1
|
Straub T, Haberkorn R, Kickelbick G. Mechanochemical Activation of Mn 3O 4: Implications for Lithium Intercalation. Inorg Chem 2025; 64:6420-6433. [PMID: 40085723 PMCID: PMC11979893 DOI: 10.1021/acs.inorgchem.4c04660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/31/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Manganese oxide (Mn3O4) was subjected to mechanochemical activation (MCA) using a planetary ball mill to investigate the influence of milling parameters on lithium intercalation. After activation, Mn3O4 was lithiated in suspension with organolithium compounds. Structural changes, including LiMn3O4 formation, were analyzed by powder X-ray diffraction (PXRD) with Rietveld refinement, supported by scanning electron microscope (SEM), transmission electron microscopy (TEM), physisorption isotherms, and inductively coupled plasma mass spectrometry (ICP-MS). Additional insights into lattice defects were obtained via Raman spectroscopy, electrochemical impedance spectroscopy, and in situ pressure and temperature monitoring during milling. No phase transformation occurred during MCA, though crystallite size decreased to 8.5(5) nm after 4 h at 400 rpm in a zirconia milling jar. Notably, a final crystallite size of 90(9) nm was reached after just 10 min at the same speed. MCA did not cause significant oxygen release from the structure. Short-duration MCA at sufficient speed enhanced lithium intercalation in Mn3O4, whereas prolonged milling or lower speeds hindered the process. These findings demonstrate that brief mechanochemical activation effectively improves lithium intercalation in transition metal oxides, offering a promising approach for tuning electrochemical properties.
Collapse
Affiliation(s)
- Tobias
Benjamin Straub
- Inorganic Solid-State Chemistry, Saarland University, Campus, Building C4.1, 66123 Saarbrücken, Germany
| | - Robert Haberkorn
- Inorganic Solid-State Chemistry, Saarland University, Campus, Building C4.1, 66123 Saarbrücken, Germany
| | - Guido Kickelbick
- Inorganic Solid-State Chemistry, Saarland University, Campus, Building C4.1, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Moni HEJ, Rezaei B, Karampelas IH, Saeidi-Javash M, Gómez-Pastora J, Wu K, Zeng M. Printing rare-earth-free (REF) magnetic inks: synthesis, formulation, and device applications. NANOSCALE 2025; 17:4830-4853. [PMID: 39744875 DOI: 10.1039/d4nr04035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Additive manufacturing (AM) of magnetic materials has recently attracted increasing interest for various applications but is often limited by the high cost and supply chain risks of rare-earth-element (REE) magnetic precursors. Recent advances in nanomanufacturing have enabled the development of rare-earth-free (REF) magnetic materials, such as spinel ferrites, hexaferrites, MnAl, MnBi, Alnico, FePt, and iron oxides/nitrides, which offer promising alternatives for printing high-performance magnetic devices. This review provides a detailed overview of the latest developments in REF magnetic materials, covering both synthesis strategies of REF magnetic materials/nanomaterials and their integration into AM processes. We summarize the design and formulation of magnetic inks, emphasizing the unique properties of REF ferromagnetic and ferrimagnetic systems and their adaptability to AM techniques like direct ink writing, inkjet printing, aerosol jet printing, and screen printing. Key advancements in materials chemistry, ink rheology, and device performance are discussed, highlighting how the structure of REF magnetic materials impacts device functionalities. This review concludes with a perspective on the pressing challenges and emerging opportunities in AM of REF magnetic inks. Through this review, we aim to offer insights into the structure-processing-property relationship of REF magnetic inks and guide the design of next-generation printable magnetic systems in a scalable, cost-effective, and sustainable manner.
Collapse
Affiliation(s)
- Hur-E-Jannat Moni
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | | - Mortaza Saeidi-Javash
- Department of Mechanical and Aerospace Engineering, California State University Long Beach, Long Beach, California, USA
| | | | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
3
|
Lahchich A, Álvarez-Lloret P, Reynes JF, Marcos C. Relationships Between Physicochemical and Structural Properties of Commercial Vermiculites. MATERIALS (BASEL, SWITZERLAND) 2025; 18:831. [PMID: 40004353 PMCID: PMC11857825 DOI: 10.3390/ma18040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
This study examines the effects of thermal (1000 °C), hydrothermal (100 °C), mechanochemical (ambient T), and microwave (~100 °C) treatments on three types of Chinese vermiculites, one with lower potassium content than the others. The goal was to obtain materials with enhanced properties related to specific surface areas. The response of the vermiculites to treatments and their physicochemical properties were analyzed using X-ray diffraction (XRD), thermal analysis (TG and DTG), and textural characterization via the BET method. XRD analyses showed similar mineral composition in treated and untreated samples, but the treatments affected the intensity and width of phase reflections, altering crystallinity and structural order, as well as the proportions of vermiculite, hydrobiotite, and phlogopite. Thermogravimetric analysis revealed two mass loss stages: water desorption (from 25 °C to about 250 °C) and recrystallization or dehydroxylation (above 800 °C). The isotherms indicated mesoporous characteristics, with hydrothermally CO2-treated samples having the highest specific surface area and adsorption capacity. The samples with vermiculite, hydrobiotite, and phlogopite generally showed moderate to high specific surface area (SBET) values, and mechanochemical treatments significantly increase SBET and pore volume (Vp) in the vermiculite and hydrobiotite samples. Crystallinity affects SBET, average Vp, and average pore size, and its monitoring is crucial to achieve the desired material characteristics, as higher crystallinity can reduce SBET but improve mechanical strength and thermal stability. This study highlights the influence of different treatments on vermiculite properties, providing valuable insights into their potential applications in various fields (such as thermal insulation in vehicles and aircraft, and the selective adsorption of gases and liquids in industrial processes, improving the strength and durability of building materials like cement and bricks).
Collapse
Affiliation(s)
- Ayoub Lahchich
- Departamento de Geología, Facultad de Geología, Universidad de Oviedo, C. Jesús Arias de Velasco s/n, 33005 Oviedo, Spain (P.Á.-L.)
| | - Pedro Álvarez-Lloret
- Departamento de Geología, Facultad de Geología, Universidad de Oviedo, C. Jesús Arias de Velasco s/n, 33005 Oviedo, Spain (P.Á.-L.)
| | - Javier F. Reynes
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Av. Julián Clavería, 8, 33006 Oviedo, Spain;
| | - Celia Marcos
- Departamento de Geología, Facultad de Geología, Universidad de Oviedo, C. Jesús Arias de Velasco s/n, 33005 Oviedo, Spain (P.Á.-L.)
| |
Collapse
|
4
|
Wang K, Fang Z. Catalytic generation of adsorbed atomic H for degradation of 2,2',4,4'-tetrabromodiphenyl ether by mechanochemically prepared Ni-doped oxalated zero-valent iron. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125334. [PMID: 39566708 DOI: 10.1016/j.envpol.2024.125334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
In the homologous series of polybrominated diphenyl ethers (PBDEs), the debromination of low-brominated diphenyl ethers with higher toxicity remains a challenge. Nano zero-valent iron (nZVI) has been extensively studied for the debromination of PBDEs, but its inherent direct electron transfer mechanism is less efficient for low-brominated diphenyl ethers, and there are issues with high preparation costs. In this work, we synthesize Ni-doped oxalated submicron ZVI (FeOXbm/Ni) using a low-cost ball-milling method. FeOXbm/Ni exhibits a debromination rate constant of 0.48 day-1 for 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in tetrahydrofuran (THF)/water. The debromination rate of FeOXbm/Ni for BDE-47 in water is even faster (0.98 day-1), with the yield of the complete debromination product, diphenyl ether, reaching 76.71%. In real groundwater, FeOXbm/Ni also shows high reactivity toward BDE-47, with a rate constant of 0.33 day-1. Kinetic experiments, quenching experiments, and degradation pathway indicate that the attack of atomic hydrogen on C-Br bonds is the primary degradation mechanism. Electrochemical analysis further show that Ni0 sites could cleave hydrogen into absorbed atomic hydrogen (H∗ABS) and adsorbed atomic hydrogen (H∗ADS), with H∗ADS playing the main role. These findings contribute valuable insights into advancing the large-scale application of ZVI and offer promising strategies for thorough remediation of PBDEs pollution.
Collapse
Affiliation(s)
- Kuang Wang
- College of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Zhanqiang Fang
- College of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Province Environmental Remediation Industry Technology Innovation Alliance, Guangzhou, 510006, China; Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Sun CJ, Gau SH, Huang YK, Li MG, Wang J. Removal of heavy metals in water-extracted solution through adsorption by palygorskite and stabilization by comilling. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2025; 43:232-240. [PMID: 38497604 DOI: 10.1177/0734242x241237107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Removing water-soluble chlorides (WSCs) through water extraction is a common pretreatment technology for recycling municipal solid waste incineration (MSWI) fly ash (FA). However, the extracted solution often contains heavy metals, the concentrations of which exceed standards for effluent. This study aims to investigate the adsorption of heavy metals by palygorskite in water-extracted solution and explore the feasibility of stabilizing heavy metals through comilling palygorskite-adsorbed heavy metals (PAHMs) with water-extracted fly ash (WFA). The experimental parameters include: two-stage water extraction with a liquid-to-solid ratio of 5, adding 0, 0.125, 0.25, 0.5, 1, 2 or 3 g of palygorskite to 100 mL of water-extracted solution, and comilling the mixture of PAHMs and WFA for 0, 0.5, 1, 2, 4, 8, 12, 24 or 96 hours. The experimental results revealed that 3 g of palygorskite in 100 mL of extracted solution could absorb Pb, Cd, Cr, Cu and Zn, meeting the effluent standards. The total amount of Pb, Cd, Cr, Cu and Zn removal rate reached 99.7%. Moreover, 98.44% of the WSCs were not adsorbed, the water extraction process for removing WSCs was not compromised. After the comilling of PAHMs and WFA, the distribution of the heavy metals in the milled blended powder was greater than 99.44%; moreover, toxicity characteristic leaching procedure concentrations were determined to conform to regulatory standards, and the sequential extraction procedure revealed that the heavy metals tended to be in stable fractions. This achieves the goal of preventing secondary pollution from heavy metals during the MSWI FA recycling process.
Collapse
Affiliation(s)
- Chang-Jung Sun
- Department of Environmental Engineering, Dongguan City University, Guangdong, China
| | - Sue-Huai Gau
- Department of Water Resources and Environmental Engineering, Tamkang University, Tamsui, Taipei, Taiwan
| | - Yu-Kai Huang
- Taiwan Semiconductor Manufacturing Co., Ltd., Hsinchu, Taiwan
| | - Ming-Guo Li
- Department of Water Resources and Environmental Engineering, Tamkang University, Tamsui, Taipei, Taiwan
| | - Jing Wang
- Department of Environmental Engineering, Dongguan City University, Guangdong, China
| |
Collapse
|
6
|
Hua M, Liu S, Zhou L, Bünzli JC, Wu M. Phosphor-converted light-emitting diodes in the marine environment: current status and future trends. Chem Sci 2025; 16:2089-2104. [PMID: 39829978 PMCID: PMC11736801 DOI: 10.1039/d4sc06605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
The exploitation and utilization of resources in marine environments have ignited a demand for advanced illumination and optical communication technologies. Light-emitting diodes (LEDs), heralded as "green lighting sources", offer a compelling solution to the technical challenges of marine exploration due to their inherent advantages. Among the myriad of LED technologies, phosphor-converted light-emitting diodes (pc-LEDs) have emerged as frontrunners in marine applications. At the heart of pc-LEDs lie phosphor materials, colour-converters that orchestrate the emission of light. In the marine environment, blue-green light with a wavelength of 440-570 nm exhibits the deepest penetration depth, while other wavelengths are rapidly attenuated in the shallow layer. Additionally, specific wavelengths of light are crucial for particular applications. However, the moist marine environment as well as the demand for continuous and stable lighting pose a formidable challenge to the environmental stability of the phosphors. Therefore, developing blue-green phosphors with exceptional colour purity and high thermal and moisture stability is paramount for marine applications. Herein, this review delves into the application of LED and pc-LED technology in underwater optical communication and marine fishery, exploring the development strategies of phosphors tailored for the marine environment. The insights presented serve as a valuable reference for further research on phosphors and pc-LED devices.
