1
|
Camunas-Alberca SM, Taha AY, Gradillas A, Barbas C. Comprehensive analysis of oxidized arachidonoyl-containing glycerophosphocholines using ion mobility spectrometry-mass spectrometry. Talanta 2025; 289:127712. [PMID: 39987613 DOI: 10.1016/j.talanta.2025.127712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
The biological significance of oxidized arachidonoyl-containing glycerophosphocholines, exemplified by the oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (oxPAPC), in pathological processes is well-established. However, despite their widespread use in redox lipidomics research, the precise chemical composition of the heterogeneous mixtures of oxPAPC generated in vitro -including the high prevalence of isomers and the oxidation mechanisms involved- remain inadequately understood. To address these knowledge gaps, we developed a multidimensional in-house database from a commercial oxPAPC preparation -employing Liquid Chromatography coupled to Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF-MS) and Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS). This database includes lipid names, retention times, accurate mass values (m/z), adduct profiles, MS/MS information, as well as collision cross-section (CCS) values. Our investigation elucidated 34 compounds belonging to distinct subsets of oxPAPC products, encompassing truncated, full-length, and cyclized variants. The integration of IMS-MS crucially facilitated: (i) structural insights among regioisomers, exemplified by the 5,6-PEIPC and 11,12-PEIPC epoxy-isoprostane derivatives, (ii) novel Collision Cross Section (CCS) values, and (iii) cleaner MS/MS spectra for elucidating the fragmentation mechanisms involved to yield specific fragment ions. These diagnostic ions were employed to successfully characterize full-length isomers present in human plasma samples from patients with mucormycosis. This comprehensive oxPAPC characterization not only advances the understanding of lipid peroxidation products but also enhances analytical capabilities for in vitro-generated oxidized mixtures. The implementation of this robust database, containing multiple orthogonal (i.e., independent) pieces of information, will serve as a comprehensive resource for the field.
Collapse
Affiliation(s)
- Sandra M Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla Del Monte, 28660, Madrid, Spain.
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, 95616, Davis, CA, USA; West Coast Metabolomics Center, Genome Center, University of California, 95616, Davis, CA, USA; Center for Neuroscience, University of California, One Shields Avenue, 95616, Davis, CA, USA.
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla Del Monte, 28660, Madrid, Spain.
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla Del Monte, 28660, Madrid, Spain.
| |
Collapse
|
2
|
Kim KS, Ko YG, Yang WS, Kim HY, Cho JY. A parallel reaction monitoring-mass spectrometric method for studying lipid biosynthesis in vitro using 13C 16-palmitate as an isotope tracer. Anal Chim Acta 2025; 1354:344003. [PMID: 40253071 DOI: 10.1016/j.aca.2025.344003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/17/2025] [Accepted: 03/30/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Palmitate, which is the end product of fatty acid synthase, is the key fatty acid for understanding of lipid biosynthetic process in mammalian cells. Mass spectrometry (MS) methodology using 13C-palmitate can trace the lipid biosynthesis such as glycerolipids, glycerophospholipids, and sphingolipids. However, due to the interferences of natural heavy isotopes, accurate measurement of 13C-labeled lipid species has been limited. Here we describe a high-throughput isotope tracing experiment to assess lipid biosynthesis using parallel reaction monitoring-MS (PRM-MS) with 13C16-palmitate as an isotope tracer. RESULTS The developed method can trace 14 13C16-labeled lipid classes without disturbance from the heavy isotope patterns of natural lipids. Lipid class-based separation was achieved through hydrophilic interaction liquid chromatography (HILIC) which allows facile identification of lipid, and PRM-MS was performed for accurate detection of the 13C16-labeled lipids. A fibroblast (NIH/3T3) cell line was used as an in vitro model, and the NIH/3T3 cells were treated with bovine serum albumin (BSA)-bound 13C16-palmitate. The isotopic disturbance from natural lipid was eliminated using 13C16-palmitate, rather than 13C1-palmitate, as an isotope tracer. After 24 h of incubation with 0.1 mmol/L of BSA-bound 13C16-palmitate in the fibroblasts, NIH/3T3 cells synthesized the 127 13C16-labeled lipid species of glycerolipids, glycerophospholipids, and sphingolipids. Finally, in the NIH/3T3 cells incubated for 1, 6, and 24 h after the treatment of the isotope tracer exhibited an increased profile of 13C16-labeled lipidome, depending on duration of incubation. SIGNIFICANCE The HILIC/PRM-MS method using 13C16-palmitate as an isotope tracer enables identification of 13C16-labeled lipid species by annotating 13C16-labeled position, including the 13C16-fatty acyl chain and 13C16-sphingolipid headgroup, without interference of natural heavy isotope patterns. This lipidomic flux analysis using PRM approach is expected to provide insights into assessment of isotope-labeled lipids.
Collapse
Affiliation(s)
- Kyeong-Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Republic of Korea
| | - Young Gyun Ko
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Life Science, Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Woo Seok Yang
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Life Science, Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Life Science, Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, Republic of Korea; Kidney Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
Rudt E, Froning M, Heuckeroth S, Ortmann L, Diemand J, Hörnschemeyer L, Pleger A, Vinzelberg M, Schmid R, Pluskal T, Dobrindt U, Hayen H, Korf A. Rapid MALDI-MS/MS-Based Profiling of Lipid A Species from Gram-Negative Bacteria Utilizing Trapped Ion Mobility Spectrometry and mzmine. Anal Chem 2025; 97:7781-7788. [PMID: 40167996 PMCID: PMC12004357 DOI: 10.1021/acs.analchem.4c05989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Lipid A, a crucial component of lipopolysaccharides (LPS), plays a pivotal role in the pathogenesis of Gram-negative bacteria. Lipid A patterns are recognized by mammals and can induce immunostimulatory effects. However, the outcome of the interaction is highly dependent on the chemical composition of individual lipid A species. The diversity of potential fatty acyl and polar headgroup combinations in this complex saccharolipid presents a significant analytical challenge. Current mass spectrometry (MS)-based lipid A methods are focused on either direct matrix-assisted laser desorption/ionization (MALDI)-MS screening or comprehensive structural elucidation by tandem mass spectrometry (MS/MS) hyphenated with separation techniques. In this study, we developed an alternative workflow for rapid lipid A profiling covering the entire analysis pipeline from sample preparation to data analysis. This workflow is based on microextraction and subsequent MALDI-MS/MS analysis of uropathogenic Escherichia coli utilizing trapped ion mobility spectrometry (TIMS), followed by mzmine data processing. The additional TIMS dimension served for enhanced sensitivity, selectivity, and structural elucidation through mobility-resolved fragmentation via parallel accumulation-serial fragmentation (PASEF) in parallel reaction monitoring (prm)-mode. Furthermore, mzmine enabled automated MS/MS acquisition by adapting the spatial ion mobility-scheduled exhaustive fragmentation (SIMSEF) strategy for MALDI spot analysis. It also facilitated robust lipid A annotation through a newly developed extension of the rule-based lipid annotation module, allowing for the custom generation of lipid classes, including specific fragmentation rules. In this study, the first publication of lipid A species' collision cross section (CCS) values is reported, which will enhance high-confidence lipid A annotation in future studies.
Collapse
Affiliation(s)
- Edward Rudt
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Matti Froning
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | | | - Lucas Ortmann
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Julia Diemand
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Linus Hörnschemeyer
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Alexander Pleger
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Max Vinzelberg
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Robin Schmid
- mzio
GmbH, Altenwall 26, D-28195 Bremen, Germany
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náméstí
542/2, 160 00 Prague, Czech Republic
| | - Tomáš Pluskal
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náméstí
542/2, 160 00 Prague, Czech Republic
| | - Ulrich Dobrindt
- Institute
of Hygiene, University of Münster, Mendelstraße 7, D-48149 Münster, Germany
| | - Heiko Hayen
- Institute
of Inorganic and Analytical Chemistry, University
of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Ansgar Korf
- mzio
GmbH, Altenwall 26, D-28195 Bremen, Germany
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náméstí
542/2, 160 00 Prague, Czech Republic
| |
Collapse
|
4
|
Sabatini HM, Pettit-Bacovin T, Aderorho R, Chouinard CD. Multidimensional Separations for Characterization of Isomeric PFAS Using SLIM High-Resolution Ion Mobility and Tandem Mass Spectrometry. Anal Chem 2025; 97:6727-6734. [PMID: 40095911 DOI: 10.1021/acs.analchem.4c06985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluorine compounds that accumulate in the environment due to significant industrial use and resistance to degradation. PFAS are of global interest because of their environmental and health concerns. They exist in a variety of linear and nonlinear forms containing a variety of isomers, as well as differing functional headgroups for each class. That structural complexity requires advanced analytical techniques, beyond current high-resolution mass spectrometry (HRMS) methods, for their accurate identification and quantification in a wide range of samples. Herein, we demonstrate the power of Structures for Lossless Ion Manipulations (SLIM)-based high-resolution ion mobility (HRIM) for separation of complex PFAS branched isomers. SLIM is integrated into a multidimensional LC-SLIM IM-MS/MS workflow, developed for the extensive characterization of a wide range of PFAS compounds. As we surveyed sulfonate and carboxylic acid classes of PFAS, we observed unique arrival time vs m/z trend lines that were representative of each class; these trend lines are important for allowing identification of emerging species based on their placement in that two-dimensional space. Next, we used complementary tandem mass spectrometry (MS/MS) approaches with all ion fragmentation (AIF), as well as energy-resolved MS/MS, to further investigate the structure of mobility-separated species. This allowed both investigation of fragmentation mechanism and identification of unique fragment ions that could allow differentiation of isomers when ion mobility was insufficient. Overall, the combination of chromatography, high-resolution SLIM, and MS/MS provided a comprehensive workflow capable of identifying unknown emerging PFAS compounds in complex environmental samples.
