1
|
Ali DS, Glia A, Sukumar P, Deliorman M, Qasaimeh MA. Microfluidic mixing probe: generating multiple concentration-varying flow dipoles. Sci Rep 2025; 15:2252. [PMID: 39824991 PMCID: PMC11742695 DOI: 10.1038/s41598-025-85797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
This study advances microfluidic probe (MFP) technology through the development of a 3D-printed Microfluidic Mixing Probe (MMP), which integrates a built-in pre-mixer network of channels and features a lined array of paired injection and aspiration apertures. By combining the concepts of hydrodynamic flow confinements (HFCs) and "Christmas-tree" concentration gradient generation, the MMP can produce multiple concentration-varying flow dipoles, ranging from 0 to 100%, within an open microfluidic environment. This innovation overcomes previous limitations of MFPs, which only produced homogeneous bioreagents, by utilizing the pre-mixer to create distinct concentration of injected biochemicals. Experimental results with fluorescent dyes and the chemotherapeutic agent Cisplatin on MCF-7 cells confirmed the MMP's ability to generate precise, discrete concentration gradients with the formed flow dipoles, consistent with numerical models. The MMP's ability to localize drug exposure across cell cultures without cross-contamination opens new avenues for drug testing, personalized medicine, and molecular biology. It enables precise control over gradient delivery, dosage, and timing, which are key factors in enhancing drug evaluation processes.
Collapse
Affiliation(s)
- Dima Samer Ali
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Mechanical and Aerospace Engineering, New York University, New York, USA
| | - Ayoub Glia
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Pavithra Sukumar
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Muhammedin Deliorman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Research Center for Translational Medical Devices, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Department of Mechanical and Aerospace Engineering, New York University, New York, USA.
- Department of Biomedical Engineering, New York University, New York, USA.
- NYU-KAIST Global Innovation and Research Institute, New York, NY, USA.
| |
Collapse
|
2
|
Rane A, Tate S, Sumey JL, Zhong Q, Zong H, Purow B, Caliari SR, Swami NS. Open-Top Patterned Hydrogel-Laden 3D Glioma Cell Cultures for Creation of Dynamic Chemotactic Gradients to Direct Cell Migration. ACS Biomater Sci Eng 2024; 10:3470-3477. [PMID: 38652035 PMCID: PMC11094679 DOI: 10.1021/acsbiomaterials.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
The laminar flow profiles in microfluidic systems coupled to rapid diffusion at flow streamlines have been widely utilized to create well-controlled chemical gradients in cell cultures for spatially directing cell migration. However, within hydrogel-based closed microfluidic systems of limited depth (≤0.1 mm), the biomechanical cues for the cell culture are dominated by cell interactions with channel surfaces rather than with the hydrogel microenvironment. Also, leaching of poly(dimethylsiloxane) (PDMS) constituents in closed systems and the adsorption of small molecules to PDMS alter chemotactic profiles. To address these limitations, we present the patterning and integration of a PDMS-free open fluidic system, wherein the cell-laden hydrogel directly adjoins longitudinal channels that are designed to create chemotactic gradients across the 3D culture width, while maintaining uniformity across its ∼1 mm depth to enhance cell-biomaterial interactions. This hydrogel-based open fluidic system is assessed for its ability to direct migration of U87 glioma cells using a hybrid hydrogel that includes hyaluronic acid (HA) to mimic the brain tumor microenvironment and gelatin methacrylate (GelMA) to offer the adhesion motifs for promoting cell migration. Chemotactic gradients to induce cell migration across the hydrogel width are assessed using the chemokine CXCL12, and its inhibition by AMD3100 is validated. This open-top hydrogel-based fluidic system to deliver chemoattractant cues over square-centimeter-scale areas and millimeter-scale depths can potentially serve as a robust screening platform to assess emerging glioma models and chemotherapeutic agents to eradicate them.
Collapse
Affiliation(s)
- Aditya Rane
- Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Steven Tate
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Jenna L. Sumey
- Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Qing Zhong
- Neurology,
School of Medicine, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Hui Zong
- Microbiology,
Immunology & Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Benjamin Purow
- Neurology,
School of Medicine, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Steven R. Caliari
- Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Biomedical
Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Nathan S. Swami
- Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
3
|
Holler C, Taylor RW, Schambony A, Möckl L, Sandoghdar V. A paintbrush for delivery of nanoparticles and molecules to live cells with precise spatiotemporal control. Nat Methods 2024; 21:512-520. [PMID: 38347139 PMCID: PMC10927540 DOI: 10.1038/s41592-024-02177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/08/2024] [Indexed: 03/13/2024]
Abstract
Delivery of very small amounts of reagents to the near-field of cells with micrometer spatial precision and millisecond time resolution is currently out of reach. Here we present μkiss as a micropipette-based scheme for brushing a layer of small molecules and nanoparticles onto the live cell membrane from a subfemtoliter confined volume of a perfusion flow. We characterize our system through both experiments and modeling, and find excellent agreement. We demonstrate several applications that benefit from a controlled brush delivery, such as a direct means to quantify local and long-range membrane mobility and organization as well as dynamical probing of intercellular force signaling.