Collapse
Affiliation(s)
- Maofeng Hua
- Zhuhai Key Laboratory of Optoelectronic Functional Materials and Membrane Technology, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 P. R. China
| | - Shuifu Liu
- Zhuhai Key Laboratory of Optoelectronic Functional Materials and Membrane Technology, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 P. R. China
- College of Materials, Xiamen University Xiamen 361005 P. R. China
| | - Lei Zhou
- Zhuhai Key Laboratory of Optoelectronic Functional Materials and Membrane Technology, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 P. R. China
| | - Jean-Claude Bünzli
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong 999077 P. R. China
- Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne Switzerland
| | - Mingmei Wu
- Zhuhai Key Laboratory of Optoelectronic Functional Materials and Membrane Technology, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 P. R. China
| |
Collapse
|
7
|
Yu NK, Rasteiro L, Nguyen VS, Gołąbek KM, Sievers C, Medford AJ. Evaluating the Role of Metastable Surfaces in Mechanochemical Reduction of Molybdenum Oxide. JACS AU 2025; 5:82-90. [PMID: 39886584 PMCID: PMC11775685 DOI: 10.1021/jacsau.4c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 02/01/2025]
Abstract
Mechanochemistry and mechanocatalysis are gaining increasing attention as environmentally friendly chemical processes because of their solvent-free nature and scalability. Significant effort has been devoted for studying continuum-scale phenomena in mechanochemistry, such as temperature and pressure gradients, but the atomic-scale mechanisms remain relatively unexplored. In this work, we focus on the mechanochemical reduction of MoO3 as a case study. We use experimental techniques to determine the mechanochemical reduction conditions and density functional theory (DFT) simulations to establish an atomistic framework for identifying the metastable surfaces that are most likely to enable this process. Our results show that metastable surfaces can significantly lower or remove thermodynamic barriers for surface reduction and that kinetic energy from milling can facilitate the formation of metastable surfaces that have high surface fracture energies and are not thermally accessible. These findings indicate that metastable surfaces are an important aspect of mechanochemistry along with hot spots and other continuum-scale phenomena.
Collapse
Affiliation(s)
- Neung-Kyung Yu
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| | - Letícia
F. Rasteiro
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| | - Van Son Nguyen
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| | - Kinga M. Gołąbek
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| | - Carsten Sievers
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| | - Andrew J. Medford
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| |
Collapse
|
8
|
Triller S, Amrute A, Schüth F. Scale-Up of Nanocorundum Synthesis by Mechanochemical Dehydration of Boehmite. Ind Eng Chem Res 2025; 64:1577-1586. [PMID: 39867354 PMCID: PMC11760161 DOI: 10.1021/acs.iecr.4c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
This work presents the scale-up of room-temperature mechanochemical synthesis of nanocorundum (high-surface-area α-Al2O3) from boehmite (γ-AlOOH). This transformation on the 1 g scale using a laboratory shaker mill had previously been reported. High-energy Simoloyer ball mills equipped with milling chambers of sizes ranging from 1 to 20 L were used to scale up the mechanochemical nanocorundum synthesis to the 50 g to 1 kg scale, which paves the way to further increase batch size. Milling chambers made of steel and lined with silicon nitride (Si3N4) and milling balls made of steel, zirconia (ZrO2), and silicon nitride (Si3N4) were investigated to address the abrasion problem, leading to contamination of the alumina. Furthermore, several other process parameters, such as ball-to-powder ratio, degree of chamber filling, and milling speed, were optimized to find the conditions for efficient formation of nanocorundum with minimum contamination. Impact forces were found to be decisive in driving the transformation from boehmite to corundum. The nanocorundum produced in the scaled-up experiments has a high specific surface area >110 m2/g with an average particle size of ∼13 nm at a low level of contamination. The optimal sample was also shown to possess improved stability of surface area when exposed to temperatures up to 1200 °C. These results successfully demonstrate the scale-up of 1 g scale results to up to the 1 kg scale and may serve as a blueprint for scaling up also other mechanochemistry processes.
Collapse
Affiliation(s)
- Sarah Triller
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Amol Amrute
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Ferdi Schüth
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Gießelmann ECJ, Kickelbick G, Janka O. Changing the reaction pathway of the CaAl 2 oxidation using ball milling. Dalton Trans 2025; 54:1173-1181. [PMID: 39607685 DOI: 10.1039/d4dt02459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
As previously shown, CaAl2 can be oxidized using elemental O2 to form CaAl2O4. This reaction, however, proceeds via Ca12Al14O33 and elemental Al as intermediates which are subsequently transformed into the stoichiometric reaction product. High-energy ball milling is known to decrease the crystallite size of a material and to significantly produce defects enabling different reaction pathways compared to a highly crystalline bulk material. In this subsequent study, a different oxidizing agent (H2O) as well as the ball milling behavior of CaAl2 and the consecutive oxidation via elemental O2 were studied. While the use of H2O as the oxidizing agent showed only minor differences in the reaction products, ball milling of CaAl2 decreases, as expected, the crystallite size of the material and introduces defects. This is visible both in the powder X-ray diffraction patterns and in the 27Al solid-state MAS NMR spectra. In the subsequent steps, the ball milled material was oxidized in an STA system. Already 5 min of ball milling significantly changes the energy pattern of the reaction. Powder X-ray diffraction studies on the oxidized material clearly indicate that a different reaction pathway occurs. Samples ball milled for 180 min even get pyrophoric.
Collapse
Affiliation(s)
- Elias C J Gießelmann
- Inorganic Solid State Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany.
| | - Guido Kickelbick
- Inorganic Solid State Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany.
| | - Oliver Janka
- Inorganic Solid State Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany.
| |
Collapse
|
10
|
Nishiguchi T, Ohara Y, Kadota K, Zheng X, Noro SI, Horike S. Mechanically induced polyamorphism in a one-dimensional coordination polymer. Chem Sci 2025; 16:621-626. [PMID: 39640024 PMCID: PMC11616725 DOI: 10.1039/d4sc07058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
We created different amorphous structures of a coordination polymer by applying mechanical shear forces. One-dimensional Cu(Tf2N)2(bip)2 (1, Tf2N- = bis(trifluoromethanesulfonyl)imide, bip = 1,3-bis(1-imidazolyl)propane) melted at 245 °C and underwent a glass transition at -10 °C by a static cooling process. 1 formed another amorphous state with a distinct glass transition point of 70 °C under oscillatory shear stress. The difference of orientation in their structures was studied by X-ray absorption fine structure and small-angle X-ray scattering. The reversible transition between the two amorphous states was observed by dynamic mechanical analyses.
Collapse
Affiliation(s)
- Taichi Nishiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yuki Ohara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kentaro Kadota
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Xin Zheng
- Faculty of Environmental Earth Science, Hokkaido University Kita 10, Nishi 5, Kita-ku Sapporo 060-0810 Japan
| | - Shin-Ichiro Noro
- Faculty of Environmental Earth Science, Hokkaido University Kita 10, Nishi 5, Kita-ku Sapporo 060-0810 Japan
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| |
Collapse
|
11
|
Aicher K, Berger T, Diwald O. BaTiO 3 Nanoparticle Interfaces in Contact: Ferroelectricity Drives Tribochemically Induced Oxygen Radical Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26928-26935. [PMID: 39670329 DOI: 10.1021/acs.langmuir.4c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Chemical transformations at metal oxide interfaces that are triggered by mechanical energy set the basis for applications in the fields of tribo- and mechanochemistry, ceramic and composite processing, and piezoelectric devices. We investigated the early stages of tribochemically initiated radical chemistry of structurally well-defined TiO2 and BaTiO3 nanoparticles in argon or in oxygen atmosphere. Electron paramagnetic resonance spectroscopy enabled the determination of the chemical nature and concentration of paramagnetic surface species which form upon uniaxial powder compaction at room temperature. Trapped hole centers (O-) as well as trapped or scavenged electrons (Ti3+ or O2-, respectively) were analyzed as products of mechanical surface activation. For ferroelectric BaTiO3 nanoparticles, we found that the spontaneous polarization effects of the oxide lattice increase the yield of paramagnetic surface species by a factor >20 as compared to paraelectric TiO2 nanoparticles. Comparison with UV excitation experiments, where the energy required to drive the corresponding charge separation phenomena is hν ≥ 3.2 eV, indicates that the paramagnetic species that originate from uniaxial powder compaction in the dark result from mechanically induced surface redox processes that are supported by local flexoelectric potential differences.
Collapse
Affiliation(s)
- Korbinian Aicher
- Department of Chemistry and Physics of Materials, Paris-Lodron University Salzburg, Jakob-Haringer-Straße 2a, A-5020 Salzburg, Austria
| | - Thomas Berger
- Department of Chemistry and Physics of Materials, Paris-Lodron University Salzburg, Jakob-Haringer-Straße 2a, A-5020 Salzburg, Austria
| | - Oliver Diwald
- Department of Chemistry and Physics of Materials, Paris-Lodron University Salzburg, Jakob-Haringer-Straße 2a, A-5020 Salzburg, Austria
| |
Collapse
|
12
|
Trzeciak K, Dudek MK, Potrzebowski MJ. Mechanochemical Transformations of Pharmaceutical Cocrystals: Polymorphs and Coformer Exchange. Chemistry 2024; 30:e202402683. [PMID: 39384536 DOI: 10.1002/chem.202402683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Transformations of solid samples under solvent-free or minimal solvent conditions set the future trend and define a modern strategy for the production of new materials. Of the various technologies tested in recent years, the mechanochemical approach seems to be the most promising for economic and ecological reasons. The aim of this review article is to present the current state of art in solid state research on binary systems, which have found numerous applications in the pharmaceutical and materials science industries. This article is divided into three sections. In the first part, we describe the new equipment improvements, which include the innovative application of thermo-mechanochemistry, sono-mechanochemistry, photo-mechanochemistry, electro-mechanochemistry, as well as resonant acoustic mixing (RAM), and transformation under high-speed sample spinning ("SpeedMixing"). A brief description of techniques dedicated to ex-situ and in-situ studies of progress and the mechanism of solid matter transformation (PXRD, FTIR, Raman and NMR spectroscopy) is presented. In the second section, we discuss the problem of cocrystal polymorphism highlighting the issue related with correlation between mechanochemical parameters (time, temperature, energy, molar ratio, solvent used as a liquid assistant, surface energy, crystal size, crystal shape) and preference for the formation of requested polymorph. The last part is devoted to the description of the processes of coformer exchange in binary systems forced by mechanical and/or thermal stimuli. The influence of the thermodynamic factor on the selection of the best-suited partner for the formation of a two-component stable structure is presented.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
13
|
Hamzehpoor E, Effaty F, Borchers TH, Stein RS, Wahrhaftig-Lewis A, Ottenwaelder X, Friščić T, Perepichka DF. Mechanochemical Synthesis of Boroxine-linked Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202404539. [PMID: 38970305 DOI: 10.1002/anie.202404539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/08/2024]
Abstract
We report a rapid, room-temperature mechanochemical synthesis of 2- and 3-dimensional boroxine covalent organic frameworks (COFs), enabled by using trimethylboroxine as a dehydrating additive to overcome the hydrolytic sensitivity of boroxine-based COFs. The resulting COFs display high porosity and crystallinity, with COF-102 being the first example of a mechanochemically prepared 3D COF, exhibiting a surface area of ca. 2,500 m2 g-1. Mechanochemistry enabled a>20-fold reduction in solvent use and ~100-fold reduction in reaction time compared with solvothermal methods, providing target COFs quantitatively with no additional work-up besides vacuum drying. Real-time Raman spectroscopy permitted the first quantitative kinetic analysis of COF mechanosynthesis, while transferring the reaction design to Resonant Acoustic Mixing (RAM) enabled synthesis of multi-gram amounts of the target COFs (tested up to 10 g).
