1
|
Ren R, Xiong B, Zhu J. Surface Modification of Gold Nanorods: Multifunctional Strategies and Application Prospects. Chemistry 2024; 30:e202400851. [PMID: 39352147 DOI: 10.1002/chem.202400851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 11/09/2024]
Abstract
Gold nanorods (AuNRs), as an important type of gold nanomaterials, have attracted much attention in the nano field. Compared with gold nanoparticls, AuNRs have broader application potential due to their tunable localized surface plasmon resonance properties and anisotropic shapes. Yet, conventional synthesis methods using surfactants have limited the use of AuNRs in a variety of fields such as biomedical applications, plasma-enhanced fluorescence, optics and optoelectronic devices. To solve this problem and improve the stability and biocompatibility of AuNRs, researchers in recent years have used surface modification and functionalization to modify AuNRs, among which the introduction of organic ligands to prepare organic/gold hybrid nanorods has become an effective strategy. Organic materials have better toughness and easy processing, and by introducing organic ligands into the surface of AuNRs, the molecular-level composite of organic and inorganic materials can be realized, thus obtaining hybrid nanorods with excellent properties. This paper reviews the research progress of hybrid nanocomposites, and introducing the synthesis methods of AuNRs and the development of surface ligand modification, then summarises the applications of a wide variety of ligands. Also, the advantages and disadvantages of different ligands and their roles in further self-assembly processes are discussed.
Collapse
Affiliation(s)
- Rui Ren
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bijin Xiong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Verma J, Kumar C, Sharma M, Saxena S. Biotechnological advances in microbial synthesis of gold nanoparticles: Optimizations and applications. 3 Biotech 2024; 14:263. [PMID: 39387004 PMCID: PMC11458872 DOI: 10.1007/s13205-024-04110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
This review discusses the eco-friendly and cost-effective biosynthesis of gold nanoparticles (AuNPs) in viable microorganisms, focusing on microbes-mediated AuNP biosynthesis. This process suits agricultural, environmental, and biomedical applications, offering renewable, eco-friendly, non-toxic, sustainable, and time-efficient methods. Microorganisms are increasingly used in green technology, nanotechnology, and RNAi technology, but several microorganisms have not been fully identified and characterized. Bio-nanotechnology offers eco-friendly and sustainable solutions for nanomedicine, with microbe-mediated nanoparticle biosynthesis producing AuNPs with anti-oxidation activity, stability, and biocompatibility. Ultrasmall AuNPs offer rapid distribution, renal clearance, and enhanced permeability in biomedical applications. The review explores nano-size dependent biosynthesis of AuNPs by bacteria, fungi, and viruses revealing their non-toxic, non-genotoxic, and non-oxidative properties on human cells. AuNPs with varying sizes and shapes, from nitrate reductase enzymes, have shown potential as a promising nano-catalyst. The synthesized AuNPs, with negative charge capping molecules, have demonstrated antibacterial activity against drug-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii strains, and were non-toxic to Vero cell lines, indicating potential antibiotic resistance treatments. A green chemical method for the biosynthesis of AuNPs using reducing chloroauric acid and Rhizopus oryzae protein extract has been described, demonstrating excellent stability and strong catalytic activity. AuNPs are eco-friendly, non-toxic, and time-efficient, making them ideal for biomedical applications due to their antioxidant, antidiabetic, and antibacterial properties. In addition to the biomedical application, the review also highlights the role of microbially synthesized AuNPs in sustainable management of plant diseases, and environmental bioremediation.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Chitranjan Kumar
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313 India
| | - Monica Sharma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
3
|
Kotkowiak M, Tim B, Kotkowiak M, Musiał J, Błaszkiewicz P. The Role of the Polyethylene Glycol in the Organization of Gold Nanorods at the Air-Water and Air-Solid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14561-14569. [PMID: 38961723 PMCID: PMC11256738 DOI: 10.1021/acs.langmuir.4c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
The organization of metallic nanoparticles into assembled films is a complex process. The type of nanoparticle stabilizing ligand and the method for creating an organized layer can profoundly affect the optical properties of the resulting nanoparticle assembly. Investigations of the ligand structure and nanoparticle interactions can provide a greater understanding of the design of the assembly process and the quality of the resulting materials. One of the functionalization methods in the preparation of specific gold nanorods is the utilization of thiol-terminated poly(ethylene glycol). This generates gold nanorods capable of forming stable monolayers at the air-water interface upon dispersion in a suitable organic solvent. Herein, we show that depending on the molecular weight of the poly(ethylene glycol), the structures obtained at the air-water and air-solid interfaces differ in the arrangement. The studied structures were characterized by using spectroscopic and microscopic techniques, and the structural type was correlated with the polymer type. Insoluble and stable Langmuir monolayers composed of higher-molecular-weight gold nanorods with poly(ethylene glycol) were formed only in the presence of an additional stabilizer that prevented the formation of gold nanorods in aqueous solutions. At the air-solid interface, conformational changes in poly(ethylene glycol) induced the aggregation of gold nanorods, which became closely packed under the influence of surface pressure. The presented results suggested that the arrangement of two-dimensional layers of gold nanorods could be tailored using poly(ethylene glycol) of various molecular weights.
Collapse
Affiliation(s)
- Michał Kotkowiak
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Beata Tim
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Mateusz Kotkowiak
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Joanna Musiał
- Department
of Rare Earths, Faculty of Chemistry, Adam
Mickiewicz University, 61-614 Poznan, Poland
| | - Paulina Błaszkiewicz
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| |
Collapse
|
4
|
Barbero F, Gul S, Perrone G, Fenoglio I. Photoresponsive Inorganic Nanomaterials in Oncology. Technol Cancer Res Treat 2023; 22:15330338231192850. [PMID: 37551087 PMCID: PMC10408349 DOI: 10.1177/15330338231192850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023] Open
Abstract
The diagnosis and treatment of cancer are continuously evolving in search of more efficient, safe, and personalized approaches. Therapies based on nanoparticles or physical stimuli-responsive substances have shown great potential to overcome the inherent shortcomings of conventional cancer therapies. In fact, nanoparticles may increase the half-life of chemotherapeutic agents or promote the targeting in cancer tissues while physical stimuli-responsive substances are more effective and safer with respect to traditional chemotherapeutic agents because of the possibility to be switched on only when needed. These 2 approaches can be combined by exploiting the ability of some inorganic nanomaterials to be activated by light, ultrasounds, magnetic fields, or ionizing radiations. Albeit the development of stimuli-responsive materials is still at the early stages, research in this field is rapidly growing since they have important advantages with respect to organic nanoparticles or molecular substances, like higher stability, and higher efficiency in converting the stimulus in heat or, in some cases, reactive oxygen species. On the other hand, the translation process is slowed down by issues related to safety and quality of the formulations. This literature review summarizes the current advancements in this research field, analysing the most promising materials and applications.
Collapse
Affiliation(s)
| | - Shagufta Gul
- Department of Chemistry, University of Torino, Torino, Italy
| | - Guido Perrone
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, Torino, Italy
| |
Collapse
|
5
|
Arellano-Galindo L, Villar-Alvarez E, Varela A, Figueroa V, Fernandez-Vega J, Cambón A, Prieto G, Barbosa S, Taboada P. Hybrid Gold Nanorod-Based Nanoplatform with Chemo and Photothermal Activities for Bimodal Cancer Therapy. Int J Mol Sci 2022; 23:13109. [PMID: 36361892 PMCID: PMC9659131 DOI: 10.3390/ijms232113109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2023] Open
Abstract
Metal nanoparticles (NPs), particularly gold nanorods (AuNRs), appear as excellent platforms not only to transport and deliver bioactive cargoes but also to provide additional therapeutic responses for diseased cells and tissues and/or to complement the action of the carried molecules. In this manner, here, we optimized a previous developed metal-based nanoplatform composed of an AuNR core surrounded by a polymeric shell constructed by means of the layer-by-layer approach, and in which very large amounts of the antineoplasic drug doxorubicin (DOXO) in a single loading step and targeting capability thanks to an outer hyaluronic acid layer were incorporated by means of an optimized fabrication process (PSS/DOXO/PLL/HA-coated AuNRs). The platform retained its nanometer size with a negative surface charge and was colloidally stable in a range of physiological conditions, in which only in some of them some particle clustering was noted with no precipitation. In addition, the dual stimuli-responsiveness of the designed nanoplatform to both endogenous proteases and external applied light stimuli allows to perfectly manipulate the chemodrug release rates and profiles to achieve suitable pharmacodynamics. It was observed that the inherent active targeting abilities of the nanoplatfom allow the achievement of specific cell toxicity in tumoral cervical HeLa cells, whilst healthy ones such as 3T3-Balb fibroblast remain safe and alive in agreement with the detected levels of internalization in each cell line. In addition, the bimodal action of simultaneous chemo- and photothermal bioactivity provided by the platform largely enhances the therapeutic outcomes. Finally, it was observed that our PSS/DOXO/PLL/HA-coated AuNRs induced cell mortality mainly through apoptosis in HeLa cells even in the presence of NIR light irradiation, which agrees with the idea of the chemo-activity of DOXO predominating over the photothermal effect to induce cell death, favoring an apoptotic pathway over necrosis for cell death.
