1
|
Zheng Z, Qian Z, Huang D, Weng Z, Wang J, Lin C, Qiu B, Lin Z, Luo F. Ultrasensitive Homogeneous Electrochemiluminescence Biosensor for N-Nitrosodimethylamine Detection Based on Vertically-Ordered Mesoporous Silica Film-Modified Electrode and CRISPR/Cas12a-Driven HRCA with Triple Signal Amplification. Anal Chem 2025; 97:5828-5835. [PMID: 40036525 DOI: 10.1021/acs.analchem.5c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Herein, we present an innovative electrochemiluminescence (ECL) biosensor for the ultrasensitive detection of N-nitrosodimethylamine (NDMA). The biosensor utilizes a triple signal amplification strategy, combining rolling circle amplification (RCA), CRISPR/Cas12a-driven hyperbranched rolling circle amplification (HRCA), and electrostatic repulsion with size exclusion effects from vertically ordered mesoporous silica film (VMSF)/indium tin oxide (ITO) on double-stranded DNA (dsDNA)-Ru(phen)32+ complexes. In this system, aptamers and circular DNA undergo RCA reactions, followed by the CRISPR/Cas12a-mediated HRCA process, producing abundant dsDNA. The electropositive ECL indicator, namely Ru(phen)32+, was subsequently adsorbed onto the electronegative dsDNA, forming dsDNA-Ru(phen)32+ complexes. These complexes are subjected to electrostatic repulsion and size exclusion by the VMSF-modified ITO electrode, resulting in a lower ECL intensity. Upon introducing NDMA, the aptamer preferentially binds to NDMA, thereby preventing the formation of long dsDNA. This process releases free Ru(phen)32+, which diffuses to the electrode surface through narrow mesoporous channels via electrostatic adsorption. Consequently, an enhanced and strong ECL signal is observed. The integration of VMSF enhances selectivity and sensitivity by excluding larger impurities and promoting the electrostatic repulsion of dsDNA-Ru(phen)32+ complexes near the electrode surface. Additionally, the CRISPR/Cas12a system eliminates the formation of primer dimers and reduces false positives through its unique cis- and trans-cleavage activities. The biosensor demonstrated excellent performance with a linear correlation between the ECL signal and NDMA concentration in the range spanning from 10 pg/mL to 10 μg/mL, achieving a low limit of detection of 5.33 pg/mL. This platform offers a reliable and robust solution for detecting NDMA in complex matrices, making it a promising tool for environmental monitoring, public health, and safety applications.
Collapse
Affiliation(s)
- Zhenjie Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Zhuozhen Qian
- Fisheries Research Institute of Fujian/Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Xiamen, Fujian 361013, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jian Wang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, 2 Xue Yuan Road, Fuzhou, Fujian 350116, China
| |
Collapse
|
2
|
Chen Y, Liu Z, Zhang B, Wu H, Lv X, Zhang Y, Lin Y. Biomedical Utility of Non-Enzymatic DNA Amplification Reaction: From Material Design to Diagnosis and Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404641. [PMID: 39152925 DOI: 10.1002/smll.202404641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid nanotechnology has become a promising strategy for disease diagnosis and treatment, owing to remarkable programmability, precision, and biocompatibility. However, current biosensing and biotherapy approaches by nucleic acids exhibit limitations in sensitivity, specificity, versatility, and real-time monitoring. DNA amplification reactions present an advantageous strategy to enhance the performance of biosensing and biotherapy platforms. Non-enzymatic DNA amplification reaction (NEDAR), such as hybridization chain reaction and catalytic hairpin assembly, operate via strand displacement. NEDAR presents distinct advantages over traditional enzymatic DNA amplification reactions, including simplified procedures, milder reaction conditions, higher specificity, enhanced controllability, and excellent versatility. Consequently, research focusing on NEDAR-based biosensing and biotherapy has garnered significant attention. NEDAR demonstrates high efficacy in detecting multiple types of biomarkers, including nucleic acids, small molecules, and proteins, with high sensitivity and specificity, enabling the parallel detection of multiple targets. Besides, NEDAR can strengthen drug therapy, cellular behavior control, and cell encapsulation. Moreover, NEDAR holds promise for constructing assembled diagnosis-treatment nanoplatforms in the forms of pure DNA nanostructures and hybrid nanomaterials, which offer utility in disease monitoring and precise treatment. Thus, this paper aims to comprehensively elucidate the reaction mechanism of NEDAR and review the substantial advancements in NEDAR-based diagnosis and treatment over the past five years, encompassing NEDAR-based design strategies, applications, and prospects.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bowen Zhang
- Department of Prosthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoying Lv
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Cai J, Zhu Q. New advances in signal amplification strategies for DNA methylation detection in vitro. Talanta 2024; 273:125895. [PMID: 38508130 DOI: 10.1016/j.talanta.2024.125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
5-methylcytosine (5 mC) DNA methylation is a prominent epigenetic modification ubiquitous in the genome. It plays a critical role in the regulation of gene expression, maintenance of genome stability, and disease control. The potential of 5 mC DNA methylation for disease detection, prognostic information, and prediction of response to therapy is enormous. However, the quantification of DNA methylation from clinical samples remains a considerable challenge due to its low abundance (only 1% of total bases). To overcome this challenge, scientists have recently developed various signal amplification strategies to enhance the sensitivity of DNA methylation biosensors. These strategies include isothermal nucleic acid amplification and enzyme-assisted target cycling amplification, among others. This review summarizes the applications, advantages, and limitations of these signal amplification strategies over the past six years (2018-2023). Our goal is to provide new insights into the selection and establishment of DNA methylation analysis. We hope that this review will offer valuable insights to researchers in the field and facilitate further advancements in this area.
Collapse
Affiliation(s)
- Jiajing Cai
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, 410013, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
4
|
Su J, Song S, Dou Y, Jia X, Song S, Ding X. Methylation specific enzyme-linked oligonucleotide assays (MS-ELONA) for ultrasensitive DNA methylation analysis. Biosens Bioelectron 2023; 238:115587. [PMID: 37586263 DOI: 10.1016/j.bios.2023.115587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Methylation of the promoter region of cancer related genes plays a crucial role in the occurrence and development of cancer, and the degree of methylation has great potential for the early cancer diagnosis. At present, the technology used to quantify DNA methylation is mainly based on the DNA sequencing which are time-consuming and high-cost in the relating application. We have developed an ultrasensitive method of methylation specific enzyme-linked oligonucleotide assays (MS-ELONA) to detect and quantify the level of DNA methylation. We could detect as little as 2 pg of methylated DNA in the 100000-fold excess of unmethylated genes, and discriminate prostate cancer from benign prostatic hyperplasia (BPH) and control with serum samples. We also demonstrate the reversibility of DNA methylation modification by treatment with demethylation drugs. With 16-channel electrochemical work station, our research reveals a simple and inexpensive method to quantify the methylation level of specially appointed genes, and have the potential to be applied in the clinical research.
Collapse
Affiliation(s)
- Jing Su
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shasha Song
- Pathology Department, Yantai Fushan People's Hospital, Yantai, China
| | - Yanzhi Dou
- Shanghai Institute of Microsystem and Information Technology, Chinse Academy of Sciences, Shanghai 200050, China
| | - Xiaolong Jia
- Department of Urology, The First Affiliated Hospital of Ningbo University, Liuting Street, Ningbo 315010, China
| | - Shiping Song
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Methylation-sensitive transcription-enhanced single-molecule biosensing of DNA methylation in cancer cells and tissues. Anal Chim Acta 2023; 1251:340996. [PMID: 36925287 DOI: 10.1016/j.aca.2023.340996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
As a major epigenetic modification, DNA methylation participates in diverse cellular functions and emerges as a promising biomarker for disease diagnosis and monitoring. Herein, we developed a methylation-sensitive transcription-enhanced single-molecule biosensor to detect DNA methylation in human cells and tissues. In this biosensor, a rationally designed transcription machine is split into two parts including a promoter sequence (probe-P) for initiating transcription and a template sequence (probe-T) for RNA synthesis. The presence of specific DNA methylation leads to the formation of full-length transcription machine through sequence-specific ligation of probe-P and probe-T, initiating the synthesis of abundant ssRNA transcripts. The resultant ssRNAs can activate CRISPR/Cas12a to catalyze cyclic cleavage of fluorophore- and quencher-dual labeled signal probes, resulting in the recovery of the fluorophore signal that can be quantified by single-molecule detection. Taking advantages of the high-fidelity ligation of split transcription machine and the high efficiency of transcription- and CRISPR/Cas12a cleavage-mediated dual signal amplification, this single-molecule biosensor achieves a low detection limit of 337 aM and high selectivity. Moreover, it can distinguish 0.01% methylation level, and even accurately detect genomic DNA methylation in single cell and clinical samples, providing a powerful tool for epigenetic researches and clinical diagnostics.