Collapse
Affiliation(s)
- Ehsan Hamzehpoor
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
| | - Farshid Effaty
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, H4B 1R6, Canada
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Tristan H Borchers
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Robin S Stein
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
- Bruker UK Ltd, Longwood Close, Westwood Business Park, Coventry, CV4 8HZ, United Kingdom
| | | | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, H4B 1R6, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, H3A 0B8, Canada
| |
Collapse
|
14
|
Őze C, Badacsonyi N, Makó É. Mechanochemical Activation of Waste Clay Brick Powder with Addition of Waste Glass Powder and Its Influence on Pozzolanic Reactivity. Molecules 2024; 29:5740. [PMID: 39683897 DOI: 10.3390/molecules29235740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The availability of industrially used supplementary cementitious materials (SCMs, e.g., fly ash) decreases due to the rise in renewable energy sources and recycling technologies. Therefore, it is essential to find alternative SCMs (e.g., waste glass and clay brick powder) that are locally available. Accordingly, in this paper, the mechanochemical activation of clay brick waste (CBW) with abrasive glass powder (GP) and its pozzolanic reactivity are investigated. The mixtures of CBW and GP in mass ratios of 100:0, 75:25, 50:50, and 25:75 were mechanochemically activated for 15, 30, 45, and 60 min. The physical, chemical, and structural changes of the mixtures were examined by X-ray diffractometry, Fourier-transform infrared spectroscopy, scanning electron microscopy, and specific surface area measurements. The pozzolanic reactivity was characterized by the active silica content and the 28-day compressive strength of the binders (a mixture of ordinary Portland cement and activated material). The addition of GP favorably reduced the agglomeration and increased the active silica content of the activated mixtures (e.g., by 7-37% m/m at 15 min of mechanochemical activation). The 60 min of mechanochemical activation and the addition of 50% m/m of GP can increase the compressive strength by approximately 8%. Economically, the addition of 50% m/m of GP was found to be favorable, where only 30 min of mechanochemical activation resulted in a considerable increase in strength compared to that of the ordinary Portland cement.
Collapse
Affiliation(s)
- Csilla Őze
- Department of Materials Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Nikolett Badacsonyi
- Department of Materials Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| | - Éva Makó
- Department of Materials Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary
| |
Collapse
|
15
|
Kadri L, Casali L, Emmerling F, Tajber L. Mechanochemical comparison of ball milling processes for levofloxacin amorphous polymeric systems. Int J Pharm 2024; 665:124652. [PMID: 39214432 DOI: 10.1016/j.ijpharm.2024.124652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the amorphization capabilities of levofloxacin hemihydrate (LVXh), a fluoroquinolone drug, using a polymer excipient, Eudragit® L100 (EL100). Ball milling (BMing) was chosen as the manufacturing process and multiple mill types were utilized for comparison purposes. The product outcomes of each mill were analyzed in detail. The solid-state of the samples produced was comprehensively characterized by Powder X-ray Diffraction (PXRD), In-situ PXRD, Differential Scanning Calorimetry (DSC), Solid-State Fourier Transform Infrared Spectroscopy (FT-IR), and Dynamic Vapor Sorption (DVS). The crystallographic planes of LVXh were investigated by in-situ PXRD to disclose the presence or absence of weak crystallographic plane(s). The mechanism of LVXh:EL100 system formation was discovered as a two-step process, first involving amorphization of LVXh followed by an interaction with EL100, rather than as an instantaneous process. DVS studies of LVXh:EL100 samples showed different stability properties depending on the mill used and % LVXh present. Overall, a more sustainable approach for achieving full amorphization of the fluoroquinolone drug, LVXh, was accomplished, and advancements to the fast-growing world of pharmaceutical mechano- and tribo-chemistry were made.
Collapse
Affiliation(s)
- Lena Kadri
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland; The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Ireland
| | - Lucia Casali
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland; The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Ireland.
| |
Collapse
|
16
|
Gonzalez SN, McFadden Block C, O'Hayre RP, Richards RM. Synthesis Methods for Electrochemically Applicable High Entropy Oxides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23573-23582. [PMID: 39472312 DOI: 10.1021/acs.langmuir.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
As field-dispatchable power sources offer an alternative means of energy conversion, electrocatalyst development has become an area of intense focus. Emphasis has been placed on the transition from expensive electrocatalysts such as platinum and palladium toward earth abundant materials. Such a shift would result in lowered costs, enhanced durability, and an increased potential for implementation on a broader scale. High entropy oxides (HEOs) are an emerging class of materials that can offer both earth abundance and tunability of composition and morphology, making them excellent candidates for electrocatalysis. Several approaches have been taken to synthesize these materials and achieve balance between single-phase, highly crystalline products and high-surface area, nanostructured products. This work offers a survey of these methods, as well as our perspective on the most promising pathways forward. Emphasis is placed on clarifying the benefits, challenges, and overall suitability of each means of synthesis with electrocatalytic applications in mind.
Collapse
Affiliation(s)
- Sienna N Gonzalez
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Claire McFadden Block
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ryan P O'Hayre
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ryan M Richards
- Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
17
|
Belak Vivod M, Jagličić Z, King G, Hansen TC, Lozinšek M, Dragomir M. Mechanochemical Synthesis and Magnetic Properties of the Mixed-Valent Binary Silver(I,II) Fluorides, Ag I2Ag IIF 4 and Ag IAg IIF 3. J Am Chem Soc 2024; 146:30510-30517. [PMID: 39446120 PMCID: PMC11544617 DOI: 10.1021/jacs.4c11772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Fluoridoargentates(II) represent a fascinating class of silver(II) compounds with structural and magnetic similarities to cuprate superconductors. However, their synthesis is challenging, leaving their properties largely underexplored and hindering the discovery of new phases. This study introduces mechanochemistry as a novel approach for the synthesis of fluoridoargentates(II), avoiding the use of anhydrous HF or elemental fluorine and employing readily available equipment. Notably, ball milling of commercially available precursors successfully produced the long-sought-after first two examples of binary mixed-valent silver(I,II) phases, AgI2AgIIF4 (Ag3F4) and AgIAgIIF3 (Ag2F3). While the AgI2AgIIF4 phase was obtained at room temperature, the AgIAgIIF3 phase is metastable and required milling under cryogenic conditions. Characterization by synchrotron powder X-ray and neutron diffraction revealed that AgI2AgIIF4 crystallizes in the P21/c space group and is isostructural to β-K2AgF4. In this crystal structure, [AgIIF2F4/2]2- distorted octahedral units with 4 + 2 coordination, extend parallel to a-crystallographic axis giving a quasi-one-dimensional canted antiferromagnetic character, as shown by magnetic susceptibility. The triclinic perovskite AgIAgIIF3 phase adopts the P1̅ space group, is isostructural to AgCuF3 and also shows features of a one-dimensional antiferromagnet. This mechanochemical approach, also successfully applied to synthesize β-K2AgF4, is expected to expand the field of silver(II) chemistry, accelerating the search for silver analogs to cuprate superconductors and potentially extending to other cations in unusual oxidation states.
Collapse
Affiliation(s)
- Matic Belak Vivod
- Jožef
Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Zvonko Jagličić
- Institute
of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia
- Faculty
of Civil and Geodetic Engineering, University
of Ljubljana, Jamova
cesta 2, 1000 Ljubljana, Slovenia
| | - Graham King
- Canadian
Light Source, 44 Innovation Blvd, Saskatoon, S7N 2V3 Saskatchewan, Canada
| | | | - Matic Lozinšek
- Jožef
Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Mirela Dragomir
- Jožef
Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Zhao X, Liu X, Zhang Z, Ren W, Lin C, He M, Ouyang W. Mechanochemical remediation of contaminated soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174117. [PMID: 38908592 DOI: 10.1016/j.scitotenv.2024.174117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Mechanochemical techniques have been garnering growing attention in remediation of contaminated soil. This paper summarizes the performance, mechanism, influential factors, and environmental impacts of mechanochemical remediation (MCR) for persistent organic pollutants (POPs) contaminated soil and heavy metal(loid) s (HMs) contaminated soil. Firstly, in contrast to other technologies, MCR can achieve desirable treatment of POPs, HMs, and co-contaminated soil, especially with high-concentration pollutants. Secondly, POPs undergo mineralization via interaction with mechanically activated substances, where aromatic and aliphatic pollutants in soil may go through varied degradation routes; inorganic pollutants can be firmly combined with soil particles by fragmentation and agglomeration induced by mechanical power, during which additives may enhance the combination but their contact with anionic metal(loid)s may be partially suppressed. Thirdly, the effect of MCR primarily hinges on types of milling systems, the accumulation of mechanical energy, and the use of reagents, which is basically regulated through operating parameters: rotation speed, ball-to-powder ratio, reagent-to-soil ratio, milling time, and soil treatment capacity; minerals like clay, metal oxides, and sand in soil itself are feasible reagents for remediation, and alien additives play a crucial role in synergist and detoxification; additionally, various physicochemical properties of soil might influence the mechanochemical effect to varying degrees, yet the key influential performance and mechanism remain unclear and require further investigation. Concerning the assessment of soil after treatment, attention needs to be paid to soil properties, toxicity of POPs' intermediates and leaching HMs, and long-term appraisement, particularly with the introduction of aggressive additives into the system. Finally, proposals for current issues and forthcoming advancements in this domain are enumerated in items. This review provides valuable insight into mechanochemical approaches for performing more effective and eco-friendly remediation on contaminated soil.
Collapse
Affiliation(s)
- Xiwang Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
19
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
Zhang T, Wang D, Liu J. Periodic Single-Metal Site Catalysts: Creating Homogeneous and Ordered Atomic-Precision Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408259. [PMID: 39149786 DOI: 10.1002/adma.202408259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Heterogeneous single-metal-site catalysts (SMSCs), often referred to as single-atom catalysts (SACs), demonstrate promising catalytic activity, selectivity, and stability across a wide spectrum of reactions due to their rationally designed microenvironments encompassing coordination geometry, binding ligands, and electronic configurations. However, the inherent disorderliness of SMSCs at both atomic scale and nanoscale poses challenges in deciphering working principles and establishing the correlations between microenvironments and the catalytic performances of SMSCs. The rearrangement of randomly dispersed single metals into homogeneous and atomic-precisely structured periodic single-metal site catalysts (PSMSCs) not only simplifies the chaos in SMSCs systems but also unveils new opportunities for manipulating catalytic performance and gaining profound insights into reaction mechanisms. Moreover, the synergistic effects of adjacent single metals and the integration effects of periodic single-metal arrangement further broaden the industrial application scope of SMSCs. This perspective offers a comprehensive overview of recent advancements and outlines prospective avenues for research in the design and characterizations of PSMSCs, while also acknowledging the formidable challenges encountered and the promising prospects that lie ahead.