Collapse
Affiliation(s)
- Lilia Arellano-Galindo
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Villar-Alvarez
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Nanostructured Funtional Group, Catalonian Institute of Nanotechnology (ICN2), Universidad Autónoma de Barcelona Campus, Av. Serragalliners s/n, 08193 Barcelona, Spain
| | - Alejandro Varela
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valeria Figueroa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento de Ingeniería Química, CUCEI, Universidad de Guadalajara, Guadalajara 44100, Mexico
| | - Javier Fernandez-Vega
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adriana Cambón
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gerardo Prieto
- Grupo de Biofísica e Interfases, Departamento de Física Aplicada, Facultad de Física, Instituto de Materiales (IMATUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas, Facultad de Física, Instituto de Materiales (IMATUS) e Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
In vivo efficacy of verteporfin loaded gold nanorods for combined photothermal/photodynamic colon cancer therapy. Int J Pharm 2022; 625:122134. [PMID: 36007850 DOI: 10.1016/j.ijpharm.2022.122134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023]
Abstract
The high incidence of cancer recurrences and the frequent occurrence of multidrug resistance often stem from a poorly selective and inefficient antineoplastic therapy, responsible for the onset of undesired side effects as well. A combination of minimal-invasive approaches could thus be a useful strategy to surmount these shortcomings, achieving a safe and solid cancer therapy. Herein, a multi-therapeutic nanotool was designed by merging the photothermal properties of gold nanorods (AuNRs) with the photodynamic activity of the photosensitizer verteporfin. AuNRs were coated with the natural materials lipoic acid and gellan gum (AuNRs_LA,GG) and subsequently loaded with verteporfin (AuNRs_LA,GG/Vert) producing stable colloidal dispersions. AuNRs_LA,GG/Vert were characterized in terms of stability, size and morphology. The hyperthermia exhibited after NIR excitation (810 nm) was also evaluated to highlight the effect on increasing the drug released profile in intra-tumoral mimicking media, as well as cytotoxicity on human colon cancer cell line (HCT116). In vivo studies on HCT116 murine xenograft models were carried out to prove the ability of AuNRs_LA,GG to arrest the tumor growth via NIR laser-triggered hyperthermia. Furthermore, the complete xenograft depletion was demonstrated upon AuNRs_LA,GG/Vert administration by combined photothermal (PTT) and photodynamic (PDT) effects.
Collapse
|
7
|
Miller O, Park K, Vaia RA. Towards maximum optical efficiency of ensembles of colloidal nanorods. OPTICS EXPRESS 2022; 30:25061-25077. [PMID: 36237045 DOI: 10.1364/oe.462926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 06/16/2023]
Abstract
Experimental and theoretical studies of colloidal nanoparticles have primarily focused on accurate characterization and simulation of observable characteristics, such as resonant wavelength. In this paper, we tackle the optimal design of colloidal-nanoparticle ensembles: what is the largest possible per-volume optical cross-section, which designs might achieve them, and can such response be experimentally demonstrated? We combine theory and experiment to answer each of these questions. We derive general bounds on the maximum cross-sections per volume, and we apply an analytical antenna model to show that resonant nanorods should nearly achieve such bounds. We use a modified seed-mediated synthesis approach to synthesize ensembles of gold nanorods with small polydispersity, i.e., small variations in size and aspect ratio. Polydispersity is the key determinant of how closely such ensembles can approach their respective bounds yet is difficult to characterize experimentally without near-field measurements. We show that a certain "extinction metric," connecting extinction cross-section per volume with the radiative efficiencies of the nanoparticles, offers a quantitative prediction of polydispersity via quantities that can be rapidly measured with far-field characterization tools. Our predictions apply generally across all plasmonic materials and offer a roadmap to the largest possible optical response of nanoparticle ensembles.
Collapse
|
8
|
Abstract
By virtue of their unique physicochemical properties, gold nanoparticles (AuNPs) have gained significant interest in a broad range of biomedical applications such as sensors, diagnosis, and therapy. AuNPs are generally synthesized via different conventional physical and chemical methods, which often use harmful chemicals that induce health hazards and pollute the environment. To overcome these issues, green synthesis techniques have evolved as alternative and eco-friendly approaches to the synthesis of environmentally safe and less-expensive nanoparticles using naturally available metabolites from plants and microorganisms such as bacteria, fungi, and algae. This review provides an overview of the advances in the synthesis of AuNPs using different biological resources with examples, and their profound applications in biomedicine. A special focus on the biosynthesis of AuNPs using different medicinal plants and their multifunctional applications in antibacterial, anti-inflammatory, and immune responses are featured. Additionally, the applications of AuNPs in cancer theranostics, including contrast imaging, drug delivery, hyperthermia, and cancer therapeutics, are comprehensively discussed. Moreover, this review will shed light on the importance of the green synthesis approach, and discuss the advantages, challenges, and prospects in this field.
Collapse
|
9
|
Mariyappan K, Park S, Nanda SS, Kokkiligadda S, Jo S, Lee J, Tandon A, Yi DK, Park SH. Fibres and films made from DNA and CTMA-modified DNA embedded with gold nanorods and organic light-emitting materials. Colloids Surf B Biointerfaces 2021; 211:112291. [PMID: 34954515 DOI: 10.1016/j.colsurfb.2021.112291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
The scaffolding of deoxyribonucleic acid (DNA) makes DNA molecules effective templates for hosting various types of nanomaterials. Recently, electrospun fibres formed by a variety of polymers have begun to see use in a number of applications, such as filtration in energy applications, insulation in thermodynamics and protein scaffolding in biomedicine. In this study, we constructed electrospun fibres and thin films made of DNA and cetyltrimethylammonium chloride (CTMA)-modified DNA (CDNA) embedded with dyes, organic light-emitting materials (OLEMs), and gold nanorods (GNRs). These materials provide significant advantages, including selectivity of dimensionality, solubility in organic and inorganic solvents, and functionality enhancement. In addition, coaxial fibres made of CDNA were constructed to demonstrate the feasibility of constructing relatively complex fibres with an electrospinner. To determine the basic physical characteristics of the fibres and thin films containing GNRs and OLEMs, we conducted current measurements, photoluminescence (PL) measurements, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The currents in DNA and CDNA were found to exhibit Ohmic behaviour, while the PL emission could be controlled by OLEMs. In addition, the XPS provided the chemical configuration of samples, and the UV-Vis spectra revealed the plasmon resonance of GNR. Due to their simple fabrication and enhanced functionality, these DNA and CDNA fibres and thin films could be used in various devices (e.g., filters or blocking layers) and sensors (e.g., gas detectors and bio sensors) in a number of industries.
Collapse
Affiliation(s)
- Karthikeyan Mariyappan
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Suyoun Park
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | | | - Samanth Kokkiligadda
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Soojin Jo
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Jayeon Lee
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Anshula Tandon
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Korea.
| | - Sung Ha Park
- Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Institute of Basic Science and Department of Physics, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
10
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
11
|
Mousavi SM, Hashemi SA, Mazraedoost S, Yousefi K, Gholami A, Behbudi G, Ramakrishna S, Omidifar N, Alizadeh A, Chiang WH. Multifunctional Gold Nanorod for Therapeutic Applications and Pharmaceutical Delivery Considering Cellular Metabolic Responses, Oxidative Stress and Cellular Longevity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1868. [PMID: 34361251 PMCID: PMC8308363 DOI: 10.3390/nano11071868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022]
Abstract
Multifunctional gold nanorods (GNR) have drawn growing interest in biomedical fields because of their excellent biocompatibility, ease of alteration, and special optical properties. The great advantage of using GNR in medicine is their application to Photothermal therapy (PPTT), which is possible thanks to their ability to turn luminous energy into heat to cause cellular hyperthermia. For this purpose, the relevant articles between 1988 and 2020 were searched in databases such as John Wiley, Free paper, Scopus, Science Direct, and Springer to obtain the latest findings on multifunctional gold nanorods for therapeutic applications and pharmaceutical delivery. In this article, we review recent progress in diagnostic and therapeutic applications of multifunctional GNR, highlighting new information about their toxicity to various cellular categories, oxidative stress, cellular longevity, and their metabolic effects, such as the effect on the energy cycles and genetic structures. The methods for the synthesis and functionalization of GNR were surveyed. This review includes new information about GNR toxicity to various cellular categories and their metabolic effects.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan;
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Sargol Mazraedoost
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran; (S.M.); (K.Y.); (N.O.)
| | - Khadije Yousefi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran; (S.M.); (K.Y.); (N.O.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran; (S.M.); (K.Y.); (N.O.)
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Gity Behbudi
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran;
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117581, Singapore;
| | - Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran; (S.M.); (K.Y.); (N.O.)
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Ali Alizadeh
- Nanobiology and Nanomedicine Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan;
| |
Collapse
|
12
|
Yu Q, Zhang J, Qiu W, Li K, Qian L, Zhang X, Liu G. Gold nanorods-based lateral flow biosensors for sensitive detection of nucleic acids. Mikrochim Acta 2021; 188:133. [PMID: 33745096 DOI: 10.1007/s00604-021-04788-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/15/2021] [Indexed: 11/24/2022]
Abstract
A gold nanorod (AuNR)-based lateral flow nucleic acid biosensor (LFNAB) is reported for visual detection of DNA with a short test time and high sensitivity. AuNRs with an approximate length of 60 nm were utilized as a colored tag to label the detection DNA probe (Det-DNA). The capture DNA probe (Cap-DNA) was immobilized on the test region of LFNAB. Sandwich-type complex was formed among the AuNR-Det-DNA, target DNA (Tar-DNA), and Cap-DNA on the LFNAB by Watson-Crick base pairing. In the presence of Tar-DNA, AuNRs were thus seized on the test region of LFNAB, and the accumulation of AuNRs subsequently produced a characteristic colored band. The optimized LFNAB was able to detect 10 pM Tar-DNA without instrumentation. Quantitative analysis could be established by measuring the intensity of test band using a portable strip reader, and the detection limit of 2 pM target DNA was achieved on the LFNAB without signal amplification. The detection limit of the AuNR-based LFNAB is 250-fold lower than that of gold nanoparticle (AuNP)-based LFNABs. This work unveiled a sensitive, rapid, and economical strategy for the detection of nucleic acids, and simultaneously opening new promising routes for disease diagnosis and clinical applications. Gold nanorods are used as colored tags for lateral flow nucleic acid biosensor.
