1
|
Wen Y, Wang F, Zhu J, Wen Q, Xia X, Wen J, Deng C, Du JH, Ke X, Zhang Z, Guan H, Nie L, Wang M, Hou W, Li W, Tang W, Ding W, Chen J, Peng L. Revealing the structure-activity relationship of Pt 1/CeO 2 with 17O solid-state NMR spectroscopy and DFT calculations. Nat Commun 2025; 16:3537. [PMID: 40229320 PMCID: PMC11997086 DOI: 10.1038/s41467-025-58709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Single-atom catalysts (SACs) have attracted significant interest due to their exceptional and tunable performance, enabled by diverse coordination environments achieved through innovative synthetic strategies. However, various local structures of active sites pose significant challenges for precise characterization, a prerequisite for developing structure-activity relationships. Here, we combine 17O solid-state NMR spectroscopy and DFT calculations to elucidate the detailed structural information of Pt/CeO2 SACs and their catalytic behaviors. The NMR data reveal that single Pt atoms, dispersed from clusters with water vapor, exhibit a square planar geometry embedded in CeO2 (111) surface, distinct from the original clusters and other conventionally generated Pt single atoms. The square planar Pt/CeO2 SAC demonstrates improved CO oxidation performance compared to Pt/CeO2 SAC with octahedral coordination, due to moderately strong CO adsorption and low energy barriers. This approach can be extended to other oxide-supported SACs, enabling spatially resolved characterization and offering comprehensive insights into their structure-activity relationships.
Collapse
Affiliation(s)
- Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Fang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jie Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Qian Wen
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Xiaoli Xia
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Juan Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Changshun Deng
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jia-Huan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaokang Ke
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhen Zhang
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Hanxi Guan
- Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Lei Nie
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wenhua Hou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Weiping Tang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Junchao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing, China.
- Frontiers Science Center for Critical Earth Material Cycling (FSC-CEMaC), Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Lee J, Christopher P. Does H 2 Temperature-Programmed Reduction Always Probe Solid-State Redox Chemistry? The Case of Pt/CeO 2. Angew Chem Int Ed Engl 2025; 64:e202414388. [PMID: 39380162 DOI: 10.1002/anie.202414388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024]
Abstract
Redox reactions on the surface of transition metal oxides are of broad interest in thermo, photo, and electrocatalysis. H2 temperature-programmed reduction (H2-TPR) is commonly used to probe oxide reducibility by measuring the rate of H2 consumption during temperature ramps, assuming that this rate is controlled by oxide reduction. However, oxide reduction involves several elementary steps, such as H2 dissociation and H-spillover, before surface reduction and H2O formation occur. In this study, we evaluated the kinetics of H2 consumption over CeO2 and Pt/CeO2 with varying Pt loadings and structures to identify the elementary steps probed by H2-TPR. Literature often attributes changes in H2-TPR characteristics with Pt addition to increased CeO2 reducibility. However, our analysis revealed that the H2 consumption rate is measurement of the rate of H-spillover at Pt-CeO2 interfaces and is determined by the concentration of Pt species on Pt nanoclusters that dissociate H2. Therefore, lower temperature H2 consumption observed with Pt addition does not indicate higher CeO2 reducibility. Measurements on samples with mixtures of Pt single-atoms and nanoclusters demonstrated that H2-TPR can effectively quantify dilute Pt nanocluster concentrations, suggesting caution in directly linking H2-TPR characteristics to oxide reducibility while highlighting alternative material insights that can be gleaned.