Collapse
Affiliation(s)
- Heidi M Sabatini
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Terra Pettit-Bacovin
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | |
Collapse
|
5
|
Zhao K, Ma R, Cheng M, Guo T, Wu W, Song Y, Xu H, Tan A, Qin B, Wei S. Isolation of Macrolactin A from a new Bacillus amyloliquefaciens and its aphicidal activity against Rhopalosiphum padi. PEST MANAGEMENT SCIENCE 2025; 81:1882-1893. [PMID: 39641233 DOI: 10.1002/ps.8589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Rhopalosiphum padi is a major infection affecting cereal crops in the boundary area. However, continuous use of chemical pesticides has increased cases of drug resistance in its field population. Therefore, we aimed to verify the insecticidal properties of Bacillus amyloliquefaciens YJNbs21.10 against aphids, isolated to determine the bioactivity of its metabolite Macrolactin A against aphids for the first time. RESULTS The results of activity tracking showed that the fermentation broth of YJNbs21.10 had the best inhibitory efficacy against R. padi, and the corrected efficiency reached 95.57% after 24 h. With the continuous separation and test, the efficiency of the active components decreased: Macrolactin A, as the most active substance, had a control activity against aphids under 500 mg L-1 of 74.64% at 72 h, (which was significantly lower than that of fermentation broth, indicating a synergistic effect between the active substances of each part of the strain. In addition, the result of the stereomicroscope showed that Macrolactin A damaged the body wall of aphids. The toxicity of Macrolactin A to R. padi was confirmed through the gradient test. CONCLUSION In this study, Bacillus amyloliquefaciens YJNbs21.10 exhibited comparable inhibitory ability to chemical pesticides suggesting its potential to provide effective biological control on aphids. The biological activity of Macrolactin A against aphids was also verified for the first time, in this experiment, the EC50 of this substance against aphids was 169.02 mg L-1 (24 h), which provided strong evidence that YJNbs21.10 may act as an effective agent for the prevention of aphid. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kangbo Zhao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ruyi Ma
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Min Cheng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ting Guo
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Wenjun Wu
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Yuxin Song
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hong Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Aoping Tan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Baofu Qin
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shaopeng Wei
- College of Plant Protection, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| |
Collapse
|
6
|
Yang Y, Yang G, Zhang W, Xin L, Zhu J, Wang H, Feng B, Liu R, Zhang S, Cui Y, Chen Q, Guo D. Application of lipidomics in the study of traditional Chinese medicine. J Pharm Anal 2025; 15:101083. [PMID: 39995576 PMCID: PMC11849089 DOI: 10.1016/j.jpha.2024.101083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 02/26/2025] Open
Abstract
Lipidomics is an emerging discipline that systematically studies the various types, functions, and metabolic pathways of lipids within living organisms. This field compares changes in diseases or drug impact, identifying biomarkers and molecular mechanisms present in lipid metabolic networks across different physiological or pathological states. Through employing analytical chemistry within the realm of lipidomics, researchers analyze traditional Chinese medicine (TCM). This analysis aids in uncovering potential mechanisms for treating diverse physiopathological conditions, assessing drug efficacy, understanding mechanisms of action and toxicity, and generating innovative ideas for disease prevention and treatment. This manuscript assesses recent literature, summarizing existing lipidomics technologies and their applications in TCM research. It delineates the efficacy, mechanisms, and toxicity research related to lipidomics in Chinese medicine. Additionally, it explores the utilization of lipidomics in quality control research for Chinese medicine, aiming to expand the application of lipidomics within this field. Ultimately, this initiative seeks to foster the integration of traditional medicine theory with modern science and technology, promoting an organic fusion between the two domains.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Lingyi Xin
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Jing Zhu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Hangtian Wang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong, 518000, China
| | - Baodong Feng
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Renyan Liu
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Shuya Zhang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Yuanwu Cui
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, Guangdong, 518000, China
| | - Dean Guo
- Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
7
|
de Bruin CR, de Bruijn WJC, Hemelaar MA, Vincken JP, Hennebelle M. Separation of triacylglycerol (TAG) isomers by cyclic ion mobility mass spectrometry. Talanta 2025; 281:126804. [PMID: 39243443 DOI: 10.1016/j.talanta.2024.126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Triacylglycerols (TAGs), a major lipid class in foods and the human body, consist of three fatty acids esterified to a glycerol backbone. They can occur in various isomeric forms, including sn-positional, cis/trans configurational, acyl chain length, double bond positional, and mixed type isomers. Separating isomeric mixtures is of great interest as different isomers can have distinct influence on mechanisms, such as digestibility, oxidative stability, or lipid metabolism. However, TAG isomer separation remains challenging with established analytical methodologies such as liquid-chromatography coupled to mass spectrometry (LC-MS). In this study, we developed a method with cyclic ion mobility mass spectrometry (cIMS-MS) for the separation and identification of all types of TAG isomers. First, the influence of different adducts (Li+, NH4+, Na+, and K+) on the separation was studied. Overall, it was concluded that the sodium adduct is the best choice to efficiently separate all types of TAG isomers. In addition, trends were found in the influence of specific structural features on the drift time order. An order of relative influence (from high to low) was established; (1) degree of unsaturation of the fatty acid(s) on an exterior position (if the total degree of unsaturation(s) is equal in both TAGs), (2) acyl chain length on the exterior positions, (3) cis/trans configuration, and (4) double bond (DB)-position. Finally, various cIMS-MS strategies were developed for the separation of mixtures containing four, five, and six isomers. To conclude, the developed methods can be used for separation of complex mixtures of TAG isomers and have great potential to be expanded to isomers of similar types of lipids such as di- and monoacylglycerols. This study also shows the potential of cIMS-MS to be used for the application on real TAG samples.
Collapse
Affiliation(s)
- Carlo R de Bruin
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Mirjam A Hemelaar
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
8
|
Xu S, Zhu Z, Gu TJ, Wang Z, Delafield DG, Rigby MJ, Lu G, Ma M, Liu PK, Puglielli L, Li L. sn-Position-Resolved Quantification of Aminophospholipids by Isotopic N, N-Dimethyl Leucine Labeling and High-Resolution Ion Mobility Mass Spectrometry. Anal Chem 2024; 96:20098-20106. [PMID: 39630147 DOI: 10.1021/acs.analchem.4c05107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Aminophospholipids (APLs), composed of phosphatidylethanolamines (PEs) and phosphatidylserines (PSs), are vital components of mammalian cell membranes and lipoproteins, participating in both homeostasis and cellular signaling. Their structural changes, including the permutation of fatty acid connectivity (sn-positions), due to dysfunctional metabolic processes have been linked to many diseases. However, the accurate quantification of APLs with unambiguous fatty acyl assignment through routine label-free LC-MS/MS lipidomic analysis remains a major challenge. In this study, we explore the functionalization of the free primary amine groups of APLs using amine-reactive isotopic N,N-dimethyl leucine (iDiLeu) and employ high-resolution ion mobility MS (IM-MS) to develop a novel method for sensitive discernment and accurate quantification of APL sn-isomers. With high-resolution demultiplexing (HRdm) providing IM resolving power >200, labeled sn-isomeric pairs of APLs (ΔCCS ≈ 1%) demonstrate excellent, near baseline separation. In addition to greatly enhanced sensitivity, 5-plex iDiLeu labeling enables the construction of an internal 4-point calibration curve and therefore absolute quantification of APL sn-isomers in a single run. This strategy enabled precise annotation and quantification of 239 APLs including 60 pairs of sn-isomers in the mouse cortex. Additionally, we were able to find ratio changes in multiple APL sn-isomer pairs between wild type and APP/PS1 Alzheimer's disease (AD) model mice at different ages, indicating their strong correlation to AD progression. This strategy could provide universal utility in unraveling the alteration of APL sn-isomers, which have long been considered as the "dark matter" of traditional lipidomic analyses, leading to more precise elucidation of molecular mechanisms of various diseases.
Collapse
Affiliation(s)
- Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zicong Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Peng-Kai Liu
- Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Biophysics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
9
|
Sarkar S, Zheng X, Clair GC, Kwon YM, You Y, Swensen AC, Webb-Robertson BJM, Nakayasu ES, Qian WJ, Metz TO. Exploring new frontiers in type 1 diabetes through advanced mass-spectrometry-based molecular measurements. Trends Mol Med 2024; 30:1137-1151. [PMID: 39152082 PMCID: PMC11631641 DOI: 10.1016/j.molmed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Type 1 diabetes (T1D) is a devastating autoimmune disease for which advanced mass spectrometry (MS) methods are increasingly used to identify new biomarkers and better understand underlying mechanisms. For example, integration of MS analysis and machine learning has identified multimolecular biomarker panels. In mechanistic studies, MS has contributed to the discovery of neoepitopes, and pathways involved in disease development and identifying therapeutic targets. However, challenges remain in understanding the role of tissue microenvironments, spatial heterogeneity, and environmental factors in disease pathogenesis. Recent advancements in MS, such as ultra-fast ion-mobility separations, and single-cell and spatial omics, can play a central role in addressing these challenges. Here, we review recent advancements in MS-based molecular measurements and their role in understanding T1D.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yu Mi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
10
|
Cai Y, Chen X, Ren F, Wang H, Yin Y, Zhu ZJ. Fast and broad-coverage lipidomics enabled by ion mobility-mass spectrometry. Analyst 2024; 149:5063-5072. [PMID: 39219503 DOI: 10.1039/d4an00751d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aberrant lipid metabolism has been widely recognized as a hallmark of various diseases. However, the comprehensive analysis of distinct lipids is challenging due to the complexity of lipid molecular structures, wide concentration ranges, and numerous isobaric and isomeric lipids. Usually, liquid chromatography-mass spectrometry (LC-MS)-based lipidomics requires a long time for chromatographic separation to achieve optimal separation and selectivity. Ion mobility (IM) adds a new separation dimension to LC-MS, significantly enhancing the coverage, sensitivity, and resolving power. We took advantage of the rapid separation provided by ion mobility and optimized a fast and broad-coverage lipidomics method using the LC-IM-MS technology. The method required only 8 minutes for separation and detected over 1000 lipid molecules in a single analysis of common biological samples. The high reproducibility and accurate quantification of this high-throughput lipidomics method were systematically characterized. We then applied the method to comprehensively measure dysregulated lipid metabolism in patients with colorectal cancer (CRC). Our results revealed 115 significantly changed lipid species between preoperative and postoperative plasma of patients with CRC and also disclosed associated differences in lipid classes such as phosphatidylcholines (PC), sphingomyelins (SM), and triglycerides (TG) regarding carbon number and double bond. Together, a fast and broad-coverage lipidomics method was developed using ion mobility-mass spectrometry. This method is feasible for large-scale clinical lipidomic studies, as it effectively balances the requirements of high-throughput and broad-coverage in clinical studies.
Collapse
Affiliation(s)
- Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
| | - Xi Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
| | - Hongmiao Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yandong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, 201210, P. R. China
| |
Collapse
|
11
|
Reardon AR, May JC, Leaptrot KL, McLean JA. High-resolution ion mobility based on traveling wave structures for lossless ion manipulation resolves hidden lipid features. Anal Bioanal Chem 2024; 416:5473-5483. [PMID: 38935144 PMCID: PMC11427608 DOI: 10.1007/s00216-024-05385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
High-resolution ion mobility (resolving power > 200) coupled with mass spectrometry (MS) is a powerful analytical tool for resolving isobars and isomers in complex samples. High-resolution ion mobility is capable of discerning additional structurally distinct features, which are not observed with conventional resolving power ion mobility (IM, resolving power ~ 50) techniques such as traveling wave IM and drift tube ion mobility (DTIM). DTIM in particular is considered to be the "gold standard" IM technique since collision cross section (CCS) values are directly obtained through a first-principles relationship, whereas traveling wave IM techniques require an additional calibration strategy to determine accurate CCS values. In this study, we aim to evaluate the separation capabilities of a traveling wave ion mobility structures for lossless ion manipulation platform integrated with mass spectrometry analysis (SLIM IM-MS) for both lipid isomer standards and complex lipid samples. A cross-platform investigation of seven subclass-specific lipid extracts examined by both DTIM-MS and SLIM IM-MS showed additional features were observed for all lipid extracts when examined under high resolving power IM conditions, with the number of CCS-aligned features that resolve into additional peaks from DTIM-MS to SLIM IM-MS analysis varying between 5 and 50%, depending on the specific lipid sub-class investigated. Lipid CCS values are obtained from SLIM IM (TW(SLIM)CCS) through a two-step calibration procedure to align these measurements to within 2% average bias to reference values obtained via DTIM (DTCCS). A total of 225 lipid features from seven lipid extracts are subsequently identified in the high resolving power IM analysis by a combination of accurate mass-to-charge, CCS, retention time, and linear mobility-mass correlations to curate a high-resolution IM lipid structural atlas. These results emphasize the high isomeric complexity present in lipidomic samples and underscore the need for multiple analytical stages of separation operated at high resolution.