Collapse
Affiliation(s)
- Qingcai Yu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Jing Zhang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Wanwei Qiu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Kun Li
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Lisheng Qian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| | - Xueji Zhang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- School of Biomedical Engineering, Shenzhen University Healthy Science Center, Shenzhen, Guangdong, 518060, People's Republic of China.
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| |
Collapse
|
13
|
Schulze H, Wilson H, Cara I, Carter S, Dyson EN, Elangovan R, Rimmer S, Bachmann TT. Label-Free Electrochemical Sensor for Rapid Bacterial Pathogen Detection Using Vancomycin-Modified Highly Branched Polymers. SENSORS (BASEL, SWITZERLAND) 2021; 21:1872. [PMID: 33800145 PMCID: PMC7962439 DOI: 10.3390/s21051872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Rapid point of care tests for bacterial infection diagnosis are of great importance to reduce the misuse of antibiotics and burden of antimicrobial resistance. Here, we have successfully combined a new class of non-biological binder molecules with electrochemical impedance spectroscopy (EIS)-based sensor detection for direct, label-free detection of Gram-positive bacteria making use of the specific coil-to-globule conformation change of the vancomycin-modified highly branched polymers immobilized on the surface of gold screen-printed electrodes upon binding to Gram-positive bacteria. Staphylococcus carnosus was detected after just 20 min incubation of the sample solution with the polymer-functionalized electrodes. The polymer conformation change was quantified with two simple 1 min EIS tests before and after incubation with the sample. Tests revealed a concentration dependent signal change within an OD600 range of Staphylococcus carnosus from 0.002 to 0.1 and a clear discrimination between Gram-positive Staphylococcus carnosus and Gram-negative Escherichia coli bacteria. This exhibits a clear advancement in terms of simplified test complexity compared to existing bacteria detection tests. In addition, the polymer-functionalized electrodes showed good storage and operational stability.
Collapse
Affiliation(s)
- Holger Schulze
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (H.S.); (H.W.); (I.C.)
| | - Harry Wilson
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (H.S.); (H.W.); (I.C.)
| | - Ines Cara
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (H.S.); (H.W.); (I.C.)
| | - Steven Carter
- Polymer and Biomaterials Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK; (S.C.); (E.N.D.); (S.R.)
| | - Edward N. Dyson
- Polymer and Biomaterials Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK; (S.C.); (E.N.D.); (S.R.)
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Stephen Rimmer
- Polymer and Biomaterials Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK; (S.C.); (E.N.D.); (S.R.)
| | - Till T. Bachmann
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; (H.S.); (H.W.); (I.C.)
| |
Collapse
|
14
|
Maturi M, Armanetti P, Menichetti L, Comes Franchini M. An Application of Multivariate Data Analysis to Photoacoustic Imaging for the Spectral Unmixing of Gold Nanorods in Biological Tissues. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E142. [PMID: 33435563 PMCID: PMC7827716 DOI: 10.3390/nano11010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Gold nanorods (GNRs) showed to be a suitable contrast agent in photoacoustics (PA), and are able to provide a tunable absorption contrast against background tissue, while a detectable PA signal can be generated from highly localized and targeted areas. A crucial issue for these imaging techniques is represented by the discrimination between exogenous and endogenous contrast and the assessment of the real PA signal magnitude. The application of image resolution/unmixing methods was implemented and optimized to recover the relative magnitude spectra and distribution maps of image constituents of the biological sample based on multivariate analysis (multivariate curve resolution-alternating least squares, MCR-ALS) in the presence of GNRs with tunable absorption properties. The proposed data analysis methodology is demonstrated on real PA images from experimental animal models and ex-vivo preparations.
Collapse
Affiliation(s)
- Mirko Maturi
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Paolo Armanetti
- National Research Council (CNR), Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy; (P.A.); (L.M.)
| | - Luca Menichetti
- National Research Council (CNR), Institute of Clinical Physiology, Via Moruzzi 1, 56124 Pisa, Italy; (P.A.); (L.M.)
| | - Mauro Comes Franchini
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| |
Collapse
|
15
|
Kim J, Keum H, Kim H, Yu B, Jung W, Whang C, Seo C, Park JH, Jon S. Gold nanorods with an ultrathin anti-biofouling siloxane layer for combinatorial anticancer therapy. J Drug Target 2020; 28:780-788. [DOI: 10.1080/1061186x.2020.1737086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jinjoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for BioCentury, Daejeon, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyeongseop Keum
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for BioCentury, Daejeon, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hansol Kim
- Department of Bio & Brain Engineering, KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Byeongjun Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for BioCentury, Daejeon, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for BioCentury, Daejeon, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Changhee Whang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for BioCentury, Daejeon, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Changjin Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for BioCentury, Daejeon, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji Ho Park
- Department of Bio & Brain Engineering, KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for BioCentury, Daejeon, Republic of Korea
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
16
|
Montefusco-Pereira CV, Formicola B, Goes A, Re F, Marrano CA, Mantegazza F, Carvalho-Wodarz C, Fuhrmann G, Caneva E, Nicotra F, Lehr CM, Russo L. Coupling quaternary ammonium surfactants to the surface of liposomes improves both antibacterial efficacy and host cell biocompatibility. Eur J Pharm Biopharm 2020; 149:12-20. [PMID: 32007589 DOI: 10.1016/j.ejpb.2020.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/11/2020] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
By functionalizing the surface of PEG-liposomes with linkers bearing quaternary ammonium compounds (QACs), we generated novel bacteria disruptors with anti-adhesive properties and reduced cytotoxicity compared to free QACs. Furthermore, QAC-functionalized liposomes are a promising platform for future drug encapsulation. The QAC (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide (MTAB) was attached to maleimide-functionalized liposomes (DSPE-PEG) via thiol linker. The MTAB-functionalized liposomes were physicochemically characterized and their biological activity, in terms of anti-adherence activity and biofilm prevention in Escherichia coli were assessed. The results showed that MTAB-functionalized liposomes inhibit bacterial adherence and biofilm formation while reducing MTAB toxicity.
Collapse
Affiliation(s)
- Carlos V Montefusco-Pereira
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| | - Beatrice Formicola
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Adriely Goes
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany.
| | - Francesca Re
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Claudia A Marrano
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Francesco Mantegazza
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Cristiane Carvalho-Wodarz
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany.
| | - Gregor Fuhrmann
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany.
| | - Enrico Caneva
- UNITECH COSPECT: Comprehensive Substances characterization via advanced sPECTtrometry, 20133 Milan, Italy.
| | - Francesco Nicotra
- Bio Organic Chemistry Laboratory, Department of Biotechnology and Biosciences, University of Milan - Bicocca (UNIMIB), Piazza della Scienza 2, 20126 Milan, Italy.
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| | - Laura Russo
- Bio Organic Chemistry Laboratory, Department of Biotechnology and Biosciences, University of Milan - Bicocca (UNIMIB), Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
17
|
Wang Y, Wu Y, Wen Q, Li P, Wang Y, Jiang H, Zhang W. PEGylated gold nanorods with a broad absorption band in the first near-infrared window for in vivo multifunctional photoacoustic imaging. RSC Adv 2020; 10:4561-4567. [PMID: 35495238 PMCID: PMC9049190 DOI: 10.1039/c9ra10442a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles with absorbances in the near-infrared window (NIR, 700-1300 nm) are ideal contrast agents for in vivo imaging of deep tissue with high signal-to-noise ratios. By using CTAB and l(+)-ascorbic acid (AA) as ligands to effectively balance particle nucleation and growth, PEGylated Au nanorods (NRs) with broad absorption bands (from 650 to 1100 nm) in the first NIR window could be successfully realized. The morphologies, crystal structures, absorption and biotoxicities of the samples were determined by TEM, TGA, UV-vis and MTT assay. The results indicated that the presence of a thin poly(ethylene glycol) (PEG) shell could greatly improve the biocompatibility of the Au NRs (1.7 times that of non-PEGylated Au NRs), making them harmless to living cells. Moreover, the prepared PEGylated Au NRs displayed the highest image contrast and SNR values (1.1-1.5 times that of commercial Au nanospheres and NRs), with excitation lasers of 532, 680 and 828 nm, showing their great potential for use in multicolor photoacoustic imaging in vivo. With the prepared PEGylated Au NRs, a functional image of oxygen saturation was constructed in a single step without changing the contrast agent.
Collapse
Affiliation(s)
- Yiping Wang
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Yiduo Wu
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Qiang Wen
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Pengwei Li
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Ying Wang
- College of Mechanics, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| | - Huabei Jiang
- Biomedical Optics Laboratory, Department of Medical Engineering, College of Engineering, University of South Florida Tampa FL 33620 USA
| | - Wendong Zhang
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology Taiyuan 030024 Shanxi China
| |
Collapse
|
18
|
Hashimoto T, Yuba E, Harada A, Kono K. Preparation of photothermal-chemotherapy nanohybrids by complexation of gold nanorods with polyamidoamine dendrimers having poly(ethylene glycol) and hydrophobic chains. J Mater Chem B 2020; 8:2826-2833. [DOI: 10.1039/c9tb02163a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional dendrimer-gold nanorod hybrid for combination of anticancer drugs and laser hyperthermia towards efficient cancer treatment with less-adverse effects.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai
- Japan
| | - Eiji Yuba
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai
- Japan
| | - Atsushi Harada
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai
- Japan
| | - Kenji Kono
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai
- Japan
| |
Collapse
|
19
|
Perry HL, Botnar RM, Wilton-Ely JDET. Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy. Chem Commun (Camb) 2020; 56:4037-4046. [DOI: 10.1039/d0cc00196a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An overview of recent progress in the design of gadolinium-functionalised gold nanoparticles for use in MRI, multimodal imaging and theranostics.
