Bulgaria
| | - Ilian Badjakov
- AgroBioInstitute Agricultural Academy, 8 Dr. Tsankov Blvd., Sofia, Bulgaria
| | - Panteley Denev
- Department Organic Chemistry and Inorganic Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv, Bulgaria
| | - Atanas Pavlov
- Department Analytical and Physical Chemistry, University of Food Technologies, 26 Maritza Blvd., Plovdiv, 4002, Bulgaria
| |
Collapse
|
27
|
Pinu FR, Goldansaz SA, Jaine J. Translational Metabolomics: Current Challenges and Future Opportunities. Metabolites 2019; 9:E108. [PMID: 31174372 PMCID: PMC6631405 DOI: 10.3390/metabo9060108] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Metabolomics is one of the latest omics technologies that has been applied successfully in many areas of life sciences. Despite being relatively new, a plethora of publications over the years have exploited the opportunities provided through this data and question driven approach. Most importantly, metabolomics studies have produced great breakthroughs in biomarker discovery, identification of novel metabolites and more detailed characterisation of biological pathways in many organisms. However, translation of the research outcomes into clinical tests and user-friendly interfaces has been hindered due to many factors, some of which have been outlined hereafter. This position paper is the summary of discussion on translational metabolomics undertaken during a peer session of the Australian and New Zealand Metabolomics Conference (ANZMET 2018) held in Auckland, New Zealand. Here, we discuss some of the key areas in translational metabolomics including existing challenges and suggested solutions, as well as how to expand the clinical and industrial application of metabolomics. In addition, we share our perspective on how full translational capability of metabolomics research can be explored.
Collapse
Affiliation(s)
- Farhana R Pinu
- The New Zealand Institute for Plant and Food Research, Private Bag 92169, Auckland 1142, New Zealand.
| | - Seyed Ali Goldansaz
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Jacob Jaine
- Analytica Laboratories Ltd., Ruakura Research Centre, Hamilton 3216, New Zealand.
| |
Collapse
|
28
|
Zhang H, Lu L, Zhao X, Zhao S, Gu X, Du W, Wei H, Ji R, Zhao L. Metabolomics Reveals the "Invisible" Responses of Spinach Plants Exposed to CeO 2 Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6007-6017. [PMID: 31013431 DOI: 10.1021/acs.est.9b00593] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Engineered nanoparticles (NPs) with activities that mimic antioxidant enzymes have good prospects in agriculture because they can increase photosynthesis and improve stress tolerance. Here, the interaction between cerium oxide NPs with spinach plants ( Spinacia oleracea) was investigated by integrating phenotypic and metabolomic analyses. Soil-grown, four-week-old spinach plants were foliar exposed for 3 weeks to CeO2 NPs at 0, 0.3, and 3 mg per plant. Phenotypic parameters (chlorophyll fluorescence, photosynthetic pigment contents, plant biomass, lipid peroxidation, and membrane permeability) were not affected. However, metabolomics analysis revealed that both doses of CeO2 NPs induced metabolic reprogramming in leaves and roots in a non-dose-dependent manner. The low dose of CeO2 NPs (0.3 mg per plant) induced stronger metabolic reprogramming in spinach leaves than high dose of CeO2 NPs. However, the high dose of CeO2 NPs triggered more metabolic changes in roots, compared to the low dose. Foliar spray of CeO2 NPs at 3 mg/plant induced marked down-regulation of a number of amino acids (threonine, tryptophan, l-cysteine, methionine, cycloleucine, aspartic acid, asparagine, tyrosine, and glutamic acid). In addition, Zn decreased by 44% and 54% in leaves and Ca decreased by 38% and 32% in roots under exposure to CeO2 NPs at 0.3 and 3 mg/plant, respectively. These results provide better understanding of the intrinsic phenotypic and metabolic changes imposed by CeO2 NPs in spinach plants.