Collapse
|
6
|
An Y, Yu Z, Liu D, Han L, Zhang X, Xin X, Li C. HpaII-assisted and linear amplification-enhanced isothermal exponential amplification fluorescent strategy for rapid and sensitive detection of DNA methyltransferase activity. Anal Bioanal Chem 2023; 415:2271-2280. [PMID: 36961574 DOI: 10.1007/s00216-023-04647-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
The detection of methyltransferase (MTase) activity is of great significance in methylation-related disease diagnosis and drug screening. Herein, a HpaII-assisted and linear amplification-enhanced exponential amplification strategy is proposed for sensitive and label-free detection of M.SssI MTase activity. The P1 probe contains self-complementary sequence 5'-CTAGCCGGCTAG-3' at 3'-terminal. After denaturation and annealing, P1 probes hybridize with itself to generate P1 duplexes. M.SssI MTase induces methylation of cytosine at 5'-CG-3' in P1 duplexes, and thus, HpaII fails to cleave at 5'-CCGG-3' due to methylation sensitivity, leaving P1 duplex intact. Then, these intact P1 duplexes are extended along 3'-terminal through Vent (exo-) DNA polymerase to generate dsDNA, which is recognized and nicked at the recognition sites by Nt.BstNBI, releasing two copies of primer X. Primer X hybridizes with X' at the amplification template T1 (X'-Y'-X') and then serves as primers to trigger the exponential amplification reaction (EXPAR). The point of inflection (POI) values of real-time fluorescence curves is linearly correlated with the logarithm of M.SssI MTase concentration in the range of 0.125 [Formula: see text] 8 U mL-1 with a low detection limit of 0.034 U mL-1. In the absence of M.SssI, P1 duplexes are cut by HpaII and separated into ssDNA under the executed temperature of EXPAR and thus unable to trigger the amplification. The strategy provides good selectivity against other types of MTases and protein and is able to detect M.SssI activity in human serum. Furthermore, the analytical method has the generality and can be extended to the analysis of other types of DNA MTases.
Collapse
Affiliation(s)
- Yaqian An
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China
| | - Zhiqi Yu
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China
| | - Di Liu
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China
| | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China
| | - Xian Zhang
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China
| | - Xuelian Xin
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China
| | - Cuiping Li
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
7
|
You J, Park H, Lee H, Jang K, Park J, Na S. Sensitive and selective DNA detecting electrochemical sensor via double cleaving CRISPR Cas12a and dual polymerization on hyperbranched rolling circle amplification. Biosens Bioelectron 2023; 224:115078. [PMID: 36641878 DOI: 10.1016/j.bios.2023.115078] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Electrochemical sensors are widely used for nucleic acid detection. However, they exhibit low sensitivity and specificity. To overcome these limitations, DNA amplification method is necessary. In this study, we introduced CRISPR (Clustered regularly interspaced short palindromic repeats) Cas12a-dependent hyperbranched rolling circle amplification (HRCA) into an electrochemical sensor platform. By resolving the existing false-positive issue of HRCA, CRISPR Cas12a determines the real positive amplification that able to enhance its sensitivity for extremely low concentrations of nucleic acids and specificity for single-point mutations. In detail, CRISPR Cas12a, which activates the nucleic acid amplification reaction, was used for both trans and cis cleavage for the first time. Finally, selectively amplified DNA was detected using a screen-printed electrode. Using the change in surface coverage by DNA, the electrochemical sensor detected a decrease in the redox signal. In summary, combining a novel DNA amplification method and electrochemical sensor platform, our proposed method compensates for the shortcomings of existing RCA and hyperbranched RCA, secures a high sensitivity of 10 aM, and overcomes false-positivity problems. Moreover, such creative applications of CRISPR Cas12a may lead to the expansion of its applications to other nucleic acid amplification methods.
Collapse
Affiliation(s)
- Juneseok You
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjun Park
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hakbeom Lee
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kuewhan Jang
- School of Mechanical and Automotive Engineering, Hoseo University, Asan, 31499, Republic of Korea
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, 16419, Republic of Korea.
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Ratiometric Electrochemical Biosensing of Methyltransferase Activity. Catalysts 2022. [DOI: 10.3390/catal12111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, a novel ratiometric electrochemical readout platform was proposed and developed for the fast and flexible analysis of M.SssI methyltransferase (MTase) activity. In this platform, two hairpin DNAs (H1 and H2) were designed. H1 contains the palindromic sequence of 5′-CCGG-3′ in its stem which could be methylated and hybridize with H2 labeled by methylene blue (MB) as one of the signal reporters on a gold electrode (GE) in the presence of M.SssI MTase. Additionally, a specific immunoreaction was introduced by conjugating an anti-5-methylcytosine antibody, a DNA CpG methylation recognition unit, with 1,3-ferrocenedicarboxylic acid (Fc) as the second signal reporter. The results showed that when the Fc tag approaches, the MB tag was far from the gold electrode surface, resulting in a decrease in the oxidation peak current of MB (IMB) and an increase in the oxidation peak current of Fc (IFc). The ratiometric electrochemical method above shows the linear range of detection was 0 U/mL 40 U/mL with a detection limit of 0.083 U/mL (the mean signal of blank measures þ3s).
Collapse
|
9
|
Li X, Zhang X, Shi X, Shi H, Wang Z, Peng C. Review in isothermal amplification technology in food microbiological detection. Food Sci Biotechnol 2022; 31:1501-1511. [PMID: 36119387 PMCID: PMC9469833 DOI: 10.1007/s10068-022-01160-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022] Open
Abstract
Food-borne diseases caused by microbial contamination have always been a matter of great concern to human beings. Hence, the research on these problems has never stopped. With the development of microorganism amplification technology, more and more detection methods have come into our vision. However, traditional detection technologies presents more or less drawbacks, such as complicated operation, low accuracy, low sensitivity, long-time detection, and so on. Therefore, more convenient, accurate, and sensitive measurement for the microorganism are needed. Isothermal amplification technology is one of the alternative approach containing the above mentioned advantages. This work mainly summarizes the principles of loop-mediated isothermal amplification (LAMP) and rolling circle amplification (RCA) which belong to isothermal amplification. Meanwhile, the application of LAMP and RCA in food microorganism detection is introduced.
Collapse
|
10
|
Xu C, Zhao J, Chen S, Sakharov IY, Hu S, Zhao S. An ultrasensitive bunge bedstraw herb type DNA machine for absolute quantification of mRNA in single cell. Biosens Bioelectron 2022; 217:114702. [PMID: 36130443 DOI: 10.1016/j.bios.2022.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Messenger ribonucleic acids (mRNAs) comprise a class of small nucleic acids carrying genetic information, which exhibit very important role in medical research and diagnosis. If only the mean mRNA expression levels of the mRNA population are considered in medical research, important information linking mRNA expression and cellular function may be lost. Single-cell analysis provides valuable insights into studying its heterogeneity, signaling, and stochastic gene expression. In this study, a "bunge bedstraw herb"-type DNA machine based on DNAzyme catalyzing coupled clamping hybrid chain reaction (c-HCR) is presented. In the DNA machine, a bunge bedstraw herb-type DNA structure was first formed by hybridizing a core junction scaffold cruciform probe to a hairpin probe that can trigger the c-HCR via a target molecule in four directions. This approach can reduce the detection limit of mRNA to 5 × 10-15 M. Absolute quantification of survivin mRNA in individual cells was achieved using the DNA machine on a microfluidic chip electrophoresis platform. The reported method represents an unprecedented single-cell analysis platform for single-cell biology studies.