Collapse
Affiliation(s)
- Cornelia Holler
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Richard William Taylor
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Alexandra Schambony
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
4
|
Zhu Z, Chen T, Huang F, Wang S, Zhu P, Xu RX, Si T. Free-Boundary Microfluidic Platform for Advanced Materials Manufacturing and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304840. [PMID: 37722080 DOI: 10.1002/adma.202304840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Microfluidics, with its remarkable capacity to manipulate fluids and droplets at the microscale, has emerged as a powerful platform in numerous fields. In contrast to conventional closed microchannel microfluidic systems, free-boundary microfluidic manufacturing (FBMM) processes continuous precursor fluids into jets or droplets in a relatively spacious environment. FBMM is highly regarded for its superior flexibility, stability, economy, usability, and versatility in the manufacturing of advanced materials and architectures. In this review, a comprehensive overview of recent advancements in FBMM is provided, encompassing technical principles, advanced material manufacturing, and their applications. FBMM is categorized based on the foundational mechanisms, primarily comprising hydrodynamics, interface effects, acoustics, and electrohydrodynamic. The processes and mechanisms of fluid manipulation are thoroughly discussed. Additionally, the manufacturing of advanced materials in various dimensions ranging from zero-dimensional to three-dimensional, as well as their diverse applications in material science, biomedical engineering, and engineering are presented. Finally, current progress is summarized and future challenges are prospected. Overall, this review highlights the significant potential of FBMM as a powerful tool for advanced materials manufacturing and its wide-ranging applications.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Fangsheng Huang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Pixelated Microfluidics for Drug Screening on Tumour Spheroids and Ex Vivo Microdissected Tumour Explants. Cancers (Basel) 2023; 15:cancers15041060. [PMID: 36831403 PMCID: PMC9954565 DOI: 10.3390/cancers15041060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Anticancer drugs have the lowest success rate of approval in drug development programs. Thus, preclinical assays that closely predict the clinical responses to drugs are of utmost importance in both clinical oncology and pharmaceutical research. 3D tumour models preserve the tumoral architecture and are cost- and time-efficient. However, the short-term longevity, limited throughput, and limitations of live imaging of these models have so far driven researchers towards less realistic tumour models such as monolayer cell cultures. Here, we present an open-space microfluidic drug screening platform that enables the formation, culture, and multiplexed delivery of several reagents to various 3D tumour models, namely cancer cell line spheroids and ex vivo primary tumour fragments. Our platform utilizes a microfluidic pixelated chemical display that creates isolated adjacent flow sub-units of reagents, which we refer to as fluidic 'pixels', over tumour models in a contact-free fashion. Up to nine different treatment conditions can be tested over 144 samples in a single experiment. We provide a proof-of-concept application by staining fixed and live tumour models with multiple cellular dyes. Furthermore, we demonstrate that the response of the tumour models to biological stimuli can be assessed using the platform. Upscaling the microfluidic platform to larger areas can lead to higher throughputs, and thus will have a significant impact on developing treatments for cancer.
Collapse
|
6
|
Ren J, Wang N, Guo P, Fan Y, Lin F, Wu J. Recent advances in microfluidics-based cell migration research. LAB ON A CHIP 2022; 22:3361-3376. [PMID: 35993877 DOI: 10.1039/d2lc00397j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell migration is crucial for many biological processes, including normal development, immune response, and tissue homeostasis and many pathological processes such as cancer metastasis and wound healing. Microfluidics has revolutionized the research in cell migration since its inception as it reduces the cost of studies and allows precise manipulation of different parameters that affect cell migratory response. Over the past decade, the field has made great strides in many directions, such as techniques for better control of the cellular microenvironment, application-oriented physiological-like models, and machine-assisted cell image analysis methods. Here we review recent developments in the field of microfluidic cell migration through the following aspects: 1) the co-culture models for studying host-pathogen interactions at single-cell resolution; 2) the spatiotemporal manipulation of the chemical gradients guiding cell migration; 3) the organ-on-chip models to study cell transmigration; and 4) the deep learning image processing strategies for cell migration data analysis. We further discuss the challenges, possible improvement and future perspectives of using microfluidic techniques to study cell migration.
