1
|
Kirse TM, Maisuls I, Cappellari MV, Niehaves E, Kösters J, Hepp A, Karst U, Wolcan E, Strassert CA. Neutral and Cationic Re(I) Complexes with Pnictogen-Based Coligands and Tunable Functionality: From Phosphorescence to Photoinduced CO Release. Inorg Chem 2024; 63:4132-4151. [PMID: 38382545 DOI: 10.1021/acs.inorgchem.3c03886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this work, we have explored Re(I) complexes featuring triphenylpnictogen (PnPh3, Pn = P, As, or Sb)-based coligands and bidentate (neutral or monoanionic) luminophores derived from 1,10-phenantroline (phen), as well as from 2-(3-(tert-butyl)-1H-1,2,4-triazol-5-yl)pyridine (H(N-tBu)). The effect of the increasingly heavy elements on the structural parameters, photoexcited-state properties, and electrochemical behavior as well as the hybridization defects and polarization of the Pn atoms was related to the charges of the main luminophores (i.e., phen vs N-tBu) and explored in terms of photoluminescence spectroscopy, X-ray diffractometry, and quantum-chemical methods. Therefore, an in-depth analysis of the bonding, crystal packing, excited-state energies, and lifetimes was assessed in liquid solutions, frozen glassy matrices, and crystalline phases along with a semiquantitative photoactivation study. Notably, by changing the main ligand from phen to N-tBu, an increase in radiative and radiationless deactivation rates (kr and knr, respectively) at 77 K together with a faster photoinduced CO release and fragmentation at room temperature was detected. In addition, a progressively red-shifted phosphorescence was observed with the growing atomic number of the pnictogen atom, along with a boost in kr and knr at 77 K. Down the Vth main group and upon coordination of the Pn atom to the Re(I) center, an increasingly prominent jump of s-orbital participation on the binding sxp3.00-orbitals of the Pn atoms is evidenced. Based on these findings, the ability of these complexes to act as tunable photoluminescent labels able to perform as light-driven CO-releasing molecules is envisioned.
Collapse
Affiliation(s)
- Thomas M Kirse
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
- CiMiC, SoN and CeNTech, Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
- CiMiC, SoN and CeNTech, Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - María Victoria Cappellari
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
- CiMiC, SoN and CeNTech, Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Erik Niehaves
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Uwe Karst
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
| | - Ezequiel Wolcan
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diagonal 113 and 64, Sucursal 4, Casilla de Correo 16, La Plata B1906, Argentina
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, 48149 Münster, Germany
- CiMiC, SoN and CeNTech, Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| |
Collapse
|
2
|
Das U, Shanavas S, Nagendra AH, Kar B, Roy N, Vardhan S, Sahoo SK, Panda D, Bose B, Paira P. Luminescent 11-{Naphthalen-1-yl}dipyrido[3,2-a:2',3'-c]phenazine-Based Ru(II)/Ir(III)/Re(I) Complexes for HCT-116 Colorectal Cancer Stem Cell Therapy. ACS APPLIED BIO MATERIALS 2023; 6:410-424. [PMID: 36638050 DOI: 10.1021/acsabm.2c00556] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Due to a number of unpleasant considerations, marketed drugs have steadily lost their importance in the treatment of cancer. In order to find a viable cancer cell diagnostic agent, we therefore focused on metal complexes that displayed target adequacy, permeability to cancer cells, high standard water solubility, cytoselectivity, and luminescent behavior. In this aspect, luminescent 11-{naphthalen-1-yl} dipyrido [3,2-a:2',3'-c] phenazine based Ru(II)/Ir(III)/Re(I) complexes have been prepared for HCT-116 colorectal cancer stem cell therapy. Our study successfully established the possible cytotoxicity of IrL complex at different doses on HCT-116 colorectal cancer stem cells (CRCSCs). Additionally, an immunochemistry analysis of the complex IrL showed that the molecule was subcellularly localized in the nucleus and other regions of the cytoplasm, where it caused nuclear DNA damage and mitochondrial dysfunction. The level of BAX and Bcl-2 was further quantified by qRT-PCR. The expression of proapoptotic BAX showed increased expression in the complex IrL-treated cell compared to the control, indicating the potential of complex IrL for apoptotic induction. Upon further validation, complex IrL was developed as an inhibitor of autophagy for the eradication of cancer stem cells.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Shanooja Shanavas
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India
| | - Apoorva H Nagendra
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India
| | - Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Seshu Vardhan
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT) Ichchanath, Surat 395007, Gujrat, India
| | - Suban K Sahoo
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT) Ichchanath, Surat 395007, Gujrat, India
| | - Debashis Panda
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology (Institute of National Importance (GOI Act. 54/2007), Jais 229304, Uttar Pradesh, India
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| |
Collapse
|
3
|
Maisuls I, Kirse TM, Hepp A, Kösters J, Wolcan E, Strassert CA. Rhenium(I) Complexes with Neutral Monodentate Coligands and Monoanionic 2-(1,2,4-Triazol-5-yl)pyridine-Based Chelators as Bidentate Luminophores with Tunable Color and Photosensitized Generation of 1O 2: An Integrated Case Study Involving Photophysics and Theory. Inorg Chem 2022; 61:13775-13791. [PMID: 35998339 DOI: 10.1021/acs.inorgchem.2c01572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we describe the synthesis as well as structural, photophysical, and theoretical investigation of a new coordination chemical concept involving rhenium(I) complexes bearing monoanionic 1,2,4-triazolylpyridine-based bidentate chromophores. The X-ray diffractometric analysis of single crystals revealed particular packing features: the trifluoromethylated exemplar displayed two kinds of arrangements of the coordination centers, where the bidentate ligands at the edges of the unit cell are staggered parallel to each other, whereas those inside show antiparallel stacking with respect to the external ligands. On the other hand, the complexes bearing an adamantyl substituent yield a linear arrangement, where the bulky moiety of one luminophore points to the pyridine center of the adjacent ligand of the neighboring complex while including methanol molecules hydrogen-bonded to the triazolato unit. We observed that the photophysical properties of the complexes (photoexcited-state lifetimes, photoluminescence maxima and quantum yields) can be adjusted by tuning of the substitution pattern at the bidentate luminophore as well as by variation of the monodentate coligand. The photoluminescence spectra and photoexcited-state lifetimes of the crystalline phases were measured by phosphorescence lifetime micro(spectro)scopy. Interestingly, the vibrationally resolved emission spectra of the crystals closely resemble those of diluted frozen glassy matrixes at 77 K, in contrast with the broad bands observed in amorphous solids and in fluid solutions, where the charge-transfer character is enhanced. While the photoluminescence quantum yields (ΦL) reach up to 15%, the complexes are able to attain up to 55% efficiency regarding the photosensitization of 1O2 (ΦΔ), depending on the combination of luminophore and coligand. Theoretical calculations showed that the photoexcited triplet (T1) state has a metal-ligand-to-ligand charge-transfer character, where promotion to the excited electronic configuration shortens the Re(I)-N bond involving the bidentate triazolylpyridine while stretching the three fac-CO-Re(I) bonds as well as the linkage to the axial monodentate coligand. The calculated vertical (Evl) and 0-0 (E(0-0)) radiative transition energies are in very good agreement with the experimental values (Eexplum).