Collapse
Affiliation(s)
- Allison R Reardon
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - Katrina L Leaptrot
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
12
|
Butalewicz JP, Sanders JD, Juetten KJ, Buzitis NW, Clowers BH, Brodbelt JS. Advancing Protein Analysis: A Low-Pressure Drift Tube Orbitrap Mass Spectrometer for Ultraviolet Photodissociation-Based Structural Characterization. Anal Chem 2024; 96:15674-15681. [PMID: 39283946 DOI: 10.1021/acs.analchem.4c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Owing to its ability to generate extensive fragmentation of proteins, ultraviolet photodissociation (UVPD) mass spectrometry (MS) has emerged as a versatile ion activation technique for the structural characterization of native proteins and protein complexes. Interpreting these fragmentation patterns provides insight into the secondary and tertiary structures of protein ions. However, the inherent complexity and diversity of proteins often pose challenges in resolving their numerous conformations. To address this limitation, we combined UVPD-MS with drift tube ion mobility, offering potential to acquire conformationally selective MS/MS information. A low-pressure drift tube (LPDT) Orbitrap mass spectrometer equipped with 193 nm UVPD capabilities enables the analysis of protein conformers through the analysis of arrival time distributions (ATDs) of individual fragment ions. ATDs of fragment ions are compared for different backbone cleavage sites of the protein or different precursor charge states to give information about regions of potential folding or elongation. This integrated platform offers promise for advancing our understanding of protein structures in the gas phase.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle J Juetten
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nathan W Buzitis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Ross DH, Bredeweg EL, Eder JG, Orton DJ, Burnet MC, Kyle JE, Nakayasu ES, Zheng X. A deep learning-guided automated workflow in LipidOz for detailed characterization of fungal fatty acid unsaturation by ozonolysis. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5078. [PMID: 39132905 DOI: 10.1002/jms.5078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Understanding fungal lipid biology and metabolism is critical for antifungal target discovery as lipids play central roles in cellular processes. Nuances in lipid structural differences can significantly impact their functions, making it necessary to characterize lipids in detail to understand their roles in these complex systems. In particular, lipid double bond (DB) locations are an important component of lipid structure that can only be determined using a few specialized analytical techniques. Ozone-induced dissociation mass spectrometry (OzID-MS) is one such technique that uses ozone to break lipid DBs, producing pairs of characteristic fragments that allow the determination of DB positions. In this work, we apply OzID-MS and LipidOz software to analyze the complex lipids of Saccharomyces cerevisiae yeast strains transformed with different fatty acid desaturases from Histoplasma capsulatum to determine the specific unsaturated lipids produced. The automated data analysis in LipidOz made the determination of DB positions from this large dataset more practical, but manual verification for all targets was still time-consuming. The DL model reduces manual involvement in data analysis, but since it was trained using mammalian lipid extracts, the prediction accuracy on yeast-derived data was reduced. We addressed both shortcomings by retraining the DL model to act as a pre-filter to prioritize targets for automated analysis, providing confident manually verified results but requiring less computational time and manual effort. Our workflow resulted in the determination of detailed DB positions and enzymatic specificity.
Collapse
Affiliation(s)
- Dylan H Ross
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Erin L Bredeweg
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Josie G Eder
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Meagan C Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
14
|
Scholz J, Rudt E, Gremme A, Gaßmöller Née Wienken CM, Bornhorst J, Hayen H. Hyphenation of supercritical fluid chromatography and trapped ion mobility-mass spectrometry for quantitative lipidomics. Anal Chim Acta 2024; 1317:342913. [PMID: 39030025 DOI: 10.1016/j.aca.2024.342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Lipidomics studies require rapid separations with accurate and reliable quantification results to further elucidate the role of lipids in biological processes and their biological functions. Supercritical fluid chromatography (SFC), in particular, can provide this rapid and high-resolution separation. The combination with trapped ion mobility spectrometry (TIMS) has not yet been applied, although the post-ionization separation method in combination with liquid chromatography or imaging techniques has already proven itself in resolving isomeric and isobaric lipids and preventing false identifications. However, a multidimensional separation method should not only allow confident identification but also provide quantitative results to substantiate studies with absolute concentrations. RESULTS A SFC method was developed and the hyphenation of SFC and TIMS was further explored towards the separation of different isobaric overlaps. Furthermore, lipid identification was performed using mass spectrometry (MS) and parallel accumulation serial fragmentation (PASEF) MS/MS experiments in addition to retention time and collision cross section (CCS). Quantification was further investigated with short TIMS ramps and performed based on the ion mobility signal of lipids, since TIMS increases the sensitivity by noise filtering. The final method was, as an exemplary study, applied to investigate the function of different ceramide synthases (CerS) in the nematode and model organism Caenorhabditis elegans (C. elegans). Loss of three known CerS hyl-1, hyl-2 and lagr-1 demonstrated different influences on and alterations in the sphingolipidome. SIGNIFICANCE This method describes for the first time the combination of SFC and TIMS-MS/MS, which enables a fast and sensitive quantification of lipids. The results of the application to C. elegans samples prove the functionality of the method and support research on the metabolism of sphingolipids in nematodes.
Collapse
Affiliation(s)
- Johannes Scholz
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Edward Rudt
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Anna Gremme
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | | | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
15
|
Odenkirk MT, Zheng X, Kyle JE, Stratton KG, Nicora CD, Bloodsworth KJ, Mclean CA, Masters CL, Monroe ME, Doecke JD, Smith RD, Burnum-Johnson KE, Roberts BR, Baker ES. Deciphering ApoE Genotype-Driven Proteomic and Lipidomic Alterations in Alzheimer's Disease Across Distinct Brain Regions. J Proteome Res 2024; 23:2970-2985. [PMID: 38236019 PMCID: PMC11255128 DOI: 10.1021/acs.jproteome.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a complex etiology influenced by confounding factors such as genetic polymorphisms, age, sex, and race. Traditionally, AD research has not prioritized these influences, resulting in dramatically skewed cohorts such as three times the number of Apolipoprotein E (APOE) ε4-allele carriers in AD relative to healthy cohorts. Thus, the resulting molecular changes in AD have previously been complicated by the influence of apolipoprotein E disparities. To explore how apolipoprotein E polymorphism influences AD progression, 62 post-mortem patients consisting of 33 AD and 29 controls (Ctrl) were studied to balance the number of ε4-allele carriers and facilitate a molecular comparison of the apolipoprotein E genotype. Lipid and protein perturbations were assessed across AD diagnosed brains compared to Ctrl brains, ε4 allele carriers (APOE4+ for those carrying 1 or 2 ε4s and APOE4- for non-ε4 carriers), and differences in ε3ε3 and ε3ε4 Ctrl brains across two brain regions (frontal cortex (FCX) and cerebellum (CBM)). The region-specific influences of apolipoprotein E on AD mechanisms showcased mitochondrial dysfunction and cell proteostasis at the core of AD pathophysiology in the post-mortem brains, indicating these two processes may be influenced by genotypic differences and brain morphology.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States of America
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Catriona A Mclean
- Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3181, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - James D Doecke
- CSIRO Health and Biosecurity, Herston, Queensland 4029, Australia
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Kristin E Burnum-Johnson
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States of America
| | - Blaine R Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, United States of America
- Department of Neurology, Emory University, Atlanta, Georgia 30322, United States of America
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States of America
| |
Collapse
|
16
|
Xu S, Zhu Z, Delafield DG, Rigby MJ, Lu G, Braun M, Puglielli L, Li L. Spatially and temporally probing distinctive glycerophospholipid alterations in Alzheimer's disease mouse brain via high-resolution ion mobility-enabled sn-position resolved lipidomics. Nat Commun 2024; 15:6252. [PMID: 39048572 PMCID: PMC11269705 DOI: 10.1038/s41467-024-50299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Dysregulated glycerophospholipid (GP) metabolism in the brain is associated with the progression of neurodegenerative diseases including Alzheimer's disease (AD). Routine liquid chromatography-mass spectrometry (LC-MS)-based large-scale lipidomic methods often fail to elucidate subtle yet important structural features such as sn-position, hindering the precise interrogation of GP molecules. Leveraging high-resolution demultiplexing (HRdm) ion mobility spectrometry (IMS), we develop a four-dimensional (4D) lipidomic strategy to resolve GP sn-position isomers. We further construct a comprehensive experimental 4D GP database of 498 GPs identified from the mouse brain and an in-depth extended 4D library of 2500 GPs predicted by machine learning, enabling automated profiling of GPs with detailed acyl chain sn-position assignment. Analyzing three mouse brain regions (hippocampus, cerebellum, and cortex), we successfully identify a total of 592 GPs including 130 pairs of sn-position isomers. Further temporal GPs analysis in the three functional brain regions illustrates their metabolic alterations in AD progression.