Collapse
Affiliation(s)
- Jaeha Lee
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, United States
- Department of Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, United States
| |
Collapse
|
3
|
Rafsanjani-Abbasi A, Buchner F, Lewis FJ, Puntscher L, Kraushofer F, Sombut P, Eder M, Pavelec J, Rheinfrank E, Franceschi G, Birschitzky V, Riva M, Franchini C, Schmid M, Diebold U, Meier M, Madsen GKH, Parkinson GS. Digging Its Own Site: Linear Coordination Stabilizes a Pt 1/Fe 2O 3 Single-Atom Catalyst. ACS NANO 2024; 18:26920-26927. [PMID: 39293063 PMCID: PMC11447906 DOI: 10.1021/acsnano.4c08781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Determining the local coordination of the active site is a prerequisite for the reliable modeling of single-atom catalysts (SACs). Obtaining such information is difficult on powder-based systems and much emphasis is placed on density functional theory computations based on idealized low-index surfaces of the support. In this work, we investigate how Pt atoms bind to the (11̅02) facet of α-Fe2O3; a common support material in SACs. Using a combination of scanning tunneling microscopy, X-ray photoelectron spectroscopy, and an extensive computational evolutionary search, we find that Pt atoms significantly reconfigure the support lattice to facilitate a pseudolinear coordination to surface oxygen atoms. Despite breaking three surface Fe-O bonds, this geometry is favored by 0.84 eV over the best configuration involving an unperturbed support. We suggest that the linear O-Pt-O configuration is common in reactive Pt-based SAC systems because it balances thermal stability with the ability to adsorb reactants from the gas phase. Moreover, we conclude that extensive structural searches are necessary to determine realistic active site geometries in single-atom catalysis.
Collapse
Affiliation(s)
| | - Florian Buchner
- Institute of Materials Chemistry, TU Wien, Vienna AT 1060, Austria
| | - Faith J Lewis
- Institute of Applied Physics, TU Wien, Vienna AT 1040, Austria
| | - Lena Puntscher
- Institute of Applied Physics, TU Wien, Vienna AT 1040, Austria
| | | | - Panukorn Sombut
- Institute of Applied Physics, TU Wien, Vienna AT 1040, Austria
| | - Moritz Eder
- Institute of Applied Physics, TU Wien, Vienna AT 1040, Austria
| | - Jiří Pavelec
- Institute of Applied Physics, TU Wien, Vienna AT 1040, Austria
| | - Erik Rheinfrank
- Institute of Applied Physics, TU Wien, Vienna AT 1040, Austria
| | | | - Viktor Birschitzky
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Vienna AT 1090, Austria
| | - Michele Riva
- Institute of Applied Physics, TU Wien, Vienna AT 1040, Austria
| | - Cesare Franchini
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Vienna AT 1090, Austria
- Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna IT 40126, Italy
| | - Michael Schmid
- Institute of Applied Physics, TU Wien, Vienna AT 1040, Austria
| | - Ulrike Diebold
- Institute of Applied Physics, TU Wien, Vienna AT 1040, Austria
| | - Matthias Meier
- Institute of Applied Physics, TU Wien, Vienna AT 1040, Austria
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Vienna AT 1090, Austria
| | - Georg K H Madsen
- Institute of Materials Chemistry, TU Wien, Vienna AT 1060, Austria
| | | |
Collapse
|
4
|
Shen D, Li Z, Bai Y, Li J, Lyu S, Zhang Y, Li J, Li L. Insight into the Dynamic Nature of the Pt-CeO 2 Interface in Dry Reforming of Methane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13458-13466. [PMID: 38887034 DOI: 10.1021/acs.langmuir.4c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Single-atom catalysts (SACs) are attractive in one-carbon (C1) chemistry because of their high atom efficiency. However, it is a great challenge for understanding the dynamic roles of SACs under operating conditions. Here, isolated Pt atoms trapped on defective CeO2 surface are investigated by experiments, especially operando techniques, which offers basic understanding of the nature and dynamic evolution of the Pt-CeO2 interface in dry reforming of methane (DRM). The Pt-Olattice configuration is highly active for CH4 dissociation at the expense of the Olattice atoms, which in turn promotes the H-assisted dissociation of CO2. The transformation of Pt atoms between positive and metallic states is driven by the DRM reaction, which is essential for rendering highly efficient catalysis. The dynamic evolution of Pt atoms favors to eliminate the reactive intermediates, such as carbonates and formates. The dynamic nature of the Pt-CeO2 interface in the DRM reaction shows a similar picture to the Yin and Yang transformation in ancient Chinese Tai Ji wisdom.