Collapse
Affiliation(s)
- Jiaqi Ren
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ning Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Piao Guo
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang University Cancer Center, Hangzhou, 310003, China
| | - Yanping Fan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Li X, You B, Shum HC, Chen CH. Future foods: Design, fabrication and production through microfluidics. Biomaterials 2022; 287:121631. [PMID: 35717791 DOI: 10.1016/j.biomaterials.2022.121631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Many delicious foods are soft matter systems with health ingredients and unique internal structures that provide rich nutrition, unique textures, and popular flavors. Obtaining these special properties in food products usually requires specialized processes. Microfluidic technologies have been developed to physically manipulate liquids to produce a broad range of microunits, providing a suitable approach for precise fabrication of functional biomaterials with desirable interior structures in a bottom-up fashion. In this review, we present how microfluidics has been applied to produce gel-based structures and highlight their use in fabricating novel foods, focusing on, among others, cultured meat as a rapidly growing field in food industry. We first discuss the behaviors of food liquids in microchannels for fluidic structure design. Then, different types of microsized building blocks with specific geometries fabricated through microfluidics are introduced, including particles (point), fibers (line), and sheets (plane). These well-defined units can encapsulate or interact with cells, forming microtissues to construct meat products with desirable architectures. After that, we review approaches to scale up microfluidic devices for mass production of the hydrogel building blocks and highlight the challenges associated with bottom-up food production.
Collapse
Affiliation(s)
- Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Baihao You
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Ho Cheung Shum
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China; Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China; City University of Hong Kong, Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-tech Industrial Park, Nanshan District, Shenzhen, China.
| |
Collapse
|
8
|
Brimmo AT, Menachery A, Sukumar P, Qasaimeh MA. Noncontact Multiphysics Probe for Spatiotemporal Resolved Single-Cell Manipulation and Analyses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100801. [PMID: 34008302 DOI: 10.1002/smll.202100801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Heterogeneity and spatial arrangement of individual cells within tissues are critical to the identity of the host multicellular organism. While current single-cell techniques are capable of resolving heterogeneity, they mostly rely on extracting target cells from their physiological environment and hence lose the spatiotemporal resolution required for understanding cellular networks. Here, a multifunctional noncontact scanning probe that can precisely perform multiple manipulation procedures on living single-cells, while within their physiological tissue environment, is demonstrated. The noncontact multiphysics probe (NMP) consists of fluidic apertures and "hump" shaped electrodes that simultaneously confine reagents and electric signals with a single-cell resolution. The NMP's unique electropermealization-based approach in transferring macromolecules through the cell membrane is presented. The technology's adjustable spatial ability is demonstrated by transfecting adjacent single-cells with different DNA plasmid vectors. The NMP technology also opens the door for controllable cytoplasm extraction from living single-cells. This powerful application is demonstrated by executing multiple time point biopsies on adherent cells without affecting the integrity of the extracted macromolecules or the viability of cells. Furthermore, the NMP's function as an electro-thermal based microfluidic whole-cell tweezer is reported. This work offers a multifunctional tool with unprecedented probing features for spatiotemporal single-cell analysis within tissue samples.
Collapse
Affiliation(s)
- Ayoola T Brimmo
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Anoop Menachery
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
| | - Pavithra Sukumar
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi (NYUAD), P.O. Box 129188, Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| |
Collapse
|
9
|
Belanger MC, Anbaei P, Dunn AF, Kinman AW, Pompano RR. Spatially Resolved Analytical Chemistry in Intact, Living Tissues. Anal Chem 2020; 92:15255-15262. [PMID: 33201681 PMCID: PMC7864589 DOI: 10.1021/acs.analchem.0c03625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissues are an exciting frontier for bioanalytical chemistry, one in which spatial distribution is just as important as total content. Intact tissue preserves the native cellular and molecular organization and the cell-cell contacts found in vivo. Live tissue, in particular, offers the potential to analyze dynamic events in a spatially resolved manner, leading to fundamental biological insights and translational discoveries. In this Perspective, we provide a tutorial on the four fundamental challenges for the bioanalytical chemist working in living tissue samples as well as best practices for mitigating them. The challenges include (i) the complexity of the sample matrix, which contributes myriad interfering species and causes nonspecific binding of reagents; (ii) hindered delivery and mixing; (iii) the need to maintain physiological conditions; and (iv) tissue reactivity. This framework is relevant to a variety of methods for spatially resolved chemical analysis, including optical imaging, inserted sensors and probes such as electrodes, and surface analyses such as sensing arrays. The discussion focuses primarily on ex vivo tissues, though many considerations are relevant in vivo as well. Our goal is to convey the exciting potential of analytical chemistry to contribute to understanding the functions of live, intact tissues.