Collapse
Affiliation(s)
- Shuling Xu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhijun Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Gaoyuan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Megan Braun
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin- Madison, Madison, WI, 53705, USA.
| |
Collapse
|
17
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
18
|
Rudt E, Schneider S, Hayen H. Hyphenation of Liquid Chromatography and Trapped Ion Mobility - Mass Spectrometry for Characterization of Isomeric Phosphatidylethanolamines with Focus on N-Acylated Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1584-1593. [PMID: 38842006 DOI: 10.1021/jasms.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In prior research, hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) has demonstrated applicability for characterizing regioisomers in lipidomics studies, including phosphatidylglycerols (PG) and bis(monoacyl)glycerophosphates (BMP). However, there are other lipid regioisomers, such as phosphatidylethanolamines (PE) and lyso-N-acyl-PE (LNAPE), that have not been studied as extensively. Therefore, hyphenated mass spectrometric methods are needed to investigate PE and LNAPE regioisomers individually. The asymmetric structure of LNAPE favors isomeric species, which can result in coelution and chimeric MS/MS spectra. One way to address the challenge of chimeric MS/MS spectra is through mobility-resolved fragmentation using trapped ion mobility spectrometry (TIMS). Therefore, we developed a multidimensional HILIC-TIMS-MS/MS approach for the structural characterization of isomeric phosphatidylethanolamines in both negative and positive ionization modes. The study revealed the complementary fragmentation pattern and ion mobility behavior of LNAPE in both ionization modes, which was confirmed by a self-synthesized LNAPE standard. With this knowledge, a distinction of regioisomeric PE and LNAPE was achieved in human plasma samples. Furthermore, regioisomeric LNAPE species containing at least one unsaturated fatty acid were noted to exhibit a change in collision cross-section in positive ionization mode, leading to a lipid characterization with respect to fatty acyl positional level. Similar mobility behavior was also observed for the biological LNAPE precursor N-acyl-PE (NAPE). Application of this approach to plasma and cereal samples demonstrated its effectiveness in regioisomeric LNAPE and NAPE species' elucidation.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Svenja Schneider
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| |
Collapse
|
19
|
Bouwmeester R, Richardson K, Denny R, Wilson ID, Degroeve S, Martens L, Vissers JPC. Predicting ion mobility collision cross sections and assessing prediction variation by combining conventional and data driven modeling. Talanta 2024; 274:125970. [PMID: 38621320 DOI: 10.1016/j.talanta.2024.125970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
The use of collision cross section (CCS) values derived from ion mobility studies is proving to be an increasingly important tool in the characterization and identification of molecules detected in complex mixtures. Here, a novel machine learning (ML) based method for predicting CCS integrating both molecular modeling (MM) and ML methodologies has been devised and shown to be able to accurately predict CCS values for singly charged small molecular weight molecules from a broad range of chemical classes. The model performed favorably compared to existing models, improving compound identifications for isobaric analytes in terms of ranking and assigning identification probability values to the annotation. Furthermore, charge localization was seen to be correlated with CCS prediction accuracy and with gas-phase proton affinity demonstrating the potential to provide a proxy for prediction error based on chemical structural properties. The presented approach and findings represent a further step towards accurate prediction and application of computationally generated CCS values.
Collapse
Affiliation(s)
- Robbin Bouwmeester
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| | | | | | - Ian D Wilson
- Computational & Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, United Kingdom
| | - Sven Degroeve
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | |
Collapse
|
20
|
Scheidemantle G, Duan L, Lodge M, Cummings MJ, Hilovsky D, Pham E, Wang X, Kennedy A, Liu X. Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism. Metabolomics 2024; 20:53. [PMID: 38722395 PMCID: PMC11145978 DOI: 10.1007/s11306-024-02113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/22/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Despite the well-recognized health benefits, the mechanisms and site of action of metformin remains elusive. Metformin-induced global lipidomic changes in plasma of animal models and human subjects have been reported. However, there is a lack of systemic evaluation of metformin-induced lipidomic changes in different tissues. Metformin uptake requires active transporters such as organic cation transporters (OCTs), and hence, it is anticipated that metformin actions are tissue-dependent. In this study, we aim to characterize metformin effects in non-diabetic male mice with a special focus on lipidomics analysis. The findings from this study will help us to better understand the cell-autonomous (direct actions in target cells) or non-cell-autonomous (indirect actions in target cells) mechanisms of metformin and provide insights into the development of more potent yet safe drugs targeting a particular organ instead of systemic metabolism for metabolic regulations without major side effects. OBJECTIVES To characterize metformin-induced lipidomic alterations in different tissues of non-diabetic male mice and further identify lipids affected by metformin through cell-autonomous or systemic mechanisms based on the correlation between lipid alterations in tissues and the corresponding in-tissue metformin concentrations. METHODS A dual extraction method involving 80% methanol followed by MTBE (methyl tert-butyl ether) extraction enables the analysis of free fatty acids, polar metabolites, and lipids. Extracts from tissues and plasma of male mice treated with or without metformin in drinking water for 12 days were analyzed using HILIC chromatography coupled to Q Exactive Plus mass spectrometer or reversed-phase liquid chromatography coupled to MS/MS scan workflow (hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer using biologically relevant lipids-containing inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow followed by data-dependent acquisition (DDA), to maximum the coverage of lipids and minimize the negative effect of stochasticity of precursor selection on experimental consistency and reproducibility. RESULTS Lipidomics analysis of 6 mouse tissues and plasma allowed a systemic evaluation of lipidomic changes induced by metformin in different tissues. We observed that (1) the degrees of lipidomic changes induced by metformin treatment overly correlated with tissue concentrations of metformin; (2) the impact on lysophosphatidylcholine (lysoPC) and cardiolipins was positively correlated with tissue concentrations of metformin, while neutral lipids such as triglycerides did not correlate with the corresponding tissue metformin concentrations; (3) increase of intestinal tricarboxylic acid (TCA) cycle intermediates after metformin treatment. CONCLUSION The data collected in this study from non-diabetic mice with 12-day metformin treatment suggest that the overall metabolic effect of metformin is positively correlated with tissue concentrations and the effect on individual lipid subclass is via both cell-autonomous mechanisms (cardiolipins and lysoPC) and non-cell-autonomous mechanisms (triglycerides).
Collapse
Affiliation(s)
- Grace Scheidemantle
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Likun Duan
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mareca Lodge
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Magdalina J Cummings
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Eva Pham
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
- The Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, USA
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
21
|
Yang T, Tang S, Feng J, Yan X. Lipid Isobaric Mass Tagging for Enhanced Relative Quantification of Unsaturated sn-Positional Isomers. ACS MEASUREMENT SCIENCE AU 2024; 4:213-222. [PMID: 38645577 PMCID: PMC11027206 DOI: 10.1021/acsmeasuresciau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Changes in the levels of lipid sn-positional isomers are associated with perturbation of the physiological environment within the biological system. Consequently, knowing the concentrations of these lipids holds significant importance for unraveling their involvement in disease diagnosis and pathological mechanisms. However, existing methods for lipid quantification often fall short in accuracy due to the structural diversity and isomeric forms of lipids. To address this challenge, we have developed an aziridine-based isobaric tag labeling strategy that allows (i) differentiation and (ii) enhanced relative quantification of lipid sn-positional isomers from distinct samples in a single run. The methodology enabled by aziridination, isobaric tag labeling, and lithiation has been applied to various phospholipids, enabling the determination of the sn-positions of fatty acyl chains and enhanced relative quantification. The analysis of Escherichia coli lipid extracts demonstrated the enhanced determination of the concentration ratios of lipid isomers by measuring the intensity ratios of mass reporters released from sn-positional diagnostic ions. Moreover, we applied the method to the analysis of human colon cancer plasma. Intriguingly, 17 PC lipid sn-positional isomers were identified and quantified simultaneously, and among them, 7 showed significant abundance changes in the colon cancer plasma, which can be used as potential plasma markers for diagnosis of human colon cancer.
Collapse
Affiliation(s)
- Tingyuan Yang
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Shuli Tang
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Jiaxin Feng
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
22
|
Kirkwood-Donelson KI, Chappel J, Tobin E, Dodds JN, Reif DM, DeWitt JC, Baker ES. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 354:141654. [PMID: 38462188 PMCID: PMC10995748 DOI: 10.1016/j.chemosphere.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jessie Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Emma Tobin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jamie C DeWitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin S Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
23
|
Abrahams T, Nicholls SJ. Perspectives on the success of plasma lipidomics in cardiovascular drug discovery and future challenges. Expert Opin Drug Discov 2024; 19:281-290. [PMID: 38402906 DOI: 10.1080/17460441.2023.2292039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/04/2023] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Plasma lipidomics has emerged as a powerful tool in cardiovascular drug discovery by providing insights into disease mechanisms, identifying potential biomarkers for diagnosis and prognosis, and discovering novel targets for drug development. Widespread application of plasma lipidomics is hampered by technological limitations and standardization and requires a collaborative approach to maximize its use in cardiovascular drug discovery. AREAS COVERED This review provides an overview of the utility of plasma lipidomics in cardiovascular drug discovery and discusses the challenges and future perspectives of this rapidly evolving field. The authors discuss the role of lipidomics in understanding the molecular mechanisms of CVD, identifying novel biomarkers for diagnosis and prognosis, and discovering new therapeutic targets for drug development. Furthermore, they highlight the challenges faced in data analysis, standardization, and integration with other omics approaches and propose future directions for the field. EXPERT OPINION Plasma lipidomics holds great promise for improving the diagnosis, treatment, and prevention of CVD. While challenges remain in standardization and technology, ongoing research and collaboration among scientists and clinicians will undoubtedly help overcome these obstacles. As lipidomics evolves, its impact on cardiovascular drug discovery and clinical practice is expected to grow, ultimately benefiting patients and healthcare systems worldwide.
Collapse
Affiliation(s)
- Timothy Abrahams
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Stephen J Nicholls
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Edwards M, Freitas DP, Hirtzel EA, White N, Wang H, Davidson LA, Chapkin RS, Sun Y, Yan X. Interfacial Electromigration for Analysis of Biofluid Lipids in Small Volumes. Anal Chem 2023; 95:18557-18563. [PMID: 38050376 PMCID: PMC10862378 DOI: 10.1021/acs.analchem.3c04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.
Collapse
Affiliation(s)
- Madison
E. Edwards
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Dallas P. Freitas
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Erin A. Hirtzel
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Nicholas White
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Hongying Wang
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Laurie A. Davidson
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Robert S. Chapkin
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Yuxiang Sun
- Department
of Nutrition, Texas A&M University, 373 Olsen Blvd, College Station, Texas 77845, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
25
|
Sengupta A, Edwards ME, Yan X. Dual Metal Electrolysis in Theta Capillary for Lipid Analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 494:117137. [PMID: 38911479 PMCID: PMC11192522 DOI: 10.1016/j.ijms.2023.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Increasing studies associating glycerophospholipids with various pathological conditions highlight the need for their thorough characterization. However, the intricate composition of the lipidome due to the presence of lipid isomers poses significant challenges to structural lipidomics. This study uses the anodic corrosion of two metals in a single theta nESI emitter as a tool to simultaneously characterize lipids at multiple isomer levels. Anodic corrosion of cobalt and copper in the positive ion mode generates the metal-adducted lipid complexes, [M+Co]2+ and [M+Cu]+, respectively. Optimization of parameters such as the distances of the electrodes from the nESI tip allowed the achievement of the formation of one metal-adducted lipid product at a time. Collision-induced dissociation (CID) of [M+Co]2+ results in preferential loss of the fatty acyl (FA) chain at the sn-2 position, thus generating singly charged sn-specific fragment ions. Whereas, multistage fragmentation of [M+Cu]+ via CID generated a C=C bond position-specific characteristic ion pattern induced by the π-Cu+ interaction. The feasibility of the method was tested on PC lipid extract from egg yolk to identify lipids on multiple isomer levels. Thus, the application of dual metal anodic corrosion allows lipid isomer identification with reduced sample preparation time, no signal suppression by counter anions, low sample consumption, and no need for an extra apparatus.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Madison E. Edwards
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
26
|
Naasko KI, Naylor D, Graham EB, Couvillion SP, Danczak R, Tolic N, Nicora C, Fransen S, Tao H, Hofmockel KS, Jansson JK. Influence of soil depth, irrigation, and plant genotype on the soil microbiome, metaphenome, and carbon chemistry. mBio 2023; 14:e0175823. [PMID: 37728606 PMCID: PMC10653930 DOI: 10.1128/mbio.01758-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE Carbon is cycled through the air, plants, and belowground environment. Understanding soil carbon cycling in deep soil profiles will be important to mitigate climate change. Soil carbon cycling is impacted by water, plants, and soil microorganisms, in addition to soil mineralogy. Measuring biotic and abiotic soil properties provides a perspective of how soil microorganisms interact with the surrounding chemical environment. This study emphasizes the importance of considering biotic interactions with inorganic and oxidizable soil carbon in addition to total organic carbon in carbonate-containing soils for better informing soil carbon management decisions.