Collapse
|
29
|
Wu L, Xiong W, Hu JW, Wu J, Li ZJ, Gao Y, Liu D, Liu Y, Liu W, Liang M, Si CL, Bae YS. Secondary Metabolites from the Twigs of Cinnamomum camphora. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02686-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Zhang H, Du W, Peralta-Videa JR, Gardea-Torresdey JL, White JC, Keller A, Guo H, Ji R, Zhao L. Metabolomics Reveals How Cucumber ( Cucumis sativus) Reprograms Metabolites To Cope with Silver Ions and Silver Nanoparticle-Induced Oxidative Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8016-8026. [PMID: 29898596 DOI: 10.1021/acs.est.8b02440] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Due to their well-known antifungal activity, the intentional use of silver nanoparticles (AgNPs) as sustainable nanofungicides is expected to increase in agriculture. However, the impacts of AgNPs on plants must be critically evaluated to guarantee their safe use in food production. In this study, 4-week-old cucumber ( Cucumis sativus) plants received a foliar application of AgNPs (4 or 40 mg/plant) or Ag+ (0.04 or 0.4 mg/plant) for 7 days. Gas chromatography-mass spectrometry (GC-MS)=based nontarget metabolomics enabled the identification and quantification of 268 metabolites in cucumber leaves. Multivariate analysis revealed that all the treatments significantly altered the metabolite profile. Exposure to AgNPs resulted in metabolic reprogramming, including activation of antioxidant defense systems (upregulation of phenolic compounds) and downregulation of photosynthesis (upregulation of phytol). Additionally, AgNPs enhanced respiration (upregulation of tricarboxylic acid cycle intermediates), inhibited photorespiration (downregulation of glycine/serine ratio), altered membrane properties (upregulation of pentadecanoic and arachidonic acids, downregulation of linoleic and linolenic acids), and reduced inorganic nitrogen fixation (downregulation of glutamine and asparagine). Although Ag ions induced some of the same metabolic changes, alterations in the levels of carbazole, lactulose, raffinose, citraconic acid, lactamide, acetanilide, and p-benzoquinone were AgNP-specific. The results of this study offer new insight into the molecular mechanisms by which cucumber responds to AgNP exposure and provide important information to support the sustainable use of AgNPs in agriculture.
Collapse
Affiliation(s)
- Huiling Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Wenchao Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Jose R Peralta-Videa
- Chemistry Department , The University of Texas at El Paso , 500 West University Avenue, El Paso , Texas 79968 , United States
| | - Jorge L Gardea-Torresdey
- Chemistry Department , The University of Texas at El Paso , 500 West University Avenue, El Paso , Texas 79968 , United States
| | - Jason C White
- Department of Analytical Chemistry , The Connecticut Agricultural Experiment Station , New Haven , Connecticut 06504 , United States
| | - Arturo Keller
- Bren School of Environmental Science & Management , University of California , Santa Barbara , California 93106-5131 , United States
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
31
|
Zhao L, Huang Y, Keller AA. Comparative Metabolic Response between Cucumber ( Cucumis sativus) and Corn ( Zea mays) to a Cu(OH) 2 Nanopesticide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6628-6636. [PMID: 28493687 DOI: 10.1021/acs.jafc.7b01306] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to their unique properties, copper-based nanopesticides are emerging in the market. Thus, understanding their effect on crop plants is very important. Metabolomics can capture a snapshot of cellular metabolic responses to a stressor. We selected maize and cucumber as model plants for exposure to different doses of Cu(OH)2 nanopesticide. GC-TOF-MS-based metabolomics was employed to determine the metabolic responses of these two species. Results revealed significant differences in metabolite profile changes between maize and cucumber. Furthermore, the Cu(OH)2 nanopesticide induced metabolic reprogramming in both species, but in different manners. In maize, several intermediate metabolites of the glycolysis pathway and tricarboxylic acid cycle (TCA) were up-regulated, indicating the energy metabolism was activated. In addition, the levels of aromatic compounds (4-hydroxycinnamic acid and 1,2,4-benzenetriol) and their precursors (phenylalanine, tyrosine) were enhanced, indicating the activation of shikimate-phenylpropanoid biosynthesis in maize leaves, which is an antioxidant defense-related pathway. In cucumber, arginine and proline metabolic pathways were the most significantly altered pathway. Both species exhibited altered levels of fatty acids and polysaccharides, suggesting the cell membrane and cell wall composition may change in response to Cu(OH)2 nanopesticide. Thus, metabolomics helps to deeply understand the differential response of these plants to the same nanopesticide stressor.