Collapse
Affiliation(s)
- Tianyu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
21
|
Popa F, Marinca TF, Sechel NA, Frunză DI, Chicinaș I. High Milling Time Influence on the Phase Stability and Electrical Properties of Fe 50Mn 35Sn 15 Heusler Alloy Obtained by Mechanical Alloying. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4355. [PMID: 39274745 PMCID: PMC11396000 DOI: 10.3390/ma17174355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024]
Abstract
Fe50Mn35Sn15 Heusler alloy, obtained by mechanical alloying, was subjected to larger milling times in the range of 30-50 h to study the phase stability and morphology. X-ray diffraction studies have shown that the milled samples crystallise in a disordered A2 structure. The A2 structure was found to be stable in the milling range studied, contrary to the computation studies performed on this composition. Using Rietveld refinements, the lattice parameter, mean crystallite size, and lattice strain were computed. The nature of the obtained phases by milling was found to be nanocrystalline with values below 50 nm. A linear increase rate of 0.00713 (h-1) was computed for lattice strain as the milling time increased. As the milling time increases, the lattice parameter of the cubic Heusler was found to have a decreasing behaviour, reaching 2.9517 Å at 50 h of milling. The morphological and elemental distribution-characterised by scanning electron microscopy and energy-dispersive X-ray spectroscopy-evidenced Mn and Sn phase clustering. As the milling time increased, the morphology of the sample was found to change. The Mn and Sn cluster size was quantified by elemental line profile. Electrical resistivity evolution with milling time was analysed, showing a peak for 40 h of milling time.
Collapse
Affiliation(s)
- Florin Popa
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
| | - Traian Florin Marinca
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
| | - Niculina Argentina Sechel
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
| | - Dan Ioan Frunză
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
| | - Ionel Chicinaș
- Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
| |
Collapse
|
22
|
Samanta T, Han JH, Lee HU, Cha BK, Park YM, Viswanath NSM, Cho HB, Kim HW, Cho SB, Im WB. Large-Scale Mechanochemical Synthesis of Cesium Lanthanide Chloride for Radioluminescence. Inorg Chem 2024; 63:16483-16490. [PMID: 39171850 DOI: 10.1021/acs.inorgchem.4c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cesium lanthanide chloride (Cs3LnCl6), a recently developed class of lanthanide-based zero-dimensional metal halides, has garnered a significant amount of interest because of its potential applications in scintillators, light-emitting diodes, and photodetectors. Although cesium lanthanide chloride demonstrates exceptional scintillator properties, conventional synthesis methods involving solid-state and solution-phase techniques are complex and limited on the reaction scale. This study presents a facile mechanochemical synthesis method for producing Cs3CeCl6, Cs3TbCl6, and Cs3EuCl6 metal halides on a 5 g scale. These materials exhibit intense blue-violet, green, and red emissions upon ultraviolet excitation, with high photoluminescence quantum yields ranging from 54% to 93%. Furthermore, Cs3CeCl6, Cs3TbCl6, and Cs3EuCl6 metal halides exhibit intense radioluminescence spanning from the ultraviolet to the visible region. This research shows the potential of the scalable mechanochemical synthesis of lanthanide-based metal halides for the advancement of luminescent materials for scintillators.
Collapse
Affiliation(s)
- Tuhin Samanta
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
| | - Joo Hyeong Han
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
| | - Han Uk Lee
- Department of Materials Science and Engineering, Ajou University, Suwon-si, Gyeonggi-do 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Bo Kyung Cha
- Precision Medical Device Research Center, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| | - Yong Min Park
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
| | | | - Han Bin Cho
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyeon Woo Kim
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
- Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea
| | - Sung Beom Cho
- Department of Materials Science and Engineering, Ajou University, Suwon-si, Gyeonggi-do 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Won Bin Im
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
23
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
24
|
Babanejad S, Ahmed H, Andersson C, Mousa E. Pyrometallurgical Approach to Extracting Valuable Metals from a Combination of Diverse Li-Ion Batteries' Black Mass. ACS SUSTAINABLE RESOURCE MANAGEMENT 2024; 1:1759-1767. [PMID: 39192885 PMCID: PMC11345943 DOI: 10.1021/acssusresmgt.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024]
Abstract
Li-ion batteries (LIBs) are widely used nowadays. Because of their limited lifetimes and resource constraints in manufacturing them, it is essential to develop effective recycling routes to recover their valuable elements. This study focuses on the pyrometallurgical recycling of black mass (BM) from a mixture of different LIBs. In this study, the high-temperature behavior of two types of mixed BM is initially examined. Subsequently, the effect of mechanical activation on the BM reduction kinetics is investigated. Finally, hematite is added to the BM to first be reduced by the excess graphite in the BM and second to form an Fe-based alloy containing Co and Ni. This study demonstrates that mechanical activation does not necessarily affect the kinetics of BM high-temperature behavior. Furthermore, it demonstrates that alloy-making by the addition of hematite is a successful method to simultaneously utilize the graphite in the BM and recover Co and Ni, regardless of the LIB type.
Collapse
Affiliation(s)
- Safoura Babanejad
- Department
of Civil, Environmental and Natural Resource Engineering, Process
Metallurgy, Minerals and Metallurgical Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Hesham Ahmed
- Department
of Civil, Environmental and Natural Resource Engineering, Process
Metallurgy, Minerals and Metallurgical Engineering, Luleå University of Technology, 97187 Luleå, Sweden
- Central
Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Charlotte Andersson
- Department
of Civil, Environmental and Natural Resource Engineering, Process
Metallurgy, Minerals and Metallurgical Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Elsayed Mousa
- Central
Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
- SWERIM
AB, Aronstorpsvägen 1, 97437, Luleå, Sweden
| |
Collapse
|
25
|
Liu R, He X, Liu T, Wang X, Wang Q, Chen X, Lian Z. Organic Reactions Enabled by Mechanical Force-Induced Single Electron Transfer. Chemistry 2024; 30:e202401376. [PMID: 38887819 DOI: 10.1002/chem.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Mechanochemical reactions, achieved through milling, grinding, or other mechanical actions, have emerged as a solvent-free alternative to traditional solution-based chemistry. Mechanochemistry not only provides the opportunity to eliminate bulk solvent use, reducing waste generation, but also unveils a new reaction strategy which enables the realization of reactions previously inaccessible in solution. While the majority of organic reactions facilitated by mechanical force traditionally follow two-electron transfer pathways similar to their solution-based counterparts, the field of mechanochemically induced single-electron transfer (SET) reactions has witnessed rapid development. This review outlines examples of mechanochemical reactions facilitated by the SET process, focusing on the reagents that initiate SET, thereby positioning mechanochemistry as a burgeoning field within the realm of single-electron chemistry.
Collapse
Affiliation(s)
- Ruoxuan Liu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xiaochun He
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Tianfen Liu
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xiaohong Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Qingqing Wang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Xinzhou Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R., China
| |
Collapse
|
26
|
Shpotyuk O, Hyla M, Ingram A, Shpotyuk Y, Boyko V, Demchenko P, Wojnarowska-Nowak R, Lukáčová Bujňáková Z, Baláž P. Nanostructured Molecular-Network Arsenoselenides from the Border of a Glass-Forming Region: A Disproportionality Analysis Using Complementary Characterization Probes. Molecules 2024; 29:3948. [PMID: 39203026 PMCID: PMC11357355 DOI: 10.3390/molecules29163948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Binary AsxSe100-x alloys from the border of a glass-forming region (65 < x < 70) subjected to nanomilling in dry and dry-wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by a disproportionality analysis using the quantum-chemical cluster modeling approach. These alloys are examined with respect to tetra-arsenic biselenide As4Se2 stoichiometry, realized in glassy g-As65Se35, glassy-crystalline g/c-As67Se33 and glassy-crystalline g/c-As70Se30. From the XRPD results, the number of rhombohedral As and cubic arsenolite As2O3 phases in As-Se alloys increases after nanomilling, especially in the wet mode realized in a PVP water solution. Nanomilling-driven amorphization and reamorphization transformations in these alloys are identified by an analysis of diffuse peak halos in their XRPD patterning, showing the interplay between the levels of a medium-range structure (disruption of the intermediate-range ordering at the cost of an extended-range one). From the micro-RS spectroscopy results, these alloys are stabilized by molecular thioarsenides As4Sen (n = 3, 4), regardless of their phase composition, remnants of thioarsenide molecules destructed under nanomilling being reincorporated into a glass network undergoing a polyamorphic transition. From the PAL spectroscopy results, volumetric changes in the wet-milled alloys with respect to the dry-milled ones are identified as resulting from a direct conversion of the bound positron-electron (Ps, positronium) states in the positron traps. Ps-hosting holes in the PVP medium appear instead of positron traps, with ~0.36-0.38 ns lifetimes ascribed to multivacancies in the As-Se matrix. The superposition of PAL spectrum peaks and tails for pelletized PVP, unmilled, dry-milled, and dry-wet-milled As-Se samples shows a spectacular smoothly decaying trend. The microstructure scenarios of the spontaneous (under quenching) and activated (under nanomilling) decomposition of principal network clusters in As4Se2-bearing arsenoselenides are recognized. Over-constrained As6·(2/3) ring-like network clusters acting as pre-cursors of the rhombohedral As phase are the main products of this decomposition. Two spontaneous processes for creating thioarsenides with crystalline counterparts explain the location of the glass-forming border in an As-Se system near the As4Se2 composition, while an activated decomposition process for creating layered As2Se3 structures is responsible for the nanomilling-driven molecular-to-network transition.
Collapse
Affiliation(s)
- Oleh Shpotyuk
- Institute of Physics, Jan Dlugosz University in Częstochowa, 13/15, al. Armii Krajowej, 42-200 Częstochowa, Poland;
- O.G. Vlokh Institute of Physical Optics, Ivan Franko National University of Lviv, 23, Dragomanov Str., 79005 Lviv, Ukraine;
| | - Malgorzata Hyla
- Institute of Physics, Jan Dlugosz University in Częstochowa, 13/15, al. Armii Krajowej, 42-200 Częstochowa, Poland;
| | - Adam Ingram
- Faculty of Physics, Opole University of Technology, 75, Ozimska Str., 45370 Opole, Poland;
| | - Yaroslav Shpotyuk
- Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, 107, Tarnavskoho Str., 79017 Lviv, Ukraine;
- Institute of Physics, University of Rzeszow, 1, Pigonia Str., 35-959 Rzeszow, Poland
| | - Vitaliy Boyko
- O.G. Vlokh Institute of Physical Optics, Ivan Franko National University of Lviv, 23, Dragomanov Str., 79005 Lviv, Ukraine;
| | - Pavlo Demchenko
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6, Kyryla i Mefodiya Str., 79000 Lviv, Ukraine;
| | - Renata Wojnarowska-Nowak
- Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszow, 1, Pigonia Str., 35-959 Rzeszow, Poland;
| | - Zdenka Lukáčová Bujňáková
- Institute of Geotechnics of Slovak Academy of Sciences, 45, Watsonova Str., 04001 Košice, Slovakia; (Z.L.B.); (P.B.)
| | - Peter Baláž
- Institute of Geotechnics of Slovak Academy of Sciences, 45, Watsonova Str., 04001 Košice, Slovakia; (Z.L.B.); (P.B.)
| |
Collapse
|
27
|
Patra S, Nandasana BN, Valsamidou V, Katayev D. Mechanochemistry Drives Alkene Difunctionalization via Radical Ligand Transfer and Electron Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402970. [PMID: 38829256 PMCID: PMC11304296 DOI: 10.1002/advs.202402970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Indexed: 06/05/2024]
Abstract
A general and modular protocol is reported for olefin difunctionalization through mechanochemistry, facilitated by cooperative radical ligand transfer (RLT) and electron catalysis. Utilizing mechanochemical force and catalytic amounts of 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO), ferric nitrate can leverage nitryl radicals, transfer nitrooxy-functional group via RLT, and mediate an electron catalysis cycle under room temperature. A diverse range of activated and unactivated alkenes exhibited chemo- and regioselective 1,2-nitronitrooxylation under solvent-free or solvent-less conditions, showcasing excellent functional group tolerance. Mechanistic studies indicated a significant impact of mechanochemistry and highlighted the radical nature of this nitrative difunctionalization process.