Collapse
Affiliation(s)
- Katherine I. Naasko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
| | - Daniel Naylor
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Emily B. Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sneha P. Couvillion
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Robert Danczak
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Nikola Tolic
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Steven Fransen
- Department of Crop and Soil Sciences, Washington State University, Prosser, Washington, USA
| | - Haiying Tao
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, Connecticut, USA
| | - Kirsten S. Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| | - Janet K. Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
27
|
Poad BLJ, Jekimovs LJ, Young RSE, Wongsomboon P, Marshall DL, Hansen FKM, Fulloon T, Pfrunder MC, Dodgen T, Ritchie M, Wong SCC, Blanksby SJ. Revolutions in Lipid Isomer Resolution: Application of Ultrahigh-Resolution Ion Mobility to Reveal Lipid Diversity. Anal Chem 2023; 95:15917-15923. [PMID: 37847864 DOI: 10.1021/acs.analchem.3c02658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Many families of lipid isomers remain unresolved by contemporary liquid chromatography-mass spectrometry approaches, leading to a significant underestimation of the structural diversity within the lipidome. While ion mobility coupled to mass spectrometry has provided an additional dimension of lipid isomer resolution, some isomers require a resolving power beyond the capabilities of conventional platforms. Here, we present the application of high-resolution traveling-wave ion mobility for the separation of lipid isomers that differ in (i) the location of a single carbon-carbon double bond, (ii) the stereochemistry of the double bond (cis or trans), or, for glycerolipids, (iii) the relative substitution of acyl chains on the glycerol backbone (sn-position). Collisional activation following mobility separation allowed identification of the carbon-carbon double-bond position and sn-position, enabling confident interpretation of variations in mobility peak abundance. To demonstrate the applicability of this method, double-bond and sn-position isomers of an abundant phosphatidylcholine composition were resolved in extracts from a prostate cancer cell line and identified by comparison to pure isomer reference standards, revealing the presence of up to six isomers. These findings suggest that ultrahigh-resolution ion mobility has broad potential for isomer-resolved lipidomics and is attractive to consider for future integration with other modes of ion activation, thereby bringing together advanced orthogonal separations and structure elucidation to provide a more complete picture of the lipidome.
Collapse
Affiliation(s)
- Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Lachlan J Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Felicia K M Hansen
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Therese Fulloon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Michael C Pfrunder
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | | | | | | | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
28
|
Kedia K, Harris R, Ekroos K, Moser KW, DeBord D, Tiberi P, Goracci L, Zhang NR, Wang W, Spellman DS, Bateman K. Investigating Performance of the SLIM-Based High Resolution Ion Mobility Platform for Separation of Isomeric Phosphatidylcholine Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2176-2186. [PMID: 37703523 DOI: 10.1021/jasms.3c00157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Lipids are structurally diverse molecules that play a pivotal role in a plethora of biological processes. However, deciphering the biological roles of the specific lipids is challenging due to the existence of numerous isomers. This high chemical complexity of the lipidome is one of the major challenges in lipidomics research, as the traditional liquid chromatography-mass spectrometry (LC-MS) based approaches are often not powerful enough to resolve these isomeric and isobaric nuances within complex samples. Thus, lipids are uniquely suited to the benefits provided by multidimensional liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) analysis. However, many forms of lipid isomerism, including double-bond positional isomers and regioisomers, are structurally similar such that their collision cross section (CCS) differences are unresolvable via conventional IM approaches. Here we evaluate the performance of a high resolution ion mobility (HRIM) system based on structures for lossless ion manipulation (SLIM) technology interfaced to a high resolution quadrupole time-of-flight (QTOF) analyzer to address the noted lipidomic isomerism challenge. SLIM implements the traveling wave ion mobility technique along an ∼13 m ion path, providing longer path lengths to enable improved separation of isomeric features. We demonstrate the power of HRIM-MS to dissect isomeric PC standards differing only in double bond (DB) and stereospecific number (SN) positions. The partial separation of protonated DB isomers is significantly enhanced when they are analyzed as metal adducts. For sodium adducts, we achieve close to baseline separation of three different PC 18:1/18:1 isomers with different cis-double bond locations. Similarly, PC 18:1/18:1 (cis-9) can be resolved from the corresponding PC 18:1/18:1 (trans-9) form. The separation capacity is further enhanced when using silver ion doping, enabling the baseline separation of regioisomers that cannot be resolved when measured as sodium adducts. The sensitivity and reproducibility of the approach were assessed, and the performance for more complex mixtures was benchmarked by identifying PC isomers in total brain and liver lipid extracts.
Collapse
Affiliation(s)
- Komal Kedia
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rachel Harris
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Kim Ekroos
- Lipidomics Consulting Ltd, Irisviksvägen 31D, 02230 Esbo, Finland
| | - Kelly W Moser
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Daniel DeBord
- MOBILion Systems, Inc., Chadds Ford, Pennsylvania 19317, United States
| | - Paolo Tiberi
- Molecular Discovery Ltd., Centennial Park, Borehamwood, Hertfordshire WD6 3FG United Kingdom
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | - Weixun Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Kevin Bateman
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
29
|
Li A, Xu L. MALDI-IM-MS Imaging of Brain Sterols and Lipids in a Mouse Model of Smith-Lemli-Opitz Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560415. [PMID: 37873113 PMCID: PMC10592934 DOI: 10.1101/2023.10.02.560415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a neurodevelopmental disorder caused by genetic mutations in the DHCR7 gene, encoding the enzyme 3β-hydroxysterol-Δ7-reductase (DHCR7) that catalyzes the last step of cholesterol synthesis. The resulting deficiency in cholesterol and accumulation of its precursor, 7-dehydrocholesterol (7-DHC), have a profound impact on brain development, which manifests as developmental delay, cognitive impairment, and behavioral deficits. To understand how the brain regions are differentially affected by the defective Dhcr7, we aim to map the regional distribution of sterols and other lipids in neonatal brains from a Dhcr7-KO mouse model of SLOS, using mass spectrometry imaging (MSI). MSI enables spatial localization of biomolecules in situ on the surface of a tissue section, which is particularly useful for mapping the changes that occur within a metabolic disorder such as SLOS, and in an anatomically complex organ such as the brain. In this work, using MALDI-ion mobility (IM)-MSI, we successfully determined the regional distribution of features that correspond to cholesterol, 7-DHC/desmosterol, and the precursor of desmosterol, 7-dehydrodesmosterol, in WT and Dhcr7-KO mice. Interestingly, we also observed m/z values that match the major oxysterol metabolites of 7-DHC (DHCEO and hydroxy-7-DHC), which displayed similar patterns as 7-DHC. We then identified brain lipids using m/z and CCS at the Lipid Species-level and curated a database of MALDIIM-MS-derived lipid CCS values. Subsequent statistical analysis of regions-of-interest allowed us to identify differentially expressed lipids between Dhcr7-KO and WT brains, which could contribute to defects in myelination, neurogenesis, neuroinflammation, and learning and memory in SLOS.
Collapse
Affiliation(s)
- Amy Li
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195
| |
Collapse
|
30
|
da Silva KM, Wölk M, Nepachalovich P, Iturrospe E, Covaci A, van Nuijs ALN, Fedorova M. Investigating the Potential of Drift Tube Ion Mobility for the Analysis of Oxidized Lipids. Anal Chem 2023; 95:13566-13574. [PMID: 37646365 DOI: 10.1021/acs.analchem.3c02213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Epilipids, a subset of the lipidome that comprises oxidized, nitrated, and halogenated lipid species, show important biochemical activity in the regulation of redox lipid metabolism by influencing cell fate decisions, including death, health, and aging. Due to the large chemical diversity, reversed-phase liquid chromatography-high-resolution mass spectrometry (RPLC-HRMS) methods have only a limited ability to separate numerous isobaric and isomeric epilipids. Ion mobility spectrometry (IMS) is a gas-phase separation technique that can be combined with LC-HRMS to improve the overall peak capacity of the analytical platform. Here, we illustrate the advantages and discuss the current limitations of implementing IMS in LC-HRMS workflows for the analysis of oxylipins and oxidized complex lipids. Using isomeric mixtures of oxylipins, we demonstrated that while deprotonated ions of eicosanoids were poorly resolved by IMS, sodium acetate and metal adducts (e.g., Li, Na, Ag, Ba, K) of structural isomers often showed ΔCCS% above 1.4% and base peak separation with high-resolution demultiplexing (HRDm). The knowledge of the IM migration order was also used as a proof of concept to help in the annotation of oxidized complex lipids using HRDm and all-ion fragmentation spectra. Additionally, we used a mixture of deuterium-labeled lipids for a routine system suitability test with the purpose of improving harmonization and interoperability of IMS data sets in (epi)lipidomics.
Collapse
Affiliation(s)
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Palina Nepachalovich
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Maria Fedorova
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
31
|
Reimers N, Do Q, Zhang R, Guo A, Ostrander R, Shoji A, Vuong C, Xu L. Tracking the Metabolic Fate of Exogenous Arachidonic Acid in Ferroptosis Using Dual-Isotope Labeling Lipidomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2016-2024. [PMID: 37523294 PMCID: PMC10487598 DOI: 10.1021/jasms.3c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Lipid metabolism is implicated in a variety of diseases, including cancer, cell death, and inflammation, but lipidomics has proven to be challenging due to the vast structural diversity over a narrow range of mass and polarity of lipids. Isotope labeling is often used in metabolomics studies to follow the metabolism of exogenously added labeled compounds because they can be differentiated from endogenous compounds by the mass shift associated with the label. The application of isotope labeling to lipidomics has also been explored as a method to track the metabolism of lipids in various disease states. However, it can be difficult to differentiate a single isotopically labeled lipid from the rest of the lipidome due to the variety of endogenous lipids present over the same mass range. Here we report the development of a dual-isotope deuterium labeling method to track the metabolic fate of exogenous polyunsaturated fatty acids, e.g., arachidonic acid, in the context of ferroptosis using hydrophilic interaction-ion mobility-mass spectrometry (HILIC-IM-MS). Ferroptosis is a type of cell death that is dependent on lipid peroxidation. The use of two isotope labels rather than one enables the identification of labeled species by a signature doublet peak in the resulting mass spectra. A Python-based software, D-Tracer, was developed to efficiently extract metabolites with dual-isotope labels. The labeled species were then identified with LiPydomics based on their retention times, collision cross section, and m/z values. Changes in exogenous AA incorporation in the absence and presence of a ferroptosis inducer were elucidated.