Collapse
Affiliation(s)
- Dongyang Shen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Zhe Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yue Bai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jing Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Shuai Lyu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Lin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
5
|
Liao GJ, Hsueh WH, Yen YH, Shih YC, Wang CH, Wang JH, Luo MF. Decomposition of methanol-d 4 on Rh nanoclusters supported by thin-film Al 2O 3/NiAl(100) under near-ambient-pressure conditions. Phys Chem Chem Phys 2024; 26:5059-5069. [PMID: 38258542 DOI: 10.1039/d3cp05303b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The decomposition of methanol-d4 (CD3OD) on Rh nanoclusters grown by the deposition of Rh vapors onto an ordered thin film of Al2O3/NiAl(100) was studied, with various surface-probe techniques and largely under near-ambient-pressure (NAP) conditions. The results showed a superior reactivity of small Rh clusters (diameter < 1.5 nm) exposed to CD3OD at 5 × 10-3-0.1 mbar at 400 K; the gaseous production of CO and D2 from decomposed methanol-d4 per Rh surface site on the small Rh clusters with diameters of ∼1.1 nm was nearly 8 times that on large ones with diameters of ∼3.5 nm. The promotion of reactivity with decreased cluster size under NAP conditions was evidently greater than that under ultrahigh vacuum conditions. Moreover, the concentration of atomic carbon (C*; where * denotes adsorbate)-a key catalyst poisoner-yielded from the dissociation of CO* from dehydrogenated methanol-d4 was significantly smaller on small clusters (diameter < 1.5 nm). The NAP size effect on methanol-d4 decomposition involved the surface hydroxyl (OH*) from the little co-adsorbed water (H2O*) that was dissociated at a probability dependent on the cluster size. H2O* was more likely dissociated into OH* on small Rh clusters, by virtue of their more reactive d-band structure, and the OH* then effectively promoted the O-D cleavage of methanol-d4, as the rate-determining step, and thus the reaction probability; on the other hand, the OH* limited CO* dissociation on small Rh clusters via both adsorbate and lateral effects. These results suggest that the superior properties of small Rh clusters in both reactivity and anti-poisoning would persist and be highly applicable under "real-world" catalysis conditions.
Collapse
Affiliation(s)
- Guan-Jr Liao
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| | - Wen-Hao Hsueh
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Zhou Road, Taipei, Taiwan.
| | - Yu-Hsiang Yen
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| | - Yi-Chan Shih
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Zhou Road, Taipei, Taiwan.
| | - Meng-Fan Luo
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan.
| |
Collapse
|
6
|
Lee J, Tieu P, Finzel J, Zang W, Yan X, Graham G, Pan X, Christopher P. How Pt Influences H 2 Reactions on High Surface-Area Pt/CeO 2 Powder Catalyst Surfaces. JACS AU 2023; 3:2299-2313. [PMID: 37654595 PMCID: PMC10466333 DOI: 10.1021/jacsau.3c00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
The addition of platinum-group metals (PGMs, e.g., Pt) to CeO2 is used in heterogeneous catalysis to promote the rate of redox surface reactions. Well-defined model system studies have shown that PGMs facilitate H2 dissociation, H-spillover onto CeO2 surfaces, and CeO2 surface reduction. However, it remains unclear how the heterogeneous structures and interfaces that exist on powder catalysts influence the mechanistic picture of PGM-promoted H2 reactions on CeO2 surfaces developed from model system studies. Here, controlled catalyst synthesis, temperature-programmed reduction (TPR), in situ infrared spectroscopy (IR), and in situ electron energy loss spectroscopy (EELS) were used to interrogate the mechanisms of how Pt nanoclusters and single atoms influence H2 reactions on high-surface area Pt/CeO2 powder catalysts. TPR showed that Pt promotes H2 consumption rates on Pt/CeO2 even when Pt exists on a small fraction of CeO2 particles, suggesting that H-spillover proceeds far from Pt-CeO2 interfaces and across CeO2-CeO2 particle interfaces. IR and EELS measurements provided evidence that Pt changes the mechanism of H2 activation and the rate limiting step for Ce3+, oxygen vacancy, and water formation as compared to pure CeO2. As a result, higher-saturation surface hydroxyl coverages can be achieved on Pt/CeO2 compared to pure CeO2. Further, Ce3+ formed by spillover-H from Pt is heterogeneously distributed and localized at and around interparticle CeO2-CeO2 boundaries, while activated H2 on pure CeO2 results in homogeneously distributed Ce3+. Ce3+ localization at and around CeO2-CeO2 boundaries for Pt/CeO2 is accompanied by surface reconstruction that enables faster rates of H2 consumption. This study reconciles the materials gap between model structures and powder catalysts for H2 reactions with Pt/CeO2 and highlights how the spatial heterogeneity of powder catalysts dictates the influence of Pt on H2 reactions at CeO2 surfaces.