Collapse
Affiliation(s)
- Subrata Patra
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Bhargav N. Nandasana
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Vasiliki Valsamidou
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Dmitry Katayev
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| |
Collapse
|
28
|
Sun J, Tu R, Xu Y, Yang H, Yu T, Zhai D, Ci X, Deng W. Machine learning aided design of single-atom alloy catalysts for methane cracking. Nat Commun 2024; 15:6036. [PMID: 39019940 PMCID: PMC11255339 DOI: 10.1038/s41467-024-50417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
The process of CH4 cracking into H2 and carbon has gained wide attention for hydrogen production. However, traditional catalysis methods suffer rapid deactivation due to severe carbon deposition. In this study, we discover that effective CH4 cracking can be achieved at 450 °C over a Re/Ni single-atom alloy via ball milling. To explore single-atom alloy catalysis, we construct a library of 10,950 transition metal single-atom alloy surfaces and screen candidates based on C-H dissociation energy barriers predicted by a machine learning model. Experimental validation identifies Ir/Ni and Re/Ni as top performers. Notably, the non-noble metal Re/Ni achieves a hydrogen yield of 10.7 gH2 gcat-1 h-1 with 99.9% selectivity and 7.75% CH4 conversion at 450 °C, 1 atm. Here, we show the mechanical energy boosts CH4 conversion clearly and sustained CH4 cracking over 240 h is achieved, significantly surpassing other approaches in the literature.
Collapse
Affiliation(s)
- Jikai Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Binhai Road No.72, 266237, Qingdao, China
| | - Rui Tu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Binhai Road No.72, 266237, Qingdao, China
| | - Yuchun Xu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Binhai Road No.72, 266237, Qingdao, China
| | - Hongyan Yang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Binhai Road No.72, 266237, Qingdao, China
| | - Tie Yu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Binhai Road No.72, 266237, Qingdao, China.
| | - Dong Zhai
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Binhai Road No.72, 266237, Qingdao, China
| | - Xiuqin Ci
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Binhai Road No.72, 266237, Qingdao, China
| | - Weiqiao Deng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Binhai Road No.72, 266237, Qingdao, China.
| |
Collapse
|
29
|
Shpotyuk O, Hyla M, Shpotyuk Y, Lukáčová Bujňáková Z, Baláž P, Demchenko P, Kozdraś A, Boyko V, Kovalskiy A. Molecular-Network Transformations in Tetra-Arsenic Triselenide Glassy Alloys Tuned within Nanomilling Platform. Molecules 2024; 29:3245. [PMID: 39064824 PMCID: PMC11279076 DOI: 10.3390/molecules29143245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Polyamorphic transformations driven by high-energy mechanical ball milling (nanomilling) are recognized in a melt-quenched glassy alloy of tetra-arsenic triselenide (As4Se3). We employed XRPD analysis complemented by thermophysical heat-transfer and micro-Raman spectroscopy studies. A straightforward interpretation of the medium-range structural response to milling-driven reamorphization is developed within a modified microcrystalline model by treating diffuse peak-halos in the XRPD patterns of this alloy as a superposition of the Bragg-diffraction contribution from inter-planar correlations, which are supplemented by the Ehrenfest-diffraction contribution from inter-atomic and/or inter-molecular correlations related to derivatives of thioarsenide As4Sen molecules, mainly dimorphite-type As4Se3 ones. These cage molecules are merely destroyed under milling, facilitating the formation of a polymerized network with enhanced calorimetric heat-transfer responses. Disruption of intermediate-range ordering, due to weakening of the FSDP (the first sharp diffraction peak), accompanied by an enhancement of extended-range ordering, due to fragmentation of structural entities responsible for the SSDP (the second sharp diffraction peak), occurs as an interplay between medium-range structural levels in the reamorphized As4Se3 glass alloy. Nanomilling-driven destruction of thioarsenide As4Sen molecules followed by incorporation of their remnants into a glassy network is proved by micro-Raman spectroscopy. Microstructure scenarios of the molecular-to-network polyamorphic transformations caused by the decomposition of the As4Se3 molecules and their direct destruction under grinding are recognized by an ab initio quantum-chemical cluster-modeling algorithm.
Collapse
Affiliation(s)
- Oleh Shpotyuk
- Institute of Physics, Jan Dlugosz University in Częstochowa, 13/15, al. Armii Krajowej, 42-200 Częstochowa, Poland;
- O.G. Vlokh Institute of Physical Optics, Ivan Franko National University of Lviv, 23, Dragomanov Str., 79005 Lviv, Ukraine;
| | - Malgorzata Hyla
- Institute of Physics, Jan Dlugosz University in Częstochowa, 13/15, al. Armii Krajowej, 42-200 Częstochowa, Poland;
| | - Yaroslav Shpotyuk
- Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, 107, Tarnavskoho Str., 79017 Lviv, Ukraine;
- Institute of Physics, University of Rzeszow, 1, Pigonia Str., 35-959 Rzeszow, Poland
| | - Zdenka Lukáčová Bujňáková
- Institute of Geotechnics of Slovak Academy of Sciences, 45, Watsonova Str., 04001 Košice, Slovakia; (Z.L.B.); (P.B.)
| | - Peter Baláž
- Institute of Geotechnics of Slovak Academy of Sciences, 45, Watsonova Str., 04001 Košice, Slovakia; (Z.L.B.); (P.B.)
| | - Pavlo Demchenko
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6, Kyryla i Mefodiya Str., 79000 Lviv, Ukraine;
| | - Andrzej Kozdraś
- Faculty of Physics, Opole University of Technology, 75, Ozimska Str., 45-370 Opole, Poland;
| | - Vitaliy Boyko
- O.G. Vlokh Institute of Physical Optics, Ivan Franko National University of Lviv, 23, Dragomanov Str., 79005 Lviv, Ukraine;
| | - Andriy Kovalskiy
- Department of Physics, Engineering and Astronomy, Austin Peay State University, Clarksville, TN 37044, USA;
| |
Collapse
|
30
|
Cagnetta G, Yin Z, Qiu W, Vakili M. Mechanochemical Synthesis of Cross-Linked Chitosan and Its Application as Adsorbent for Removal of Per- and Polyfluoroalkyl Substances from Simulated Electroplating Wastewater. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3006. [PMID: 38930375 PMCID: PMC11205816 DOI: 10.3390/ma17123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Chitosan is a promising adsorbent for removing a wide range of pollutants from wastewater. However, its practical application is hindered by instability in acidic environments, which significantly impairs its adsorption capacity and limits its utilization in water purification. While cross-linking can enhance the acid stability of chitosan, current solvent-based methods are often costly and environmentally unfriendly. In this study, a solvent-free mechanochemical process was developed using high-energy ball milling to cross-link chitosan with various polyanionic linkers, including dextran sulfate (DS), poly[4-styrenesulfonic acid-co-maleic acid] (PSSM), and tripolyphosphate (TPP). The mechanochemically cross-linked (MCCL) chitosan products exhibited superior adsorption capacity and stability in acidic solutions compared to pristine chitosan. Chitosan cross-linked with DS (Cht-DS) showed the highest Reactive Red 2 (RR2) adsorption capacity, reaching 1559 mg·g-1 at pH 3, followed by Cht-PSSM (1352 mg·g-1) and Cht-TPP (1074 mg·g-1). The stability of MCCL chitosan was visually confirmed by the negligible mass loss of Cht-DS and Cht-PSSM tablets in pH 3 solution, unlike the complete dissolution of the pristine chitosan tablet. The MCCL significantly increased the microhardness of chitosan, with the order Cht-DS > Cht-PSSM > Cht-TPP, consistent with the RR2 adsorption capacity. When tested on simulated rinsing wastewater from chromium electroplating, Cht-DS effectively removed Cr(VI) (98.75% removal) and three per- and polyfluoroalkyl substances (87.40-95.87% removal), following pseudo-second-order adsorption kinetics. This study demonstrates the potential of the cost-effective and scalable MCCL approach to produce chitosan-based adsorbents with enhanced stability, mechanical strength, and adsorption performance for treating highly acidic industrial wastewater containing a mixture of toxic pollutants.
Collapse
Affiliation(s)
- Giovanni Cagnetta
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; (Z.Y.); (W.Q.)
| | - Zhou Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; (Z.Y.); (W.Q.)
| | - Wen Qiu
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; (Z.Y.); (W.Q.)
| | | |
Collapse
|
31
|
Mureşan-Pop M, Simon S, Bodoki E, Simon V, Turza A, Todea M, Vulpoi A, Magyari K, Iacob BC, Bărăian AI, Gołdyn M, Gomes CSB, Susana M, Duarte MT, André V. Mechanochemical Synthesis of New Praziquantel Cocrystals: Solid-State Characterization and Solubility. CRYSTAL GROWTH & DESIGN 2024; 24:4668-4681. [PMID: 38855579 PMCID: PMC11157481 DOI: 10.1021/acs.cgd.4c00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
New cocrystals of praziquantel with suberic, 3-hydroxybenzoic, benzene-1,2,4,5-tetracarboxylic, trimesic, and 5-hydroxyisophthalic acids were obtained through ball milling experiments. The optimal conditions for the milling process were chosen by changing the solvent volume and the mechanical action time. Supramolecular interactions in the new cocrystals are detailed based on single-crystal X-ray diffraction analysis, confirming the expected formation of hydrogen bonds between the praziquantel carbonyl group and the carboxyl (or hydroxyl) moieties of the coformers. Different structural characterization techniques were performed for all samples, but the praziquantel:suberic acid cocrystal includes a wider range of investigations such as thermal analysis, infrared and X-ray photoelectron spectroscopies, and SEM microscopy. The stability for up to five months was established by keeping it under extreme conditions of temperature and humidity. Solubility studies were carried out for all the new forms disclosed herein and compared with the promising cocrystals previously reported with salicylic, 4-aminosalicylic, vanillic, and oxalic acids. HPLC analyses revealed a higher solubility for most of the new cocrystal forms, as compared to pure praziquantel.