Collapse
Affiliation(s)
- Chunhuan Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Shengyu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
11
|
Li F, Chen Y, Shang J, Wang Q, He S, Xing X, Wang F. An Isothermal Autocatalytic Hybridization Reaction Circuit for Sensitive Detection of DNA Methyltransferase and Inhibitors Assay. Anal Chem 2022; 94:4495-4503. [PMID: 35234458 DOI: 10.1021/acs.analchem.2c00037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abnormal DNA methylation contributes to the annoying tumorigenesis and the elevated expression of methylation-related methyltransferase (MTase) is associated with many diseases. Hence DNA MTase could serve as a promising biomarker for cancer-specific diagnosis as well as a potential therapeutic target. Herein, we developed an isothermal autocatalytic hybridization reaction (AHR) circuit for the sensitive detection of MTase and its inhibitors by integrating the catalytic hairpin assembly (CHA) converter with the hybridization chain reaction (HCR) amplifier. The initiator-mediated HCR amplifier could generate amplified fluorescent readout, as well as numerous newly activated triggers for motivating the CHA converter. The CHA converter is designed to expose the identical sequence of HCR initiators that reversely powered the HCR amplifier. Thus, the trace amount of target could produce exponentially amplified fluorescent readout by the autocatalytic feedback cycle between HCR and CHA systems. Then an auxiliary hairpin was introduced to mediate the assay of Dam MTase via the well-established AHR circuit. The Dam MTase-catalyzed methylation of auxiliary hairpin leads to its subsequent efficient cleavage by DpnI endonuclease, thus resulting in the release of HCR initiators to initiate the AHR circuit. The programmable nature of the auxiliary hairpin allows its easy adaption into other MTase assay by simply changing the recognition site. This proposed AHR circuit permits a sensitive, robust, and versatile analysis of MTase with the limit of detection (LOD) of 0.011 U/mL. Lastly, the AHR circuit could be utilized for MTase analysis in real complex samples and for evaluating the cell-cycle-dependent expression of MTase. This developed MTase-sensing strategy holds promising potential for biomedical analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Fengzhe Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiwen Xing
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
12
|
Zhang S, Shi W, Li KB, Han DM, Xu JJ. Ultrasensitive and Label-Free Detection of Multiple DNA Methyltransferases by Asymmetric Nanopore Biosensor. Anal Chem 2022; 94:4407-4416. [PMID: 35234450 DOI: 10.1021/acs.analchem.1c05332] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA methylation is catalyzed by a family of DNA methyltransferases that play crucial roles in various biological processes. Therefore, an ultrasensitive methyltransferase assay is highly desirable in biomedical research and clinical diagnosis. However, conventional assays for the detection of DNA methyltransferase activity often involve radioactive labeling, costly equipment, and laborious operation. In this study, an ultrasensitive and label-free method for detecting DNA adenine methyltransferase (Dam) and CpG methyltransferase (M.SssI) was developed using the nanopore technique coupled with DNA cascade signal amplification reactions. A hairpin DNA (HD) comprising of the methylation-responsive sequences was skillfully designed. In the presence of Dam methyltransferase, the corresponding recognition site of hairpin HD was methylated and specifically cleaved by DpnI endonuclease, thus forming a DNA fragment that induces the catalytic hairpin assembly and hybridization chain reaction (CHA-HCR). The generated products could be absorbed onto the Zr4+-coated nanopore, resulting in an ion current rectification signal change. Considering the high sensitivity of the nanopore and excellent specificity toward the recognition of methyltransferase/endonuclease, our developed method could detect both Dam and M.SssI methyltransferases in the same sensing platform. Furthermore, the designed nanopore sensor could realize the multiplex detection of Dam and M.SssI methyltransferases after integration with the cascaded INHIBIT-AND logic gate. This ultrasensitive methyltransferase assay holds great promise in the field of cancer diagnosis.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Wei Shi
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Kai-Bin Li
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - De-Man Han
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Zhou J, Li Z, Hu J, Wang C, Liu R, Lv Y. HOGG1-assisted DNA methylation analysis via a sensitive lanthanide labelling strategy. Talanta 2021; 239:123136. [PMID: 34920255 DOI: 10.1016/j.talanta.2021.123136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023]
Abstract
The assessment of DNA methylation level is an important indicator for the diagnosis and treatment of some diseases. DNA methylation assays are usually based on nucleic acid amplification strategies, which are time-consuming and complicated in operation procedures. Herein, we proposed a sensitive lanthanide-labelled ICP-MS method for DNA methylation analysis that exploited the feature of Human 8-oxoGuanine DNA Glycosylase (hOGG1), which specifically recognizes 8-oxo-G/5mC base pairs to effectively distinguish methylated DNA. A low limit of detection of 84 pM was achieved, and a 0.1% methylation level can be discriminated in the mixture, without any amplification procedure. Compared with commonly used nucleic acid amplification strategies, this proposed method is time-saving and low probability of false positive. Moreover, this work has been successfully validated in human serum samples, the recovery rates is between 96.7% and 105%, and the relative standard deviation (RSD) is in the range of 3.0%-3.5%, indicating that this method has the potential to be applied in clinical and biological samples quantitative analysis.
Collapse
Affiliation(s)
- Jing Zhou
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Ziyan Li
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Jianyu Hu
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Chaoqun Wang
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 WangJiang Road, Chengdu, 610064, PR China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, PR China; Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 WangJiang Road, Chengdu, 610064, PR China.
| |
Collapse
|
14
|
Wan Z, Gong F, Zhang M, He L, Wang Y, Yu S, Liu J, Wu Y, Liu L, Wu Y, Qu L, Sun J, Yu F. Detection of the level of DNMT1 based on self-assembled probe signal amplification technique in plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120020. [PMID: 34119770 DOI: 10.1016/j.saa.2021.120020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
DNA (cytosine-5)-methyltransferase1 (DNMT1) is the most abundant DNA methyltransferase in somatic cells, and it plays an important role in the initiation, occurrence, and rehabilitation of tumors. Herein, we developed a novel strategy for the detection of the level of DNMT1 in human plasma using the self-assembled nucleic acid probe signal amplification technology. In this method, the DNMT1 monoclonal antibody (McAbDNMT1) was immobilized on carboxyl magnetic beads to form immunomagnetic beads and then captured DNMT1 specifically. After that, DNMT1 polyclonal antibody (PcAbDNMT1) and biotinylated sheep anti-rabbit IgG (sheep anti rabbit IgG-Biotin) were sequentially added into the system to react with DNMT1 and form biotinylated double antibody sandwich immunomagnetic beads. In the presence of the bridging medium streptavidin, the biotinylated double antibody sandwich immunomagnetic beads would form a complex with biotinylated poly-fluorescein (Biotin-poly FAM), and the fluorescence intensity of the complex was proportional to the concentration of DNMT1. Immunomagnetic beads can capture the target DNMT1 in the sample, and Biotin-poly FAM can realize signal amplification. Using these strategies, we got a linear range of the system for DNMT1 level detection was from 2 nmol/L to 200 nmol/L, and the limit of detection (LOD) was 0.05 nmol/L. The method was successfully applied for the determination of DNMT1 in human plasma with the recovery of 101.3-106.0%. Therefore, this method has the potential for the detection of DNMT1 level in clinical diagnosis.