Collapse
Affiliation(s)
- Iván Maisuls
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster D-48149, Germany.,CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, Münster D-48149, Germany
| | - Thomas M Kirse
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster D-48149, Germany.,CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, Münster D-48149, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster D-48149, Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster D-48149, Germany
| | - Ezequiel Wolcan
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diagonal 113 and 64, Sucursal 4, Casilla de Correo 16, La Plata B1906, Argentina
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, Münster D-48149, Germany.,CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, Münster D-48149, Germany
| |
Collapse
|
4
|
Tan L, Wang H, Liu X. Insight into achirality and chirality effects in interactions of an racemic ruthenium(II) polypyridyl complex and its Δ- and Λ-enantiomers with an RNA triplex. Int J Biol Macromol 2022; 219:579-586. [PMID: 35952809 DOI: 10.1016/j.ijbiomac.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
RNA triplexes have a variety of potential applications in molecular biology, diagnostics and therapeutics, while low stabilization of the third strand hinders their practical utilities under physiological conditions. In this regard, achieving the third-strand stabilization by binding small molecules is a promising strategy. Chirality is one of the basic properties of nature. To clarify achirality and chirality effects on the binding and stabilizing effects of RNA triplexes by small molecules, we report for the first time the RNA interactions of an racemic ruthenium(II) polypyridyl complex [Ru(bpy)2(11-CN-dppz)]2+ (rac-Ru1) and its two enantiomers Δ/Λ-[Ru(bpy)2(11-CN-dppz)]2+ (Δ/Λ-Ru1) with an RNA triplex poly(U-A*U) (where "-" represents Watson-Crick base pairing, and "*" denotes Hoogsteen base pairing, respectively) in this work. Research shows that although rac-Ru1 and its two enantiomers Δ/Λ-Ru1 bind to the RNA triplex through the same mode of intercalation, the binding affinity for enantiomer Δ-Ru1 is much higher than that for rac-Ru1 and enantiomer Λ-Ru1. However, compared to enantiomer Λ-Ru1, the binding affinity for rac-Ru1 does not show much of an advantage, which is slightly greater than that for the former. Thermal denaturation measurements reveal both rac-Ru1 and Δ-Ru1 to have a preference for stabilizing the third strand rather than the template duplex of the RNA triplex, while Λ-Ru1 stabilizes the RNA triplex without significant selectivity. Besides, the third-strand stabilizing effects by rac-Ru1 and Δ-Ru1 are not markedly different from each other, but more marked than that by Λ-Ru1. This work shows that the binding properties of the racemic Ru(II) polypyridyl complex with the RNA triplex are not simply an average of its two enantiomers, indicating potentially complicated binding events.
Collapse
Affiliation(s)
- Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Hui Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, People's Republic of China
| |
Collapse
|
5
|
Photophysical properties of a β-Carboline Rhenium (I) complex. Solvent effects on excited states and their redox reactivity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
6
|
Ramos LD, de Macedo LH, Gobo NRS, de Oliveira KT, Cerchiaro G, Morelli Frin KP. Understanding the photophysical properties of rhenium(I) compounds coordinated to 4,7-diamine-1,10-phenanthroline: synthetic, luminescence and biological studies. Dalton Trans 2021; 49:16154-16165. [PMID: 32270852 DOI: 10.1039/d0dt00436g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, the photophysical properties and preliminary time-dependent density functional theory (TD-DFT) data of new rhenium(i) polypyridyl compounds, fac-[Re(L)(Am2phen)(CO)3]0/+, where Am2phen = 4,7-diamine-1,10-phenanthroline and L = Cl and ethyl isonicotinate (et-isonic), provided new insights into excited-state deactivation through an unusual inversion between two metal-to-ligand charge-transfer excited states. In addition, their cellular uptake using breast cancer (MCF-7) and melanoma (SkMel-147 and SkMel-29) cell lines and bioactivity were investigated and their cell-killing mechanism and protein expression were also studied. Preliminary TD-DFT results showed that both compounds exhibited a strong and broad absorption band around 300-400 nm which corresponds to a combination of ILAm2phen and MLCTRe→Am2phen transitions, and a strong contribution of charge transfer transition MLCTRe→et-isonic for fac-[Re(et-isonic)(Am2phen)(CO)3]+ is also observed. In contrast to typical Re(i) polypyridyl complexes, the substitution of Cl with the et-isonic ligand showed a bathochromic shift of the emission maxima, relatively low emission quantum yield and fast lifetime. Photophysical investigation of the fac-[ReCl(et-isonic)2(CO)3] compound provided meaningful information on the excited state manifold of the fac-[Re(L)(Am2phen)(CO)3]0/+ complexes. As shown in the absorption profile, a remarkable inversion of the lowest-lying excited state takes place from the usually observed MLCTRe→Am2phen to the unusual MLCTRe→et-isonic. The lipophilicity of the positive-complex was higher than that of the non-charge compound and the same trend for the activity against cells was observed, in the absence of light. In addition, flow cytometry and Western Blot analyses showed an overexpression of pro-caspase-9, suggesting a caspase proteolytic cascade through an intrinsic-pathway apoptosis mechanism. The photophysical properties of these compounds reported herein provide new fundamental insights into the understanding of substituent groups on polypyridyl ligands which are relevant to practical development.
Collapse
Affiliation(s)
- Luiz D Ramos
- Federal University of ABC - UFABC, Av. dos Estados 5001, Santo Andre, SP, Brazil
| | | | | | | | | | | |
Collapse
|
7
|
Mkhatshwa M, Moremi JM, Makgopa K, Manicum ALE. Nanoparticles Functionalised with Re(I) Tricarbonyl Complexes for Cancer Theranostics. Int J Mol Sci 2021; 22:6546. [PMID: 34207182 PMCID: PMC8235741 DOI: 10.3390/ijms22126546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, cancer is the second (to cardiovascular diseases) leading cause of death. Regardless of various efforts (i.e., finance, research, and workforce) to advance novel cancer theranostics (diagnosis and therapy), there have been few successful attempts towards ongoing clinical treatment options as a result of the complications posed by cancerous tumors. In recent years, the application of magnetic nanomedicine as theranostic devices has garnered enormous attention in cancer treatment research. Magnetic nanoparticles (MNPs) are capable of tuning the magnetic field in their environment, which positively impacts theranostic applications in nanomedicine significantly. MNPs are utilized as contrasting agents for cancer diagnosis, molecular imaging, hyperfusion region visualization, and T cell-based radiotherapy because of their interesting features of small size, high reactive surface area, target ability to cells, and functionalization capability. Radiolabelling of NPs is a powerful diagnostic approach in nuclear medicine imaging and therapy. The use of luminescent radioactive rhenium(I), 188/186Re, tricarbonyl complexes functionalised with magnetite Fe3O4 NPs in nanomedicine has improved the diagnosis and therapy of cancer tumors. This is because the combination of Re(I) with MNPs can improve low distribution and cell penetration into deeper tissues.
Collapse
Affiliation(s)
| | | | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa; (M.M.); (J.M.M.)
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa; (M.M.); (J.M.M.)
| |
Collapse
|
8
|
Fang X, Ye J, Duan D, Cai X, Guo X, Li K. Aspartic acid assisted one-step synthesis of stable CsPbX 3@Asp-Cs 4PbX 6 by in situ growth in NH 2-MIL-53 for ratiometric fluorescence detection of 4-bromophenoxybenzene. Mikrochim Acta 2021; 188:204. [PMID: 34043073 DOI: 10.1007/s00604-021-04863-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
A molecularly imprinted ratiometric fluorescent sensor was synthesized for the detection of 4-bromophenoxybenzene (BDE-3) based on perovskite quantum dots and metal organic framework. First, aspartic acid (Asp) was introduced during the synthesis of perovskite CsPbX3 for the formation of a core-shell structure of CsPbX3@Asp-Cs4PbX6. Due to the protection of the shell layer Cs4PbX6, the stability of the core CsPbX3 was improved significantly. Compared to CsPb(BrI)3, the ultraviolet and thermal stabilities of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 were increased by 26 times and 32 times, respectively, and, compared to CsPbBr3, these stabilities of CsPbBr3@Asp-Cs4PbBr6 were increased by 3 times and 13 times, respectively. The water stabilities of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 and CsPbBr3@Asp-Cs4PbBr6 were greatly improved too. Then, a ratiometric fluorescence sensor was constructed by in situ growth of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 in metal organic framework (NH2-MIL-53) for the detection of BDE-3, in which the orange fluorescence of CsPb(BrI)3@Asp-Cs4Pb(BrI)6 (614 nm) was regarded as the reference signal and the cyan fluorescence of NH2-MIL-53 (494 nm) was used as the fluorescence response signal. To improve the selectivity of the sensor, the molecular imprinting polymer (MIP) was modified on the NH2-MIL-53 and an imprinting factor of 3.17 was obtained. Under 365 nm light excitation, the fluorescent response signal at 494 nm was quenched gradually by BDE-3 in the range 11.4 to 68.5 nmol/L, while the reference signal at 614 nm remained unchanged. The limit of detection and limit of quantification were 3.35 and 11.2 nmol/L, respectively, and the fluorescent color of the sensor changed gradually from cyan to green to orange, which illustrated that the developed sensor has an ability to recognize BDE-3 specifically, a good anti-interference ability, and a sensitively visual detection ability. Moreover, the sensor was successfully applied to the BDE-3 detection in polyethylene terephthalate plastic bottle, polyvinyl chloride plastic bag, and circuit board with satisfactory recoveries (96.3-108.1%) and low relative standard deviations (5%). The preparation processes of NH2-MIL-53, NH2-MIL-53-CsPb(BrI)3@Asp-Cs4Pb(BrI)6, and the MIP-NH2-MIL-53-CsPb(BrI)3@Asp-Cs4Pb(BrI)6 composites.