Collapse
Affiliation(s)
- Hannah L. Perry
- Molecular Sciences Research Hub
- Department of Chemistry
- White City Campus
- Imperial College London
- London
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences
- King's College London
- London
- UK
| | - James D. E. T. Wilton-Ely
- Molecular Sciences Research Hub
- Department of Chemistry
- White City Campus
- Imperial College London
- London
| |
Collapse
|
20
|
De Angelis B, Depalo N, Petronella F, Quintarelli C, Curri ML, Pani R, Calogero A, Locatelli F, De Sio L. Stimuli-responsive nanoparticle-assisted immunotherapy: a new weapon against solid tumours. J Mater Chem B 2020; 8:1823-1840. [DOI: 10.1039/c9tb02246e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interplay between photo-thermal therapy and immunotherapy allows the realization of new nanotechnology-based cancer treatments for solid tumors.
Collapse
Affiliation(s)
- Biagio De Angelis
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - Nicoletta Depalo
- CNR-IPCF
- National Research Council of Italy
- Institute for Physical and Chemical Processes-Bari Division
- I-70126 Bari
- Italy
| | - Francesca Petronella
- CNR-IC
- National Research Council of Italy
- Institute Crystallography
- 00015 Monterotondo – Rome
- Italy
| | - Concetta Quintarelli
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - M. Lucia Curri
- CNR-IPCF
- National Research Council of Italy
- Institute for Physical and Chemical Processes-Bari Division
- I-70126 Bari
- Italy
| | - Roberto Pani
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| | - Antonella Calogero
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| | - Franco Locatelli
- Department of Onco-Haematology and Cell and Gene Therapy
- Bambino Gesù Children's Hospital
- IRCCS
- Rome
- Italy
| | - Luciano De Sio
- Center for Biophotonics and Department of Medico-surgical Sciences and Biotechnologies
- Sapienza University of Rome
- Latina
- Italy
| |
Collapse
|
21
|
Moll B, Tichelkamp T, Wegner S, Francis B, Müller TJJ, Janiak C. Near-infrared (NIR) surface-enhanced Raman spectroscopy (SERS) study of novel functional phenothiazines for potential use in dye sensitized solar cells (DSSC). RSC Adv 2019; 9:37365-37375. [PMID: 35542299 PMCID: PMC9075589 DOI: 10.1039/c9ra08675g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 12/02/2022] Open
Abstract
Phenothiazines are of potential use as dye sensitizers in Grätzel-type dye sensitized solar cells (DSSC). Plasmonic nanoparticles like gold nanoparticles can enhance the power conversion efficiency of these solar cells. In this work near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) is used to investigate the interaction between six novel phenothiazine-merocyanine dyes containing the three different functional groups rhodanine, 1,3-indanedione and cyanoacylic acid with plasmonic nanomaterials, to decide if the incorporation of plasmonic nanoparticles could enhance the efficiency of a Grätzel-type solar cell. The studies were carried out in the solution state using spherical and rod-shaped gold nanostructures. With KCl induced agglomerated spherical gold nanoparticles, forming SERS hot spots, the results showed low detection limits between 0.1 μmol L-1 for rhodanine containing phenothiazine dyes, because of the formation of Au-S bonds and 3 μmol L-1 for cyanoacrylic acid containing dyes, which formed H-aggregates in the watery dispersion. Results with gold nanorods showed similar trends in the SERS measurements with lower limits of detection, because of a shielding effect from the strongly-bound surfactant. Additional fluorescence studies were carried out to determine if the incorporation of nanostructures leads to fluorescence quenching. Overall we conclude that the addition of gold nanoparticles to rhodanine and 1,3-indanedione containing phenothiazine merocyanine dyes could enhance their performance in Grätzel-type solar cells, because of their strong interactions with plasmonic nanoparticles.
Collapse
Affiliation(s)
- Bastian Moll
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität D-40204 Düsseldorf Germany
| | - Thomas Tichelkamp
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität D-40204 Düsseldorf Germany
| | - Susann Wegner
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität D-40204 Düsseldorf Germany
| | - Biju Francis
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität D-40204 Düsseldorf Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität D-40204 Düsseldorf Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität D-40204 Düsseldorf Germany
| |
Collapse
|
22
|
Yan L, Zhao F, Wang J, Zu Y, Gu Z, Zhao Y. A Safe-by-Design Strategy towards Safer Nanomaterials in Nanomedicines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805391. [PMID: 30701603 DOI: 10.1002/adma.201805391] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/13/2018] [Indexed: 05/25/2023]
Abstract
The marriage of nanotechnology and medicine offers new opportunities to fight against human diseases. Benefiting from their unique optical, thermal, magnetic, or redox properties, a wide range of nanomaterials have shown potential in applications such as diagnosis, drug delivery, or tissue repair and regeneration. Despite the considerable success achieved over the past decades, the newly emerging nanomedicines still suffer from an incomplete understanding of their safety risks, and of the relationships between their physicochemical characteristics and safety profiles. Herein, the most important categories of nanomaterials with clinical potential and their toxicological mechanisms are summarized, and then, based on this available information, an overview of the principles in developing safe-by-design nanomaterials for medical applications and of the recent progress in this field is provided. These principles may serve as a starting point to guide the development of more effective safe-by-design strategies and to help identify the major knowledge and skill gaps.
Collapse
Affiliation(s)
- Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China, Beijing, 100190, China
| |
Collapse
|
23
|
Pratiwi FW, Kuo CW, Chen BC, Chen P. Recent advances in the use of fluorescent nanoparticles for bioimaging. Nanomedicine (Lond) 2019; 14:1759-1769. [DOI: 10.2217/nnm-2019-0105] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapid and recent progress in fluorescence microscopic techniques has allowed for routine discovery and viewing of biological structures and processes in unprecedented spatiotemporal resolution. In these imaging techniques, fluorescent nanoparticles (NPs) play important roles in the improvement of reporting systems. A short overview of recently developed fluorescent NPs used for advanced in vivo imaging will be discussed in this mini-review. The discussion begins with the contribution of fluorescence imaging in exploring the fate of NPs in biological systems. NP applications for in vivo imaging, including cell labeling, multimodal imaging and theranostic agents, are then discussed. Finally, despite all of the advancements in bioimaging, some unsolved challenges will be briefly discussed concerning future research directions.
Collapse
Affiliation(s)
| | - Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
24
|
Hlapisi N, Motaung TE, Linganiso LZ, Oluwafemi OS, Songca SP. Encapsulation of Gold Nanorods with Porphyrins for the Potential Treatment of Cancer and Bacterial Diseases: A Critical Review. Bioinorg Chem Appl 2019; 2019:7147128. [PMID: 31182957 PMCID: PMC6515112 DOI: 10.1155/2019/7147128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/04/2019] [Indexed: 01/23/2023] Open
Abstract
Cancer and bacterial diseases have been the most incidental diseases to date. According to the World Health Report 2018, at least every family is affected by cancer around the world. In 2012, 14.1 million people were affected by cancer, and that figure is bound to increase to 21.6 million in 2030. Medicine therefore sorts out ways of treatment using conventional methods which have been proven to have many side effects. Researchers developed photothermal and photodynamic methods to treat both cancer and bacterial diseases. These methods pose fewer effects on the biological systems but still no perfect method has been synthesized. The review serves to explore porphyrin and gold nanorods to be used in the treatment of cancer and bacterial diseases: porphyrins as photosensitizers and gold nanorods as delivery agents. In addition, the review delves into ways of incorporating photothermal and photodynamic therapy aimed at producing a less toxic, more efficacious, and specific compound for the treatment.
Collapse
Affiliation(s)
- Nthabeleng Hlapisi
- Department of Chemistry, University of Zululand, X1001, KwaDlangezwa, KwaZulu-Natal, South Africa
| | - Tshwafo E. Motaung
- Department of Chemistry, University of Zululand, X1001, KwaDlangezwa, KwaZulu-Natal, South Africa
| | - Linda Z. Linganiso
- Department of Chemistry, University of Zululand, X1001, KwaDlangezwa, KwaZulu-Natal, South Africa
| | - Oluwatobi S. Oluwafemi
- Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg, South Africa
| | - Sandile P. Songca
- Department of Chemistry, University of Kwazulu Natal, Kwazulu Natal, South Africa
| |
Collapse
|
25
|
Alex SA, Chandrasekaran N, Mukherjee A. Effect of negative functionalisation of gold nanorods on conformation and activity of human serum albumin. IET Nanobiotechnol 2019; 13:522-529. [PMCID: PMC8676158 DOI: 10.1049/iet-nbt.2018.5408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 09/26/2023] Open
Abstract
The theranostic applications of gold nanorods (AuNRs) are limited due to the presence of cytotoxic cetrimonium bromide (CTAB) stabiliser, leading to the instigation of alternate stabilisers like negatively charged polystyrene sulphonate (PSS). Despite previous reports suggesting the impact of PSS‐AuNRs on cells, their effect on the most abundant protein in plasma, i.e. human serum albumin (HSA), has not been studied before. Hence, the impact of PSS‐AuNRs on HSA was thoroughly examined using varied spectroscopic techniques. The absorbance and fluorescence spectroscopic findings suggested the extent of ground‐state complexation and tryptophan domain disruptions of HSA for different AuNR concentrations, which were also suggested based on size measurements and activation energy calculations for complex formation. Modifications in the hydrophobic environment of HSA were evaluated using synchronous fluorescence, whereas the secondary structural damages were explained using circular dichroism (CD) and FTIR analyses. Additional studies to analyse protein denaturation, fibrillation, esterase activity, and free thiol were carried out to understand structural and functional changes. The study suggested that PSS‐AuNRs showed concentration‐dependent alterations in HSA structure, but the extent of protein toxicity was considerably lesser for PSS‐AuNRs of similar dimensions compared to the data available for CTAB‐AuNRs; thus, highlighting that PSS‐AuNRs could be safer for biomedical applications.