Collapse
Affiliation(s)
- Noelle Reimers
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Quynh Do
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rutan Zhang
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Angela Guo
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan Ostrander
- Department
of Mechanical Engineering, University of
Washington, Seattle Washington 98195, United States
| | - Alyson Shoji
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chau Vuong
- Department
of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | - Libin Xu
- Department
of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Rudt E, Feldhaus M, Margraf CG, Schlehuber S, Schubert A, Heuckeroth S, Karst U, Jeck V, Meyer SW, Korf A, Hayen H. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics. Anal Chem 2023. [PMID: 37307407 DOI: 10.1021/acs.analchem.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The parallel accumulation-serial fragmentation (PASEF) approach based on trapped ion mobility spectrometry (TIMS) enables mobility-resolved fragmentation and a higher number of fragments in the same time period compared to conventional MS/MS experiments. Furthermore, the ion mobility dimension offers novel approaches for fragmentation. Using parallel reaction monitoring (prm), the ion mobility dimension allows a more accurate selection of precursor windows, while using data-independent aquisition (dia) spectral quality is improved through ion-mobility filtering. Owing to favorable implementation in proteomics, the transferability of these PASEF modes to lipidomics is of great interest, especially as a result of the high complexity of analytes with similar fragments. However, these novel PASEF modes have not yet been thoroughly evaluated for lipidomics applications. Therefore, data-dependent acquisition (dda)-, dia-, and prm-PASEF were compared using hydrophilic interaction liquid chromatography (HILIC) for phospholipid class separation in human plasma samples. Results show that all three PASEF modes are generally suitable for usage in lipidomics. Although dia-PASEF achieves a high sensitivity in generating MS/MS spectra, the fragment-to-precursor assignment for lipids with both, similar retention time as well as ion mobility, was difficult in HILIC-MS/MS. Therefore, dda-PASEF is the method of choice to investigate unknown samples. However, the best data quality was achieved by prm-PASEF, owing to the focus on fragmentation of specified targets. The high selectivity and sensitivity in generating MS/MS spectra of prm-PASEF could be a potential alternative for targeted lipidomics, e.g., in clinical applications.
Collapse
Affiliation(s)
- E Rudt
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - M Feldhaus
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - C G Margraf
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - S Schlehuber
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - A Schubert
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - S Heuckeroth
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - U Karst
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| | - V Jeck
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - S W Meyer
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - A Korf
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - H Hayen
- Institute of Inorganic und Analytical Chemistry, Corrensstraße 48, 48149 Münster, Germany
| |
Collapse
|
33
|
Brademan DR, Overmyer KA, He Y, Barshop WD, Canterbury JD, Bills BJ, Anderson BJ, Hutchins PD, Sharma S, Zabrouskov V, McAlister GC, Coon JJ. Improved Structural Characterization of Glycerophospholipids and Sphingomyelins with Real-Time Library Searching. Anal Chem 2023; 95:7813-7821. [PMID: 37172325 PMCID: PMC10840458 DOI: 10.1021/acs.analchem.2c04633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In mass spectrometry-based lipidomics, complex lipid mixtures undergo chromatographic separation, are ionized, and are detected using tandem MS (MSn) to simultaneously quantify and structurally characterize eluting species. The reported structural granularity of these identified lipids is strongly reliant on the analytical techniques leveraged in a study. For example, lipid identifications from traditional collisionally activated data-dependent acquisition experiments are often reported at either species level or molecular species level. Structural resolution of reported lipid identifications is routinely enhanced by integrating both positive and negative mode analyses, requiring two separate runs or polarity switching during a single analysis. MS3+ can further elucidate lipid structure, but the lengthened MS duty cycle can negatively impact analysis depth. Recently, functionality has been introduced on several Orbitrap Tribrid mass spectrometry platforms to identify eluting molecular species on-the-fly. These real-time identifications can be leveraged to trigger downstream MSn to improve structural characterization with lessened impacts on analysis depth. Here, we describe a novel lipidomics real-time library search (RTLS) approach, which utilizes the lipid class of real-time identifications to trigger class-targeted MSn and to improve the structural characterization of phosphotidylcholines, phosphotidylethanolamines, phosphotidylinositols, phosphotidylglycerols, phosphotidylserine, and sphingomyelins in the positive ion mode. Our class-based RTLS method demonstrates improved selectivity compared to the current methodology of triggering MSn in the presence of characteristic ions or neutral losses.
Collapse
Affiliation(s)
- Dain R. Brademan
- The Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Katherine A. Overmyer
- The Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Yuchen He
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison WI 53706, USA
| | | | | | | | - Benton J. Anderson
- Department of Chemistry, University of Wisconsin-Madison, Madison WI 53706, USA
| | | | - Seema Sharma
- Thermo Fisher Scientific, San Jose, CA 95134, USA
| | | | | | - Joshua J. Coon
- The Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison WI 53706, USA
| |
Collapse
|
34
|
Creydt M, Flügge F, Dammann R, Schütze B, Günther UL, Fischer M. Food Fingerprinting: LC-ESI-IM-QTOF-Based Identification of Blumeatin as a New Marker Metabolite for the Detection of Origanum majorana Admixtures to O. onites/ vulgare. Metabolites 2023; 13:metabo13050673. [PMID: 37233714 DOI: 10.3390/metabo13050673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Oregano (Origanum vulgare and O. onites) is one of the most frequently counterfeited herbs in the world and is diluted with the leaves of a wide variety of plants. In addition to olive leaves, marjoram (O. majorana) is often used for this purpose in order to achieve a higher profit. However, apart from arbutin, no marker metabolites are known to reliably detect marjoram admixtures in oregano batches at low concentrations. In addition, arbutin is relatively widespread in the plant kingdom, which is why it is of great relevance to look for further marker metabolites in order to secure the analysis accordingly. Therefore, the aim of the present study was to use a metabolomics-based approach to identify additional marker metabolites with the aid of an ion mobility mass spectrometry instrument. The focus of the analysis was on the detection of non-polar metabolites, as this study was preceded by nuclear magnetic resonance spectroscopic investigations of the same samples based mainly on the detection of polar analytes. Using the MS-based approach, numerous marjoram specific features could be detected in admixtures of marjoram >10% in oregano. However, only one feature was detectable in admixtures of >5% marjoram. This feature was identified as blumeatin, which belongs to the class of flavonoid compounds. Initially, blumeatin was identified based on MS/MS spectra and collision cross section values using a database search. In addition, the identification of blumeatin was confirmed by a reference standard. Moreover, dried leaves of olive, myrtle, thyme, sage and peppermint, which are also known to be used to adulterate oregano, were measured. Blumeatin could not be detected in these plants, so this substance can be considered as an excellent marker compound for the detection of marjoram admixtures.
Collapse
Affiliation(s)
- Marina Creydt
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany
| | - Friedemann Flügge
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- LADR GmbH Medizinisches Versorgungszentrum Dr. Kramer & Kollegen, Lauenburger Straße 67, 21502 Geesthacht, Germany
| | - Robin Dammann
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Burkhard Schütze
- LADR GmbH Medizinisches Versorgungszentrum Dr. Kramer & Kollegen, Lauenburger Straße 67, 21502 Geesthacht, Germany
| | - Ulrich L Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Markus Fischer
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Cluster of Excellence, Understanding Written Artefacts, University of Hamburg, Warburgstraße 26, 20354 Hamburg, Germany
| |
Collapse
|
35
|
Wu HT, Riggs DL, Lyon YA, Julian RR. Statistical Framework for Identifying Differences in Similar Mass Spectra: Expanding Possibilities for Isomer Identification. Anal Chem 2023; 95:6996-7005. [PMID: 37128750 PMCID: PMC10157605 DOI: 10.1021/acs.analchem.3c00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Isomeric molecules are important analytes in many biological and chemical arenas, yet their similarity poses challenges for many analytical methods, including mass spectrometry (MS). Tandem-MS provides significantly more information about isomers than intact mass analysis, but highly similar fragmentation patterns are common and include cases where no unique m/z peaks are generated between isomeric pairs. However, even in such situations, differences in peak intensity can exist and potentially contain additional information. Herein, we present a framework for comparing mass spectra that differ only in terms of peak intensity and include calculation of a statistical probability that the spectra derive from different analytes. This framework allows for confident identification of peptide isomers by collision-induced dissociation, higher-energy collisional dissociation, electron-transfer dissociation, and radical-directed dissociation. The method successfully identified many types of isomers including various d/l amino acid substitutions, Leu/Ile, and Asp/IsoAsp. The method can accommodate a wide range of changes in instrumental settings including source voltages, isolation widths, and resolution without influencing the analysis. It is shown that quantification of the composition of isomeric mixtures can be enabled with calibration curves, which were found to be highly linear and reproducible. The analysis can be implemented with data collected by either direct infusion or liquid-chromatography MS. Although this framework is presented in the context of isomer characterization, it should also prove useful in many other contexts where similar mass spectra are generated.
Collapse
Affiliation(s)
- Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Dylan L. Riggs
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yana A. Lyon
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
36
|
Ross DH, Lee JY, Bilbao A, Orton DJ, Eder JG, Burnet MC, Deatherage Kaiser BL, Kyle JE, Zheng X. LipidOz enables automated elucidation of lipid carbon-carbon double bond positions from ozone-induced dissociation mass spectrometry data. Commun Chem 2023; 6:74. [PMID: 37076550 PMCID: PMC10115790 DOI: 10.1038/s42004-023-00867-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Lipids play essential roles in many biological processes and disease pathology, but unambiguous identification of lipids is complicated by the presence of multiple isomeric species differing by fatty acyl chain length, stereospecifically numbered (sn) position, and position/stereochemistry of double bonds. Conventional liquid chromatography-mass spectrometry (LC-MS/MS) analyses enable the determination of fatty acyl chain lengths (and in some cases sn position) and number of double bonds, but not carbon-carbon double bond positions. Ozone-induced dissociation (OzID) is a gas-phase oxidation reaction that produces characteristic fragments from lipids containing double bonds. OzID can be incorporated into ion mobility spectrometry (IMS)-MS instruments for the structural characterization of lipids, including additional isomer separation and confident assignment of double bond positions. The complexity and repetitive nature of OzID data analysis and lack of software tool support have limited the application of OzID for routine lipidomics studies. Here, we present an open-source Python tool, LipidOz, for the automated determination of lipid double bond positions from OzID-IMS-MS data, which employs a combination of traditional automation and deep learning approaches. Our results demonstrate the ability of LipidOz to robustly assign double bond positions for lipid standard mixtures and complex lipid extracts, enabling practical application of OzID for future lipidomics.