Collapse
Affiliation(s)
- Xiaoyu Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianping Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ding Duan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xin Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510220, China.
| | - Kang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Moharana P, Ghosh D, Paira P. Drive to organoruthenium and organoiridium complexes from organoplatinum: Next-generation anticancer metallotherapeutics. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Arevalo R, López R, Falvello LR, Riera L, Perez J. Building C(sp 3 ) Molecular Complexity on 2,2'-Bipyridine and 1,10-Phenanthroline in Rhenium Tricarbonyl Complexes. Chemistry 2021; 27:379-389. [PMID: 33001533 DOI: 10.1002/chem.202003814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Indexed: 12/21/2022]
Abstract
The reactions of [Re(N-N)(CO)3 (PMe3 )]OTf (N-N=2,2'-bipyridine, bipy; 1,10-phenanthroline, phen) compounds with tBuLi and with LiHBEt3 have been explored. Addition to the N-N chelate took place with different site-selectivity depending on both chelate and nucleophile. Thus, with tBuLi, an unprecedented addition to C5 of bipy, a regiochemistry not accessible for free bipy, was obtained, whereas coordinated phen underwent tBuLi addition to C2 and C4. Remarkably, when LiHBEt3 reacted with [Re(bipy)(CO)3 (PMe3 )]OTf, hydride addition to the 4 and 6 positions of bipy triggered an intermolecular cyclodimerization of two dearomatized pyridyl rings. In contrast, hydride addition to the phen analog resulted in partial reduction of one pyridine ring. The resulting neutral ReI products showed a varied reactivity with HOTf and with MeOTf to yield cationic complexes. These strategies rendered access to ReI complexes containing bipy- and phen-derived chelates with several C(sp3 ) centers.
Collapse
Affiliation(s)
- Rebeca Arevalo
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain.,Current address: Department of Chemistry and Chemical Biology, University of California, Merced, 5200 N. Lake Road, 95343, Merced, CA, USA
| | - Ramón López
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain
| | - Larry R Falvello
- Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Lucía Riera
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain.,Centro de Investigación en Nanomateriales y Nanotecnología-CINN, CSIC- Universidad de Oviedo-Principado de Asturias, Avda. de la Vega 4-6, 33940, El Entrego, Spain
| | - Julio Perez
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julián Clavería, 8, 33006, Oviedo, Spain.,Centro de Investigación en Nanomateriales y Nanotecnología-CINN, CSIC- Universidad de Oviedo-Principado de Asturias, Avda. de la Vega 4-6, 33940, El Entrego, Spain
| |
Collapse
|
11
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Klenner MA, Pascali G, Massi M, Fraser BH. Fluorine‐18 Radiolabelling and Photophysical Characteristics of Multimodal PET–Fluorescence Molecular Probes. Chemistry 2020; 27:861-876. [DOI: 10.1002/chem.202001402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Mitchell A. Klenner
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
- School of Molecular and Life Sciences Curtin University Kent Street Bentley WA 6102 Australia
| | - Giancarlo Pascali
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
- Prince of Wales Hospital Barker St Randwick NSW 2031 Australia
- University of New South Wales Sydney (UNSW) Kensington NSW 2052 Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences Curtin University Kent Street Bentley WA 6102 Australia
| | - Benjamin H. Fraser
- Human Health and National Deuteration Facility (NDF) Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Road Lucas Heights NSW 2234 Australia
| |
Collapse
|
13
|
Merillas B, Cuéllar E, Diez-Varga A, Torroba T, García-Herbosa G, Fernández S, Lloret-Fillol J, Martín-Alvarez JM, Miguel D, Villafañe F. Luminescent Rhenium(I)tricarbonyl Complexes Containing Different Pyrazoles and Their Successive Deprotonation Products: CO 2 Reduction Electrocatalysts. Inorg Chem 2020; 59:11152-11165. [PMID: 32705866 DOI: 10.1021/acs.inorgchem.0c01654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cationic fac-[Re(CO)3(pz*H)(pypzH)]OTf (pz*H = pyrazole, pzH; 3,5-dimethylpyrazole, dmpzH; indazole, indzH; 3-(2-pyridyl)pyrazole, pypzH) were obtained from fac-[ReBr(CO)3(pypzH)] by halide abstraction with AgOTf and subsequent addition of the corresponding pyrazole. Successive deprotonation with Na2CO3 and NaOH gave neutral fac-[Re(CO)3(pz*H)(pypz)] and anionic Na{fac-[Re(CO)3(pz*)(pypz)]} complexes, respectively. Cationic fac-[Re(CO)3(pz*H)(pypzH)]OTf, neutral complexes fac-[Re(CO)3(pz*H)(pypz)], and fac-[Re(CO)3(pypz)2Na] were subjected to photophysical and electrochemical studies. They exhibit phosphorescent decays from a prevalently 3MLCT excited state with quantum yields (Φ) in the range between 0.03 and 0.58 and long lifetimes (τ from 220 to 869 ns). The electrochemical behavior in Ar atmosphere of cationic and neutral complexes indicates that the oxidation processes assigned to ReI → ReII occurs at lower potentials for the neutral complex compared to cationic complex. The reduction processes occur at the ligands and do not depend on the charge of the complexes. The electrochemical behavior in CO2 saturated media is consistent with CO2 electrocatalyzed reduction, where the values of the catalytic activity [icat(CO2)/icat(Ar)] ranged from 2.7 to 11.5 (compared to 8.1 for fac-[Re(CO)3Cl(bipy)] studied as a reference). Controlled potential electrolysis for the pyrazole cationic (3a) and neutral (4a) complexes after 1 h affords CO in faraday yields of 61 and 89%, respectively. These values are higher for indazole complexes and may be related to the acidity of the coordinated pyrazole.
Collapse
Affiliation(s)
- Beatriz Merillas
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Elena Cuéllar
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Alberto Diez-Varga
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Tomás Torroba
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Gabriel García-Herbosa
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Sergio Fernández
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010 Barcelona, Spain
| | - Jose M Martín-Alvarez
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Daniel Miguel
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Fernando Villafañe
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
14
|
Delasoie J, Pavic A, Voutier N, Vojnovic S, Crochet A, Nikodinovic-Runic J, Zobi F. Identification of novel potent and non-toxic anticancer, anti-angiogenic and antimetastatic rhenium complexes against colorectal carcinoma. Eur J Med Chem 2020; 204:112583. [PMID: 32731186 DOI: 10.1016/j.ejmech.2020.112583] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Combination therapy targeting both tumor growth and vascularization is considered to be a cornerstone for colorectal carcinomas (CRC) treatment. However, the major obstacles of most clinical anticancer drugs are their weak selective activity towards cancer cells and inherent inner organs toxicity, accompanied with fast drug resistance development. In our effort to discover novel selective and non-toxic agents effective against CRC, we designed, synthesized and characterized a series of rhenium(I) tricarbonyl-based complexes with increased lipophilicity. Two of these novel compounds were discovered to possess remarkable anticancer, anti-angiogenic and antimetastatic activity in vivo (zebrafish-human HCT-116 xenograft model), being effective at very low doses (1-3 μM). At doses as high as 250 μM the complexes did not provoke toxicity issues encountered in clinical anticancer drugs (cardio-, hepato-, and myelotoxicity). In vivo assays showed that the two compounds exceed the anti-tumor and anti-angiogenic activity of clinical drugs cisplatin and sunitinib malate, and display a large therapeutic window.