Collapse
Affiliation(s)
- Zhenzhen Wan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fangfang Gong
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Gumei Community Health Service Center, Minhang District, Shanghai 201100, China
| | - Mimi Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yilin Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuming Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Li'e Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiaqi Sun
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Z-DNA as a Tool for Nuclease-Free DNA Methyltransferase Assay. Int J Mol Sci 2021; 22:ijms222111990. [PMID: 34769422 PMCID: PMC8585049 DOI: 10.3390/ijms222111990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/16/2023] Open
Abstract
Methylcytosines in mammalian genomes are the main epigenetic molecular codes that switch off the repertoire of genes in cell-type and cell-stage dependent manners. DNA methyltransferases (DMT) are dedicated to managing the status of cytosine methylation. DNA methylation is not only critical in normal development, but it is also implicated in cancers, degeneration, and senescence. Thus, the chemicals to control DMT have been suggested as anticancer drugs by reprogramming the gene expression profile in malignant cells. Here, we report a new optical technique to characterize the activity of DMT and the effect of inhibitors, utilizing the methylation-sensitive B-Z transition of DNA without bisulfite conversion, methylation-sensing proteins, and polymerase chain reaction amplification. With the high sensitivity of single-molecule FRET, this method detects the event of DNA methylation in a single DNA molecule and circumvents the need for amplification steps, permitting direct interpretation. This method also responds to hemi-methylated DNA. Dispensing with methylation-sensitive nucleases, this method preserves the molecular integrity and methylation state of target molecules. Sparing methylation-sensing nucleases and antibodies helps to avoid errors introduced by the antibody’s incomplete specificity or variable activity of nucleases. With this new method, we demonstrated the inhibitory effect of several natural bio-active compounds on DMT. All taken together, our method offers quantitative assays for DMT and DMT-related anticancer drugs.
Collapse
|
16
|
Chai H, Cheng W, Jin D, Miao P. Recent Progress in DNA Hybridization Chain Reaction Strategies for Amplified Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38931-38946. [PMID: 34374513 DOI: 10.1021/acsami.1c09000] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the continuous development of DNA nanotechnology, various spatial DNA structures and assembly techniques emerge. Hybridization chain reaction (HCR) is a typical example with exciting features and bright prospects in biosensing, which has been intensively investigated in the past decade. In this Spotlight on Applications, we summarize the assembly principles of conventional HCR and some novel forms of linear/nonlinear HCR. With advantages like great assembly kinetics, facile operation, and an enzyme-free and isothermal reaction, these strategies can be integrated with most mainstream reporters (e.g., fluorescence, electrochemistry, and colorimetry) for the ultrasensitive detection of abundant targets. Particularly, we select several representative studies to better illustrate the novel ideas and performances of HCR strategies. Theoretical and practical utilities are confirmed for a range of biosensing applications. In the end, a deep discussion is provided about the challenges and future tasks of this field.
Collapse
Affiliation(s)
- Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| |
Collapse
|
17
|
DNA-functionalized biosensor for amplifying signal detection of DNA methyltransferase activity. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Fu N, Wang L, Zou X, Li C, Zhang S, Zhao B, Gao Y, Wang L. A photoelectrochemical sensor based on a reliable basic photoactive matrix possessing good analytical performance for miRNA-21 detection. Analyst 2021; 145:7388-7396. [PMID: 32935667 DOI: 10.1039/d0an01297a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The basic photoactive matrixes on transparent electrodes are essential for the performance of photoelectrochemical (PEC) biosensors. Herein, we demonstrate an optimized fabrication strategy toward a reliable ITO/TiO2/AuNP photoanode by sequential deposition of TiO2/Au nanoparticles (Au NPs) on indium tin oxide (ITO) substrates. The identified fabrication conditions include spin-coating tetraisopropyl titanate on ITO slices followed by in situ electrodeposition of Au NPs and finally the thermal annealing treatment. By the conjugation of the thiolated hairpin NH2-DNA sequence and CdTe quantum dots (QDs) onto the thus-prepared photoanodes, a novel PEC sensor for the ultrasensitive detection of miRNA was constructed. The proposed PEC sensor offered advantages including simple structure, storage stability and excellent detection reproducibility as well as sensitivity and specificity toward miRNA-21. Finally, we found that this PEC displayed a broad detection linear range of 1.0 fM to 1.0 nM with a low detection limit of 0.37 fM. This PEC sensor can also excellently discriminate the mismatched miRNA. Moreover, the PEC sensor also showed a satisfactory result in normal human serum sample analysis. These findings emphasized the importance of basic photoactive matrixes for the fabrication of PEC sensors, providing solid fundamental insights for future application of metal oxide substrates for other PEC applications, especially PEC biosensors.
Collapse
Affiliation(s)
- Nina Fu
- Key Laboratory for Organic Electronics and Information Displays &Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tao G, Xu X, Li RS, Liu F, Li N. Nonamplification Multiplexed Assay of Endonucleases and DNA Methyltransferases by Colocalized Particle Counting. ACS Sens 2021; 6:1321-1329. [PMID: 33496573 DOI: 10.1021/acssensors.0c02665] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Restriction endonucleases (ENases) and DNA methyltransferases (MTases) are important enzymes in biological processes, and detection of ENases/MTases activity is significant for biological and pharmaceutical studies. However, available nonamplification methods with a versatile design, desirable sensitivity, and signal production mode of unbiased quantification toward multiple nucleases are rare. By combining deliberately designed hairpin DNA probes with the colocalized particle counting technique, we present a nonamplification, separation-free method for multiplexed detection of ENases and MTases. In the presence of target ENases, the hairpin DNA is cleaved and the resulting DNA sequence forms a sandwich structure to tie two different-colored fluorescent microbeads together to generate a colocalization signal that can be easily detected using a standard fluorescence microscope. The multiplexed assay is realized via different color combinations. For the assay of methyltransferase, methylation by MTases prevents cleavage of the hairpin by the corresponding ENase, leading to decreased colocalization events. Three ENases can be simultaneously detected with high selectivity, minimal cross-talk, and detection limits of (4.1-6.4) × 10-4 U/mL, and the corresponding MTase activity can be measured without a change of the probe design. The potential for practical application is evaluated with human serum samples and different ENase and MTase inhibitors with satisfactory results. The proposed method is separation-free, unbiased toward multiple targets, and easy to implement, and the strategy has the potential to be extended to other targets.
Collapse
Affiliation(s)
- Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao Xu
- Environmental Metrology Center, National Institute of Metrology, Beijing 100029, China
| | - Rong Sheng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Zhang Y, Hu J, Zou X, Ma F, Qiu JG, Zhang CY. Integration of single-molecule detection with endonuclease IV-assisted signal amplification for sensitive DNA methylation assay. Chem Commun (Camb) 2021; 57:2073-2076. [PMID: 33507186 DOI: 10.1039/d0cc08306b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate the development of a new fluorescent biosensor for sensitive DNA methylation assay by integrating single-molecule detection with endo IV-assisted signal amplification. This biosensor possesses the characteristics of good selectivity and high sensitivity with a detection limit of 7.3 × 10-17 M. It can distinguish as low as 0.01% methylation level, and can analyze genomic DNA methylation even in a single cancer cell.
Collapse
Affiliation(s)
- Yan Zhang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | |
Collapse
|
21
|
An enzyme free fluorescence resonance transfer strategy based on hybrid chain reaction and triplex DNA for Vibrio parahaemolyticus. Sci Rep 2020; 10:20710. [PMID: 33244061 PMCID: PMC7691504 DOI: 10.1038/s41598-020-77913-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/13/2020] [Indexed: 11/10/2022] Open
Abstract
In this work, an enzyme-free fluorescence resonance energy transfer (FRET) strategy was established for rapid and specific detection of the DNA sequence from Vibrio parahaemolyticus (VP) using hybridization chain reaction (HCR) amplification and triplex DNA. The triplex forming oligonucleotide (TFO) was labelled with carboxyfluorescein (FAM) as fluorescence donor, and hairpin sequence H1 was labelled by tetramethylrhodamine (TAMRA) as fluorescence receptor. In the present target VP DNA, the hairpin structure of molecular beacon (MB) was opened, the free end was released and hybridized with H1-TAMRA, and the HCR reaction was triggered by the alternate supplementation of H1-TAMRA and H2 to produce the notch double helix analogue. After the addition of TFO-FAM, a triplex structure was formed between HCR products (H1-TAMRA/H2) and TFO-FAM. A close contact between the donor and the receptor resulted in FRET. Under the optimal conditions, the fluorescence quenching value was inversely proportional to the concentration of target VP DNA in the range of 0.1–50 nmol L−1, and the detection limit was 35 pmol L−1.