Collapse
Affiliation(s)
- Dylan H Ross
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Joon-Yong Lee
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- PrognomiQ, Inc, San Mateo, CA, 94403, USA
| | - Aivett Bilbao
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Daniel J Orton
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Josie G Eder
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Meagan C Burnet
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | | | - Jennifer E Kyle
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Xueyun Zheng
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
37
|
Ross DH, Guo J, Bilbao A, Huan T, Smith RD, Zheng X. Evaluating Software Tools for Lipid Identification from Ion Mobility Spectrometry-Mass Spectrometry Lipidomics Data. Molecules 2023; 28:3483. [PMID: 37110719 PMCID: PMC10142755 DOI: 10.3390/molecules28083483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The unambiguous identification of lipids is a critical component of lipidomics studies and greatly impacts the interpretation and significance of analyses as well as the ultimate biological understandings derived from measurements. The level of structural detail that is available for lipid identifications is largely determined by the analytical platform being used. Mass spectrometry (MS) coupled with liquid chromatography (LC) is the predominant combination of analytical techniques used for lipidomics studies, and these methods can provide fairly detailed lipid identification. More recently, ion mobility spectrometry (IMS) has begun to see greater adoption in lipidomics studies thanks to the additional dimension of separation that it provides and the added structural information that can support lipid identification. At present, relatively few software tools are available for IMS-MS lipidomics data analysis, which reflects the still limited adoption of IMS as well as the limited software support. This fact is even more pronounced for isomer identifications, such as the determination of double bond positions or integration with MS-based imaging. In this review, we survey the landscape of software tools that are available for the analysis of IMS-MS-based lipidomics data and we evaluate lipid identifications produced by these tools using open-access data sourced from the peer-reviewed lipidomics literature.
Collapse
Affiliation(s)
- Dylan H. Ross
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jian Guo
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Aivett Bilbao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Richard D. Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xueyun Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
38
|
Freitas DP, Chen X, Hirtzel EA, Edwards ME, Kim J, Wang H, Sun Y, Kocurek KI, Russell D, Yan X. In situ droplet-based on-tissue chemical derivatization for lipid isomer characterization using LESA. Anal Bioanal Chem 2023:10.1007/s00216-023-04653-3. [PMID: 37017722 PMCID: PMC10392465 DOI: 10.1007/s00216-023-04653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
In this work, we present an in situ droplet-based derivatization method for fast tissue lipid profiling at multiple isomer levels. On-tissue derivatization for isomer characterization was achieved in a droplet delivered by the TriVersa NanoMate LESA pipette. The derivatized lipids were then extracted and analyzed by the automated chip-based liquid extraction surface analysis (LESA) mass spectrometry (MS) followed by tandem MS to produce diagnostic fragment ions to reveal the lipid isomer structures. Three reactions, i.e., mCPBA epoxidation, photocycloaddition catalyzed by the photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6, and Mn(II) lipid adduction, were applied using the droplet-based derivatization to provide lipid characterization at carbon-carbon double-bond positional isomer and sn-positional isomer levels. Relative quantitation of both types of lipid isomers was also achieved based on diagnostic ion intensities. This method provides the flexibility of performing multiple derivatizations at different spots in the same functional region of an organ for orthogonal lipid isomer analysis using a single tissue slide. Lipid isomers were profiled in the cortex, cerebellum, thalamus, hippocampus, and midbrain of the mouse brain and 24 double-bond positional isomers and 16 sn-positional isomers showed various distributions in those regions. This droplet-based derivatization of tissue lipids allows fast profiling of multi-level isomer identification and quantitation and has great potential in tissue lipid studies requiring rapid sample-to-result turnovers.
Collapse
Affiliation(s)
- Dallas P Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Erin A Hirtzel
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Madison E Edwards
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Joohan Kim
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Hongying Wang
- Department of Nutrition, Texas A&M University, Carter-Mattil Hall, 373 Olven Blvd, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, Carter-Mattil Hall, 373 Olven Blvd, College Station, TX, 77843, USA
| | - Klaudia I Kocurek
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - David Russell
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX, 77843, USA.
| |
Collapse
|
39
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
40
|
Jalaludin I, Nguyen HQ, Jang KS, Lee J, Lubman DM, Kim J. Matrix-assisted laser desorption/ionization-Fourier-transform ion cyclotron resonance-mass spectrometry analysis of exosomal lipids from human serum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9427. [PMID: 36321680 PMCID: PMC9757854 DOI: 10.1002/rcm.9427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Exosomes contain biomarkers such as proteins and lipids that help in understanding normal physiology and diseases. Lipids, in particular, are infrequently studied using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for biomarker discovery. In this study, MALDI was equipped with a high-resolution MS to investigate exosomal lipids from human serum. METHODS Exosomal lipids were profiled using MALDI with Fourier-transform ion cyclotron resonance (FTICR)-MS. Four matrices (i.e., α-cyano-4-hydroxycinnamic acid [CHCA], 2,5-dihydroxybenzoic acid, sinapinic acid, and graphene oxide [GO]) and three sample preparation methods (i.e., dried droplet, thin layer, and two layer) were compared for the number of lipid species detected and the relative abundance of each lipid from human serum and human serum exosomes. RESULTS In sum, 172 and 89 lipid species were identified from human serum and human serum exosomes, respectively, using all the methods. The highest number of exosome lipid species, 69, was detected using the CHCA matrix, whereas only 8 exosome lipid species were identified using the GO matrix. Among the identified lipid species, phosphatidylcholine was identified most frequently, probably due to the use of a positive ion mode. CONCLUSIONS Exosomes and human serum showed comparable lipid profiles as determined using MALDI-FTICR-MS. These findings provide a new perspective on exosomal lipidomics analysis and may serve as a foundation for future lipidomics-based biomarker research using MALDI-FTICR-MS.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
41
|
Scheidemantle G, Duan L, Lodge M, Cummings MJ, Hilovsky D, Pham E, Wang X, Kennedy A, Liu X. Data-dependent and -independent acquisition lipidomics analysis reveals the tissue-dependent effect of metformin on lipid metabolism. RESEARCH SQUARE 2023:rs.3.rs-2444456. [PMID: 36711728 PMCID: PMC9882637 DOI: 10.21203/rs.3.rs-2444456/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction Despite the well-recognized health benefits, the mechanisms and site of action of metformin remains elusive. Metformin-induced global lipidomic changes in plasma of animal models and human subjects have been reported. However, there is a lack of systemic evaluation of metformin-induced lipidomic changes in different tissues. Metformin uptake requires active transporters such as organic cation transporters (OCTs), and hence, it is anticipated that metformin actions are tissue-dependent. In this study, we aim to characterize metformin effects in non-diabetic male mice with a special focus on lipidomics analysis. The findings from this study will help us to better understand the cell-autonomous (direct actions in target cells) or non-cell-autonomous (indirect actions in target cells) mechanisms of metformin and provide insights into the development of more potent yet safe drugs targeting a particular organ instead of systemic metabolism for metabolic regulations without major side effects. Objectives To characterize metformin-induced lipidomic alterations in different tissues of non-diabetic male mice and further identify lipids affected by metformin through cell-autonomous or systemic mechanisms based on the correlation between lipid alterations in tissues and the corresponding in-tissue metformin concentrations. Methods Lipids were extracted from tissues and plasma of male mice treated with or without metformin in drinking water for 12 days and analyzed using MS/MS scan workflow (hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer using biologically relevant lipids-containing inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow followed by data-dependent acquisition (DDA), to maximum the coverage of lipids and minimize the negative effect of stochasticity of precursor selection on experimental consistency and reproducibility. Results Lipidomics analysis of 6 mouse tissues and plasma using MS/MS combining BRI-DIA and DDA allowed a systemic evaluation of lipidomic changes induced by metformin in different tissues. We observed that 1) the degrees of lipidomic changes induced by metformin treatment overly correlated with tissue concentrations of metformin; 2) the impact on lysophosphorylcholine and cardiolipins was positively correlated with tissue concentrations of metformin, while neutral lipids such as triglycerides did not correlate with the corresponding tissue metformin concentrations. Conclusion The data collected in this study from non-diabetic mice with 12-day metformin treatment suggest that the overall metabolic effect of metformin is positively correlated with tissue concentrations and the effect on individual lipid subclass is via both cell-autonomous mechanisms (cardiolipins and lysoPC) and non-cell-autonomous mechanisms (triglycerides).
Collapse
|
42
|
Xia F, Wan JB. Chemical derivatization strategy for mass spectrometry-based lipidomics. MASS SPECTROMETRY REVIEWS 2023; 42:432-452. [PMID: 34486155 DOI: 10.1002/mas.21729] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Lipids, serving as the structural components of cellular membranes, energy storage, and signaling molecules, play the essential and multiple roles in biological functions of mammals. Mass spectrometry (MS) is widely accepted as the first choice for lipid analysis, offering good performance in sensitivity, accuracy, and structural characterization. However, the untargeted qualitative profiling and absolute quantitation of lipids are still challenged by great structural diversity and high structural similarity. In recent decade, chemical derivatization mainly targeting carboxyl group and carbon-carbon double bond of lipids have been developed for lipidomic analysis with diverse advantages: (i) offering more characteristic structural information; (ii) improving the analytical performance, including chromatographic separation and MS sensitivity; (iii) providing one-to-one chemical isotope labeling internal standards based on the isotope derivatization regent in quantitative analysis. Moreover, the chemical derivatization strategy has shown great potential in combination with ion mobility mass spectrometry and ambient mass spectrometry. Herein, we summarized the current states and advances in chemical derivatization-assisted MS techniques for lipidomic analysis, and their strengths and challenges are also given. In summary, the chemical derivatization-based lipidomic approach has become a promising and reliable technique for the analysis of lipidome in complex biological samples.
Collapse
Affiliation(s)
- Fangbo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| |
Collapse
|
43
|
Hustin J, Kune C, Far J, Eppe G, Debois D, Quinton L, De Pauw E. Differential Kendrick's Plots as an Innovative Tool for Lipidomics in Complex Samples: Comparison of Liquid Chromatography and Infusion-Based Methods to Sample Differential Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2273-2282. [PMID: 36378810 DOI: 10.1021/jasms.2c00232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipidomics has developed rapidly over the past decade. Nontargeted lipidomics from biological samples remains a challenge due to the high structural diversity, the concentration range of lipids, and the complexity of biological samples. We introduce here the use of differential Kendrick's plots as a rapid visualization tool for a qualitative nontargeted analysis of lipids categories and classes from data generated by either liquid chromatography-mass spectrometry (LC-MS) or direct infusion (nESI-MS). Each lipid class is easily identified by comparison with the theoretical Kendrick plot pattern constructed from exact mass measurements and by using MSKendrickFilter, an in-house Python software. The lipids are identified with the LIPID MAPS database. In addition, in LC-MS, the software based on the Kendrick plots returns the retention time from all the lipids belonging to the same series. Lipid extracts from a yeast (Saccharomyces cerevisiae) are used as a model. An on/off case comparing Kendrick plots from two cell lines (prostate cancer cell lines treated or not with a DGAT2 inhibition) clearly shows the effect of the inhibition. Our study demonstrates the good performance of direct infusion as a fast qualitative screening method as well as for the analysis of chromatograms. A fast screening semiquantitative approach is also possible, while the targeted mode remains the golden standard for precise quantitative analysis.