Collapse
Affiliation(s)
- Marieta Mureşan-Pop
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Simion Simon
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Ede Bodoki
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Viorica Simon
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
| | - Alexandru Turza
- Mass
Spectrometry, Chromatography and Applied Physics Department, National Institute for Research and Development of
Isotopic and Molecular Technologies, Cluj-Napoca 400293, Romania
| | - Milica Todea
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
- Molecular
Sciences Department, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Adriana Vulpoi
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
- INSPIRE
Research Platform, Babes-Bolyai University, 11, Arany Janos, Cluj-Napoca 400028, Romania
| | - Klara Magyari
- Nanostructured
Materials and Bio-Nano Interfaces Department, Interdisciplinary Research
Institute on Bio-Nano-Sciences, Babes-Bolyai
University, 42, Treboniu
Laurian, Cluj-Napoca 400271, Romania
| | - Bogdan C. Iacob
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Alexandra Iulia Bărăian
- Analytical
Chemistry Department, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 4, Louis Pasteur, Cluj-Napoca 400349, Romania
| | - Mateusz Gołdyn
- Faculty of
Chemistry, Adam Mickiewicz University in
Poznań, Uniwersytetu
Poznańskiego 8, Poznań 61-614, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University in Poznań, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland
| | - Clara S. B. Gomes
- LAQV-REQUIMTE,
Department of Chemistry, NOVA School of Science and Technology (NOVA
FCT), NOVA University of Lisbon, Caparica 2829-516, Portugal
| | - Margarida Susana
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - M. Teresa Duarte
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Vânia André
- Centro
de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Associação
do Instituto Superior Técnico para a Investigação
e Desenvolvimento (IST-ID), Avenida António José de Almeida, 12, Lisboa 1000-043, Portugal
| |
Collapse
|
32
|
Kadri L, Carta M, Lampronti G, Delogu F, Tajber L. Mechanochemically Induced Solid-State Transformations of Levofloxacin. Mol Pharm 2024; 21:2838-2853. [PMID: 38662637 DOI: 10.1021/acs.molpharmaceut.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Levofloxacin hemihydrate (LVXh) is a complex fluoroquinolone drug that exists in both hydrated and anhydrous/dehydrated forms. Due to the complexity of such a compound, the primary aim of this study was to investigate the amorphization capabilities and solid-state transformations of LVXh when exposed to mechanical treatment using ball milling. Spray drying was utilized as a comparative method for investigating the capabilities of complete LVX amorphous (LVXam) formation. The solid states of the samples produced were comprehensively characterized by powder X-ray diffraction, thermal analysis, infrared spectroscopy, Rietveld method, and dynamic vapor sorption. The kinetics of the process and the quantification of phases at different time points were conducted by Rietveld refinement. The impact of the different mills, milling conditions, and parameters on the composition of the resulting powders was examined. A kinetic investigation of samples produced using both mills disclosed that it was in fact possible to partially amorphize LVXh upon mechanical treatment. It was discovered that LVXh first transformed to the anhydrous/dehydrated form γ (LVXγ), as an intermediate phase, before converting to LVXam. The mechanism of LVXam formation by ball milling was successfully revealed, and a new method of forming LVXγ and LVXam by mechanical forces was developed. Spray drying from water depicted that complete amorphization of LVXh was possible. The amorphous form of LVX had a glass transition temperature of 80 °C. The comparison of methods highlighted that the formation of LVXam is thus both mechanism- and process-dependent. Dynamic vapor sorption studies of both LVXam samples showed comparable stability properties and crystallized to the most stable hemihydrate form upon analysis. In summary, this work contributed to the detailed understanding of solid-state transformations of essential fluoroquinolones while employing greener and more sustainable manufacturing methods.
Collapse
Affiliation(s)
- Lena Kadri
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
- The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Limerick V94 T9PX, Ireland
| | - Maria Carta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, CSGI Research Unit, via Marengo 2, Cagliari 09123, Italy
| | - Giulio Lampronti
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Francesco Delogu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, CSGI Research Unit, via Marengo 2, Cagliari 09123, Italy
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2 D02 PN40, Ireland
- The Science Foundation Ireland Research Centre for Pharmaceuticals (SSPC), Limerick V94 T9PX, Ireland
| |
Collapse
|
33
|
Michaely A, Luckas C, Haberkorn R, Kickelbick G. Highly Exothermic and Fast Mechanochemical Redox and Intercalation Reactions of V 2O 5 with Sodium Hydride. Inorg Chem 2024; 63:8099-8108. [PMID: 38656922 DOI: 10.1021/acs.inorgchem.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Vanadium oxides exhibit promising characteristics for electrochemical energy storage, owing to their capability to switch between different oxidation states, in combination with the incorporation of alkali metals. Here, we report on a systematic investigation of the mechanochemical reduction of V2O5 with NaH. In contrast to conventional high-temperature synthesis methods, the mechanochemical reaction occurs already after a few minutes. We observed a mixture of different (sodium) vanadium oxides with vanadium oxidation states ranging from +III to +V. Remarkably, these highly exothermic self-propagating reactions occur even within a rudimentary pistil-mortar setup. Hereby, the hydride concentration has a greater effect on the final sample composition than the milling time. In general, higher percentages of sodium vanadates are formed instead of vanadium oxides, and the lower oxidation states of vanadium are accessible with increasing amounts of NaH. Theoretical calculations confirm these experimental observations and emphasize the central role of sodium vanadates, especially with vanadium in the +V oxidation state, in carrying out the observed exothermic reactions. This comprehensive study sheds light on the mechanochemical reduction of vanadium oxides and underlines their potential for further development of electrochemical energy storage systems.
Collapse
Affiliation(s)
- Anna Michaely
- Inorganic Solid-State Chemistry, Saarland University, Campus, C4.1, 66123 Saarbrücken, Germany
| | - Christopher Luckas
- Inorganic Solid-State Chemistry, Saarland University, Campus, C4.1, 66123 Saarbrücken, Germany
| | - Robert Haberkorn
- Inorganic Solid-State Chemistry, Saarland University, Campus, C4.1, 66123 Saarbrücken, Germany
| | - Guido Kickelbick
- Inorganic Solid-State Chemistry, Saarland University, Campus, C4.1, 66123 Saarbrücken, Germany
- Saarene - Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
34
|
Ma Y, Li C, Yan J, Yu H, Kan H, Yu W, Zhou X, Meng Q, Dong P. Application and mechanism of carbonate material in the treatment of heavy metal pollution: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36551-36576. [PMID: 38755474 DOI: 10.1007/s11356-024-33225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
Among the many heavy metal pollution treatment agents, carbonate materials show strong flexibility and versatility by virtue of their high adsorption capacity for heavy metals and the characteristics of multiple and simple modification methods. It shows good potential for development. This review summarizes the application of carbonate materials in the treatment of heavy metal pollution according to the research of other scholars. It mainly relates to the application of surface-modified, activated, and nano-sized carbonate materials in the treatment of heavy metal pollution in water. Natural carbonate minerals and composite carbonate minerals solidify and stabilize heavy metals in soil. Solidification of heavy metals in hazardous waste solids is by MICP. There are four aspects of calcium carbonate oligomers curing heavy metals in fly ash from waste incineration. The mechanism of treating heavy metals by carbonate in different media was discussed. However, in the complex environment where multiple types of pollutants coexist, questions on how to maintain the efficient processing capacity of carbonate materials and how to use MICP to integrate heavy metal fixation and seepage prevention in solid waste base under complex and changeable natural environment deserve our further consideration. In addition, the use of carbonate materials for the purification of trace radioactive wastewater and the safe treatment of trace radioactive solid waste are also worthy of further exploration.
Collapse
Affiliation(s)
- Yaoqiang Ma
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - ChenChen Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jin Yan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Hanjing Yu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Huiying Kan
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Wanquan Yu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Xinyu Zhou
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qi Meng
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Peng Dong
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| |
Collapse
|
35
|
Podgorbunskikh E, Kuskov T, Bukhtoyarov V, Lomovsky O, Bychkov A. Recrystallization of Cellulose, Chitin and Starch in Their Individual and Native Forms. Polymers (Basel) 2024; 16:980. [PMID: 38611238 PMCID: PMC11013776 DOI: 10.3390/polym16070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Semi-crystalline natural polymers are involved in many technological processes. Biopolymers having identical chemical compositions can differ in reactivity in heterogeneous transformations depending on their crystal structure (polymorphic modification). This paper compares the crystal structure recrystallization processes occurring in natural polysaccharides (cellulose, chitin, and starch) in the individual form and as a component of native biomass. Aqueous treatment of pre-amorphized semi-crystalline biopolymers was shown to result in swelling, thus alleviating the kinetic restrictions imposed on the restoration of crystalline regions and phase transition to the thermodynamically more stable polymorphic modification. During recrystallization, cellulose I in the individual form and within plant-based biomass undergoes a transition to the more stable cellulose II. A similar situation was demonstrated for α- and β-chitin, which recrystallize only into the α-polymorphic modification in the case of both individual polymers and native materials. Recrystallization of A-, B-, and C-type starch, both in the individual form and within plant-based flour, during aqueous treatment, results in a phase transition, predominantly to the B-type starch. The recrystallization process depends on the temperature of aqueous treatment; longer treatment duration has almost no effect on the recrystallization degree of polymers, both in the individual form and within native materials.
Collapse
Affiliation(s)
- Ekaterina Podgorbunskikh
- Laboratory of Mechanochemistry, Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia; (T.K.); (V.B.); (O.L.)
| | | | | | | | - Aleksey Bychkov
- Laboratory of Mechanochemistry, Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia; (T.K.); (V.B.); (O.L.)
| |
Collapse
|
36
|
Li S, Pang J, Han W, Luo L, Cheng X, Zhao Z, Lv C, Liu J. The Preparation of an Ultrafine Copper Powder by the Hydrogen Reduction of an Ultrafine Copper Oxide Powder and Reduction Kinetics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1613. [PMID: 38612127 PMCID: PMC11012917 DOI: 10.3390/ma17071613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Ultrafine copper powders were prepared by the air-jet milling of copper oxide (CuO) powders and a subsequent hydrogen (H2) reduction. After milling, the particle size and grain size of CuO powders decreased, while the specific surface area and structural microstrain increased, thereby improving the reaction activity. In a pure H2 atmosphere, the process of CuO reduction was conducted in one step, and followed a pseudo-first-order kinetics model. The smaller CuO powders after milling exhibited higher reduction rates and lower activation energies compared with those without milling. Based on the unreacted shrinking core model, the reduction of CuO powders via H2 was controlled by the interface reaction at the early stage, whereas the latter was limited by the diffusion of H2 through the solid product layer. Additionally, the scanning electron microscopy (SEM) indicated that copper powders after H2 reduction presented a spherical-like shape, and the sintering and agglomeration between particles occurred after 300 °C, which led to a moderate increase in particle size. The preparing parameters (at 400 °C for 180 min) were preferred to obtain ultrafine copper powders with an average particle size in the range of 5.43-6.72 μm and an oxygen content of less than 0.2 wt.%.