Collapse
Affiliation(s)
- Joachim Delasoie
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Noémie Voutier
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland.
| |
Collapse
|
15
|
Darshani T, Thushara N, Weerasuriya P, Fronczek FR, Perera IC, Perera T. Fluorescent di-(2-picolyl)amine based drug-like ligands and their Re(CO)3 complexes towards biological applications. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Lloyd D, Millet CO, Williams CF, Hayes AJ, Pope SJA, Pope I, Borri P, Langbein W, Olsen LF, Isaacs MD, Lunding A. Functional imaging of a model unicell: Spironucleus vortens as an anaerobic but aerotolerant flagellated protist. Adv Microb Physiol 2020; 76:41-79. [PMID: 32408947 DOI: 10.1016/bs.ampbs.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advances in optical microscopy are continually narrowing the chasm in our appreciation of biological organization between the molecular and cellular levels, but many practical problems are still limiting. Observation is always limited by the rapid dynamics of ultrastructural modifications of intracellular components, and often by cell motility: imaging of the unicellular protist parasite of ornamental fish, Spironucleus vortens, has proved challenging. Autofluorescence of nicotinamide nucleotides and flavins in the 400-580 nm region of the visible spectrum, is the most useful indicator of cellular redox state and hence vitality. Fluorophores emitting in the red or near-infrared (i.e., phosphors) are less damaging and more penetrative than many routinely employed fluors. Mountants containing free radical scavengers minimize fluorophore photobleaching. Two-photon excitation provides a small focal spot, increased penetration, minimizes photon scattering and enables extended observations. Use of quantum dots clarifies the competition between endosomal uptake and exosomal extrusion. Rapid motility (161 μm/s) of the organism makes high resolution of ultrastructure difficult even at high scan speeds. Use of voltage-sensitive dyes determining transmembrane potentials of plasma membrane and hydrogenosomes (modified mitochondria) is also hindered by intracellular motion and controlled anesthesia perturbs membrane organization. Specificity of luminophore binding is always questionable; e.g. cationic lipophilic species widely used to measure membrane potentials also enter membrane-bounded neutral lipid droplet-filled organelles. This appears to be the case in S. vortens, where Coherent Anti-Stokes Raman Scattering (CARS) micro-spectroscopy unequivocally images the latter and simultaneous provides spectral identification at 2840 cm-1. Secondary Harmonic Generation highlights the highly ordered structure of the flagella.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom; School of Engineering, Cardiff, Wales, United Kingdom
| | - Coralie O Millet
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Anthony J Hayes
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - Iestyn Pope
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Paola Borri
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Wolfgang Langbein
- School of Physics and Astronomy, Cardiff University, Cardiff, Wales, United Kingdom
| | - Lars Folke Olsen
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marc D Isaacs
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Anita Lunding
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
17
|
Rhenium(I) polypyridine complexes coordinated to an ethyl-isonicotinate ligand: Luminescence and in vitro anti-cancer studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Álvarez D, Díaz J, Menéndez MI, López R. Addition of Re‐Bonded Nucleophilic Ligands to Activated Alkynes: A Theoretical Rationalization. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel Álvarez
- Departamento de Química Física y Analítica Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Asturias Spain
| | - Jesús Díaz
- Departamento de Química Orgánica e Inorgánica Universidad de Extremadura Avenida de la Universidad s/n 110071 Cáceres Extremadura Spain
| | - M. Isabel Menéndez
- Departamento de Química Física y Analítica Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Asturias Spain
| | - Ramón López
- Departamento de Química Física y Analítica Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Asturias Spain
| |
Collapse
|
19
|
Wang J, Poirot A, Delavaux-Nicot B, Wolff M, Mallet-Ladeira S, Calupitan JP, Allain C, Benoist E, Fery-Forgues S. Optimization of aggregation-induced phosphorescence enhancement in mononuclear tricarbonyl rhenium(i) complexes: the influence of steric hindrance and isomerism. Dalton Trans 2019; 48:15906-15916. [PMID: 31441474 DOI: 10.1039/c9dt02786f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In order to improve the remarkable performance of a mononuclear tricarbonyl rhenium(i) complex (ReL1) that exhibits rare aggregation-induced phosphorescence enhancement (AIPE) behavior, two new complexes (ReL3 and ReL4) were prepared and investigated. They incorporate a 2-pyridyl-1,2,4-triazole (pyta) ligand connected to a 2-phenylbenzoxazole (PBO) moiety. Complex ReL3 differs from ReL1 by the presence of a bulky tert-butyl substituent, and ReL4 is an isomer where the PBO group is linked to the pyta ligand by its phenyl group. Theoretical calculations were in congruence with electrochemical and spectroscopic properties in solutions. Both new compounds exhibited strong AIPE and much better solid-state emission efficiency than ReL1, with photoluminescence quantum yields up to 55% for ReL4. Crystallographic data indicate that this increase in emission efficiency is due to optimum packing that prevents quenching. This work shows that minor structural changes may have major effects upon the solid-state spectroscopic properties and it provides a rational basis for accessing AIPE-active strongly emissive rhenium(i) complexes.
Collapse
Affiliation(s)
- Jinhui Wang
- SPCMIB, CNRS UMR5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France. and Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China and State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Alexandre Poirot
- SPCMIB, CNRS UMR5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France and LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Mariusz Wolff
- Institute of Chemistry, Department of Crystallography, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland
| | - Sonia Mallet-Ladeira
- Service commun RX, Institut de Chimie de Toulouse, ICT- FR2599, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
| | - Jan Patrick Calupitan
- Laboratoire PPSM, CNRS UMR 8531, ENS Paris-Saclay, 61 avenue du Président Wilson, F-91230 Cachan, France
| | - Clémence Allain
- Laboratoire PPSM, CNRS UMR 8531, ENS Paris-Saclay, 61 avenue du Président Wilson, F-91230 Cachan, France
| | - Eric Benoist
- SPCMIB, CNRS UMR5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| | - Suzanne Fery-Forgues
- SPCMIB, CNRS UMR5068, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
20
|
Cauteruccio S, Licandro E, Panigati M, D'Alfonso G, Maiorana S. Modifying the properties of organic molecules by conjugation with metal complexes: The case of peptide nucleic acids and of the intrinsically chiral thiahelicenes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Azzarelli N, Ponnala S, Aguirre A, Dampf SJ, Davis MP, Ruggiero MT, Lopez Diaz V, Babich JW, Coogan M, Korter T, Doyle RP, Zubieta J. Defining the origins of multiple emission/excitation in rhenium-bisthiazole complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Maisuls I, Cabrerizo FM, David-Gara PM, Epe B, Ruiz GT. DNA Oxidation Photoinduced by Norharmane Rhenium(I) Polypyridyl Complexes: Effect of the Bidentate N,N′-Ligands on the Damage Profile. Chemistry 2018; 24:12902-12911. [DOI: 10.1002/chem.201801272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/15/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Iván Maisuls
- Instituto de Investigaciones Biotecnologicas; Instituto de Tecnologia Chascomus (IIB-INTECH); Universidad Nacional de San Martin (UNSAM); I. Marino, Km 8.2 CC 164 (7130) Chascomus Argentina
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA); Universidad Nacional de la Plata (UNLP); CCT La Plata-CONICET; Diag. 113 y 64, Suc. 4, C.C. 16 (B1906ZAA) La Plata Argentina
| | - Franco M. Cabrerizo
- Instituto de Investigaciones Biotecnologicas; Instituto de Tecnologia Chascomus (IIB-INTECH); Universidad Nacional de San Martin (UNSAM); I. Marino, Km 8.2 CC 164 (7130) Chascomus Argentina
| | - Pedro M. David-Gara
- Centro de Investigaciones Ópticas (CIOP-CONICET-CIC); Universidad Nacional de La Plata; C.C.3 (1897) La Plata Argentina
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry; University of Mainz; Staudingerweg 5 D-55099 Mainz Germany
| | - Gustavo T. Ruiz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA); Universidad Nacional de la Plata (UNLP); CCT La Plata-CONICET; Diag. 113 y 64, Suc. 4, C.C. 16 (B1906ZAA) La Plata Argentina
| |
Collapse
|
23
|
Wang J, Delavaux-Nicot B, Wolff M, Mallet-Ladeira S, Métivier R, Benoist E, Fery-Forgues S. The unsuspected influence of the pyridyl-triazole ligand isomerism upon the electronic properties of tricarbonyl rhenium complexes: an experimental and theoretical insight. Dalton Trans 2018; 47:8087-8099. [DOI: 10.1039/c8dt01120f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How can the intimate nature of the triazole moiety govern the geometry and luminescence properties of a rhenium complex?