Collapse
Affiliation(s)
- Maura C. Belanger
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Parastoo Anbaei
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Austin F. Dunn
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Andrew W.L. Kinman
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| |
Collapse
|
10
|
Shinha K, Nihei W, Kimura H. A Microfluidic Probe Integrated Device for Spatiotemporal 3D Chemical Stimulation in Cells. MICROMACHINES 2020; 11:mi11070691. [PMID: 32708814 PMCID: PMC7408473 DOI: 10.3390/mi11070691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022]
Abstract
Numerous in vitro studies have been conducted in conventional static cell culture systems. However, most of the results represent an average response from a population of cells regardless of their local microenvironment. A microfluidic probe is a non-contact technology that has been widely used to perform local chemical stimulation within a restricted space, providing elaborated modulation and analysis of cellular responses within the microenvironment. Although microfluidic probes developed earlier have various potential applications, the two-dimensional structure can compromise their functionality and flexibility for practical use. In this study, we developed a three-dimensional microfluidic probe integrated device equipped with vertically oriented microchannels to overcome crucial challenges and tested the potential utility of the device in biological research. We demonstrated that the device tightly regulated spatial diffusion of a fluorescent molecule, and the flow profile predicted by simulation replicated the experimental results. Additionally, the device modulated the physiological Ca2+ response of cells within the restricted area by altering the local and temporal concentrations of biomolecules such as ATP. The novel device developed in this study may provide various applications for biological studies and contribute to further understanding of molecular mechanisms underlying cellular physiology.
Collapse
Affiliation(s)
- Kenta Shinha
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan; (K.S.); (W.N.)
| | - Wataru Nihei
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan; (K.S.); (W.N.)
- Micro/Nano Technology Center (MNTC), Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan; (K.S.); (W.N.)
- Micro/Nano Technology Center (MNTC), Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
- Correspondence: ; Tel.: +81-463-58-1211
| |
Collapse
|
11
|
Chen P, Chen D, Li S, Ou X, Liu BF. Microfluidics towards single cell resolution protein analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Goyette PA, Boulais É, Normandeau F, Laberge G, Juncker D, Gervais T. Microfluidic multipoles theory and applications. Nat Commun 2019; 10:1781. [PMID: 30992450 PMCID: PMC6467910 DOI: 10.1038/s41467-019-09740-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/14/2019] [Indexed: 11/09/2022] Open
Abstract
Microfluidic multipoles (MFMs) have been realized experimentally and hold promise for "open-space" biological and chemical surface processing. Whereas convective flow can readily be predicted using hydraulic-electrical analogies, the design of advanced microfluidic multipole is constrained by the lack of simple, accurate models to predict mass transport within them. In this work, we introduce the complete solutions to mass transport in multipolar microfluidics based on the iterative conformal mapping of 2D advection-diffusion around a simple edge into dipoles and multipolar geometries, revealing a rich landscape of transport modes. The models are validated experimentally with a library of 3D printed devices and found in excellent agreement. Following a theory-guided design approach, we further ideate and fabricate two classes of spatiotemporally reconfigurable multipolar devices that are used for processing surfaces with time-varying reagent streams, and to realize a multistep automated immunoassay. Overall, the results set the foundations for exploring, developing, and applying open-space microfluidic multipoles.
Collapse
Affiliation(s)
| | - Étienne Boulais
- Department of Engineering Physics, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Frédéric Normandeau
- Biomedical Engineering Department and Genome Quebec Innovation Centre, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Gabriel Laberge
- Department of Engineering Physics, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
| | - David Juncker
- Biomedical Engineering Department and Genome Quebec Innovation Centre, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Thomas Gervais
- Institut de Génie Biomédical, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada. .,Department of Engineering Physics, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada. .,Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, H2X 0C1, Canada.
| |
Collapse
|
13
|
Zhang Q, Mao S, Khan M, Feng S, Zhang W, Li W, Lin JM. In Situ Partial Treatment of Single Cells by Laminar Flow in the “Open Space”. Anal Chem 2018; 91:1644-1650. [DOI: 10.1021/acs.analchem.8b05313] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shuo Feng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wanling Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Abstract
In this work, we fabricate microfluidic probes (MFPs) in a single step by stereolithographic 3D printing and benchmark their performance with standard MFPs fabricated via glass or silicon micromachining. Two research teams join forces to introduce two independent designs and fabrication protocols, using different equipment. Both strategies adopted are inexpensive and simple (they only require a stereolithography printer) and are highly customizable. Flow characterization is performed by reproducing previously published microfluidic dipolar and microfluidic quadrupolar reagent delivery profiles which are compared to the expected results from numerical simulations and scaling laws. Results show that, for most MFP applications, printer resolution artifacts have negligible impact on probe operation, reagent pattern formation, and cell staining results. Thus, any research group with a moderate resolution (≤100 µm) stereolithography printer will be able to fabricate the MFPs and use them for processing cells, or generating microfluidic concentration gradients. MFP fabrication involved glass and/or silicon micromachining, or polymer micromolding, in every previously published article on the topic. We therefore believe that 3D printed MFPs is poised to democratize this technology. We contribute to initiate this trend by making our CAD files available for the readers to test our "print & probe" approach using their own stereolithographic 3D printers.