Collapse
Affiliation(s)
- Sruthi Ann Alex
- Centre for Nanobiotechnology, Vellore Institute of TechnologyVellore632014Tamil NaduIndia
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of TechnologyVellore632014Tamil NaduIndia
| |
Collapse
|
26
|
Liu Y, Xu M, Zhao Y, Chen X, Zhu X, Wei C, Zhao S, Liu J, Qin X. Flower-like gold nanoparticles for enhanced photothermal anticancer therapy by the delivery of pooled siRNA to inhibit heat shock stress response. J Mater Chem B 2019; 7:586-597. [DOI: 10.1039/c8tb02418a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Surface modified gold nanoflowers were employed as synergistic therapeutics for photothermal ablation and gene silencing.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Meng Xu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Yingyu Zhao
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Xu Chen
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Xufeng Zhu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Chunfang Wei
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Shuang Zhao
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Jie Liu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou 510632
- China
| | - Xiuying Qin
- College of Pharmacy
- Guilin Medical University
- Guangxi Guilin
- China
| |
Collapse
|
27
|
Wong RC, Lo PC, Ng DK. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.10.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Lee J, Lee YH, Jeong CB, Choi JS, Chang KS, Yoon M. Gold nanorods-conjugated TiO 2 nanoclusters for the synergistic combination of phototherapeutic treatments of cancer cells. J Nanobiotechnology 2018; 16:104. [PMID: 30572896 PMCID: PMC6300922 DOI: 10.1186/s12951-018-0432-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recently, a combination of photodynamic therapy (PDT) and photothermal therapy (PTT) to generate reactive oxygen species (ROS) and heat to kill cancer cells, respectively has attracted considerable attention because it gives synergistic effects on the cancer treatment by utilizing the radiation of nontoxic low-energy photons such as long wavelength visible light and near IR (NIR) penetrating into subcutaneous region. For the effective combination of the phototherapies, various organic photosensitizer-conjugated gold nanocomplexes have been developed, but they have still some disadvantages due to photobleaching and unnecessary energy transfer of the organic photosensitizers. RESULTS In this study, we fabricated novel inorganic phototherapeutic nanocomplexes (Au NR-TiO2 NCs) by conjugating gold nanorods (Au NRs) with defective TiO2 nanoparticle clusters (d-TiO2 NP clusters) and characterized their optical and photothermal properties. They were observed to absorb a broad range of visible light and near IR (NIR) from 500 to 1000 nm, exhibiting the generation of ROS as well as the photothermal effect for the simultaneous application of PDT and PTT. The resultant combination of PDT and PTT treatments of HeLa cells incubated with the nanocomplexes caused a synergistic increase in the cell death compared to the single treatment. CONCLUSION The higher efficacy of cell death by the combination of PDT and PTT treatments with the nanocomplexes is likely attributed to the increases of ROS generation from the TiO2 NCs with the aid of local surface plasma resonance (LSPR)-induced hot electrons and heat generation from Au NRs, suggesting that Au NR-TiO2 NCs are promising nanomaterials for the in vivo combinatorial phototherapy of cancer.
Collapse
Affiliation(s)
- Jooran Lee
- Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Young Hwa Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Chan Bae Jeong
- Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ki Soo Chang
- Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 34133, Republic of Korea.
| | - Minjoong Yoon
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
29
|
Nunes ÁM, da Silva KRM, Calado CMS, Saraiva KLA, Q Figueiredo RCB, Leite ACR, Meneghetti MR. Evaluation of gold nanorods toxicity on isolated mitochondria. Toxicology 2018; 413:24-32. [PMID: 30528861 DOI: 10.1016/j.tox.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 01/30/2023]
Abstract
Gold nanorods (AuNRs) have been studied extensively in biomedicine due to their biocompatibility and their unique properties. Some studies reported that AuNRs selectively accumulate on cancer cell mitochondria causing its death. However, the immediate effects of this accumulation needed further investigations. In this context, we evaluated the effect of AuNRs on the mitochondrial integrity of isolated rat liver mitochondria. We verified that AuNRs decreased the mitochondrial respiratory ratio by decreasing the phosphorylation and maximal states. Additionally, AuNRs caused a decrease in the production of mitochondrial ROS and a delay in mitochondrial swelling. Moreover, even with cyclosporine A treatment, AuNRs disrupted the mitochondrial potential. With the highest concentration of AuNRs studied, disorganized mitochondrial crests and intermembrane separation were observed in TEM images. These results indicate that AuNRs can interact with mitochondria, disrupting the electron transport chain. This study provides new evidence of the immediate effects of AuNRs on mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Ábner M Nunes
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, CEP, 57072-970, Maceió, Alagoas, Brazil
| | - Kleyton R M da Silva
- Laboratório de Bioenergética, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, CEP, 57072-970, Maceió, Alagoas, Brazil
| | - Claudia M S Calado
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, CEP, 57072-970, Maceió, Alagoas, Brazil
| | - Karina L A Saraiva
- Laboratório de Biologia Celular de Patógenos, Departamento de Microbiologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Cidade Universitária, CEP, 50670-420, Recife, Pernambuco, Brazil
| | - Regina C B Q Figueiredo
- Laboratório de Biologia Celular de Patógenos, Departamento de Microbiologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Cidade Universitária, CEP, 50670-420, Recife, Pernambuco, Brazil
| | - Ana Catarina R Leite
- Laboratório de Bioenergética, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, CEP, 57072-970, Maceió, Alagoas, Brazil.
| | - Mario R Meneghetti
- Grupo de Catálise e Reatividade Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, CEP, 57072-970, Maceió, Alagoas, Brazil.
| |
Collapse
|
30
|
Cancino-Bernardi J, Marangoni VS, Besson JCF, Cancino MEC, Natali MRM, Zucolotto V. Gold-based nanospheres and nanorods particles used as theranostic agents: An in vitro and in vivo toxicology studies. CHEMOSPHERE 2018; 213:41-52. [PMID: 30212718 DOI: 10.1016/j.chemosphere.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/09/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The adverse effect of gold-based nanoparticles is still an open question since it depends on several factors as shape, surface charge or route of administration. In this study, we investigated the influence of shape and human serum albumin (HSA) coating on the adverse effects of spherical (AuNP) and nanorods (AuNR) gold-based particles. F C3H (fibroblast) and HTC (hepatocellular carcinoma) cell lines both from liver were exposed to 25, 75 and 125 μg mL-1, which correspond to 109 NP mL-1. For in vivo studies, Wistar rats received these materials by oral administration in doses of 10 μg kg-1 or 40 μg kg-1. Systemic toxicity was verified after 24 h and 48 h by morphological analysis, blood parameters and myeloperoxidase enzyme activity. Our results revealed that HSA corona does not influence totally the pathway of interactions between AuNP and AuNR. In vitro results evidenced that AuNP can decrease in at least 50% viability of F C3H and cell adhesion of HTC, but corona significantly overcomes these effects. No differences between shape or corona were observed in function of cell lines. In vivo studies showed that 40 μg kg-1 of AuNP-HSA caused an enhancement of the myeloperoxidase response indicating inflammatory processes. An increase from 40% to 80% on alkaline phosphatase levels were found for all groups. Our findings suggested that gold-based particles coated or not with HSA do not cause expressive adverse effects on in vitro or in vivo systems, and their oral administration cannot cause a systemic effect in the experimental conditions used here.
Collapse
Affiliation(s)
- J Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil.
| | - V S Marangoni
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - J C F Besson
- Morphologic Science Department, State University of Maringá, CP, 87020-900, Maringá, PR, Brazil
| | - M E C Cancino
- Morphologic Science Department, State University of Maringá, CP, 87020-900, Maringá, PR, Brazil
| | - M R M Natali
- Morphologic Science Department, State University of Maringá, CP, 87020-900, Maringá, PR, Brazil
| | - V Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
31
|
Robust gold nanorods stabilized by bidentate N-heterocyclic-carbene-thiolate ligands. Nat Chem 2018; 11:57-63. [PMID: 30420777 DOI: 10.1038/s41557-018-0159-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Although N-heterocyclic carbenes (NHCs) have demonstrated outstanding potential for use as surface anchors, synthetic challenges have limited their application to either large planar substrates or very small spherical nanoparticles. The development of a strategy to graft NHCs onto non-spherical nanomaterials, such as gold nanorods, would greatly expand their utility as surface ligands. Here, we use a bidentate thiolate-NHC-gold(I) complex that is easily grafted onto commercial cetyl trimethylammonium bromide-stabilized gold nanorods through ligand exchange. On mild reduction of the resulting surface-tethered NHC-gold(I) complexes, the gold atom attached to the NHC complex is added to the surface as an adatom, thereby precluding the need for reorganization of the underlying surface lattice upon NHC binding. The resulting thiolate-NHC-stabilized gold nanorods are stable towards excess glutathione for up to six days, and under conditions with large variations in pH, high and low temperatures, high salt concentrations, or in biological media and cell culture. We also demonstrate the utility of these nanorods for in vitro photothermal therapy.