Collapse
Affiliation(s)
- Shiwen Li
- China Iron & Steel Research Institute Group, Beijing 100081, China; (S.L.); (L.L.); (C.L.)
| | - Jianming Pang
- China Iron & Steel Research Institute Group, Beijing 100081, China; (S.L.); (L.L.); (C.L.)
| | - Wei Han
- China Iron & Steel Research Institute Group, Beijing 100081, China; (S.L.); (L.L.); (C.L.)
| | - Lingen Luo
- China Iron & Steel Research Institute Group, Beijing 100081, China; (S.L.); (L.L.); (C.L.)
| | - Xiaoyu Cheng
- China Iron & Steel Research Institute Group, Beijing 100081, China; (S.L.); (L.L.); (C.L.)
| | - Zhimin Zhao
- China Iron & Steel Research Institute Group, Beijing 100081, China; (S.L.); (L.L.); (C.L.)
| | - Chaoran Lv
- China Iron & Steel Research Institute Group, Beijing 100081, China; (S.L.); (L.L.); (C.L.)
| | - Jue Liu
- College of Quality and Technical Supervision, Hebei University, Baoding 071002, China;
| |
Collapse
|
37
|
Roy M, Sykora M, Aslam M. Chemical Aspects of Halide Perovskite Nanocrystals. Top Curr Chem (Cham) 2024; 382:9. [PMID: 38430313 DOI: 10.1007/s41061-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/24/2024] [Indexed: 03/03/2024]
Abstract
Halide perovskite nanocrystals (HPNCs) are currently among the most intensely investigated group of materials. Structurally related to the bulk halide perovskites (HPs), HPNCs are nanostructures with distinct chemical, optical, and electronic properties and significant practical potential. One of the keys to the effective exploitation of the HPNCs in advanced technologies is the development of controllable, reproducible, and scalable methods for preparation of materials with desired compositions, phases, and shapes and low defect content. Another important condition is a quantitative understanding of factors affecting the chemical stability and the optical and electronic properties of HPNCs. Here we review important recent developments in these areas. Following a brief historical prospective, we provide an overview of known chemical methods for preparation of HPNCs and approaches used to control their composition, phase, size, and shape. We then review studies of the relationship between the chemical composition and optical properties of HPNCs, degradation mechanisms, and effects of charge injection. Finally, we provide a short summary and an outlook. The aim of this review is not to provide a comprehensive summary of all relevant literature but rather a selection of highlights, which, in the subjective view of the authors, provide the most significant recent observations and relevant analyses.
Collapse
Affiliation(s)
- Mrinmoy Roy
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - Milan Sykora
- Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, 84104, Slovakia
| | - M Aslam
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
38
|
Chang Y, Blanton SJ, Andraos R, Nguyen VS, Liotta CL, Schork FJ, Sievers C. Kinetic Phenomena in Mechanochemical Depolymerization of Poly(styrene). ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:178-191. [PMID: 38213546 PMCID: PMC10777454 DOI: 10.1021/acssuschemeng.3c05296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Synthetic polyolefinic plastics comprise one of the largest shares of global plastic waste, which is being targeted for chemical recycling by depolymerization to monomers and small molecules. One promising method of chemical recycling is solid-state depolymerization under ambient conditions in a ball-mill reactor. In this paper, we elucidate kinetic phenomena in the mechanochemical depolymerization of poly(styrene). Styrene is produced in this process at a constant rate and selectivity alongside minor products, including oxygenates like benzaldehyde, via mechanisms analogous to those involved in thermal and oxidative pyrolysis. Continuous monomer removal during reactor operation is critical for avoiding repolymerization, and promoting effects are exhibited by iron surfaces and molecular oxygen. Kinetic independence between depolymerization and molecular weight reduction was observed, despite both processes originating from the same driving force of mechanochemical collisions. Phenomena across multiple length scales are shown to be responsible for differences in reactivity due to differences in grinding parameters and reactant composition.
Collapse
Affiliation(s)
- Yuchen Chang
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sylvie J. Blanton
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ralph Andraos
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Van Son Nguyen
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Charles L. Liotta
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - F. Joseph Schork
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carsten Sievers
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
39
|
Jicsinszky L, Bucciol F, Chaji S, Cravotto G. Mechanochemical Degradation of Biopolymers. Molecules 2023; 28:8031. [PMID: 38138521 PMCID: PMC10745761 DOI: 10.3390/molecules28248031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Mechanochemical treatment of various organic molecules is an emerging technology of green processes in biofuel, fine chemicals, or food production. Many biopolymers are involved in isolating, derivating, or modifying molecules of natural origin. Mechanochemistry provides a powerful tool to achieve these goals, but the unintentional modification of biopolymers by mechanochemical manipulation is not always obvious or even detectable. Although modeling molecular changes caused by mechanical stresses in cavitation and grinding processes is feasible in small model compounds, simulation of extrusion processes primarily relies on phenomenological approaches that allow only tool- and material-specific conclusions. The development of analytical and computational techniques allows for the inline and real-time control of parameters in various mechanochemical processes. Using artificial intelligence to analyze process parameters and product characteristics can significantly improve production optimization. We aim to review the processes and consequences of possible chemical, physicochemical, and structural changes.
Collapse
Affiliation(s)
- László Jicsinszky
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| | | | | | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| |
Collapse
|
40
|
Julien PA, Arhangelskis M, Germann LS, Etter M, Dinnebier RE, Morris AJ, Friščić T. Illuminating milling mechanochemistry by tandem real-time fluorescence emission and Raman spectroscopy monitoring. Chem Sci 2023; 14:12121-12132. [PMID: 37969588 PMCID: PMC10631231 DOI: 10.1039/d3sc04082h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/07/2023] [Indexed: 11/17/2023] Open
Abstract
In pursuit of accessible and interpretable methods for direct and real-time observation of mechanochemical reactions, we demonstrate a tandem spectroscopic method for monitoring of ball-milling transformations combining fluorescence emission and Raman spectroscopy, accompanied by high-level molecular and periodic density-functional theory (DFT) calculations, including periodic time-dependent (TD-DFT) modelling of solid-state fluorescence spectra. This proof-of-principle report presents this readily accessible dual-spectroscopy technique as capable of observing changes to the supramolecular structure of the model pharmaceutical system indometacin during mechanochemical polymorph transformation and cocrystallisation. The observed time-resolved in situ spectroscopic and kinetic data are supported by ex situ X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy measurements. The application of first principles (ab initio) calculations enabled the elucidation of how changes in crystalline environment, that result from mechanochemical reactions, affect vibrational and electronic excited states of molecules. The herein explored interpretation of both real-time and ex situ spectroscopic data through ab initio calculations provides an entry into developing a detailed mechanistic understanding of mechanochemical milling processes and highlights the challenges of using real-time spectroscopy.
Collapse
Affiliation(s)
- Patrick A Julien
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada 13 General Crerar Crescent K7K 7B4 Kingston Canada
| | - Mihails Arhangelskis
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Faculty of Chemistry, University of Warsaw 1 Pasteura St. 02-093 Warsaw Poland
| | - Luzia S Germann
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Max-Planck Institute for Solid State Research Heisenbergstrasse 1 D-70569 Stuttgart Germany
| | - Martin Etter
- Deutsches-Elektronen Synchrotron (DESY) Notkestrasse 85 22607 Hamburg Germany
| | - Robert E Dinnebier
- Max-Planck Institute for Solid State Research Heisenbergstrasse 1 D-70569 Stuttgart Germany
| | - Andrew J Morris
- School of Metallurgy and Materials, University of Birmingham Birmingham B15 2TT UK
| | - Tomislav Friščić
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
41
|
Nwoye E, Raghuraman S, Costales M, Batteas J, Felts JR. Mechanistic model for quantifying the effect of impact force on mechanochemical reactivity. Phys Chem Chem Phys 2023; 25:29088-29097. [PMID: 37862006 DOI: 10.1039/d3cp02549g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Conventional mechanochemical synthetic tools, such as ball mills, offer no methodology to quantitatively link macroscale reaction parameters, such as shaking frequency or milling ball radius, to fundamental drivers of reactivity, namely the force vectors applied to the reactive molecules. As a result, although mechanochemistry has proven to be a valuable method to make a wide variety of products, the results are seldom reproduceable between reactors, difficult to rationally optimize, and hard to ascribe to a specific reaction pathway. Here we have developed a controlled force reactor, which is a mechanochemical ball mill reactor with integrated force measurement and control during each impact. We relate two macroscale reactor parameters-impact force and impact time-to thermodynamic and kinetic transition state theories of mechanochemistry utilizing continuum contact mechanics principles. We demonstrate force controlled particle fracture of NaCl to characterize particle size evolution during reactions, and force controlled reaction between anhydrous copper(II) chloride and (1, 10) phenanthroline. During the fracture of NaCl, we monitor the evolution of particle size as a function of impact force and find that particles quickly reach a particle size of ∼100 μm largely independent of impact force, and reach steady state 10-100× faster than reaction kinetics of typical mechanochemical reactions. We monitor the copper(II) chloride reactivity by measuring color change during reaction. Applying our transition state theory developed here to the reaction curves of copper(II) chloride and (1, 10) phenanthroline at multiple impact forces results in an activation energy barrier of 0.61 ± 0.07 eV, distinctly higher than barriers for hydrated metal salts and organic ligands and distinctly lower than the direct cleavage of the CuCl bond, indicating that the reaction may be mediated by the higher affinity of Fe in the stainless steel vessel to Cl. We further show that the results in the controlled force reactor match rudimentary estimations of impact force within a commercial ball mill reactor Retsch MM400. These results demonstrate the ability to quantitatively link macroscale reactor parameters to reaction properties, motivating further work to make mechanochemical synthesis quantitative, predictable, and fundamentally insightful.
Collapse
Affiliation(s)
- Emmanuel Nwoye
- Advanced Nanomanufacturing Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, Texas-77843-3123, USA.
| | | | - Maya Costales
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - James Batteas
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Jonathan R Felts
- Advanced Nanomanufacturing Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, Texas-77843-3123, USA.
| |
Collapse
|
42
|
Wang X, Mu B, Li S, Lu Y, Wang A. Mechanochemical preparation of low cost kaolinite-based BiVO 4hybrid pigments with high near infrared reflectance. NANOTECHNOLOGY 2023; 34:505710. [PMID: 37725954 DOI: 10.1088/1361-6528/acfb09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
For accelerate construction of the energy and resource-saving and environmental-friendly society, cleaner preparation of low-cost and high-performance colorful near-infrared reflective inorganic pigments with the decorative function is indispensable to reduce the hazards of urban heat island and simultaneously beautify the appearance of the buildings. Due to the non-toxicity, good chemical stability and narrow band gap, BiVO4has been becoming a promising environment-friendly yellow inorganic pigments among the conventional heavy metals-containing inorganic pigments. In this study, the low-cost and brilliant kaolinite-based BiVO4hybrid pigments were fabricated by cleaner mechanochemical method based on cheap and abundant kaolinite using crystal water of the hydrated metal salts as trace solvent, which could effectively promote the interaction of the involved components at the molecular level during grinding and then decreased the mass transfer resistance for the formation of monoclinic scheelite BiVO4in the following calcination. The obtained hybrid pigments at the optimal preparation conditions exhibited brilliant color properties (D65-10°,L*= 83.45 ± 0.08,a*= 4.17 ± 0.08,b*= 88.59 ± 0.17), high near-infrared reflectance of 86.22%, infrared solar reflectance of 88.14% and high emissivity of 0.9369 in the waveband of 8-13μm. Furthermore, the hybrid pigments could be used for coloring epoxy resin with high emissivity of 0.8782 in 8-13μm. Therefore, the brilliant and low-cost kaolinite-based bismuth yellow hybrid pigments have the enormous potential to be served as colorful functional nanofillers for cooling roofing materials.