Collapse
Affiliation(s)
- Jinhui Wang
- SPCMIB
- CNRS UMR5068
- Université Toulouse III Paul-Sabatier
- 31062 Toulouse cedex 9
- France
| | - Béatrice Delavaux-Nicot
- Laboratoire de Chimie de Coordination
- CNRS UPR 8241
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse UPS
| | - Mariusz Wolff
- Institute of Chemistry
- Department of Crystallography
- University of Silesia
- 40-006 Katowice
- Poland
| | - Sonia Mallet-Ladeira
- Service commun RX
- Institut de Chimie de Toulouse
- ICT- FR2599
- Université Toulouse III Paul-Sabatier
- 31062 Toulouse cedex 9
| | - Rémi Métivier
- PPSM
- ENS Cachan
- CNRS
- Université Paris-Saclay
- 94235 Cachan
| | - Eric Benoist
- SPCMIB
- CNRS UMR5068
- Université Toulouse III Paul-Sabatier
- 31062 Toulouse cedex 9
- France
| | - Suzanne Fery-Forgues
- SPCMIB
- CNRS UMR5068
- Université Toulouse III Paul-Sabatier
- 31062 Toulouse cedex 9
- France
| |
Collapse
|
24
|
He M, Ching HYV, Policar C, Bertrand HC. Rhenium tricarbonyl complexes with arenethiolate axial ligands. NEW J CHEM 2018. [DOI: 10.1039/c8nj01960f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pyta and Tapy-based [Re(N^N)(CO)3X] complexes with para-substituted benzenethiolates as axial ligand are reported along with their electrochemical and photophysical properties.
Collapse
Affiliation(s)
- Menglan He
- Laboratoire des biomolécules
- LBM
- Département de chimie
- École normale supérieure
- PSL University
| | - H. Y. Vincent Ching
- Laboratoire des biomolécules
- LBM
- Département de chimie
- École normale supérieure
- PSL University
| | - Clotilde Policar
- Laboratoire des biomolécules
- LBM
- Département de chimie
- École normale supérieure
- PSL University
| | - Helene C. Bertrand
- Laboratoire des biomolécules
- LBM
- Département de chimie
- École normale supérieure
- PSL University
| |
Collapse
|
25
|
|
26
|
Maisuls I, Wolcan E, Piro OE, Castellano EE, Petroselli G, Erra-Balsells R, Cabrerizo FM, Ruiz GT. Synthesis, Structural Characterization and Biological Evaluation of Rhenium(I) Tricarbonyl Complexes with β-Carboline Ligands. ChemistrySelect 2017. [DOI: 10.1002/slct.201701961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Iván Maisuls
- INIFTA; UNLP (CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Suc. 4, (B1906ZAA); La Plata Argentina
- IIB-INTECH - UNSAM-CONICET; I. Marino Km 8,2. CC 164 7130 Chascomús, Buenos Aires Argentina
| | - Ezequiel Wolcan
- INIFTA; UNLP (CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Suc. 4, (B1906ZAA); La Plata Argentina
| | - Oscar E. Piro
- Instituto IFLP (CCT La Plata-CONICET) y Depto. de Física; FCE-UNLP, C.C. 67; 1900 La Plata Argentina
| | | | - Gabriela Petroselli
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN; UBA, Pabellón II, 3er P., Ciudad Universitaria; (1428) Buenos Aires Argentina
| | - Rosa Erra-Balsells
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN; UBA, Pabellón II, 3er P., Ciudad Universitaria; (1428) Buenos Aires Argentina
| | - Franco M. Cabrerizo
- IIB-INTECH - UNSAM-CONICET; I. Marino Km 8,2. CC 164 7130 Chascomús, Buenos Aires Argentina
| | - Gustavo T. Ruiz
- INIFTA; UNLP (CCT La Plata-CONICET), Diag. 113 y 64, C.C. 16, Suc. 4, (B1906ZAA); La Plata Argentina
| |
Collapse
|
27
|
Wang J, Eychenne R, Wolff M, Mallet‐Ladeira S, Lepareur N, Benoist E. Design, Synthesis, and Reactivity of Multidentate Ligands with Rhenium(I) and Rhenium(V) Cores. Eur J Inorg Chem 2017; 2017:3908-3918. [DOI: 10.1002/ejic.201700632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 01/13/2023]
Abstract
Synthetic pathways to a range of potentially N3O‐tetradentate ligands designed to coordinate to rhenium cores, as well as their coordination behaviors towards different rhenium cores (oxidation states +I and +V) are investigated. Two functionalized N‐{[1‐(4‐R)‐1H‐1,2,3‐triazol‐4‐yl]methyl}‐2‐(pyridin‐2‐ylmethoxy)aniline derivatives L1H (R = methyl acetate) and L2H (R = 4‐nitrophenyl) act exclusively as bidentate ligands and lead to the formation of mononuclear tricarbonylrhenium(I) complexes of the general formula [(LH)Re(CO)3Cl] with L = L1 or L2. Both complexes are characterized by 1H NMR and 13C NMR, FTIR spectroscopy, electrospray ionization mass spectrometry, and in the case of [(L2H)Re(CO)3Cl], single‐crystal X‐ray diffraction. The rhenium is coordinated by three carbonyl groups, a chlorine atom and two nitrogen atoms of a triazole group, and a nitrogen of the aniline ring of the ligand, respectively. A theoretical study shows complex [(L2H)Re(CO)3Cl] is the most stable structural isomer. In addition, the oxorhenium(V) complex [(L3)ReO] is isolated and fully characterized after the reaction of the ReV precursor [ReOCl3(PPh3)2] with L3H3 [methyl 2‐(4‐{[2‐(2‐hydroxyphenylamino)‐2‐oxoethylamino]methyl}‐1H‐1,2,3‐triazol‐1‐yl)acetate]. Its corresponding 99mTc complex was achieved with a good radiochemical yield (> 90 %). The convenient synthesis of this ligand, coupled with its high affinity for [ReO]3+ and [99mTcO]3+ cores, make it a promising chelator for biomedical applications.