Collapse
|
15
|
Qasaimeh MA, Pyzik M, Astolfi M, Vidal SM, Juncker D. Neutrophil Chemotaxis in Moving Gradients. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mohammad A. Qasaimeh
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
- Division of Engineering; New York University Abu Dhabi; Abu Dhabi 129188 UAE
- Department of Mechanical and Aerospace Engineering; New York University; NY 11201 USA
| | - Michal Pyzik
- Department of Human Genetics; McGill University; Montréal QC H3G 0B1 Canada
- Division of Gastroenterology; Department of Medicine; Brigham &Women's Hospital; Harvard Medical School; Boston MA 02115 USA
| | - Mélina Astolfi
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
| | - Silvia M. Vidal
- Department of Human Genetics; McGill University; Montréal QC H3G 0B1 Canada
| | - David Juncker
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
- Genome Quebec Innovation Centre; McGill University; Montréal QC H3A 0G1 Canada
- Department of Neurology and Neurosurgery; McGill University; Montréal QC H3A 1A4 Canada
| |
Collapse
|
16
|
Thuenauer R, Nicklaus S, Frensch M, Troendle K, Madl J, Römer W. A microfluidic biochip for locally confined stimulation of cells within an epithelial monolayer. RSC Adv 2018; 8:7839-7846. [PMID: 29552338 PMCID: PMC5830875 DOI: 10.1039/c7ra11943g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/11/2018] [Indexed: 12/13/2022] Open
Abstract
A key factor determining the fate of individual cells within an epithelium is the unique microenvironment that surrounds each cell. It regulates location-dependent differentiation into specific cellular sub-types, but, on the other hand, a disturbed microenvironment can promote malignant transformation of epithelial cells leading to cancer formation. Here, we present a tool based on a microfluidic biochip that enables novel research approaches by providing a means to control the basolateral microenvironment of a confined number of neighbouring cells within an epithelial monolayer. Through isolated single pores in a thin membrane carrying the epithelial cell layer only cells above the pores are stimulated by solutes. The very thin design of the biochip (<75 μm) enabled us to apply a high-resolution inverted confocal fluorescence microscope to show by live cell imaging that such a manipulation of the microenvironment remained locally restricted to cells located above the pores. In addition, the biochip allows access for the force probe of an atomic force microscope (AFM) from the apical side to determine the topography and mechanical properties of individual cells, which we demonstrated by combined AFM and fluorescence microscopy imaging experiments. Taken together, the presented microfluidic biochip is a powerful tool that will enable studying the initial steps of malignant transformation of epithelial cells by directly manipulating their microenvironment and by real-time monitoring of affected cells with fluorescence microscopy and AFM. We developed a microfluidic biochip that enables one to locally change the basolateral microenvironment of epithelial cells within a polarised monolayer.![]()
Collapse
Affiliation(s)
- Roland Thuenauer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany. ; .,BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Simon Nicklaus
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany. ; .,BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Marco Frensch
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany. ; .,BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Kevin Troendle
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany. ; .,BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany. ; .,BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany. ; .,BIOSS - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
17
|
Mao S, Zhang Y, Zhang W, Zeng H, Nakajima H, Lin JM, Uchiyama K. Convection-Diffusion Layer in an “Open Space” for Local Surface Treatment and Microfabrication using a Four-Aperture Microchemical Pen. Chemphyschem 2017; 18:2357-2363. [DOI: 10.1002/cphc.201700577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Sifeng Mao
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
- Department of Applied Chemistry; Graduate School of Urban Environmental Sciences; Tokyo Metropolitan University; Minamiohsawa Hachioji Tokyo 192-0397 Japan
| | - Yong Zhang
- Department of Applied Chemistry; Graduate School of Urban Environmental Sciences; Tokyo Metropolitan University; Minamiohsawa Hachioji Tokyo 192-0397 Japan
| | - Weifei Zhang
- Department of Applied Chemistry; Graduate School of Urban Environmental Sciences; Tokyo Metropolitan University; Minamiohsawa Hachioji Tokyo 192-0397 Japan
| | - Hulie Zeng
- Department of Applied Chemistry; Graduate School of Urban Environmental Sciences; Tokyo Metropolitan University; Minamiohsawa Hachioji Tokyo 192-0397 Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry; Graduate School of Urban Environmental Sciences; Tokyo Metropolitan University; Minamiohsawa Hachioji Tokyo 192-0397 Japan
| | - Jin-Ming Lin
- Department of Chemistry; Beijing Key Laboratory of Microanalytical Methods and Instrumentation; The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Tsinghua University; Beijing 100084 China
| | - Katsumi Uchiyama
- Department of Applied Chemistry; Graduate School of Urban Environmental Sciences; Tokyo Metropolitan University; Minamiohsawa Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
18
|
Brimmo AT, Qasaimeh MA. Microfluidic Probes and Quadrupoles: A new era of open microfluidics. IEEE NANOTECHNOLOGY MAGAZINE 2017. [DOI: 10.1109/mnano.2016.2633678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Kim AA, Kustanovich K, Baratian D, Ainla A, Shaali M, Jeffries GDM, Jesorka A. SU-8 free-standing microfluidic probes. BIOMICROFLUIDICS 2017; 11:014112. [PMID: 28798844 PMCID: PMC5533480 DOI: 10.1063/1.4975026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/17/2017] [Indexed: 06/01/2023]
Abstract
We present a process for fabrication of free-standing SU-8 probes, with a dry, mechanical release of the final micro-devices. The process utilizes the thermal release tape, a commonly used cleanroom material, for facile heat-release from the sacrificial layer. For characterization of the SU-8 microfluidic probes, two liquid interfaces were designed: a disposable interface with integrated wells and an interface with external liquid reservoirs. The versatility of the fabrication and the release procedures was illustrated by further developing the process to functionalize the SU-8 probes for impedance sensing, by integrating metal thin-film electrodes. An additional interface scheme which contains electronic components for impedance measurements was developed. We investigated the possibilities of introducing perforations in the SU-8 device by photolithography, for solution sampling predominantly by diffusion. The SU-8 processes described here allow for a convenient batch production of versatile free-standing microfluidic devices with well-defined tip-geometry.