Collapse
Affiliation(s)
- Lijuan Zhao
- Bren School of Environmental Science & Management , University of California , Santa Barbara , California 93106-5131 , United States
- Center for Environmental Implications of Nanotechnology , University of California , Santa Barbara , California 93106-5131 , United States
| | - Yuxiong Huang
- Bren School of Environmental Science & Management , University of California , Santa Barbara , California 93106-5131 , United States
- Center for Environmental Implications of Nanotechnology , University of California , Santa Barbara , California 93106-5131 , United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management , University of California , Santa Barbara , California 93106-5131 , United States
- Center for Environmental Implications of Nanotechnology , University of California , Santa Barbara , California 93106-5131 , United States
| |
Collapse
|
32
|
Zhao L, Huang Y, Paglia K, Vaniya A, Wancewicz B, Keller AA. Metabolomics Reveals the Molecular Mechanisms of Copper Induced Cucumber Leaf ( Cucumis sativus) Senescence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7092-7100. [PMID: 29792813 DOI: 10.1021/acs.est.8b00742] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Excess copper may disturb plant photosynthesis and induce leaf senescence. The underlying toxicity mechanism is not well understood. Here, 3-week-old cucumber plants were foliar exposed to different copper concentrations (10, 100, and 500 mg/L) for a final dose of 0.21, 2.1, and 10 mg/plant, using CuSO4 as the Cu ion source for 7 days, three times per day. Metabolomics quantified 149 primary and 79 secondary metabolites. A number of intermediates of the tricarboxylic acid (TCA) cycle were significantly down-regulated 1.4-2.4 fold, indicating a perturbed carbohydrate metabolism. Ascorbate and aldarate metabolism and shikimate-phenylpropanoid biosynthesis (antioxidant and defense related pathways) were perturbed by excess copper. These metabolic responses occur even at the lowest copper dose considered although no phenotype changes were observed at this dose. High copper dose resulted in a 2-fold increase in phytol, a degradation product of chlorophyll. Polyphenol metabolomics revealed that some flavonoids were down-regulated, while the nonflavonoid 4-hydroxycinnamic acid and trans-2-hydroxycinnamic acid were significantly up-regulated 4- and 26-fold compared to the control. This study enhances current understanding of copper toxicity to plants and demonstrates that metabolomics profiling provides a more comprehensive view of plant responses to stressors, which can be applied to other plant species and contaminants.
Collapse
Affiliation(s)
- Lijuan Zhao
- Key Laboratory of Pollution Control and Resource Reuse, School of Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Yuxiong Huang
- Bren School of Environmental Science & Management , University of California , Santa Barbara , California 93106-5131 , United States
- University of California , Center for Environmental Implications of Nanotechnology , Santa Barbara , California 93106 , United States
| | - Kelly Paglia
- UC Davis Genome Center-Metabolomics , University of California Davis , 451 Health Sciences Drive , Davis , California 95616 , United States
| | - Arpana Vaniya
- UC Davis Genome Center-Metabolomics , University of California Davis , 451 Health Sciences Drive , Davis , California 95616 , United States
| | - Benjamin Wancewicz
- UC Davis Genome Center-Metabolomics , University of California Davis , 451 Health Sciences Drive , Davis , California 95616 , United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management , University of California , Santa Barbara , California 93106-5131 , United States
- University of California , Center for Environmental Implications of Nanotechnology , Santa Barbara , California 93106 , United States
| |
Collapse
|
33
|
Chen J, Li K, Le XC, Zhu L. Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:308-317. [PMID: 29499574 DOI: 10.1016/j.envpol.2018.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are toxic chemicals widely distributed in the environment, but few studies are available on their potential toxicity to rice at metabolic level. Therefore we exposed ten rice (Oryza sativa) varieties to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a predominant congener of PBDEs, in hydroponic solutions with different concentrations. Two varieties that showed different biological effects to BDE-47, YY-9 and LJ-7, were screened as sensitive and tolerant varieties according to changes of morphological and physiological indicators. Metabolic research was then conducted using gas chromatography-mass spectrometry combined with diverse analyses. Results showed that LJ-7 was more active in metabolite profiles and adopted more effective antioxidant defense machinery to protect itself against oxidative damages induced by BDE-47 than YY-9. For LJ-7, the contents of 13 amino acids and 24 organic acids, especially l-glutamic acid, beta-alanine, glycolic acid and glyceric acid were up-regulated significantly which contributed to scavenging reactive oxygen species. In the treatment of 500 μg/L BDE-47, the contents of these four metabolites increased by 33.6-, 19.3-, 10.6- and 10.2-fold, respectively. The levels of most saccharides (such as d-glucose, lactulose, maltose, sucrose and d-cellobiose) also increased by 1.7-12.4 fold which promoted saccharide-related biosynthesis metabolism. Elevation of tricarboxylic acid cycle and glyoxylate and dicarboxylate metabolism enhanced energy-producing processes. Besides, the contents of secondary metabolites, chiefly polyols and glycosides increased significantly to act on defending oxidative stress induced by BDE-47. In contrast, the levels of most metabolites decreased significantly for YY-9, especially those of 13 amino acids (by 0.9%-67.1%) and 19 organic acids (by 7.8%-70.0%). The positive metabolic responses implied LJ-7 was tolerant to BDE-47, while the down-regulation of most metabolites indicated the susceptible nature of YY-9. Since metabolic change might affect the yield and quality of rice, this study can provide useful reference for rice cultivation in PBDEs-polluted areas.