Collapse
Affiliation(s)
- Jin‐Hui Wang
- CNRS Laboratoire de Synthèse et Physico‐Chimie de Molécules d′Intérêt Biologique SPCMIB UMR 5068 118, Route de Narbonne 31062 Toulouse Cedex 9 France
- Université de Toulouse UPS Laboratoire de Synthèse et Physico‐Chimie de Molécules d'Intérêt Biologique SPCMIB UMR 5068 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Romain Eychenne
- CNRS Laboratoire de Synthèse et Physico‐Chimie de Molécules d′Intérêt Biologique SPCMIB UMR 5068 118, Route de Narbonne 31062 Toulouse Cedex 9 France
- Université de Toulouse UPS Laboratoire de Synthèse et Physico‐Chimie de Molécules d'Intérêt Biologique SPCMIB UMR 5068 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Mariusz Wolff
- University of Silesia Institute of Chemistry Department of Crystallography 9th Szkolna St. 40‐006 Katowice Poland
| | - Sonia Mallet‐Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Nicolas Lepareur
- Centre Eugène Marquis Radiopharmacy/Nuclear Medicine Department INSERM UMR‐S 1241 35042 Rennes France
| | - Eric Benoist
- CNRS Laboratoire de Synthèse et Physico‐Chimie de Molécules d′Intérêt Biologique SPCMIB UMR 5068 118, Route de Narbonne 31062 Toulouse Cedex 9 France
- Université de Toulouse UPS Laboratoire de Synthèse et Physico‐Chimie de Molécules d'Intérêt Biologique SPCMIB UMR 5068 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| |
Collapse
|
28
|
|
29
|
Yang J, Zhao JX, Cao Q, Hao L, Zhou D, Gan Z, Ji LN, Mao ZW. Simultaneously Inducing and Tracking Cancer Cell Metabolism Repression by Mitochondria-Immobilized Rhenium(I) Complex. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13900-13912. [PMID: 28368110 DOI: 10.1021/acsami.7b01764] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mitochondrial metabolism is essential for tumorigenesis, and the development of cancer is usually accompanied by alternations of mitochondrial function. Emerging studies have demonstrated that targeting mitochondria and mitochondrial metabolism is an effective strategy for cancer therapy. In this work, eight phosphorescent organometallic rhenium(I) complexes have been synthesized and explored as mitochondria-targeted theranostic agents, capable of inducing and tracking the therapeutic effect simultaneously. Complexes 1b-4b can quickly and efficiently penetrate into A549 cells, specifically localizing within mitochondria, and their cytotoxicity is superior to cisplatin against the cancer cells screened. Notably, complex 3b [Re(CO)3(DIP) (py-3-CH2Cl)]+ containing thiol-reactive chloromethylpyridyl moiety for mitochondria immobilization shows higher cytotoxicity and selectivity against cancer cells than other Re(I) complexes without mitochondria-immobilization properties. Mechanistic studies show that complexes 1b-4b induce a cascade of mitochondria-dependent events including mitochondrial damage, mitochondrial respiration inhibition, cellular ATP depletion, reactive oxygen species (ROS) elevation, and caspase-dependent apoptosis. By comparison, mitochondria-immobilized 3b causes more effective repression of mitochondrial metabolism than mitochondrial-nonimmobilized complexes. The excellent phosphorescence and O2-sensitive lifetimes of mitochondria-immobilized 3b can be utilized for real-time tracking of the morphological changes of mitochondria and mitochondrial respiration repression during therapy process, accordingly providing reliable information for understanding anticancer mechanisms.
Collapse
Affiliation(s)
- Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Ji-Xian Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Danxia Zhou
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University , Nanjing 210061, China
| | - Zhenji Gan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University , Nanjing 210061, China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
| |
Collapse
|
30
|
Yazdani A, Janzen N, Czorny S, Valliant JF. Technetium(I) Complexes of Bathophenanthrolinedisulfonic Acid. Inorg Chem 2017; 56:2958-2965. [PMID: 28199089 DOI: 10.1021/acs.inorgchem.6b03058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bathophenanthrolinedisulfonate (BPS) complexes of technetium(I) of the type [Tc(CO)3(BPS)(L)]n (L = imidazole derivatives) were synthesized and evaluated both in vitro and in vivo. [99mTc(CO)3(BPS)(MeIm)]- (MeIm = 1-methyl-1H-imidazole) was prepared in near-quantitative yield using a convenient two-step, one-pot labeling procedure. A targeted analogue capable of binding regions of calcium turnover associated with bone metabolism was also prepared. Here, a bisphosphonate was linked to the metal through an imidazole ligand to give [99mTc(CO)3(BPS)(ImAln)]2- (ImAln = an imidazole-alendronate ligand) in high yield. The technetium(I) complexes were stable in vitro, and in biodistribution studies, [99mTc(CO)3(BPS)(ImAln)]2- exhibited rapid clearance from nontarget tissues and significant accumulation in the shoulder (7.9 ± 0.2% ID/g) and knees (15.1 ± 0.9% ID/g) by 6 h, with the residence time in the skeleton reaching 24 h. A rhenium analogue, which is luminescent and has the same structure, was also prepared and used for fluorescence labeling of cells in vitro. The data reported demonstrate the potential of this class of compounds for use in creating isostructural optical and nuclear probes.
Collapse
Affiliation(s)
- Abdolreza Yazdani
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Shannon Czorny
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology and ‡Centre for Probe Development and Commercialization, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
31
|
Lee LCC, Leung KK, Lo KKW. Recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Trans 2017; 46:16357-16380. [DOI: 10.1039/c7dt03465b] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Perspective summarizes recent advances in the biological applications of luminescent rhenium(i) tricarbonyl polypyridine complexes.
Collapse
Affiliation(s)
| | - Kam-Keung Leung
- Department of Chemistry
- City University of Hong Kong
- P. R. China
| | | |
Collapse
|
32
|
Ramu V, Aute S, Taye N, Guha R, Walker MG, Mogare D, Parulekar A, Thomas JA, Chattopadhyay S, Das A. Photo-induced cytotoxicity and anti-metastatic activity of ruthenium(ii)–polypyridyl complexes functionalized with tyrosine or tryptophan. Dalton Trans 2017; 46:6634-6644. [DOI: 10.1039/c7dt00670e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synergestic effect of oxygen, light, and photosensitizer has found application in photodyanmic therapy (PDT).
Collapse
Affiliation(s)
- Vadde Ramu
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Sunil Aute
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Nandaraj Taye
- Chromatin and Disease Biology Laboratory
- National Centre for Cell Science
- Pune
- India
| | - Rweetuparna Guha
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | | | - Devaraj Mogare
- Chromatin and Disease Biology Laboratory
- National Centre for Cell Science
- Pune
- India
| | - Apoorva Parulekar
- Chromatin and Disease Biology Laboratory
- National Centre for Cell Science
- Pune
- India
| | - Jim A. Thomas
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - Samit Chattopadhyay
- Chromatin and Disease Biology Laboratory
- National Centre for Cell Science
- Pune
- India
- Indian Institute of Chemical Biology
| | - Amitava Das
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
- CSIR-Central Salt and marine Chemicals Research Institute
| |
Collapse
|
33
|
Wedding JL, Harris HH, Bader CA, Plush SE, Mak R, Massi M, Brooks DA, Lai B, Vogt S, Werrett MV, Simpson PV, Skelton BW, Stagni S. Intracellular distribution and stability of a luminescent rhenium(i) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging. Metallomics 2017; 9:382-390. [DOI: 10.1039/c6mt00243a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Frei A, Sidler D, Mokolokolo P, Braband H, Fox T, Spingler B, Roodt A, Alberto R. Kinetics and Mechanism of CO Exchange in fac-[MBr2(solvent)(CO)3]− (M = Re, 99Tc). Inorg Chem 2016; 55:9352-60. [DOI: 10.1021/acs.inorgchem.6b01503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Angelo Frei
- Department
of Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - David Sidler
- Department
of Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Pennie Mokolokolo
- Department of Chemistry, University of the Free State, P.O. Box
339, Bloemfontein 9300, South Africa
| | - Henrik Braband
- Department
of Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Thomas Fox
- Department
of Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Bernhard Spingler
- Department
of Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Andreas Roodt
- Department of Chemistry, University of the Free State, P.O. Box
339, Bloemfontein 9300, South Africa
| | - Roger Alberto
- Department
of Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| |
Collapse
|
35
|
Synthesis, molecular structure and DFT studies of tricarbonylrhenium(I) complexes containing nitrogen based bis, tris, tetrakis-(di-2-pyridylaminomethyl)benzene ligands. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Werrett MV, Wright PJ, Simpson PV, Raiteri P, Skelton BW, Stagni S, Buckley AG, Rigby PJ, Massi M. Rhenium tetrazolato complexes coordinated to thioalkyl-functionalised phenanthroline ligands: synthesis, photophysical characterisation, and incubation in live HeLa cells. Dalton Trans 2015; 44:20636-47. [PMID: 26563409 DOI: 10.1039/c5dt03470a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new complexes of formulation fac-[Re(CO)3(diim)L], where diim is either 1,10-phenanthroline or 1,10-phenanthroline functionalised at position 5 by a thioalkyl chain, and L is either a chloro or aryltetrazolato ancillary ligand, were synthesised and photophysically characterised. The complexes exhibit phosphorescent emission with maxima around 600 nm, originating from triplet metal-to-ligand charge transfer states with partially mixed ligand-to-ligand charge transfer character. The emission is relatively long-lived, within the 200-400 ns range, and with quantum yields of 2-4%. The complexes were trialed as cellular markers in live HeLa cells, along with two previously reported rhenium tetrazolato complexes bound to unsubstituted 1,10-phenanthroline. All five complexes exhibit good cellular uptake and non-specific perinuclear localisation. Upon excitation at 405 nm, the emission from the rhenium complexes could be clearly distinguished from autofluorescence, as demonstrated by spectral detection within the live cells. Four of the complexes did not appear to be toxic, however prolonged excitation could result in membrane blebbing. No major sign of photobleaching was detected upon multiple imaging on the same cell sample.