Collapse
|
32
|
Guo SS, Chu LK. Radiative Cooling of Surface-Modified Gold Nanorods upon Pulsed Infrared Photoexcitation. J Phys Chem Lett 2018; 9:5110-5115. [PMID: 30130407 DOI: 10.1021/acs.jpclett.8b02311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transient infrared emissions of gold nanorods capped with various materials (AuNR@X, X = CTAB, PSS, mPEG, and SiO2) upon ∼70-μs pulsed 1064 nm excitation of their longitudinal surface plasmonic bands were collected with a time-resolved step-scan Fourier-transform spectrometer. Comparing the observed emission contours with the blackbody radiation spectra revealed that parts of the additional emission intensity at low wavenumbers (1300-1000 cm-1) were attributed to the vibrational modes of the capping materials, suggesting that the photothermal energy of AuNRs can be thermalized not only via blackbody radiation but also via radiative and nonradiative processes of the capping materials. In addition, the infrared emission of AuNR@SiO2 was more prolonged (∼1 ms) than those of the other three (∼300 μs). The photothermal energy can be efficiently randomized to the internal degrees of freedom of the soft molecular capping materials but can be stored by the rigid ones, for example, SiO2, followed by extended radiative cooling.
Collapse
Affiliation(s)
- Shao-Syuan Guo
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Li-Kang Chu
- Department of Chemistry , National Tsing Hua University , 101, Sec. 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| |
Collapse
|
33
|
Huang Y, Skripka A, Labrador-Páez L, Sanz-Rodríguez F, Haro-González P, Jaque D, Rosei F, Vetrone F. Upconverting nanocomposites with combined photothermal and photodynamic effects. NANOSCALE 2018; 10:791-799. [PMID: 29256568 DOI: 10.1039/c7nr05499h] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) have been studied for diverse biomedical applications due to their inherent ability to convert near-infrared (NIR) excitation light to higher energies (spanning the ultraviolet, visible, and NIR regions). To explore additional functionalities, rational combination with other optically active nanostructures may lead to the development of new multimodal nanoplatforms with theranostic (therapy and diagnostic) capabilities. Here, we develop a nanocomposite consisting of NaGdF4:Er3+, Yb3+ UCNPs, mesoporous silica (SiO2), gold nanorods (GNRs) and a photosensitizer, with integrated functionalities including luminescence imaging, photothermal generation, nanothermometry and photodynamic effects. Under 980 nm irradiation, GNRs and UCNPs are simultaneously excited due to the overlap between the surface plasmon resonance of the GNRs and the absorption of the UCNPs leading to plasmonic enhancement of the upconverted luminescence, while concomitantly creating a temperature gradient. The temperature increase can be determined from the intensity ratio of the upconverted green emission of the UCNPs. Finally, a photosensitizer, zinc phthalocyanine, was loaded into the mesoporous SiO2. Upon laser irradiation, the upconverted visible light subsequently activates the photosensitizer to release reactive oxygen species. The multifunctional GNR@SiO2@UCNPs nanocomposites showed strong luminescence signal when incubated in HeLa cervical cancer cells, making them ideal bioprobes for future theranostic applications.
Collapse
Affiliation(s)
- Yue Huang
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
| | - Artiom Skripka
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.
| | - Lucía Labrador-Páez
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Francisco Sanz-Rodríguez
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain and Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Patricia Haro-González
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain and Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Federico Rosei
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada. and Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610051, China and Centre for Self-Assembled Chemical Structures, McGill University, Montréal, H3A 2K6, Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique (INRS), Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada. and Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610051, China and Centre for Self-Assembled Chemical Structures, McGill University, Montréal, H3A 2K6, Canada
| |
Collapse
|
34
|
Cellante L, Costa R, Monaco I, Cenacchi G, Locatelli E. One-step esterification of nanocellulose in a Brønsted acid ionic liquid for delivery to glioblastoma cancer cells. NEW J CHEM 2018. [DOI: 10.1039/c7nj04633b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Brønsted acid ionic liquid used as a solvent and a catalyst allows easy and mild esterification of nanocellulose with a chlorotoxin peptide.
Collapse
Affiliation(s)
- L. Cellante
- Department of Industrial Chemistry “TosoMontanari”
- Bologna
- Italy
| | - R. Costa
- Department of Biomedical and Neuromotor Sciences – DIBINEM
- Bologna
- Italy
| | - I. Monaco
- Department of Industrial Chemistry “TosoMontanari”
- Bologna
- Italy
| | - G. Cenacchi
- Department of Biomedical and Neuromotor Sciences – DIBINEM
- Bologna
- Italy
| | - E. Locatelli
- Department of Industrial Chemistry “TosoMontanari”
- Bologna
- Italy
| |
Collapse
|
35
|
Bai L, Jiang X, Liu B, Wang W, Chen H, Xue Z, Niu Y, Yang H, Wei D. RAFT-mediated Pickering emulsion polymerization with cellulose nanocrystals grafted with random copolymer as stabilizer. RSC Adv 2018; 8:28660-28667. [PMID: 35548399 PMCID: PMC9084400 DOI: 10.1039/c8ra03816c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
The synthesis of a RAFT-mediated Pickering emulsion was firstly achieved by using cellulose nanocrystals (CNCs) grafted with a random copolymer as the stabilizer. Firstly, poly(acrylonitrile-r-butyl acrylate) (poly(AN-r-nBA)) was synthesized by Cu(0)-mediated CRP, which was further modified via a click chemistry strategy to obtain poly(ethylene tetrazole-r-butyl acrylate) (poly(VT-r-nBA)). Then, poly(VT-r-nBA) was grafted onto the CNCs through a Mitsunobu reaction to obtain poly(VT-r-nBA)-g-CNCs. Stabilized by poly(VT-r-nBA)-g-CNCs, an O/W RAFT-mediated Pickering emulsion was formed for the preparation of well-controlled poly(methyl methacrylate) (PMMA) particles with water-soluble potassium persulfate (KPS) as an initiator and oil-soluble 4-cyanopentanoic acid dithiobenzoate (CPADB) as a chain transfer agent. Rheological analysis suggested that the prepared Pickering emulsion possessed good stability under the influences of changes in strain, time, frequency and temperature. Furthermore, the recycling and further utilization of the poly(VT-r-nBA)-g-CNCs could be simply realized through centrifugal separation. A RAFT-mediated Pickering emulsion with cellulose nanocrystals grafted with a random copolymer was used for the preparation of poly(methyl methacrylate) particles..![]()
Collapse
Affiliation(s)
- Liangjiu Bai
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Xinyan Jiang
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Beifang Liu
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Wenxiang Wang
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Hou Chen
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Zhongxin Xue
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Yuzhong Niu
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Huawei Yang
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| | - Donglei Wei
- School of Chemistry and Materials Science
- Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province
- Ludong University
- Yantai 264025
- China
| |
Collapse
|
36
|
Azab MM, Cherif R, Finnie AL, Abou El-Alamin MM, Sultan MA, Wark AW. Optimized polydopamine coating and DNA conjugation onto gold nanorods for single nanoparticle bioaffinity measurements. Analyst 2018. [DOI: 10.1039/c7an02019h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The formation of a stable polydopamine layer on a nanorod surface depends on the underlying chemistry and optimization enables the formation of packed ssDNA monolayers for bioaffinity applications.
Collapse
Affiliation(s)
- Marwa M. Azab
- Centre for Molecular Nanometrology
- Technology and Innovation Centre
- Dept. of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
| | - Rédha Cherif
- Faculté de Chimie
- Université Pierre et Marie Curie
- 75252 Cedex 05
- France
| | - Aryanne L. Finnie
- Centre for Molecular Nanometrology
- Technology and Innovation Centre
- Dept. of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
| | | | - Maha A. Sultan
- Analytical Chemistry Department
- Faculty of Pharmacy
- Helwan University
- Cairo
- Egypt
| | - Alastair W. Wark
- Centre for Molecular Nanometrology
- Technology and Innovation Centre
- Dept. of Pure & Applied Chemistry
- University of Strathclyde
- Glasgow
| |
Collapse
|
37
|
Zhou J, Cao Z, Panwar N, Hu R, Wang X, Qu J, Tjin SC, Xu G, Yong KT. Functionalized gold nanorods for nanomedicine: Past, present and future. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Poudel BK, Gupta B, Ramasamy T, Thapa RK, Pathak S, Oh KT, Jeong JH, Choi HG, Yong CS, Kim JO. PEGylated thermosensitive lipid-coated hollow gold nanoshells for effective combinational chemo-photothermal therapy of pancreatic cancer. Colloids Surf B Biointerfaces 2017; 160:73-83. [PMID: 28917152 DOI: 10.1016/j.colsurfb.2017.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 11/24/2022]
Abstract
Pancreatic cancer has extremely poor prognosis with an 85% mortality rate that results from aggressive and asymptomatic growth, high metastatic potential, and rapid development of resistance to already ineffective chemotherapy. In this study, plasmonic hollow gold nanoshells (GNS) coated with PEGylated thermosensitive lipids were prepared as an efficient platform to ratiometrically co-deliver two drugs, bortezomib and gemcitabine (GNS-L/GB), for combinational chemotherapy and photothermal therapy of pancreatic cancer. Bortezomib was loaded within the lipid bilayers, while gemcitabine was loaded into the hydrophilic interior of the porous GNS via an ammonium sulfate-driven pH gradient method. Physicochemical characterizations and biological studies of GNS-L/GB were performed, with the latter using cytotoxicity assays, cellular uptake and apoptosis assays, live/dead assays, and western blot analysis of pancreatic cancer cell lines (MIA PaCa-2 and PANC-1). The nanoshells showed remotely controllable drug release when exposed to near-infrared laser for site-specific delivery. GNS-L/GB showed synergistic cytotoxicity and improved internalization by cancer cells. High-powered near-infrared continuous wave laser (λ=808nm) effectively killed cancer cells via the photothermal effect of GNS-L/GB, irrespective of cell type in a power density-, time-, and GNS dose-dependent manner. These results suggest that this method can provide a novel approach to achieve synergistic combinational chemotherapy and photothermal therapy, even with resistant pancreatic cancer.