Collapse
Affiliation(s)
- Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Kelun Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
34
|
Zhao L, Huang Y, Adeleye AS, Keller AA. Metabolomics Reveals Cu(OH) 2 Nanopesticide-Activated Anti-oxidative Pathways and Decreased Beneficial Antioxidants in Spinach Leaves. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10184-10194. [PMID: 28738142 DOI: 10.1021/acs.est.7b02163] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
While the use of nanopesticides in modern agriculture continues to increase, their effects on crop plants are still poorly understood. Here, 4 week old spinach plants grown in an artificial medium were exposed via foliar spray to Cu(OH)2 nanopesticide (0.18 and 18 mg/plant) or Cu ions (0.15 and 15 mg/plant) for 7 days. A gas chromatography-time-of-flight-mass spectrometry metabolomics approach was applied to assess metabolic alterations induced by Cu(OH)2 nanopesticide in spinach leaves. Exposure to Cu(OH)2 nanopesticide and copper ions induced alterations in the metabolite profiles of spinach leaves. Compared to the control, exposure to 18 mg of Cu(OH)2 nanopesticide induced significant reduction (29-85%) in antioxidant or defense-associated metabolites including ascorbic acid, α-tocopherol, threonic acid, β-sitosterol, 4-hydroxybutyric acid, ferulic acid, and total phenolics. The metabolic pathway for ascorbate and aldarate was disturbed in all exposed spinach plants (nanopesticide and Cu2+). Cu2+ is responsible for the reduction in antioxidants and perturbation of the ascorbate and aldarate metabolism. However, nitrogen metabolism perturbation was nanopesticide-specific. Spinach biomass and photosynthetic pigments were not altered, indicating that metabolomics can be a rapid and sensitive tool for the detection og earlier nanopesticide effects. Consumption of antioxidants during the antioxidant defense process resulted in reduction of the nutritional value of exposed spinach.
Collapse
Affiliation(s)
- Lijuan Zhao
- Bren School of Environmental Science & Management and ‡Center for Environmental Implications of Nanotechnology, University of California , Santa Barbara, California 93106, United States
| | - Yuxiong Huang
- Bren School of Environmental Science & Management and ‡Center for Environmental Implications of Nanotechnology, University of California , Santa Barbara, California 93106, United States
| | - Adeyemi S Adeleye
- Bren School of Environmental Science & Management and ‡Center for Environmental Implications of Nanotechnology, University of California , Santa Barbara, California 93106, United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management and ‡Center for Environmental Implications of Nanotechnology, University of California , Santa Barbara, California 93106, United States
| |
Collapse
|
35
|
Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA. Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9697-707. [PMID: 27483188 DOI: 10.1021/acs.est.6b02763] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There has been an increasing influx of nanopesticides into agriculture in recent years. Understanding the interaction between nanopesticides and edible plants is crucial in evaluating the potential impact of nanotechnology on the environment and agriculture. Here we exposed lettuce plants to Cu(OH)2 nanopesticides (1050-2100 mg/L) through foliar spray for one month. Inductively coupled plasma-mass spectrometry (ICP-MS) results indicate that 97-99% (1353-2501 mg/kg) of copper was sequestered in the leaves and only a small percentage (1-3%) (17.5-56.9 mg/kg) was translocated to root tissues through phloem loading. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) based metabolomics combined with partial least squares-discriminant analysis (PLS-DA) multivariate analysis revealed that Cu(OH)2 nanopesticides altered metabolite levels of lettuce leaves. Tricarboxylic (TCA) cycle and a number of amino acid-related biological pathways were disturbed. Some antioxidant levels (cis-caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, dehydroascorbic acid) were significantly decreased compared to the control, indicating that oxidative stress and a defense response occurred. Nicotianamine, a copper chelator, increased by 12-27 fold compared to the control, which may represent a detoxification mechanism. The up-regulation of polyamines (spermidine and putrescine) and potassium may mitigate oxidative stress and enhance tolerance. The data presented here provide a molecular-scale perspective on the response of plants to copper nanopesticides.