Collapse
Affiliation(s)
- Melissa V Werrett
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, Kent St., 6102 Bentley, WA, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cao L, Zhang R, Zhang W, Du Z, Liu C, Ye Z, Song B, Yuan J. A ruthenium(II) complex-based lysosome-targetable multisignal chemosensor for in vivo detection of hypochlorous acid. Biomaterials 2015; 68:21-31. [DOI: 10.1016/j.biomaterials.2015.07.052] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 12/17/2022]
|
38
|
Gómez-Iglesias P, Guyon F, Khatyr A, Ulrich G, Knorr M, Martín-Alvarez JM, Miguel D, Villafañe F. Luminescent rhenium(I) tricarbonyl complexes with pyrazolylamidino ligands: photophysical, electrochemical, and computational studies. Dalton Trans 2015; 44:17516-28. [PMID: 26389827 DOI: 10.1039/c5dt02793d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New pyrazolylamidino complexes fac-[ReCl(CO)3(NH[double bond, length as m-dash]C(Me)pz*-κ(2)N,N)] (pz*H = pyrazole, pzH; 3,5-dimethylpyrazole, dmpzH; indazole, indzH) and fac-[ReBr(CO)3(NH[double bond, length as m-dash]C(Ph)pz*-κ(2)N,N)] are synthesized via base-catalyzed coupling of the appropriate nitrile with pyrazole, or via metathesis by halide abstraction with AgBF4 from a bromido pyrazolylamidino complex and the subsequent addition of LiCl. In order to study both the influence of the substituents present at the pyrazolylamidino ligand, and that of the "sixth" ligand in the complex, photophysical, electrochemical, and computational studies have been carried out on this series and other complexes previously described by us, of the general formula fac-[ReL(CO)3(NH[double bond, length as m-dash]C(R')pz*-κ(2)N,N)](n+) (L = Cl, Br; R' = Me, Ph, n = 0; or L = NCMe, dmpzH, indzH, R' = Me, n = 1). All complexes exhibit phosphorescent decays from a prevalently (3)MLCT excited state with quantum yields (Φ) in the range between 0.007 and 0.039, and long lifetimes (τ∼ 8-1900 ns). The electrochemical study reveals irreversible reduction for all complexes. The oxidation of the neutral complexes was found to be irreversible due to halido-dissociation, whereas the cationic species display a reversible process implying the ReI/ReII couple. Density functional and time-dependent density functional theory (TD-DFT) calculations provide a reasonable trend for the values of emission energies in line with the experimental photophysical data, supporting the (3)MLCT based character of the emissions.
Collapse
Affiliation(s)
- Patricia Gómez-Iglesias
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
North AJ, Hayne DJ, Schieber C, Price K, White AR, Crouch PJ, Rigopoulos A, O'Keefe GJ, Tochon-Danguy H, Scott AM, White JM, Ackermann U, Donnelly PS. Toward hypoxia-selective rhenium and technetium tricarbonyl complexes. Inorg Chem 2015; 54:9594-610. [PMID: 26375592 DOI: 10.1021/acs.inorgchem.5b01691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
With the aim of preparing hypoxia-selective imaging and therapeutic agents, technetium(I) and rhenium(I) tricarbonyl complexes with pyridylhydrazone, dipyridylamine, and pyridylaminocarboxylate ligands containing nitrobenzyl or nitroimidazole functional groups have been prepared. The rhenium tricarbonyl complexes were synthesized with short reaction times using microwave irradiation. Rhenium tricarbonyl complexes with deprotonated p-nitrophenyl pyridylhydrazone ligands are luminescent, and this has been used to track their uptake in HeLa cells using confocal fluorescent microscopy. Selected rhenium tricarbonyl complexes displayed higher uptake in hypoxic cells when compared to normoxic cells. A (99m)Tc tricarbonyl complex with a dipyridylamine ligand bearing a nitroimidazole functional group is stable in human serum and was shown to localize in a human renal cell carcinoma (RCC; SK-RC-52) tumor in a mouse.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Angela Rigopoulos
- Ludwig Institute for Cancer Research , Melbourne-Austin Branch, 145 Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Mion G, Gianferrara T, Bergamo A, Gasser G, Pierroz V, Rubbiani R, Vilar R, Leczkowska A, Alessio E. Phototoxic Activity and DNA Interactions of Water-Soluble Porphyrins and Their Rhenium(I) Conjugates. ChemMedChem 2015; 10:1901-14. [PMID: 26332425 DOI: 10.1002/cmdc.201500288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/13/2015] [Indexed: 12/12/2022]
Abstract
In the search for alternative photosensitizers for use in photodynamic therapy (PDT), herein we describe two new water-soluble porphyrins, a neutral fourfold-symmetric compound and a +3-charged tris-methylpyridinium derivative, in which either four or one [1,4,7]-triazacyclononane (TACN) units are connected to the porphyrin macrocycle through a hydrophilic linker; we also report their corresponding tetracationic Re(I) conjugates. The in vitro (photo)toxic effects of the compounds toward the human cell lines HeLa (cervical cancer), H460M2 (non-small-cell lung carcinoma), and HBL-100 (non-tumorigenic epithelial cells) are reported. Three of the compounds are not cytotoxic in the dark up to 100 μm, and the fourfold-symmetric couple revealed very good phototoxic indexes (PIs). The intracellular localization of all derivatives was studied in HeLa cells by confocal fluorescence microscopy. Although low nuclear localization was observed for some of them, it still prompted us to investigate their capacity to bind both quadruplex and duplex DNA; we observed significant selectivity in the tris-methylpyridinium derivatives for G-quadruplex interactions.
Collapse
Affiliation(s)
- Giuliana Mion
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy
| | - Teresa Gianferrara
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy.
| | - Alberta Bergamo
- Callerio Foundation Onlus, Via A. Fleming 22-31, 34127, Trieste, Italy
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Vanessa Pierroz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Riccardo Rubbiani
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | - Anna Leczkowska
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Enzo Alessio
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy
| |
Collapse
|
41
|
Velmurugan G, Venuvanalingam P. Luminescent Re(I) terpyridine complexes for OLEDs: what does the DFT/TD-DFT probe reveal? Dalton Trans 2015; 44:8529-42. [PMID: 25486539 DOI: 10.1039/c4dt02917h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The electronic structure and spectroscopic properties of a series of rhenium(I) terpyridine complexes were investigated using density functional theory (DFT) and time dependent density functional theory (TD-DFT) methods. The influence of different substituent groups on the optical and electronic properties of Re(I) terpyridine complexes has also been explored. The reorganization energy calculations show that the substituted Re(I) terpyridine complexes are better electron transport materials with high quantum efficiency in OLED devices due to their high electron transport mobility and low λ(electron) values, whereas the unsubstituted complex shows relatively balanceable charge transfer abilities with the higher efficiency in organic light emitting devices (OLEDs). An NBO analysis reveals that n→σ* interactions are mainly responsible for the ground state stabilization of all the complexes. QTAIM results show that in all cases, Re-CO bonds are shared type transient interactions as reported in the other metal ligand complexes. The absorption is associated with (1)MLCT/(1)LLCT/(1)ILCT character while the emission transition has (3)MLCT/(3)LLCT/(3)ILCT character as revealed by a natural transition orbital (NTO) analysis. The higher quantum yields reported for the complexes 4-6 are found to be closely related to both its smaller ΔE(S1-T1), higher μ(S1), E(T1) and moderate (3)MLCT character. The calculated results show that Re(I) terpyridine complexes, particularly complexes 4-6, are suitable candidates for OLED materials.