Collapse
|
22
|
Wu J, Hu Q, Chen Q, Dai J, Wu X, Wang S, Lou X, Xia F. Modular DNA-Incorporated Aggregation-Induced Emission Probe for Sensitive Detection and Imaging of DNA Methyltransferase. ACS APPLIED BIO MATERIALS 2020; 3:9002-9011. [DOI: 10.1021/acsabm.0c01249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jun Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Qinyu Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Qing Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
23
|
Yin C, Zhao Q, Yue A, Du W, Liu D, Zhao J, Zhang Y, Wang M. Colorimetric Detection of Class A Soybean Saponins by G-Quadruplex-Based Hybridization Chain Reaction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8813239. [PMID: 33204574 PMCID: PMC7661121 DOI: 10.1155/2020/8813239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Soybean saponin is one of the important secondary metabolites in seeds, which has various beneficial physiological functions to human health. GmSg-1 gene is the key enzyme gene for synthesizing class A saponins. It is of great significance to realize the visual and rapid detection of class A saponins at the genetic level. The hybridization chain reaction (HCR) was employed to the visual detection of GmSg-1 gene, which was implemented by changing the length of the target fragment to 92 bp and using the hairpin probes we designed to detect the GmSg-1 a and GmSg-1 b genes. The best condition of HCR reaction is hemin (1.2 μM), Triton X-100 (0.002%), ABTS (3.8 μM), and H2O2 (1.5 mM). It was found that HCR has high specificity for GmSg-1 gene and could be applied to the visual detection of different soybean cultivars containing Aa type, Ab type, and Aa/Ab type saponins, which could provide technical reference and theoretical basis for molecular breeding of soybean and development of functional soybean products.
Collapse
Affiliation(s)
- Congcong Yin
- College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Qiaoling Zhao
- College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Aiqin Yue
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Weijun Du
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Dingbin Liu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jinzhong Zhao
- College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Yongpo Zhang
- College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Min Wang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| |
Collapse
|
24
|
Yan XL, Xue XX, Deng XM, Jian YT, Luo J, Jiang MM, Zheng XJ. Chemiluminescence strategy induced by HRP-sandwich structure based on strand displacement for sensitive detection of DNA methyltransferase. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Chen L, Zhang Y, Xia Q, Luo F, Guo L, Qiu B, Lin Z. Fluorescence biosensor for DNA methyltransferase activity and related inhibitor detection based on methylation-sensitive cleavage primer triggered hyperbranched rolling circle amplification. Anal Chim Acta 2020; 1122:1-8. [PMID: 32503739 DOI: 10.1016/j.aca.2020.04.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 11/29/2022]
Abstract
Highly sensitive and selective detection of DNA adenine methylation methyltransferase (Dam MTase) activity is essential for clinical diagnosis and treatment as Dam MTase can catalyze DNA methylation and has a profound effect on gene regulation. In this study, a fluorescence biosensor has been developed for label-free detection of Dam MTase activity via methylation-sensitive cleavage primers triggered hyperbranched rolling circle amplification (HRCA). A hairpin DNA probe (HP) with a Dam MTase specific recognition sequence on the stem acting as a substrate has been designed. This substrate probe can be methylated by the target in the system and subsequently cleaved by DpnI, which results in the release of the primer release probe (RP) and hence in turn triggers the subsequent HRCA reaction. As the HRCA products contain many double-strand DNA (dsDNA) with different lengths, and the SYBR Green I can be embedded in the dsDNA to produce a strong fluorescence signal. However, in the absence of the target, the presence of the probe HP in the form of a hairpin cannot induce the HRCA reaction, and only weak fluorescence intensity can be detected. Under the optimized conditions, the fluorescence of the system has a linear relationship with the logarithm of the concentration of Dam MTase in the range of 2.5-70 U/mL with a detection limit of 1.8 U/mL. The Dam MTase can be well distinguished from other MTase analogs. The developed sensor was applied to detect target in serum and E. coli cell lysate, and the standard recovery rates were in the range of 96%-105%. The results showed that this method has great potential for assessing Dam MTase activity in complex biological samples. In addition, the method has been applied to detect the related inhibitors with high efficiency.
Collapse
Affiliation(s)
- Liping Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Ying Zhang
- Central Laboratory, Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Qian Xia
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
26
|
Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, Xiao Z, Li S, Liu H, Deng Y, Chen Z, Chen H, He N. Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnology 2020; 18:62. [PMID: 32316985 PMCID: PMC7171821 DOI: 10.1186/s12951-020-00613-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleic acid is the main material for storing, copying, and transmitting genetic information. Gene sequencing is of great significance in DNA damage research, gene therapy, mutation analysis, bacterial infection, drug development, and clinical diagnosis. Gene detection has a wide range of applications, such as environmental, biomedical, pharmaceutical, agriculture and forensic medicine to name a few. Compared with Sanger sequencing, high-throughput sequencing technology has the advantages of larger output, high resolution, and low cost which greatly promotes the application of sequencing technology in life science research. Magnetic nanoparticles, as an important part of nanomaterials, have been widely used in various applications because of their good dispersion, high surface area, low cost, easy separation in buffer systems and signal detection. Based on the above, the application of magnetic nanoparticles in nucleic acid detection was reviewed.
Collapse
Affiliation(s)
- Congli Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yuyue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Gaojian Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziqi Xiao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| |
Collapse
|
27
|
Dadmehr M, Karimi MA, Korouzhdehi B. A signal-on fluorescence based biosensing platform for highly sensitive detection of DNA methyltransferase enzyme activity and inhibition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117731. [PMID: 31753656 DOI: 10.1016/j.saa.2019.117731] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
DNA methylation mediated by DNA methyltransferase (MTase) enzyme is internal cell mechanism which regulate the expression or suppression of crucial genes involve in cancer early diagnosis. Herein, highly sensitive fluorescence biosensing platform was developed for monitoring of DNA Dam MTase enzyme activity and inhibition based on fluorescence signal on mechanism. The specific Au NP functionalized oligonucleotide probe with overhang end as a template for the synthesis of fluorescent silver nanoclusters (Ag NCs) was designed to provide the FRET occurrence. Following, methylation and cleavage processes by Dam MTAse and DpnI enzymes respectively at specific probe recognition site could resulted to release of AgNCs synthesizer DNA fragment and returned the platform to fluorescence signal-on state through interrupting in FRET. Subsequently, amplified fluorescence emission signals of Ag NCs showed increasing linear relationship with amount of Dam MTase enzyme at the range of 0.1-20 U/mL and the detection limit was estimated at 0.05 U/mL. Superior selectivity of experiment was illustrated among other tested MTase and restriction enzymes due to the specific recognition of MTase toward its substrate. Furthermore, the inhibition effect of applied Dam MTase drug inhibitors screened and evaluated with satisfactory results which would be helpful for discovery of antimicrobial drugs. The real sample assay also showed the applicability of proposed method in human serum condition. This novel strategy presented an efficient and cost effective platform for sensitive monitoring of DNA MTase activity and inhibition which illustrated its great potential for further application in medical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | | | |
Collapse
|
28
|
Wang JR, Xia C, Yang L, Li YF, Li CM, Huang CZ. DNA Nanofirecrackers Assembled through Hybridization Chain Reaction for Ultrasensitive SERS Immunoassay of Prostate Specific Antigen. Anal Chem 2020; 92:4046-4052. [PMID: 32048509 DOI: 10.1021/acs.analchem.9b05648] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isothermal nucleic acid amplification technology has been widely adopted for analytical chemistry with the purpose of sensitivity improvement. Herein we present an ultrasensitive concatenated hybridization chain reaction (C-HCR) based surface-enhanced Raman scattering (SERS) immunoassay by forming antibody-antigen-aptamer heterosandwich structures with the model analyte of total prostate specific antigens (tPSA). In the C-HCR, two HCRs, one proceeds with two hairpins and the other with four biotin-modified hairpins, are coupled, making the formation of DNA nanofirecrackers with the lengths longer than 200 nm and more than four hundred million binding sites of streptavidin modified enzymes. These types of DNA nanofirecrackers through the aptamer encoded linker strand to form heterosandwich structures could provide a general signal application platform such as enzyme catalysis with high amplification efficiency. As a proof of concept, the Au@Ag core-shell nanostructure based SERS immunoassay with excellent signal amplification has been developed by employing the streptavidin modified alkaline phosphatase (SA-ALP) through its catalysis of 2-phospho-l-ascorbic acid trisodium salt (AAP) to form Au@Ag core-shell nanostructures via the formation of ascorbic acid (AA) to reduce AgNO3 and deposition of silver element on gold nanorods (AuNRs). The newly developed method has a detection limit as low as 0.94 fg/mL and has successfully achieved the detection of serum samples from clinical patients, which was consistent with the clinical test results, showing that this C-HCR strategy to form DNA nanofirecrackers has great potential in clinical applications.