Collapse
Affiliation(s)
- Lijuan Zhao
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Cruz Ortiz
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Adeyemi S Adeleye
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Qirui Hu
- Neuroscience Research Institute, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Hongjun Zhou
- Neuroscience Research Institute and Molecular, Cellular and Developmental Biology, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Yuxiong Huang
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| |
Collapse
|
36
|
Lee MY, Moon BC, Kwon YK, Jung Y, Oh TK, Hwang GS. Discrimination of Polygonatum species and identification of novel markers using (1) H NMR- and UPLC/Q-TOF MS-based metabolite profiling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3846-3852. [PMID: 26689164 DOI: 10.1002/jsfa.7580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/19/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Rhizomes of Polygonatum species are commonly used as herbal supplements in Asia. They have different medicinal effects by species but have been misused and mixed owing to their similar taste and smell. Therefore accurate and reliable analytical methods to discriminate between Polygonatum species are required. RESULTS In this study, global and targeted metabolite profiling using (1) H nuclear magnetic resonance ((1) H NMR) spectroscopy and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) was applied to discriminate between different Polygonatum species. Partial least squares discriminant analysis (PLS-DA) models were used to classify and predict species of Polygonatum. Cross-validation derived from PLS-DA revealed good predictive accuracy. Polygonatum species were classified into unique patterns based on K-means clustering analysis. 4-Hydrobenzoic acid and trigonelline were identified as novel marker compounds and quantified accurately. CONCLUSION The results demonstrate that metabolite profiling approaches coupled with chemometric analysis can be used to classify and discriminate between different species of various herbal medicines. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Young Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Byeong Cheol Moon
- Center of Herbal Resources Research, Korea Institute of Oriental Medicine, Daejeon, 305-811, Republic of Korea
| | - Yong-Kook Kwon
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
| | - Tae Kyu Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 120-140, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, Republic of Korea
- Department of Life Science, Ewha Womans University, Seoul, 120-750, Republic of Korea
| |
Collapse
|
37
|
Wu Z, Mao Y, Zhang X, Weng P. Symbolic Metabolite Analysis of Pickled Wax Gourd in Eastern China by 1H-NMR Spectroscopy and Multivariate Data. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1099044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zufang Wu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yijun Mao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Peifang Weng
- School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
38
|
Discrimination of rapeseeds (Brassica napus L.) based on the content of erucic acid by 1H NMR. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-015-2555-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Organic acid component from Taraxacum mongolicum Hand.-Mazz alleviates inflammatory injury in lipopolysaccharide-induced acute tracheobronchitis of ICR mice through TLR4/NF-κB signaling pathway. Int Immunopharmacol 2016; 34:92-100. [PMID: 26930562 DOI: 10.1016/j.intimp.2016.02.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
Inflammation plays an important role in the pathogenesis of acute tracheobronchitis. Taraxacum mongolicum Hand.-Mazz (TMHM) is a dietic herb for heat-clearing and detoxifying functions as well as swell-reducing and mass-resolving effect in Traditional Chinese Medicine. Studies have shown that its major ingredient organic acid component (OAC) possesses favorable anti-inflammatory activity. However, the protective effect of OAC from TMHM (TMHM-OAC) on inflammatory injury of acute tracheobronchitis and its possible mechanism remains poorly understood. In this study, HPLC-DAD was used to analyze the components of TMHM-OAC. Lipopolysaccharide of 1mg/ml was used to induce respiratory inflammation in ICR mice at the dose of 5mg/kg by intratracheally aerosol administration. Enzyme-linked immunosorbent assay (ELISA) was employed to detect the levels of inflammation factors such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide in serum and supernatant of trachea tissue. Western blotting (WB) and Immunohistochemistry analysis (IHC) were conducted in parallel to determine TNF-α, IL-6, inducible nitric oxide synthase (iNOS), Toll-like receptors 4(TLR4) protein expressions and nuclear factor-kappa B p65 (NF-κB p65) phosphorylation. Hematoxylin-Eosin staining (HE) was applied to evaluate pathological lesions of trachea tissue. Experimental results showed that TMHM-OAC significantly reduced the levels of the TNF-α, IL-6 and NO in serum and supernatant of tracheal of LPS-induced ICR mice. The protein expression levels of TNF-α, IL-6 and iNOS in tracheal tissue were also down-regulated significantly by the treatment of TMHM-OAC. Moreover, TMHM-OAC downregulated phosphorylation of NF-κB p65 and protein expression of TLR4. Our results indicated that TMHM-OAC could improve LPS-induced histopathological damage of tracheal tissues through the regulation of TLR4/NF-κB signaling pathway and could be beneficial for the treatment of acute tracheobronchitis.