Collapse
Affiliation(s)
| | | | - D Baratian
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - A Ainla
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - M Shaali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - G D M Jeffries
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - A Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| |
Collapse
|
20
|
Abstract
Isolated microfluidic stagnation points – formed within microfluidic interfaces – have come a long way as a tool for characterizing materials, manipulating micro particles, and generating confined flows and localized chemistries.
Collapse
Affiliation(s)
- Ayoola T. Brimmo
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- UAE
- Tandon School of Engineering
| | - Mohammad A. Qasaimeh
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- UAE
- Tandon School of Engineering
| |
Collapse
|
21
|
Menachery A, Kumawat N, Qasaimeh MA. Merging orthogonal microfluidic flows to generate multi-profile concentration gradients. RSC Adv 2017. [DOI: 10.1039/c7ra09692e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This work describes a novel microfluidic device capable of generating multi-profile gradients that include sigmoidal, parabolic, and exponential concentration variations across its main channel.
Collapse
Affiliation(s)
- A. Menachery
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - N. Kumawat
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - M. A. Qasaimeh
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
- Department of Mechanical and Aerospace Engineering
| |
Collapse
|
22
|
Lu M, Ozcelik A, Grigsby CL, Zhao Y, Guo F, Leong KW, Huang TJ. Microfluidic Hydrodynamic Focusing for Synthesis of Nanomaterials. NANO TODAY 2016; 11:778-792. [PMID: 30337950 PMCID: PMC6191180 DOI: 10.1016/j.nantod.2016.10.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microfluidics expands the synthetic space such as heat transfer, mass transport, and reagent consumption to conditions not easily achievable in conventional batch processes. Hydrodynamic focusing in particular enables the generation and study of complex engineered nanostructures and new materials systems. In this review, we present an overview of recent progress in the synthesis of nanostructures and microfibers using microfluidic hydrodynamic focusing techniques. Emphasis is placed on distinct designs of flow focusing methods and their associated mechanisms, as well as their applications in material synthesis, determination of reaction kinetics, and study of synthetic mechanisms.
Collapse
Affiliation(s)
- Mengqian Lu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christopher L Grigsby
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
- Departments of Biomedical Engineering, and Systems Biology, Columbia University, New York, New York, 10027, USA
| | - Yanhui Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
- Departments of Biomedical Engineering, and Systems Biology, Columbia University, New York, New York, 10027, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
23
|
Cheng JW, Chang TC, Bhattacharjee N, Folch A. An open-chamber flow-focusing device for focal stimulation of micropatterned cells. BIOMICROFLUIDICS 2016; 10:024122. [PMID: 27158290 PMCID: PMC4833748 DOI: 10.1063/1.4946801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/03/2016] [Indexed: 05/14/2023]
Abstract
Microfluidic devices can deliver soluble factors to cell and tissue culture microenvironments with precise spatiotemporal control. However, enclosed microfluidic environments often have drawbacks such as the need for continuous culture medium perfusion which limits the duration of experiments, incongruity between microculture and macroculture, difficulty in introducing cells and tissues, and high shear stress on cells. Here, we present an open-chamber microfluidic device that delivers hydrodynamically focused streams of soluble reagents to cells over long time periods (i.e., several hours). We demonstrate the advantage of the open chamber by using conventional cell culture techniques to induce the differentiation of myoblasts into myotubes, a process that occurs in 7-10 days and is difficult to achieve in closed chamber microfluidic devices. By controlling the flow rates and altering the device geometry, we produced sharp focal streams with widths ranging from 36 μm to 187 μm. The focal streams were reproducible (∼12% variation between units) and stable (∼20% increase in stream width over 10 h of operation). Furthermore, we integrated trenches for micropatterning myoblasts and microtraps for confining single primary myofibers into the device. We demonstrate with finite element method (FEM) simulations that shear stresses within the cell trench are well below values known to be deleterious to cells, while local concentrations are maintained at ∼22% of the input concentration. Finally, we demonstrated focused delivery of cytoplasmic and nuclear dyes to micropatterned myoblasts and myofibers. The open-chamber microfluidic flow-focusing concept combined with micropatterning may be generalized to other microfluidic applications that require stringent long-term cell culture conditions.