Collapse
Affiliation(s)
- Jia Ru Wang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chang Xia
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Lin Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chun Mei Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.,College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
29
|
Zhang Y, Cui G, Qin N, Yu X, Zhang H, Jia X, Li X, Zhang X, Hun X. An assay for Staphylococcus aureus based on a self-catalytic ampicillin–metal (Fe3+)-organic gels–H2O2 chemiluminescence system with near-zero background noise. Chem Commun (Camb) 2020; 56:3421-3424. [DOI: 10.1039/c9cc09166a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-catalytic ampicillin–metal (Fe3+)-organic gels (AMP–MOGs (Fe))–H2O2 CL system, which is not influenced by transition metal ions, was studied.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Gaoxi Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Nana Qin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xijuan Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Hui Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xiaohua Li
- School of Chemistry and Environmental Engineering
- Shanxi Datong University
- Shanxi 037009
- China
| | - Xuzhi Zhang
- Yellow Sea Fisheries Research Institute
- Chinese Academy of Fishery Sciences
- Laboratory for Marine Fisheries Science and Food Production Processes
- Qingdao National Laboratory for Marine Science and Technology
- Qingdao 266071
| | - Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| |
Collapse
|
30
|
Feng Q, Qin L, Wang M, Wang P. Signal-on electrochemical detection of DNA methylation based on the target-induced conformational change of a DNA probe and exonuclease III-assisted target recycling. Biosens Bioelectron 2019; 149:111847. [PMID: 31733487 DOI: 10.1016/j.bios.2019.111847] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022]
Abstract
A promising electrochemical system was explored for DNA methylation detection according to the construction of a signal-on biosensor. Based on the ingenious design of probe DNA and auxiliary DNA, methylated target DNA triggered the exonuclease III (Exo III) digestion of auxiliary DNA from 3'-terminus, resulting in the conformational change of probe DNA with an electroactive methylene blue (MB) tag at 5'-terminus. Consequently, the MB tag in the probe DNA was close to the electrode surface for electron transfer, generating an increased current signal. Because of the target recycling of methylated DNA, significant signal amplification was obtained. Moreover, bisulfite conversion conferred an efficient approach for the universal analysis of any CpG sites without the restriction of specific DNA sequence. As a result, the target DNA with different methylation statuses were clearly recognized, and the fully methylated DNA was quantified in a wide range from 10 fM to 100 pM, with a detection limit of 4 fM. The present work realized the assay of methylated target DNA in serum samples with satisfactory results, illustrating the application performance of the system in complex sample matrix.
Collapse
Affiliation(s)
- Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Li Qin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mengying Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
31
|
Feng Q, Wang M, Qin L, Wang P. Dual-Signal Readout of DNA Methylation Status Based on the Assembly of a Supersandwich Electrochemical Biosensor without Enzymatic Reaction. ACS Sens 2019; 4:2615-2622. [PMID: 31507174 DOI: 10.1021/acssensors.9b00720] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly sensitive and selective biosensing system was designed to analyze DNA methylation using a dual-signal readout technique in combination with the signal amplification of supersandwich DNA structure. Through the ingenious design of target-triggered cascade of hybridization chain reaction, one target DNA could initiate the formation of supersandwich structure with multiple signal probes. As a result, one-to-multiple amplification effect was achieved, which conferred high sensitivity to target molecular recognition. Based on probe 1 labeled with ferrocene and probe 2 modified with methylene blue, the target DNA was clearly recognized by two electrochemical signals at independent potentials, which was helpful for the acquisition of more accurate detection results. Taking advantage of bisulfite conversion, the methylation status of cytosine (C) was changed to nucleic acid sequence status, which facilitated the hybridization-based detection without enzymatic reaction. Consequently, the methylated DNA was detected at the femtomolar level with satisfactory analytical parameters. The proposed system was effectively used to assess methylated DNA in human blood serum samples, illuminating the possibility of the sensing platform for applications in disease diagnosis and biochemistry research.
Collapse
Affiliation(s)
- Qiumei Feng
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengying Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Li Qin
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
32
|
Li J, Lin L, Yu J, Zhai S, Liu G, Tian L. Fabrication and Biomedical Applications of “Polymer-Like” Nucleic Acids Enzymatically Produced by Rolling Circle Amplification. ACS APPLIED BIO MATERIALS 2019; 2:4106-4120. [DOI: 10.1021/acsabm.9b00622] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shiyao Zhai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Guoyuan Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
33
|
Zhou Y, Jiang W, Wu H, Liu F, Yin H, Lu N, Ai S. Amplified electrochemical immunoassay for 5-methylcytosine using a nanocomposite prepared from graphene oxide, magnetite nanoparticles and β-cyclodextrin. Mikrochim Acta 2019; 186:488. [DOI: 10.1007/s00604-019-3575-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
|
34
|
Abstract
Specific nucleic acid detection in vitro or in vivo has become increasingly important in the discovery of genetic diseases, diagnosing pathogen infection and monitoring disease treatment. One challenge, however, is that the amount of target nucleic acid in specimens is limited. Furthermore, direct sensing methods are also unable to provide sufficient sensitivity and specificity. Fortunately, due to advances in nanotechnology and nanomaterials, nanotechnology-based bioassays have emerged as powerful and promising approaches providing ultra-high sensitivity and specificity in nucleic acid detection. This chapter presents an overview of strategies used in the development and integration of nanotechnology for nucleic acid detection, including optical and electrical detection methods, and nucleic acid assistant recycling amplification strategies. Recent 5 years representative examples are reviewed to demonstrate the proof-of-concept with promising applications for DNA/RNA detection and the underlying mechanism for detection of DNA/RNA with the higher sensitivity and selectivity. Furthermore, a brief discussion of common unresolved issues and future trends in this field is provided both from fundamental and practical point of view.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
35
|
Non-invasive diagnosis of bladder cancer by detecting telomerase activity in human urine using hybridization chain reaction and dynamic light scattering. Anal Chim Acta 2019; 1065:90-97. [PMID: 31005155 DOI: 10.1016/j.aca.2019.03.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/28/2022]
Abstract
Cystoscopy and histology are the gold standards for detection of bladder cancer. However, these methods are highly subjective, expensive, and invasive. We have developed a non-invasive method for the diagnosis of bladder cancer by detecting telomerase activity in human urine. Telomerase substrate (TS) primer is elongated with repeating sequences of (TTAGGG)n in the presence of telomerase. The elongated primer can trigger hybridization chain reaction between two hairpins H1 and H2, result in the aggregation of AuNPs due to the hybridization between the tail sequence on H1 (or H2) and DNA-AuNPs probe, and accompany with the increase of hydrodynamic diameter of AuNPs, which can be measured with dynamic light scattering (DLS). The biosensor displayed a detection limit of 4 MCF-7 cells (a signal-to-noise ratio of 3) and a dynamic range of 10-1000 cells. Moreover, only urine specimens from bladder cancer patients induced a significant change in the average hydrodynamic diameter, indicating its specificity for the non-invasive diagnosis of bladder cancer.
Collapse
|
36
|
Cui YX, Feng XN, Wang YX, Pan HY, Pan H, Kong DM. An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity. Chem Sci 2019; 10:2290-2297. [PMID: 30881654 PMCID: PMC6385671 DOI: 10.1039/c8sc05102j] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10-6 U mL-1, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
| | - Xue-Nan Feng
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
| | - Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
| | - Hui-Yu Pan
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - Hua Pan
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
| |
Collapse
|
37
|
Xue H, Chen K, Zhou Q, Pan D, Zhang Y, Shen Y. Antimony selenide/graphene oxide composite for sensitive photoelectrochemical detection of DNA methyltransferase activity. J Mater Chem B 2019; 7:6789-6795. [DOI: 10.1039/c9tb01541h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An Sb2Se3/graphene oxide composite was applied as both the photoelectrochemical probe and substrate for biomolecule conjugation for the construction of a “signal-off” sandwich-type biosensor for DNA methyltransferase activity detection.