Collapse
Affiliation(s)
- Bijay Kumar Poudel
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Biki Gupta
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Thiruganesh Ramasamy
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
39
|
Lai S, Centi S, Borri C, Ratto F, Cavigli L, Micheletti F, Kemper B, Ketelhut S, Kozyreva T, Gonnelli L, Rossi F, Colagrande S, Pini R. A multifunctional organosilica cross-linker for the bio-conjugation of gold nanorods. Colloids Surf B Biointerfaces 2017; 157:174-181. [PMID: 28586730 DOI: 10.1016/j.colsurfb.2017.05.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/03/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022]
Abstract
We report on the use of organosilica shells to couple gold nanorods to functional peptides and modulate their physiochemical and biological profiles. In particular, we focus on the case of cell penetrating peptides, which are used to load tumor-tropic macrophages and implement an innovative drug delivery system for photothermal and photoacoustic applications. The presence of organosilica exerts subtle effects on multiple parameters of the particles, including their size, shape, electrokinetic potential, photostability, kinetics of endocytic uptake and cytotoxicity, which are investigated by the interplay of colorimetric methods and digital holographic microscopy. As a rule of thumb, as the thickness of organosilica increases from none to ∼30nm, we find an improvement of the photophysical performances at the expense of a deterioration of the biological parameters. Therefore, detailed engineering of the particles for a certain application will require a careful trade-off between photophysical and biological specifications.
Collapse
Affiliation(s)
- Sarah Lai
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Sonia Centi
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Claudia Borri
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy; Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Fulvio Ratto
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy.
| | - Lucia Cavigli
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Filippo Micheletti
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Bjӧrn Kemper
- Biomedical Technology Center, University of Muenster, Muenster, Germany
| | - Steffi Ketelhut
- Biomedical Technology Center, University of Muenster, Muenster, Germany
| | | | | | - Francesca Rossi
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Stefano Colagrande
- Department of Experimental and Clinical Biomedical Science, University of Florence, Florence, Italy
| | - Roberto Pini
- Institute of Applied Physics, National Research Council of Italy, Sesto Fiorentino, Italy
| |
Collapse
|
40
|
Monaco I, Arena F, Biffi S, Locatelli E, Bortot B, La Cava F, Marini GM, Severini GM, Terreno E, Comes Franchini M. Synthesis of Lipophilic Core–Shell Fe3O4@SiO2@Au Nanoparticles and Polymeric Entrapment into Nanomicelles: A Novel Nanosystem for in Vivo Active Targeting and Magnetic Resonance–Photoacoustic Dual Imaging. Bioconjug Chem 2017; 28:1382-1390. [DOI: 10.1021/acs.bioconjchem.7b00076] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ilaria Monaco
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Francesca Arena
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, Trieste 34137, Italy
| | - Erica Locatelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Barbara Bortot
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, Trieste 34137, Italy
| | - Francesca La Cava
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giada Maria Marini
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giovanni Maria Severini
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”, Via dell’Istria 65/1, Trieste 34137, Italy
| | - Enzo Terreno
- Molecular
and Preclinical Imaging Centers, Department of Molecular Biotechnology
and Healthy Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Mauro Comes Franchini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
41
|
A biomimetic Au@BSA-DTA nanocomposites-based contrast agent for computed tomography imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:565-570. [PMID: 28576022 DOI: 10.1016/j.msec.2017.04.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 01/24/2023]
Abstract
Early detection of cancer is increasingly important for being considered to increase the survival rate in the treatment process. The past decades years have witnessed the great progress in the biological detection application of gold nanoparticles. Herein, we reported a facile one-pot synthesis process to obtain gold nanoparticles (Au@BSA) with bovine serum albumin (BSA) as a biotemplate following with conjugation of diatrizoic acid (DTA) for a potential X-ray computed tomography (CT) imaging contrast agent (Au@BSA-DTA). The as-prepared biomimetic material was characterized systematically by several techniques. It was shown that the prepared biomaterial is colloid stable under the tested range of pH and temperature. The cell cytotoxicity assay, hemolytic assay and cell morphology observation showed that Au@BSA-DTA has good biocompatibility and hemocompatibility at a concentration of Au even up to 80μg/mL. Besides, the biomimetic material Au@BSA-DTA with double radiodense elements of Au and iodine displayed much stronger CT imaging effect compared with the traditional small molecule contrast agents, which paves the potential clinical application in cancer early diagnosis.
Collapse
|
42
|
Nishida K, Kawasaki H. Effective removal of surface-bound cetyltrimethylammonium ions from thiol-monolayer-protected Au nanorods by treatment with dimethyl sulfoxide/citric acid. RSC Adv 2017. [DOI: 10.1039/c7ra02179h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A simple and effective strategy for removing surface-bound cetyltrimethylammonium (CTA) cations from poly(ethylene glycol)thiolate-protected AuNRs (PEG-AuNRs) by treatment with dimethyl sulfoxide/citric acid (DMSO/Cit).
Collapse
Affiliation(s)
- Keisuke Nishida
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita 564-8680
- Japan
| | - Hideya Kawasaki
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita 564-8680
- Japan
| |
Collapse
|
43
|
Ghafarinazari A, Scarpa M, Zoccatelli G, Comes Franchini M, Locatelli E, Daldosso N. Hybrid luminescent porous silicon for efficient drug loading and release. RSC Adv 2017. [DOI: 10.1039/c6ra27102b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In recent decades, biocompatible and light emitting porous silicon (pSi) showed the possibility for use in biomedical applications.
Collapse
Affiliation(s)
- A. Ghafarinazari
- Department of Computer Science
- University of Verona
- 37134 Verona
- Italy
| | - M. Scarpa
- Department of Physics
- Istituto Nazionale Biostrutture Biosistemi
- University of Trento
- 38123 Trento
- Italy
| | - G. Zoccatelli
- Department of Biotechnology
- University of Verona
- 37134 Verona
- Italy
| | - M. Comes Franchini
- Department of Industrial Chemistry
- University of Bologna
- 40136 Bologna
- Italy
| | - E. Locatelli
- Department of Industrial Chemistry
- University of Bologna
- 40136 Bologna
- Italy
| | - N. Daldosso
- Department of Computer Science
- University of Verona
- 37134 Verona
- Italy
| |
Collapse
|
44
|
Young AJ, Serpell CJ, Chin JM, Reithofer MR. Optically active histidin-2-ylidene stabilised gold nanoparticles. Chem Commun (Camb) 2017; 53:12426-12429. [DOI: 10.1039/c7cc07602a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis of histidine-derived NHC-stabilised chiroptical gold nanoparticles.
Collapse
Affiliation(s)
- Adam J. Young
- Gray Centre for Advanced Materials
- School of Mathematics and Physical Sciences
- University of Hull
- Hull
- UK
| | | | - Jia Min Chin
- Gray Centre for Advanced Materials
- School of Mathematics and Physical Sciences
- University of Hull
- Hull
- UK
| | - Michael R. Reithofer
- Gray Centre for Advanced Materials
- School of Mathematics and Physical Sciences
- University of Hull
- Hull
- UK
| |
Collapse
|
45
|
Dobiasch S, Szanyi S, Kjaev A, Werner J, Strauss A, Weis C, Grenacher L, Kapilov-Buchman K, Israel LL, Lellouche JP, Locatelli E, Franchini MC, Vandooren J, Opdenakker G, Felix K. Synthesis and functionalization of protease-activated nanoparticles with tissue plasminogen activator peptides as targeting moiety and diagnostic tool for pancreatic cancer. J Nanobiotechnology 2016; 14:81. [PMID: 27993133 PMCID: PMC5168863 DOI: 10.1186/s12951-016-0236-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/03/2016] [Indexed: 11/24/2022] Open
Abstract
Background Functionalized nanoparticles (NPs) are one promising tool for detecting specific molecular targets and combine molecular biology and nanotechnology aiming at modern imaging. We aimed at ligand-directed delivery with a suitable target-biomarker to detect early pancreatic ductal adenocarcinoma (PDAC). Promising targets are galectins (Gal), due to their strong expression in and on PDAC-cells and occurrence at early stages in cancer precursor lesions, but not in adjacent normal tissues. Results Molecular probes (10-29 AA long peptides) derived from human tissue plasminogen activator (t-PA) were selected as binding partners to galectins. Affinity constants between the synthesized t-PA peptides and Gal were determined by microscale thermophoresis. The 29 AA-long t-PA-peptide-1 with a lactose-functionalized serine revealed the strongest binding properties to Gal-1 which was 25-fold higher in comparison with the native t-PA protein and showed additional strong binding to Gal-3 and Gal-4, both also over-expressed in PDAC. t-PA-peptide-1 was selected as vector moiety and linked covalently onto the surface of biodegradable iron oxide nanoparticles (NPs). In particular, CAN-doped maghemite NPs (CAN-Mag), promising as contrast agent for magnetic resonance imaging (MRI), were selected as magnetic core and coated with different biocompatible polymers, such as chitosan (CAN-Mag-Chitosan NPs) or polylactic co glycolic acid (PLGA) obtaining polymeric nanoparticles (CAN-Mag@PNPs), already approved for drug delivery applications. The binding efficacy of t-PA-vectorized NPs determined by exposure to different pancreatic cell lines was up to 90%, as assessed by flow cytometry. The in vivo targeting and imaging efficacy of the vectorized NPs were evaluated by applying murine pancreatic tumor models and assessed by 1.5 T magnetic resonance imaging (MRI). The t-PA-vectorized NPs as well as the protease-activated NPs with outer shell decoration (CAN-Mag@PNPs-PEG-REGAcp-PEG/tPA-pep1Lac) showed clearly detectable drop of subcutaneous and orthotopic tumor staining-intensity indicating a considerable uptake of the injected NPs. Post mortem NP deposition in tumors and organs was confirmed by Fe staining of histopathology tissue sections. Conclusions The targeted NPs indicate a fast and enhanced deposition of NPs in the murine tumor models. The CAN-Mag@PNPs-PEG-REGAcp-PEG/tPA-pep1Lac interlocking steps strategy of NPs delivery and deposition in pancreatic tumor is promising.