Collapse
Affiliation(s)
- Jonathan W Cheng
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, USA
| | - Tim C Chang
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, USA
| | - Nirveek Bhattacharjee
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, USA
| | - Albert Folch
- Department of Bioengineering, University of Washington , Seattle, Washington 98195, USA
| |
Collapse
|
24
|
Two-Aperture Microfluidic Probes as Flow Dipole: Theory and Applications. Sci Rep 2015; 5:11943. [PMID: 26169160 PMCID: PMC4500946 DOI: 10.1038/srep11943] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/26/2015] [Indexed: 11/09/2022] Open
Abstract
A microfluidic probe (MFP) is a mobile channel-less microfluidic system under which a fluid is injected from an aperture into an open space, hydrodynamically confined by a surrounding fluid, and entirely re-aspirated into a second aperture. Various MFPs have been developed, and have been used for applications ranging from surface patterning of photoresists to local perfusion of organotypic tissue slices. However, the hydrodynamic and mass transfer properties of the flow under the MFP have not been analyzed, and the flow parameters are adjusted empirically. Here, we present an analytical model describing the key transport properties in MFP operation, including the dimensions of the hydrodynamic flow confinement (HFC) area, diffusion broadening, and shear stress as a function of: (i) probe geometry (ii) aspiration-to-injection flow rate ratio (iii) gap between MFP and substrate and (iv) reagent diffusivity. Analytical results and scaling laws were validated against numerical simulations and experimental results from published data. These results will be useful to guide future MFP design and operation, notably to control the MFP "brush stroke" while preserving shear-sensitive cells and tissues.
Collapse
|
25
|
Eicher D, Ramanathan N, Merten CA. Soft compartmentalization: Combining droplet-based microfluidics with freely accessible cells. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Dominic Eicher
- Genome Biology Unit; European Molecular Biology Laboratory; Heidelberg Germany
| | - Nirupama Ramanathan
- Genome Biology Unit; European Molecular Biology Laboratory; Heidelberg Germany
| | - Christoph A. Merten
- Genome Biology Unit; European Molecular Biology Laboratory; Heidelberg Germany
| |
Collapse
|
26
|
Ricoult SG, Kennedy TE, Juncker D. Substrate-bound protein gradients to study haptotaxis. Front Bioeng Biotechnol 2015; 3:40. [PMID: 25870855 PMCID: PMC4378366 DOI: 10.3389/fbioe.2015.00040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/13/2015] [Indexed: 12/14/2022] Open
Abstract
Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however, it is increasingly clear that in vivo many physiologically relevant guidance proteins - including many secreted cues - are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact printing, light patterning, and 3D fabrication to pattern substrate-bound protein gradients in vitro. The range of methods to create substrate-bound gradients discussed herein makes possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function.
Collapse
Affiliation(s)
- Sébastien G. Ricoult
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
| | - Timothy E. Kennedy
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - David Juncker
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Genome Quebec Innovation Centre, McGill University, Montréal, QC, Canada
- McGill Program in Neuroengineering, Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Gervais T, Safavieh M, Qasaimeh MA, Juncker D. Systematic analysis of microfluidic probe design and operation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:1567-70. [PMID: 25570270 DOI: 10.1109/embc.2014.6943902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Microfluidic probes are an emerging tool used in a wide range of applications including surface biopatterning, immunohistology, and cell migration studies. They control flow above a surface by simultaneously injecting and aspirating fluids from a pen-like structure positioned a few tens of microns above a surface. Rather than confining flows inside microchannels they rely on recirculating flow patterns between the probe tip and the substrate to create a hydrodynamic flow confinement (HFC) zone in which reagents can be locally delivered to the surface. In this paper, we provide a theoretical model, supported by numerical simulations and experimental data, describing the extent of the HFC as a function of the two most important probe operation parameters, the ratio of aspiration to injection flow rate, and the distance between probe apertures. Two types of probes are studied: two-aperture microfluidic probes (MFPs) and microfluidic quadrupoles (MQs). In both cases, the model yields very accurate results and suggests a simple underlying theory based on 2D potential flows to understand probe operation. We further highlight how the model can be used to precisely control the probe's "brush stroke" while in surface patterning mode. The understanding of probe operation made possible through the provided analytical model should lay the bases for computer-controlled probe calibration and operation.
Collapse
|
28
|
Nichols JE, Niles JA, Vega SP, Argueta LB, Eastaway A, Cortiella J. Modeling the lung: Design and development of tissue engineered macro- and micro-physiologic lung models for research use. Exp Biol Med (Maywood) 2014; 239:1135-69. [PMID: 24962174 DOI: 10.1177/1535370214536679] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models.