Collapse
Affiliation(s)
- Huaijia Xue
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Kaiyang Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Qing Zhou
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University
- Nanjing 210009
- China
| |
Collapse
|
38
|
Liu H, Luo J, Fang L, Huang H, Deng J, Huang J, Zhang S, Li Y, Zheng J. An electrochemical strategy with tetrahedron rolling circle amplification for ultrasensitive detection of DNA methylation. Biosens Bioelectron 2018; 121:47-53. [DOI: 10.1016/j.bios.2018.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
|
39
|
A label-free light-up fluorescent sensing platform based upon hybridization chain reaction amplification and DNA triplex assembly. Talanta 2018; 189:137-142. [DOI: 10.1016/j.talanta.2018.06.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023]
|
40
|
Photoelectrochemical determination of the activity of M.SssI methyltransferase, and a method for inhibitor screening. Mikrochim Acta 2018; 185:498. [DOI: 10.1007/s00604-018-3033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023]
|
41
|
Qu X, Bian F, Guo Q, Ge Q, Sun Q, Huang X. Ligation-Rolling Circle Amplification on Quantum Dot-Encoded Microbeads for Detection of Multiplex G-Quadruplex-Forming Sequences. Anal Chem 2018; 90:12051-12058. [DOI: 10.1021/acs.analchem.8b02820] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaojun Qu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingsheng Guo
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuebin Huang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
42
|
Li P, Zhang H, Wang D, Tao Y, Zhang L, Zhang W, Wang X. An efficient nonlinear hybridization chain reaction-based sensitive fluorescent assay for in situ estimation of calcium channel protein expression on bone marrow cells. Anal Chim Acta 2018; 1041:25-32. [PMID: 30340687 DOI: 10.1016/j.aca.2018.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/03/2023]
Abstract
A sensitive and highly efficient approach to monitor the expression of proteins on live cells was urgently needed to demonstrate its factor and mechanism and most important for clinical diagnostics and molecular biology. Herein, we developed a simple and highly efficient strategy, nonlinear hybridization chain reaction (nonlinear HCR), for the sensitive determination of proteins on live cells with transient receptor potential vanilloid 4 (TRPV4) and RAW264.7 cells as a model. Unlike the normal hybridization chain reaction (HCR) with multiplicative amplification, an exponential amplified fluorescent response could be obtained in theory based on the proposed nonlinear HCR. As a result, the nonlinear HCR generated a significant enhancement about 3 times compared with the normal HCR and 10 times compared with the directly immunofluorescence assay. Based on the proposed nonlinear HCR, the fluorescent signals increased with the concentration of TRPV4 in the range from 10 pg/mL to 100 ng/mL with a detection limit of 2.8 pg/mL, which would be useful for the sensitive detection of proteins in cell lysis or on cell surface. At the same time, the significant improvements via nonlinear HCR were achieved in the fluorescent imaging system compared with traditional immunofluorescence staining and normal HCR, proving the significant value of nonlinear HCR-based amplification strategy. Success in the establishment of the highly efficient nonlinear HCR strategy offered a simple and sensitive approach to demonstrate the concentration of special proteins on cell and other proteins and nucleotide potentially, revealing a simple and efficient technology for research fields of clinical diagnostics and molecular biology.
Collapse
Affiliation(s)
- Ping Li
- Department of Maxillofacial &E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300020, PR China
| | - Hua Zhang
- Department of Maxillofacial &E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300020, PR China
| | - Dong Wang
- Department of Maxillofacial &E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300020, PR China
| | - Yingjie Tao
- Department of Maxillofacial &E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300020, PR China
| | - Lun Zhang
- Department of Maxillofacial &E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300020, PR China
| | - Wenchao Zhang
- Department of Maxillofacial &E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300020, PR China.
| | - Xudong Wang
- Department of Maxillofacial &E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300020, PR China.
| |
Collapse
|
43
|
Deng X, Qin S, Chen Y, Liu HY, Yuan E, Deng H, Liu SM. B-RCA revealed circulating miR-33a/b associates with serum cholesterol in type 2 diabetes patients at high risk of ASCVD. Diabetes Res Clin Pract 2018; 140:191-199. [PMID: 29601916 DOI: 10.1016/j.diabres.2018.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/23/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
Abstract
AIMS Type 2 diabetes (T2D) is a complex metabolic disease with high incidence throughout the world. Dyslipidemia is the leading cause of atherosclerotic cardiovascular diseases (ASCVD) in T2D patients. hsa-miR-33 (miR-33) serves as a regulator in lipid metabolism. We hypothesized that blood miR-33 associates with serum lipids in T2D patients at high risk of ASCVD events. METHODS We developed a branched rolling circle amplification (B-RCA) method and assessed its sensitivity and specificity with miR-33a/b standards by traditional TaqMan assay. Circulating miR-33a/b level was then determined with B-RCA in 30 T2D patients at high risk for developing ASCVD and 33 healthy controls. Pearson correlation coefficient was used to evaluate the correlation between circulating miR-33a/b and serum cholesterol. RESULTS Compared with TaqMan assay, B-RCA method showed a similar specificity and a 100-fold higher sensitivity for miR-33a detection. Circulating miR-33a/b level is positively correlated with serum total cholesterol (TC) (r = 0.364, p = 0.048) and low-density lipoprotein cholesterol (LDL-C) (r = 0.383, p = 0.037) in T2D patients at high risk for developing ASCVD. CONCLUSIONS Our B-RCA method provided an alternative strategy with specificity and high sensitivity for circulating miRNAs detection, and the results demonstrated that miR-33a/b might play an important role in cholesterol regulation.
Collapse
Affiliation(s)
- Xujing Deng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China
| | - Shanshan Qin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China.
| | - Yuqi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China.
| | - Huan-Yu Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China; Department of Clinical Medicine, Hubei University of Medicine, Hubei 442000, China.
| | - Erfeng Yuan
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China
| | - Haohua Deng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.
| |
Collapse
|
44
|
Augspurger EE, Rana M, Yigit MV. Chemical and Biological Sensing Using Hybridization Chain Reaction. ACS Sens 2018; 3:878-902. [PMID: 29733201 DOI: 10.1021/acssensors.8b00208] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the advent of its theoretical discovery more than 30 years ago, DNA nanotechnology has been used in a plethora of diverse applications in both the fundamental and applied sciences. The recent prominence of DNA-based technologies in the scientific community is largely due to the programmable features stored in its nucleobase composition and sequence, which allow it to assemble into highly advanced structures. DNA nanoassemblies are also highly controllable due to the precision of natural and artificial base-pairing, which can be manipulated by pH, temperature, metal ions, and solvent types. This programmability and molecular-level control have allowed scientists to create and utilize DNA nanostructures in one, two, and three dimensions (1D, 2D, and 3D). Initially, these 2D and 3D DNA lattices and shapes attracted a broad scientific audience because they are fundamentally captivating and structurally elegant; however, transforming these conceptual architectural blueprints into functional materials is essential for further advancements in the DNA nanotechnology field. Herein, the chemical and biological sensing applications of a 1D DNA self-assembly process known as hybridization chain reaction (HCR) are reviewed. HCR is a one-dimensional (1D) double stranded (ds) DNA assembly process initiated only in the presence of a specific short ssDNA (initiator) and two kinetically trapped DNA hairpin structures. HCR is considered an enzyme-free isothermal amplification process, which shows substantial promise and offers a wide range of applications for in situ chemical and biological sensing. Due to its modular nature, HCR can be programmed to activate only in the presence of highly specific biological and/or chemical stimuli. HCR can also be combined with different types of molecular reporters and detection approaches for various analytical readouts. While the long dsDNA HCR product may not be as structurally attractive as the 2D and 3D DNA networks, HCR is highly instrumental for applied biological, chemical, and environmental sciences, and has therefore been studied to foster a variety of objectives. In this review, we have focused on nucleic acid, protein, metabolite, and heavy metal ion detection using this 1D DNA nanotechnology via fluorescence, electrochemical, and nanoparticle-based methodologies.