Collapse
Affiliation(s)
- Sophie Dobiasch
- Department of Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Technische Universität München, Munich, Germany
| | - Szilard Szanyi
- Department of Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Aleko Kjaev
- Department of Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Jens Werner
- Department of Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Department of General-, Visceral-, Transplantations-, Vascular- and Thorax-Surgery LMU Munich, München, Germany
| | - Albert Strauss
- Department of Radiology, University of Heidelberg, Heidelberg, Germany
| | - Christian Weis
- Department of Radiology, University of Heidelberg, Heidelberg, Germany
| | - Lars Grenacher
- Department of Radiology, University of Heidelberg, Heidelberg, Germany.,Diagnostik München, Diagnostic Imaging and Prevention Center, Munich, Germany
| | - Katya Kapilov-Buchman
- Nanomaterials Research Center, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Liron-Limor Israel
- Nanomaterials Research Center, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Jean-Paul Lellouche
- Nanomaterials Research Center, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Erica Locatelli
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Bologna, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Bologna, Italy
| | - Jennifer Vandooren
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Klaus Felix
- Department of Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
46
|
Lee H, Lee JH, Kim J, Mun J, Chung J, Koo H, Kim C, Yun SH, Hahn SK. Hyaluronate-Gold Nanorod/DR5 Antibody Complex for Noninvasive Theranosis of Skin Cancer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32202-32210. [PMID: 27933820 DOI: 10.1021/acsami.6b11319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Noninvasive transdermal delivery is a promising method with distinct advantages including patient compliance over other delivery routes. Here, hyaluronate-gold nanorod/death receptor 5 antibody (HA-AuNR/DR5 Ab) complex was developed for transdermal theranosis of skin cancer. The successful formation of the complex was corroborated by 1H nuclear magnetic resonance, UV-vis spectroscopy, dynamic light scattering, zeta potential, and transmission electron microscopy. In vitro biological activity of the complex was verified by ELISA and MTT assay using HCT116 cancer cells. In addition, in vivo photoacoustic imaging and two-photon microscopy clearly visualized the transdermal delivery of HA-AuNR/DR5 Ab complex through the inevitable barrier of stratum corneum in the skin. Furthermore, in vivo antitumor effect on skin cancer model mice was confirmed from statistically significant decrease of tumor-reflecting luciferase expression levels and apoptotic signals in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Taken together, we could confirm the feasibility of HA-AuNR/DR5 Ab complex as a novel theranostic platform for noninvasive transdermal treatment of skin cancers.
Collapse
Affiliation(s)
| | | | | | | | - Junho Chung
- Department of Biochemistry and Molecular Biology and Cancer Research Institute, Seoul National University College of Medicine , Seoul 151-742 Korea
| | - Heebeom Koo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital , 65 Landsdowne St. UP-5, Cambridge, Massachusetts 02139, United States
| | | | - Seok Hyun Yun
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital , 65 Landsdowne St. UP-5, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
47
|
Schulz F, Friedrich W, Hoppe K, Vossmeyer T, Weller H, Lange H. Effective PEGylation of gold nanorods. NANOSCALE 2016; 8:7296-308. [PMID: 26975977 DOI: 10.1039/c6nr00607h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Standard procedures to coat gold nanorods (AuNR) with poly(ethylene glycol) (PEG)-based ligands are not reliable and high PEG-grafting densities are not achieved. In this work, the ligand exchange of AuNR with PEGMUA, a tailored PEG-ligand bearing a C10 alkylene spacer, is studied. PEGMUA provides AuNR with very high stability against oxidative etching with cyanide. This etching reaction is utilized to study the ligand exchange in detail. Ligand exchange is faster, less ligand consuming and more reproducible with assisting chloroform extraction. Compared to PEG ligands commonly used, PEGMUA provides much higher colloidal and chemical stability. Further analyses based on NMR-, IR- and UV/Vis-spectroscopy reveal that significantly higher PEG-grafting densities, up to ∼3 nm(-2), are obtained with PEGMUA. This demonstrates how the molecular structure of the PEG ligand can be used to dramatically improve the ligand exchange and to synthesize PEGylated AuNR with high chemical and colloidal stability and high PEG grafting densities. Such AuNR are especially interesting for applications in nanomedicine.
Collapse
Affiliation(s)
- F Schulz
- Institute for Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Dong Z, Xiang P, Huang L, Ye Z. Efficient, robust surface functionalization and stabilization of gold nanorods with quaternary ammonium-containing ionomers as multidentate macromolecular ligands. RSC Adv 2016. [DOI: 10.1039/c6ra07206b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Quaternary ammonium-containing ionomers are a novel class of multidentate macromolecular surface ligands for efficient functionalization and stabilization of gold nanorods.
Collapse
Affiliation(s)
- Zhongmin Dong
- Bharti School of Engineering
- Laurentian University
- Sudbury
- Canada
| | - Peng Xiang
- Bharti School of Engineering
- Laurentian University
- Sudbury
- Canada
| | - Lingqi Huang
- Bharti School of Engineering
- Laurentian University
- Sudbury
- Canada
| | - Zhibin Ye
- Bharti School of Engineering
- Laurentian University
- Sudbury
- Canada
| |
Collapse
|
49
|
Yang Z, Liu T, Xie Y, Sun Z, Liu H, Lin J, Liu C, Mao ZW, Nie S. Chitosan layered gold nanorods as synergistic therapeutics for photothermal ablation and gene silencing in triple-negative breast cancer. Acta Biomater 2015; 25:194-204. [PMID: 26193000 DOI: 10.1016/j.actbio.2015.07.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 07/10/2015] [Accepted: 07/16/2015] [Indexed: 12/12/2022]
Abstract
Small interfering RNAs (siRNAs) are extensively studied due to their promising potential as therapeutic agents for a wide variety of diseases, including cancer. However, efficient delivery of siRNAs to target cells and tissues is problematic due to a lack of suitable delivery vehicles. In this work, we developed a layer-by-layer assembled chitosan-gold nanorods (Chit-Au NRs) siRNA delivery system to overcome biological barriers upon systemic injection. This platform was able to protect siRNAs form degradation upon exposure to ribonuclease (RNase) or serum. Confocal and intravital microscopy reveals that Chit-Au NRs/siRNAs are successfully delivered into target cells and tissue, and can efficiently escape from endosomal/lysosomal structures. Furthermore, Chit-Au NRs/siRNA were found to accumulate in high levels in tumor tissue. The delivery system was able to inhibit the oncogene expression (pyruvate kinase isozymeM2, PKM2) in MDA-MB-231 triple negative breast cancer cells, resulting in suppression of cell proliferation and migration. Moreover, the anticancer efficacy was further enhanced through NR-mediated photothermal ablation. In conclusion, the synergistic therapeutic properties of Chit-Au NRs/siRNA enable effective suppression of cancer growth. STATEMENT OF SIGNIFICANCE Small interfering RNA (siRNA) therapy has promising therapeutic applications, since the expression of any protein can be suppressed. However the successful implementation of siRNA has been challenging, due to rapid degradation, poor intracellular uptake and insufficient endosomal escape. Here, we have developed a gold nanorod/chitosan-based delivery vehicle for siRNA therapy. This platform successfully overcomes the afore-mentioned challenges and can simultaneously be used for photothermal therapy, due to the optical properties of gold nanorods. We show that the anticancer activity is dramatically improved by combining thermal therapy with gene silencing. Furthermore, the Au NRs carrier shows high accumulation in tumor tissue and high transfection efficiency. This manuscript has been reviewed and approved by all co-authors. The research has not been disclosed or published and is not under consideration for publication elsewhere. We would appreciate if the manuscript could be reviewed and considered for publication in Acta BIOMATERIALIA.
Collapse
|
50
|
MacLeod MJ, Johnson JA. PEGylated N-Heterocyclic Carbene Anchors Designed To Stabilize Gold Nanoparticles in Biologically Relevant Media. J Am Chem Soc 2015; 137:7974-7. [PMID: 26081724 DOI: 10.1021/jacs.5b02452] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
N-Heterocyclic carbenes (NHCs) have emerged as versatile ligands for surface functionalization. Their ease of synthesis and ability to form strong bonds with a range of substrates provide a unique complement to traditional surface modification methods. Gold nanoparticles (NPs) are a particularly useful class of materials whose applications intimately depend on surface functionalization. Here we report the development of PEGylated-NHC ligands for Au-NP surfaces and the first example of NHC-functionalized NPs that are compatible with biologically relevant conditions. Our PEGylated-NHC-Au-NPs are stable toward aggregation in aqueous solutions in the pH range of 3-14, in <250 mM electrolyte solutions, at high and low temperatures (95 and -78 °C), in cell culture media, and in aqueous H2O2 solutions. This work demonstrates for the first time that NHCs can serve as anchors for water-soluble Au-NPs and opens the door to potential biomedical applications of NHC surface anchors.
Collapse
Affiliation(s)
- Michelle J MacLeod
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|