Collapse
Affiliation(s)
- Joan E Nichols
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA University of Texas Medical Branch, School of Medicine, Galveston, TX 77555-0435, USA
| | - Jean A Niles
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA
| | - Stephanie P Vega
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA
| | - Lissenya B Argueta
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, Department of Microbiology and Immunology, Galveston, TX 77555-0435, USA
| | - Adriene Eastaway
- University of Texas Medical Branch, Department of Internal Medicine, Division of Infectious Diseases, Galveston, TX 77555-0435, USA University of Texas Medical Branch, School of Medicine, Galveston, TX 77555-0435, USA
| | - Joaquin Cortiella
- University of Texas Medical Branch, Department of Anesthesiology, Galveston, TX 77555-0435, USA
| |
Collapse
|
29
|
Bashir S, Solvas XCI, Bashir M, Rees JM, Zimmerman WBJ. Dynamic wetting in microfluidic droplet formation. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8207-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Fritzsche M, Fritzsche J, Tegenfeldt JO, Mandenius CF. A highly UV-transparent fused silica biochip for sensitive hepatotoxicity testing by autofluorescence. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Cors JF, Lovchik RD, Delamarche E, Kaigala GV. A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:034301. [PMID: 24689601 DOI: 10.1063/1.4866976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm(3) and can scan an area of 45 × 45 mm(2) on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized "chip-to-world" and "chip-to-platform" interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.
Collapse
Affiliation(s)
- J F Cors
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803 Rueschlikon, Switzerland
| | - R D Lovchik
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803 Rueschlikon, Switzerland
| | - E Delamarche
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803 Rueschlikon, Switzerland
| | - G V Kaigala
- IBM Research-Zurich, Saeumerstrasse 4, CH-8803 Rueschlikon, Switzerland
| |
Collapse
|
32
|
Huang M, Galarreta BC, Cetin AE, Altug H. Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. LAB ON A CHIP 2013; 13:4841-7. [PMID: 24170146 DOI: 10.1039/c3lc50814e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Effective analyte delivery is essential to achieve rapid and sensitive biodetection systems. In this article, we present an actively controlled fluidic system integrated with a suspended plasmonic nanohole sensor to achieve superior analyte delivery efficiency and ultrafast sensor response, as compared to conventional fluidic systems. 70 nm sized virus like analyte solution is used to experimentally demonstrate the system performance improvements. Sensor response time is reduced by one order of magnitude as compared to the conventional methods. A seven orders of magnitude dynamic concentration range from 10(3) to 10(9) particles mL(-1) is quantified, corresponding to a concentration window relevant to clinical diagnosis and drug screening. Our non-destructive detection system, by enabling efficient analyte delivery, fast sensing response and minimal sample volume, opens up opportunities for sensitive, rapid and real-time virus detection in infectious disease control and point-of-care applications.
Collapse
Affiliation(s)
- Min Huang
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | | | | | | |
Collapse
|
33
|
Ricoult SG, Pla-Roca M, Safavieh R, Lopez-Ayon GM, Grütter P, Kennedy TE, Juncker D. Large dynamic range digital nanodot gradients of biomolecules made by low-cost nanocontact printing for cell haptotaxis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3308-3313. [PMID: 23606620 DOI: 10.1002/smll.201202915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/25/2013] [Indexed: 06/02/2023]
Abstract
A novel method is introduced for ultrahigh throughput and ultralow cost patterning of biomolecules with nanometer resolution and novel 2D digital nanodot gradients (DNGs) with mathematically defined slopes are created. The technique is based on lift-off nanocontact printing while using high-resolution photopolymer stamps that are rapidly produced at a low cost through double replication from Si originals. Printed patterns with 100 nm features are shown. DNGs with varying spacing between the dots and a record dynamic range of 4400 are produced; 64 unique DNGs, each with hundreds of thousands of dots, are inked and printed in 5.5 min. The adhesive response and haptotaxis of C2C12 myoblast cells on DNGs demonstrated their biofunctionality. The great flexibility in pattern design, the massive parallel ability, the ultra low cost, and the extreme ease of polymer lift-off nanocontact printing will facilitate its use for various biological and medical applications.
Collapse
Affiliation(s)
- Sébastien G Ricoult
- Department of Biomedical Engineering, McGill University and Génome Québec Innovation Centre, McGill University, 740 Dr. Penfield Avenue, Montréal, Québec H3A 0G1, Canada, Fax: (+)1 (514) 398 1790; Webpage: http://wikisites.mcgill.ca/djgroup/; Department of Neuroscience, McGill University, 3801 University Avenue, Montréal, Québec H3A 0G1, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Sivagnanam V, Gijs MAM. Exploring Living Multicellular Organisms, Organs, and Tissues Using Microfluidic Systems. Chem Rev 2013; 113:3214-47. [DOI: 10.1021/cr200432q] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Martin A. M. Gijs
- Laboratory
of Microsystems, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland
| |
Collapse
|