Collapse
Affiliation(s)
- Xiaowen Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Shue Li
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yushen Lu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
43
|
Lukáčová Bujňáková Z, Dutková E, Jakubíková J, Cholujová D, Varhač R, Borysenko L, Melnyk I. Investigation of the Interaction between Mechanosynthesized ZnS Nanoparticles and Albumin Using Fluorescence Spectroscopy. Pharmaceuticals (Basel) 2023; 16:1219. [PMID: 37765027 PMCID: PMC10536685 DOI: 10.3390/ph16091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
In this paper, ZnS nanoparticles were bioconjugated with bovine serum albumin and prepared in a form of nanosuspension using a wet circulation grinding. The stable nanosuspension with monomodal particle size distribution (d50 = 137 nm) and negative zeta potential (-18.3 mV) was obtained. The sorption kinetics and isotherm were determined. Interactions between ZnS and albumin were studied using the fluorescence techniques. The quenching mechanism, describing both static and dynamic interactions, was investigated. Various parameters were calculated, including the quenching rate constant, binding constant, stoichiometry of the binding process, and accessibility of fluorophore to the quencher. It has been found that tryptophan, in comparison to tyrosine, can be closer to the binding site established by analyzing the synchronous fluorescence spectra. The cellular mechanism in multiple myeloma cells treated with nanosuspension was evaluated by fluorescence assays for quantification of apoptosis, assessment of mitochondrial membrane potential and evaluation of cell cycle changes. The preliminary results confirm that the nontoxic nature of ZnS nanoparticles is potentially applicable in drug delivery systems. Additionally, slight changes in the secondary structure of albumin, accompanied by a decrease in α-helix content, were investigated using the FTIR method after analyzing the deconvoluted Amide I band spectra of ZnS nanoparticles conjugated with albumin. Thermogravimetric analysis and long-term stability studies were also performed to obtain a complete picture about the studied system.
Collapse
Affiliation(s)
- Zdenka Lukáčová Bujňáková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| | - Jana Jakubíková
- Cancer Research Institute of Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (J.J.)
| | - Danka Cholujová
- Cancer Research Institute of Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (J.J.)
| | - Rastislav Varhač
- Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04154 Košice, Slovakia;
| | - Larysa Borysenko
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukraine, Generala Naumova 17, 03164 Kyiv, Ukraine;
| | - Inna Melnyk
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (E.D.); (I.M.)
| |
Collapse
|
44
|
Lennox CB, Borchers TH, Gonnet L, Barrett CJ, Koenig SG, Nagapudi K, Friščić T. Direct mechanocatalysis by resonant acoustic mixing (RAM). Chem Sci 2023; 14:7475-7481. [PMID: 37449073 PMCID: PMC10337763 DOI: 10.1039/d3sc01591b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 07/18/2023] Open
Abstract
We demonstrate the use of a metal surface to directly catalyse copper-catalysed alkyne-azide click-coupling (CuAAC) reactions under the conditions of Resonant Acoustic Mixing (RAM) - a recently introduced and scalable mechanochemical methodology that uniquely eliminates the need for bulk solvent, as well as milling media. By using a simple copper coil as a catalyst, this work shows that direct mechanocatalysis can occur in an impact-free environment, relying solely on high-speed mixing of reagents against a metal surface, without the need for specially designed milling containers and media. By introducing an experimental setup that enables real-time Raman spectroscopy monitoring of RAM processes, we demonstrate 0th-order reaction kinetics for several selected CuAAC reactions, supporting surface-based catalysis. The herein presented RAM-based direct mechanocatalysis methodology is simple, enables the effective one-pot, two-step synthesis of triazoles via a combination of benzyl azide formation and CuAAC reactions on a wide scope of reagents, provides control over reaction stoichiometry that is herein shown to be superior to that seen in solution or by using more conventional CuCl catalyst, and is applied for simple gram-scale synthesis of the anticonvulsant drug Rufinamide.
Collapse
Affiliation(s)
- Cameron B Lennox
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Tristan H Borchers
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Lori Gonnet
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Christopher J Barrett
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| | - Stefan G Koenig
- Small Molecule Pharmaceutical Sciences, Genentech Inc. One DNA Way South San Francisco CA 94080 USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc. One DNA Way South San Francisco CA 94080 USA
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. Montreal Quebec H3H 0B8 Canada
| |
Collapse
|
45
|
Hu L, Wang J, Wang K, Gu Z, Xi Z, Li H, Chen F, Wang Y, Li Z, Ma C. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries. Nat Commun 2023; 14:3807. [PMID: 37369677 DOI: 10.1038/s41467-023-39522-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
To enable the development of all-solid-state batteries, an inorganic solid-state electrolyte should demonstrate high ionic conductivity (i.e., > 1 mS cm-1 at 25 °C), compressibility (e.g., > 90% density under 250-350 MPa), and cost-effectiveness (e.g., < $50/kg). Here we report the development and preparation of Li1.75ZrCl4.75O0.5 oxychloride solid-state electrolyte that demonstrates an ionic conductivity of 2.42 mS cm-1 at 25 °C, a compressibility enabling 94.2% density under 300 MPa and an estimated raw materials cost of $11.60/kg. As proof of concept, the Li1.75ZrCl4.75O0.5 is tested in combination with a LiNi0.8Mn0.1Co0.1O2-based positive electrode and a Li6PS5Cl-coated Li-In negative electrode in lab-scale cell configuration. This all-solid-state cell delivers a discharge capacity retention of 70.34% (final discharge capacity of 70.2 mAh g-1) after 2082 cycles at 1 A g-1, 25 °C and 1.5 tons of stacking pressure.
Collapse
Affiliation(s)
- Lv Hu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jinzhu Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Kai Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhenqi Gu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhiwei Xi
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Hui Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Fang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Youxi Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Zhenyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Cheng Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- National Synchrotron Radiation Laboratory, Hefei, 230026, Anhui, China.
| |
Collapse
|
46
|
Richard AJ, Ferguson M, Fiss BG, Titi HM, Valdez J, Provatas N, Friščić T, Moores A. In situ study of Au nanoparticle formation in a mechanochemical-aging-based method. NANOSCALE ADVANCES 2023; 5:2776-2784. [PMID: 37205288 PMCID: PMC10187004 DOI: 10.1039/d2na00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/14/2023] [Indexed: 05/21/2023]
Abstract
As we strive to perform chemical transformations in a more sustainable fashion, enabling solid-state reactions through mechanochemistry has emerged as a highly successful approach. Due to the wide-ranging applications of gold nanoparticles (AuNPs), mechanochemical strategies have already been employed for their synthesis. However, the underlying processes surrounding gold salt reduction, nucleation and growth of AuNPs in the solid state are yet to be understood. Here, we present a mechanically activated aging synthesis of AuNPs, through a solid-state Turkevich reaction. Solid reactants are only briefly exposed to input of mechanical energy before being aged statically over a period of six weeks at different temperatures. This system offers an excellent opportunity for an in situ analysis of both reduction and nanoparticle formation processes. During the aging period, the reaction was monitored using a combination of X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, powder X-ray diffraction and transmission electron microscopy, to gain meaningful insights into the mechanisms of solid-state formation of gold nanoparticles. The acquired data allowed for the establishment of the first kinetic model for solid-state nanoparticle formation.
Collapse
Affiliation(s)
- Austin J Richard
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Michael Ferguson
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Blaine G Fiss
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Hatem M Titi
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Jesus Valdez
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
- Facility for Electron Microscopy Research, McGill University 3640 University Street Montréal Québec H3A0C7 Canada
| | - Nikolas Provatas
- Department of Physics, McGill University 3600 University Street Montréal Québec H3A 2T8 Canada
- McGill High Performance Computing Centre, École de Technologie Supérieure (ETS) 1100 Notre Dame Street West Montréal Québec H3C 1K3 Canada
| | - Tomislav Friščić
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
- Department of Materials Engineering, McGill University 3610 University Street Montréal Québec H3A 0C5 Canada
| |
Collapse
|
47
|
Liang X, Li Q, Fang Y. Preparation and Characterization of Modified Kaolin by a Mechanochemical Method. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3099. [PMID: 37109935 PMCID: PMC10145449 DOI: 10.3390/ma16083099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
A mechanochemical approach was utilized to prepare modified kaolin, and the hydrophobic modification of kaolin was realized. The study aims to investigate the changes in particle size, specific surface area, dispersion ability, and adsorption performance of kaolin. The structure of kaolin was analyzed using infrared spectroscopy, scanning electron microscopy, and X-ray diffraction, and the alterations to the kaolin microstructure were thoroughly researched and discussed. The results demonstrated that this modification method can effectively improve the dispersion and adsorption capacities of kaolin. Mechanochemical modification can increase the specific surface area of kaolin particles, reduce their particle size, and improve their agglomeration behavior. The layered structure of the kaolin was partially destroyed, the degree of order was debased, and the activity of its particles was enhanced. Furthermore, organic compounds were adsorbed on the surface of the particles. The appearance of new infrared peaks in the modified kaolin's infrared spectrum suggested that the kaolin has undergone a chemical modification process, introducing new functional groups.
Collapse
|
48
|
Wang W, Peng Y. Mechanochemical organic synthesis in a rotary evaporator beyond conventional application: Proof-of-concept reactions. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2188463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Weifeng Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yanqing Peng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
49
|
Kanmaz N, Buğdaycı M, Demirçivi P. Solvent-free mechanochemical synthesis of TiO2-ethyl cellulose biocomposite for adsorption of tetracycline and organic dyes. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
50
|
Bartalucci E, Schumacher C, Hendrickx L, Puccetti F, d'Anciães Almeida Silva I, Dervişoğlu R, Puttreddy R, Bolm C, Wiegand T. Disentangling the Effect of Pressure and Mixing on a Mechanochemical Bromination Reaction by Solid-State NMR Spectroscopy. Chemistry 2023; 29:e202203466. [PMID: 36445819 DOI: 10.1002/chem.202203466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Mechanical forces, including compressive stresses, have a significant impact on chemical reactions. Besides the preparative opportunities, mechanochemical conditions benefit from the absence of any organic solvent, the possibility of a significant synthetic acceleration and unique reaction pathways. Together with an accurate characterization of ball-milling products, the development of a deeper mechanistic understanding of the occurring transformations at a molecular level is critical for fully grasping the potential of organic mechanosynthesis. We herein studied a bromination of a cyclic sulfoximine in a mixer mill and used solid-state nuclear magnetic resonance (NMR) spectroscopy for structural characterization of the reaction products. Magic-angle spinning (MAS) was applied for elucidating the product mixtures taken from the milling jar without introducing any further post-processing on the sample. Ex situ 13 C-detected NMR spectra of ball-milling products showed the formation of a crystalline solid phase with the regioselective bromination of the S-aryl group of the heterocycle in position 4. Completion is reached in less than 30 minutes as deduced from the NMR spectra. The bromination can also be achieved by magnetic stirring, but then, a longer reaction time is required. Mixing the solid educts in the NMR rotor allows to get in situ insights into the reaction and enables the detection of a reaction intermediate. The pressure alone induced in the rotor by MAS is not sufficient to lead to full conversion and the reaction occurs on slower time scales than in the ball mill, which is crucial for analysing mixtures taken from the milling jar by solid-state NMR. Our data suggest that on top of centrifugal forces, an efficient mixing of the starting materials is required for reaching a complete reaction.
Collapse
Affiliation(s)
- Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Christian Schumacher
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Leeroy Hendrickx
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Francesco Puccetti
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | | | - Rıza Dervişoğlu
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Rakesh Puttreddy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany.,University of Jyvaskyla, Department of Chemistry P. O. Box. 35, Survontie 9B, 40014, Jyväskylä, Finland
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|