Collapse
|
40
|
Zhao J, Ge LY, Xiong W, Leong F, Huang LQ, Li SP. Advanced development in phytochemicals analysis of medicine and food dual purposes plants used in China (2011-2014). J Chromatogr A 2015; 1428:39-54. [PMID: 26385085 DOI: 10.1016/j.chroma.2015.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/22/2022]
Abstract
In 2011, we wrote a review for summarizing the phytochemical analysis (2006-2010) of medicine and food dual purposes plants used in China (Zhao et al., J. Chromatogr. A 1218 (2011) 7453-7475). Since then, more than 750 articles related to their phytochemical analysis have been published. Therefore, an updated review for the advanced development (2011-2014) in this topic is necessary for well understanding the quality control and health beneficial phytochemicals in these materials, as well as their research trends.
Collapse
Affiliation(s)
- Jing Zhao
- The State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Li-Ya Ge
- The State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Wei Xiong
- The State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Fong Leong
- The State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Lu-Qi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shao-Ping Li
- The State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
41
|
Chagas-Paula DA, Zhang T, Da Costa FB, Edrada-Ebel R. A Metabolomic Approach to Target Compounds from the Asteraceae Family for Dual COX and LOX Inhibition. Metabolites 2015; 5:404-30. [PMID: 26184333 PMCID: PMC4588803 DOI: 10.3390/metabo5030404] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 11/16/2022] Open
Abstract
The application of metabolomics in phytochemical analysis is an innovative strategy for targeting active compounds from a complex plant extract. Species of the Asteraceae family are well-known to exhibit potent anti-inflammatory (AI) activity. Dual inhibition of the enzymes COX-1 and 5-LOX is essential for the treatment of several inflammatory diseases, but there is not much investigation reported in the literature for natural products. In this study, 57 leaf extracts (EtOH-H2O 7:3, v/v) from different genera and species of the Asteraceae family were tested against COX-1 and 5-LOX while HPLC-ESI-HRMS analysis of the extracts indicated high diversity in their chemical compositions. Using O2PLS-DA (R2 > 0.92; VIP > 1 and positive Y-correlation values), dual inhibition potential of low-abundance metabolites was determined. The O2PLS-DA results exhibited good validation values (cross-validation = Q2 > 0.7 and external validation = P2 > 0.6) with 0% of false positive predictions. The metabolomic approach determined biomarkers for the required biological activity and detected active compounds in the extracts displaying unique mechanisms of action. In addition, the PCA data also gave insights on the chemotaxonomy of the family Asteraceae across its diverse range of genera and tribes.
Collapse
Affiliation(s)
- Daniela A Chagas-Paula
- University of Strathclyde, the John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK.
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Department of Pharmaceutical Sciences, Av. Café s/n, Ribeirão Preto-SP 14040-903, Brazil.
| | - Tong Zhang
- University of Strathclyde, the John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Fernando B Da Costa
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Department of Pharmaceutical Sciences, Av. Café s/n, Ribeirão Preto-SP 14040-903, Brazil.
| | - RuAngelie Edrada-Ebel
- University of Strathclyde, the John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
42
|
Mingarro DM, Plaza A, Galán A, Vicente JA, Martínez MP, Acero N. The effect of five Taraxacum species on in vitro and in vivo antioxidant and antiproliferative activity. Food Funct 2015; 6:2787-93. [DOI: 10.1039/c5fo00645g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differences between antioxidant and cytotoxic activities have been found among five Taraxacum species.