Collapse
|
45
|
Chen S, Lv Y, Shen Y, Ji J, Zhou Q, Liu S, Zhang Y. Highly Sensitive and Quality Self-Testable Electrochemiluminescence Assay of DNA Methyltransferase Activity Using Multifunctional Sandwich-Assembled Carbon Nitride Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6887-6894. [PMID: 29376630 DOI: 10.1021/acsami.7b17813] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation catalyzed by methylase plays a key role in many biological activities. However, developing a highly sensitive, simple, and reliable way for evaluation of DNA methyltransferase (MTase) activity is still a challenge. Here, we report a sandwich-assembled electrochemiluminescence (ECL) biosensor using multifunctional carbon nitride nanosheets (CNNS) to evaluate the Dam MTase activity. The CNNS could not only be used as an excellent substrate to conjugate a large amount of hairpin probe DNA to improve the sensitivity but also be utilized as an internal reliability checker and an analyte reporter in the bottom and top layers of the biosensor, respectively. Such a unique sandwich configuration of CNNS well coupled the advantages of ECL luminophor that were generally assembled in the bottom or top layer in a conventional manner. As a result, the biosensor exhibited an ultralow detection limit down to 0.043 U/mL and a linear range between 0.05 and 80 U/mL, superior to the MTase activity assay in most previous reports. We highlighted the great potential of emerging CNNS luminophor in developing highly sensitive and smart quality self-testable ECL sensing systems using a sandwiched configuration for early disease diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Shiyu Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yanqin Lv
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yanfei Shen
- Medical School, Southeast University , Nanjing 210009, China
| | - Jingjing Ji
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| |
Collapse
|
46
|
Zhou H, Liu J, Xu JJ, Zhang SS, Chen HY. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem Soc Rev 2018; 47:1996-2019. [PMID: 29446429 DOI: 10.1039/c7cs00573c] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shu-Sheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
47
|
Commercial glucometer as signal transducer for simple evaluation of DNA methyltransferase activity and inhibitors screening. Anal Chim Acta 2018; 1001:18-23. [DOI: 10.1016/j.aca.2017.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022]
|
48
|
Zhou X, Zhao M, Duan X, Guo B, Cheng W, Ding S, Ju H. Collapse of DNA Tetrahedron Nanostructure for "Off-On" Fluorescence Detection of DNA Methyltransferase Activity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40087-40093. [PMID: 29111659 DOI: 10.1021/acsami.7b13551] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a potential detection technique, highly rigid and versatile functionality of DNA tetrahedron nanostructures is often used in biosensing systems. In this work, a novel multifunctional nanostructure has been developed as an "off-on" fluorescent probe for detection of target methyltransferase by integrating the elements of DNA tetrahedron, target recognition, and dual-labeled reporter. This sensing system is initially in an "OFF" state owing to the close proximity of fluorophores and quenchers. After the substrate is recognized by target methyltransferase, the DNA tetrahedron can be methylated to produce methylated DNA sites. These sites can be recognized and cut by the restriction endonuclease DpnI to bring about the collapse of the DNA tetrahedron, which leads to the separation of the dual-labeled reporters from the quenchers, and thus the recovery of fluorescence signal to produce an "ON" state. The proposed DNA tetrahedron-based sensing method can detect Dam methyltransferase in the range of 0.1-90 U mL-1 with a detection limit of 0.045 U mL-1 and shows good specificity and reproducibility for detection of Dam methyltransferase in a real sample. It has been successfully applied for screening various methylation inhibitors. Thus, this work possesses a promising prospect for detection of DNA methyltransfrase in the field of clinical diagnostics.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
- Department of Clinical Laboratory, The Affiliated Hospital of Medical College, Qingdao University , Qingdao 266101, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Bin Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
| | - Huangxian Ju
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University , Chongqing 400016, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
49
|
Zhang Y, Wang XY, Zhang Q, Zhang CY. Label-Free Sensitive Detection of DNA Methyltransferase by Target-Induced Hyperbranched Amplification with Zero Background Signal. Anal Chem 2017; 89:12408-12415. [PMID: 29083155 DOI: 10.1021/acs.analchem.7b03490] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
DNA methyltransferases (MTases) may specifically recognize the short palindromic sequences and transfer a methyl group from S-adenosyl-l-methionine to target cytosine/adenine. The aberrant DNA methylation is linked to the abnormal DNA MTase activity, and some DNA MTases have become promising targets of anticancer/antimicrobial drugs. However, the reported DNA MTase assays often involve laborious operation, expensive instruments, and radio-labeled substrates. Here, we develop a simple and label-free fluorescent method to sensitively detect DNA adenine methyltransferase (Dam) on the basis of terminal deoxynucleotidyl transferase (TdT)-activated Endonuclease IV (Endo IV)-assisted hyperbranched amplification. We design a hairpin probe with a palindromic sequence in the stem as the substrate and a NH2-modified 3' end for the prevention of nonspecific amplification. The substrate may be methylated by Dam and subsequently cleaved by DpnI, producing three single-stranded DNAs, two of which with 3'-OH termini may be amplified by hyperbranched amplification to generate a distinct fluorescence signal. Because high exactitude of TdT enables the amplification only in the presence of free 3'-OH termini and Endo IV only hydrolyzes the intact apurinic/apyrimidinic sites in double-stranded DNAs, zero background signal can be achieved. This method exhibits excellent selectivity and high sensitivity with a limit of detection of 0.003 U/mL for pure Dam and 9.61 × 10-6 mg/mL for Dam in E. coli cells. Moreover, it can be used to screen the Dam inhibitors, holding great potentials in disease diagnosis and drug development.
Collapse
Affiliation(s)
- Yan Zhang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University , Jinan 250014, China
| | - Xin-Yan Wang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University , Jinan 250014, China
| | - Qianyi Zhang
- Nantou High School Shenzhen , Shenzhen, 518052, China
| | - Chun-Yang Zhang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
50
|
Gao F, Fan T, Ou S, Wu J, Zhang X, Luo J, Li N, Yao Y, Mou Y, Liao X, Geng D. Highly efficient electrochemical sensing platform for sensitive detection DNA methylation, and methyltransferase activity based on Ag NPs decorated carbon nanocubes. Biosens Bioelectron 2017; 99:201-208. [PMID: 28759870 DOI: 10.1016/j.bios.2017.07.063] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022]
Abstract
In this paper, we reported a sensitive and selective electrochemical method for quantify DNA methylation, analyzing DNA MTase activity and screening of MTase inhibitor based on silver nanoparticles (Ag NPs) decorated carbon nanocubes (CNCs) as signal tag. The Ag NPs/CNCs was prepared by in situ growth of nanosilver on carboxylated CNCs and used as a tracing tag to label antibody. The sensor was prepared by immobilizing the double DNA helix structure on the surface of gold electrode. When DNA MTase was introduced, the probe was methylated. Successively, anti-5-methylcytosine antibody labeled Ag NPs/CNCs was specifically conjugated on the CpG methylation site. The electrochemical stripping signal of the Ag NPs was used to monitor the activity of MTase. The electrochemical signal has a linear relationship with M.SssI activities ranging from 0.05 to 120U/mL with a detection limit of 0.03U/mL. In addition, we also demonstrated the method could be used for rapid evaluation and screening of the inhibitors of MTase. The newly designed strategy avoid the requirement of deoxygenation for electrochemical assay, and thus provide a promising potential in clinical application.
Collapse
Affiliation(s)
- Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Taotao Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Shanshan Ou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Jing Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Xing Zhang
- The Graduate School, Xuzhou Medical University, 221004 Xuzhou, China
| | - Jianjun Luo
- The Graduate School, Xuzhou Medical University, 221004 Xuzhou, China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yao Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yingfeng Mou
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000 Baise, China.
| | - Deqin Geng
- The Graduate School, Xuzhou Medical University, 221004 Xuzhou, China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|