Collapse
Affiliation(s)
- Gunasekaran Velmurugan
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India.
| | | |
Collapse
|
42
|
Development of a Functional Ruthenium(II) Complex that Can Act as a Photoluminescent and Electrochemiluminescent Dual-signaling Probe for Hypochlorous Acid. J Fluoresc 2015; 25:997-1004. [DOI: 10.1007/s10895-015-1581-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/04/2015] [Indexed: 01/24/2023]
|
43
|
Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: Latest advances. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.08.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Yazdani A, Janzen N, Banevicius L, Czorny S, Valliant JF. Imidazole-Based [2 + 1] Re(I)/99mTc(I) Complexes as Isostructural Nuclear and Optical Probes. Inorg Chem 2015; 54:1728-36. [PMID: 25634699 DOI: 10.1021/ic502663p] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Abdolreza Yazdani
- Department of Chemistry
and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Nancy Janzen
- Centre for Probe Development and Commercialization, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Laura Banevicius
- Centre for Probe Development and Commercialization, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Shannon Czorny
- Centre for Probe Development and Commercialization, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - John F. Valliant
- Department of Chemistry
and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
- Centre for Probe Development and Commercialization, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
45
|
Santoro G, Zlateva T, Ruggi A, Quaroni L, Zobi F. Synthesis, characterization and cellular location of cytotoxic constitutional organometallic isomers of rhenium delivered on a cyanocobalmin scaffold. Dalton Trans 2015; 44:6999-7008. [DOI: 10.1039/c4dt03598d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Constitutional isomers based on vitamin B12 and a fluorescent rhenium diimine complex were prepared, characterized, tested against PC-3 prostate cancer cells and investigated via IR spectromicroscopy for cellular uptake by live 3T3 fibroblasts.
Collapse
Affiliation(s)
- Giuseppe Santoro
- Department of Chemistry
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| | | | - Albert Ruggi
- Department of Chemistry
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| | | | - Fabio Zobi
- Department of Chemistry
- University of Fribourg
- CH-1700 Fribourg
- Switzerland
| |
Collapse
|
46
|
Steel HL, Allinson SL, Andre J, Coogan MP, Platts JA. Platinum trimethyl bipyridyl thiolates – new, tunable, red- to near IR emitting luminophores for bioimaging applications. Chem Commun (Camb) 2015; 51:11441-4. [DOI: 10.1039/c5cc04003e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
[PtMe3(S-C6H4-4-CO2Me)(bpy)]n+ exemplifies a new class of luminophores, absorbing in the visible and emitting into the NIR, with good cell uptake making it suitable for fluorescence microscopy imaging.
Collapse
Affiliation(s)
- Harriet L. Steel
- Division of Biomedical and Life Sciences
- Faculty of Health and Medicine
- Furness Building
- Lancaster University
- Lancaster
| | - Sarah L. Allinson
- Division of Biomedical and Life Sciences
- Faculty of Health and Medicine
- Furness Building
- Lancaster University
- Lancaster
| | - Jane Andre
- Division of Biomedical and Life Sciences
- Faculty of Health and Medicine
- Furness Building
- Lancaster University
- Lancaster
| | | | | |
Collapse
|
47
|
Mandal S, Poria DK, Ghosh R, Ray PS, Gupta P. Development of a cyclometalated iridium complex with specific intramolecular hydrogen-bonding that acts as a fluorescent marker for the endoplasmic reticulum and causes photoinduced cell death. Dalton Trans 2014; 43:17463-74. [PMID: 25341053 PMCID: PMC4289920 DOI: 10.1039/c4dt00845f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/19/2014] [Indexed: 11/25/2022]
Abstract
Cyclometalated iridium complexes have important applications as phosphorescent probes for cellular imaging due to their photophysical properties. Moreover, these properties also make them potential candidates as photosensitizers for photodynamic therapy (PDT) of tumors and skin diseases. Treatment of MCF7 breast carcinoma cells with a heteroleptic phosphorescent cyclometalated iridium(III) complex C2 followed by confocal imaging indicates that the complex selectively localizes and exhibits high fluorescence in the endoplasmic reticulum. In an unprecedented approach, systematic alteration of functional groups or the metal core in C2 to synthesize a series of iridium(III) complexes (C1–C10) and an organometallic rhenium complex C11 with an imidazolyl modified phenanthroline ligand has indicated the functional groups and their interactions that are responsible for this selective localization. Remarkably, the exposure of the cells treated with C2 to irradiation at 405 nm for one hour led to membrane blebbing and cell death, demonstrating a photosensitizing property of the compound.
Collapse
Affiliation(s)
- Soumik Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur Campus , Mohanpur, Nadia , West Bengal 741252 , India . ; Fax: +91 3473279131 ; Tel: +91 3473279130
| | - Dipak K. Poria
- Department of Biological Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur Campus , Mohanpur, Nadia , 741252 , India .
| | - Ritabrata Ghosh
- Department of Biological Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur Campus , Mohanpur, Nadia , 741252 , India .
| | - Partho Sarothi Ray
- Department of Biological Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur Campus , Mohanpur, Nadia , 741252 , India .
| | - Parna Gupta
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur Campus , Mohanpur, Nadia , West Bengal 741252 , India . ; Fax: +91 3473279131 ; Tel: +91 3473279130
| |
Collapse
|
48
|
Clède S, Policar C. Metal-carbonyl units for vibrational and luminescence imaging: towards multimodality. Chemistry 2014; 21:942-58. [PMID: 25376740 DOI: 10.1002/chem.201404600] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal-carbonyl complexes are attractive structures for bio-imaging. In addition to unique vibrational properties due to the CO moieties enabling IR and Raman cell imaging, the appropriate choice of ancillary ligands opens up the opportunity for luminescence detection. Through a classification by techniques, past and recent developments in the application of metal-carbonyl complexes for vibrational and luminescence bio-imaging are reviewed. Finally, their potential as bimodal IR and luminescent probes is addressed.
Collapse
Affiliation(s)
- Sylvain Clède
- Ecole Normale Supérieure, PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS-ENS-UPMC, Laboratoire des Biomolécules, UMR7203, 24, rue Lhomond, 75005 Paris (France), Fax: (+33) 1-4432-3389
| | | |
Collapse
|
49
|
Noor A, Huff GS, Kumar SV, Lewis JEM, Paterson BM, Schieber C, Donnelly PS, Brooks HJL, Gordon KC, Moratti SC, Crowley JD. [Re(CO)3]+ Complexes of exo-Functionalized Tridentate “Click” Macrocycles: Synthesis, Stability, Photophysical Properties, Bioconjugation, and Antibacterial Activity. Organometallics 2014. [DOI: 10.1021/om500664v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | | | | | | | - Brett M. Paterson
- School of Chemistry and Bio21 Molecular Science Biotechnology Institute, University of Melbourne, Melbourne 3010, Australia
| | - Christine Schieber
- School of Chemistry and Bio21 Molecular Science Biotechnology Institute, University of Melbourne, Melbourne 3010, Australia
| | - Paul S. Donnelly
- School of Chemistry and Bio21 Molecular Science Biotechnology Institute, University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | |
Collapse
|
50
|
Bertrand HC, Clède S, Guillot R, Lambert F, Policar C. Luminescence Modulations of Rhenium Tricarbonyl Complexes Induced by Structural Variations. Inorg Chem 2014; 53:6204-23. [DOI: 10.1021/ic5007007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hélène C. Bertrand
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- CNRS, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- ENS, Département de Chimie,
Laboratoire des Biomolécules, 24 rue Lhomond, 75005 Paris, France
| | - Sylvain Clède
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- CNRS, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- ENS, Département de Chimie,
Laboratoire des Biomolécules, 24 rue Lhomond, 75005 Paris, France
| | - Régis Guillot
- Université Paris-Sud, ICMMO,
UMR CNRS 8182, 91405 Orsay, France
| | - François Lambert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- CNRS, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- ENS, Département de Chimie,
Laboratoire des Biomolécules, 24 rue Lhomond, 75005 Paris, France
| | - Clotilde Policar
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- CNRS, UMR 7203, Laboratoire des Biomolécules, F-75005 Paris, France
- ENS, Département de Chimie,
Laboratoire des Biomolécules, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|