Collapse
Affiliation(s)
- D. Muñoz Mingarro
- Facultad de Farmacia
- Departamento de Química y Bioquímica
- Universidad CEU San Pablo
- Urb. Montepríncipe
- Madrid
| | - A. Plaza
- Facultad de Farmacia
- Departamento de CC Farmacéuticas y de la Salud Universidad CEU San Pablo
- Urb. Montepríncipe
- Madrid
- Spain
| | - A. Galán
- Facultad de Farmacia
- Departamento de CC Farmacéuticas y de la Salud Universidad CEU San Pablo
- Urb. Montepríncipe
- Madrid
- Spain
| | - J. A. Vicente
- Facultad de Farmacia
- Departamento de CC Farmacéuticas y de la Salud Universidad CEU San Pablo
- Urb. Montepríncipe
- Madrid
- Spain
| | - M. P. Martínez
- Facultad de Farmacia
- Departamento de Química y Bioquímica
- Universidad CEU San Pablo
- Urb. Montepríncipe
- Madrid
| | - N. Acero
- Facultad de Farmacia
- Departamento de CC Farmacéuticas y de la Salud Universidad CEU San Pablo
- Urb. Montepríncipe
- Madrid
- Spain
| |
Collapse
|
43
|
Lee J, Jung Y, Shin JH, Kim HK, Moon BC, Ryu DH, Hwang GS. Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS. Molecules 2014; 19:9535-51. [PMID: 25000465 PMCID: PMC6270825 DOI: 10.3390/molecules19079535] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 01/11/2023] Open
Abstract
Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS) and ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.
Collapse
Affiliation(s)
- Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea.
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea.
| | - Jeoung-Hwa Shin
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea.
| | - Ho Kyoung Kim
- Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.
| | - Byeong Cheol Moon
- Basic Herbal Medicine Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 120-140, Korea.
| |
Collapse
|
44
|
Sun H, Zhang S, Zhang A, Yan G, Wu X, Han Y, Wang X. Metabolomic analysis of diet-induced type 2 diabetes using UPLC/MS integrated with pattern recognition approach. PLoS One 2014; 9:e93384. [PMID: 24671089 PMCID: PMC3966886 DOI: 10.1371/journal.pone.0093384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 03/04/2014] [Indexed: 11/28/2022] Open
Abstract
Metabolomics represents an emerging discipline concerned with comprehensive assessment of small molecule endogenous metabolites in biological systems and provides a powerful approach insight into the mechanisms of diseases. Type 2 diabetes (T2D), called the burden of the 21st century, is growing with an epidemic rate. However, its precise molecular mechanism has not been comprehensively explored. In this study, we applied urinary metabolomics based on the UPLC/MS integrated with pattern recognition approaches to discover differentiating metabolites, to characterize and explore metabolic pathway disruption in an experimental model for high-fat-diet induced T2D. Six differentiating urinary metabolites were found in the negative mode, and two (2-(4-hydroxy-3-methoxy-phenyl) acetaldehyde sulfate, 2-phenylethanol glucuronide) of which were identified involving the key metabolic pathways linked to pentose and glucuronate interconversions, starch, sucrose metabolism and tyrosine metabolism. Our study provides new insight into pathophysiologic mechanisms and may enhance the understanding of T2D pathogenesis.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pharmaceutical Analysis, Key Lab of Metabolomics and Chinmedomics, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuxiang Zhang
- Department of Pharmaceutical Analysis, Key Lab of Metabolomics and Chinmedomics, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Aihua Zhang
- Department of Pharmaceutical Analysis, Key Lab of Metabolomics and Chinmedomics, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangli Yan
- Department of Pharmaceutical Analysis, Key Lab of Metabolomics and Chinmedomics, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiuhong Wu
- Department of Pharmaceutical Analysis, Key Lab of Metabolomics and Chinmedomics, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- Department of Pharmaceutical Analysis, Key Lab of Metabolomics and Chinmedomics, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- Department of Pharmaceutical Analysis, Key Lab of Metabolomics and Chinmedomics, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Harbin, China
- * E-mail:
| |
Collapse
|
45
|
Discrimination of cabbage (Brassica rapa ssp. pekinensis) cultivars grown in different geographical areas using 1H NMR-based metabolomics. Food Chem 2013. [DOI: 10.1016/j.foodchem.2012.10.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Jung Y, Lee J, Kim HK, Moon BC, Ji Y, Ryu DH, Hwang GS. Metabolite profiling of Curcuma species grown in different regions using 1H NMR spectroscopy and multivariate analysis. Analyst 2012; 137:5597-606. [DOI: 10.1039/c2an35397k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|