Collapse
Affiliation(s)
- Justine Hustin
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | | | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Department of Chemistry, University of Liège, Allée du Six Août 11 - Quartier Agora, 4000Liège, Belgium
| |
Collapse
|
44
|
Chen X, Tang S, Freitas D, Hirtzel E, Cheng H, Yan X. Characterization of glycerophospholipids at multiple isomer levels via Mn(II)-catalyzed epoxidation. Analyst 2022; 147:4838-4844. [PMID: 36128870 PMCID: PMC9704799 DOI: 10.1039/d2an01174c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Characterization of glycerophospholipid isomers is of significant importance as they play different roles in physiological and pathological processes. In this work, we present a novel and bifunctional derivatization method utilizing Mn(II)-catalyzed epoxidation to simultaneously identify carbon-carbon double bond (CC bond)- and stereonumbering (sn)-positional isomers of phosphatidylcholine. Mn(II) coordinates with picolinic acid and catalyzes epoxidation of unsaturated lipids by peracetic acid. Collision-induced dissociation (CID) of the epoxides generates diagnostic ions that can be used to locate CC bond positions. Meanwhile, CID of Mn(II) ion-lipid complexes produces characteristic ions for determination of sn positions. This bifunctional derivatization takes place in seconds, and the diagnostic ions produced in CID are clear and easy to interpret. Moreover, relative quantification of CC bond-and sn-positional isomers was achieved. The capability of this method in identifying lipids at multiple isomer levels was shown using lipid standards and lipid extracts from complex biological samples.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Erin Hirtzel
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| |
Collapse
|
45
|
Hynds HM, Hines KM. Ion Mobility Shift Reagents for Lipid Double Bonds Based on Paternò-Büchi Photoderivatization with Halogenated Acetophenones. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1982-1989. [PMID: 36126229 DOI: 10.1021/jasms.2c00211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Paternò-Büchi (PB) reaction is a cycloaddition reaction between a carbon-carbon double bond (C═C) and a photochemically excited carbonyl-containing compound. The constrained ring formed between the C═C bond and the PB reagent is more susceptible to fragmentation by collision-induced dissociation, which facilitates identification of the C═C position within the fatty acyl tails of lipids. Although the original PB reaction using acetone had a low yield of derivatized lipids and therefore a low yield of diagnostic ions, a new generation of PB reagents based on halogenated acetophenones has improved the reaction yield substantially. In this study, we investigated the use of halogenated PB reagents and ion mobility to improve the identification of PB-derivatized lipids by shifting them out of the densely populated lipid region of ion mobility-mass spectrometry (IM-MS) space. Several halogenated PB reagents containing fluorine, chlorine and bromine were investigated for their ability to decrease the collision cross-section (CCS) values of derivatized lipids and yield sufficient intensity for both the derivatized lipid and its diagnostic ions. We found that 4'-chloro-2',6'-difluoroacetophenone (CDFAP) displayed the best performance, with an average decrease in CCS of 4.4% and yield of derivatized lipids and diagnostic ions comparable to the trifluorinated acetophenone reagent proposed by the Xia group. The unique isotope pattern resulting from the chlorine substituent aided in identification of the derivatized lipids and their diagnostic ions, as well. We further demonstrate that derivatization with CDFAP preserves the separation of lipids classes in IM-MS space.
Collapse
Affiliation(s)
- Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
46
|
Lillja J, Lanekoff I. Quantitative determination of sn-positional phospholipid isomers in MS n using silver cationization. Anal Bioanal Chem 2022; 414:7473-7482. [PMID: 35731255 PMCID: PMC9482905 DOI: 10.1007/s00216-022-04173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Glycerophospholipids are one of the fundamental building blocks for life. The acyl chain connectivity to the glycerol backbone constitutes different sn-positional isomers, which have great diversity and importance for biological function. However, to fully realize their impact on function, analytical techniques that can identify and quantify sn-positional isomers in chemically complex biological samples are needed. Here, we utilize silver ion cationization in combination with tandem mass spectrometry (MSn) to identify sn-positional isomers of phosphatidylcholine (PC) species. In particular, a labile carbocation is generated through a neutral loss (NL) of AgH, the dissociation of which provides diagnostic product ions that correspond to acyl chains at the sn-1 or sn-2 position. The method is comparable to currently available methods, has a sensitivity in the nM-µM range, and is compatible with quantitative imaging using mass spectrometry in MS4. The results reveal a large difference in isomer concentrations and the ion images show that the sn-positional isomers PC 18:1_18:0 are homogeneously distributed, whereas PC 18:1_16:0 and PC 20:1_16:0 show distinct localizations to sub-hippocampal structures.
Collapse
Affiliation(s)
- Johan Lillja
- Department of Chemistry - BMC (576), Uppsala University, 751 23, Uppsala, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC (576), Uppsala University, 751 23, Uppsala, Sweden.
| |
Collapse
|
47
|
Yang T, Tang S, Kuo S, Freitas D, Edwards M, Wang H, Sun Y, Yan X. Lipid Mass Tags via Aziridination for Probing Unsaturated Lipid Isomers and Accurate Relative Quantification**. Angew Chem Int Ed Engl 2022; 61:e202207098. [DOI: 10.1002/anie.202207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tingyuan Yang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Shuli Tang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Syuan‐Ting Kuo
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Dallas Freitas
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Madison Edwards
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Hongying Wang
- Department of Nutrition Texas A&M University 373 Olsen Blvd. College Station TX 77845 USA
| | - Yuxiang Sun
- Department of Nutrition Texas A&M University 373 Olsen Blvd. College Station TX 77845 USA
| | - Xin Yan
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| |
Collapse
|
48
|
Tang S, Chen X, Ke Y, Wang F, Yan X. Voltage-Controlled Divergent Cascade of Electrochemical Reactions for Characterization of Lipids at Multiple Isomer Levels Using Mass Spectrometry. Anal Chem 2022; 94:12750-12756. [PMID: 36087069 PMCID: PMC10386884 DOI: 10.1021/acs.analchem.2c02375] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cascading divergent reactions in a single system is highly desirable for their intrinsic efficiency and potential to achieve multilevel structural characterization of complex biomolecules. In this work, two electrochemical reactions, interfacial electro-epoxidation and cobalt anodic corrosion, are divergently cascaded in nanoelectrospray (nESI) and can be switched at different voltages. We applied these reactions to lipid identification at multiple isomer levels using mass spectrometry (MS), which remains a great challenge in structural lipidomics. The divergent cascade reactions in situ derivatize lipids to produce epoxidized lipids and cobalt-adducted lipids at different voltages. These lipids are then fragmented upon low-energy collision-induced dissociation (CID), generating diagnostic fragments to indicate C═C locations and sn-positions that cannot be achieved by the low-energy CID of native lipids. We have demonstrated that lipid structural isomers show significantly different profiles in the analysis of healthy and cancerous mouse prostate samples using this strategy. The application of divergent cascade reactions in lipid identification allows the four-in-one analysis of lipid headgroups, fatty acyl chains, C═C locations, and sn-positions simply by tuning the nESI voltages within a single experiment. This feature as well as its low sample consumption, no need for an extra apparatus, and quantitative analysis capability show its great potential in lipidomics.
Collapse
Affiliation(s)
- Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Yuepeng Ke
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Fen Wang
- Center for Translational Cancer Research, Texas A&M Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
49
|
Paglia G, Smith AJ, Astarita G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. MASS SPECTROMETRY REVIEWS 2022; 41:722-765. [PMID: 33522625 DOI: 10.1002/mas.21686] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Researchers worldwide are taking advantage of novel, commercially available, technologies, such as ion mobility mass spectrometry (IM-MS), for metabolomics and lipidomics applications in a variety of fields including life, biomedical, and food sciences. IM-MS provides three main technical advantages over traditional LC-MS workflows. Firstly, in addition to mass, IM-MS allows collision cross-section values to be measured for metabolites and lipids, a physicochemical identifier related to the chemical shape of an analyte that increases the confidence of identification. Second, IM-MS increases peak capacity and the signal-to-noise, improving fingerprinting as well as quantification, and better defining the spatial localization of metabolites and lipids in biological and food samples. Third, IM-MS can be coupled with various fragmentation modes, adding new tools to improve structural characterization and molecular annotation. Here, we review the state-of-the-art in IM-MS technologies and approaches utilized to support metabolomics and lipidomics applications and we assess the challenges and opportunities in this growing field.
Collapse
Affiliation(s)
- Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Andrew J Smith
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
50
|
Xia J, Xiao W, Lin X, Zhou Y, Qiu P, Si H, Wu X, Niu S, Luo Z, Yang X. Ion Mobility-Derived Collision Cross-Sections Add Extra Capability in Distinguishing Isomers and Compounds with Similar Retention Times: The Case of Aphidicolanes. Mar Drugs 2022; 20:md20090541. [PMID: 36135730 PMCID: PMC9503386 DOI: 10.3390/md20090541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022] Open
Abstract
The hyphenation of ion mobility spectrometry with high-resolution mass spectrometry has been widely used in the characterization of various metabolites. Nevertheless, such a powerful tool remains largely unexplored in natural products research, possibly mainly due to the lack of available compounds. To evaluate the ability of collision cross-sections (CCSs) in characterizing compounds, especially isomeric natural products, here we measured and compared the traveling-wave IMS-derived nitrogen CCS values for 75 marine-derived aphidicolanes. We established a CCS database for these compounds which contained 227 CCS values of different adducts. When comparing the CCS differences, 36 of 57 pairs (over 60%) of chromatographically neighboring compounds showed a ΔCCS over 2%. What is more, 64 of 104 isomeric pairs (over 60%) of aphidicolanes can be distinguished by their CCS values, and 13 of 18 pairs (over 70%) of chromatographically indistinguishable isomers can be differentiated from the mobility dimension. Our results strongly supported CCS as an important parameter with good orthogonality and complementarity with retention time. CCS is expected to play an important role in distinguishing complex and diverse marine natural products.
Collapse
Affiliation(s)
- Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Wenhai Xiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xihuang Lin
- Analyzing and Testing Center, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yiduo Zhou
- Institute of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Peng Qiu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hongkun Si
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaorong Wu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Siwen Niu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xianwen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Correspondence:
| |
Collapse
|