Collapse
Affiliation(s)
- Jaeha Lee
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Peter Tieu
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Jordan Finzel
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Wenjie Zang
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
| | - Xingxu Yan
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
| | - George Graham
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaoqing Pan
- Department
of Materials Science and Engineering, University
of California Irvine, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California Irvine, Irvine, California 92697, United States
- Irvine
Materials Research Institute (IMRI), University
of California Irvine, Irvine, California 92697, United States
| | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
7
|
Liao GJ, Hsueh WH, Yen YH, Shih YC, Wang CH, Wang JH, Luo MF. Decomposition of methanol-d4 on a thin film of Al2O3/NiAl(100) under near-ambient-pressure conditions. J Chem Phys 2023; 158:2887766. [PMID: 37129140 DOI: 10.1063/5.0151135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
We have studied the decomposition of methanol-d4 on thin film Al2O3/NiAl(100) under near-ambient-pressure conditions, with varied surface-probe techniques and calculations based on density-functional theory. Methanol-d4 neither adsorbed nor reacted on Al2O3/NiAl(100) at 400 K under ultrahigh vacuum conditions, whereas they dehydrogenated, largely to methoxy-d3 (CD3O*, * denoting adsorbates) and formaldehyde-d2 (CD2O*), on the surface when the methanol-d4 partial pressure was increased to 10-3 mbar and above. The dehydrogenation was facilitated by hydroxyl (OH* or OD*) from the dissociation of little co-adsorbed water; a small fraction of CD2O* interacted further with OH* (OD*) to form, via intermediate CD2OOH* (CD2OOD*), formic acid (DCOOH* or DCOOD*). A few surface carbonates were also yielded, likely on the defect sites of Al2O3/NiAl(100). The results suggest that alumina not only supports metal clusters but also participates in reactions under realistic catalytic conditions. One may consider accordingly the multiple functions of alumina while designing ideal catalysts.
Collapse
Affiliation(s)
- Guan-Jr Liao
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan
| | - Wen-Hao Hsueh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei, Taiwan
| | - Yu-Hsiang Yen
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan
| | - Yi-Chan Shih
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Jeng-Han Wang
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Road, Taipei, Taiwan
| | - Meng-Fan Luo
- Department of Physics, National Central University, No. 300 Jhongda Road, Jhongli 32054, Taiwan
| |
Collapse
|
8
|
Das S, Anjum U, Lim KH, He Q, Hoffman AS, Bare SR, Kozlov SM, Gates BC, Kawi S. Genesis of Active Pt/CeO 2 Catalyst for Dry Reforming of Methane by Reduction and Aggregation of Isolated Platinum Atoms into Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207272. [PMID: 36942900 DOI: 10.1002/smll.202207272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Atomically dispersed metal catalysts offer the advantages of efficient metal utilization and high selectivities for reactions of technological importance. Such catalysts have been suggested to be strong candidates for dry reforming of methane (DRM), offering prospects of high selectivity for synthesis gas without coke formation, which requires ensembles of metal sites and is a challenge to overcome in DRM catalysis. However, investigations of the structures of isolated metal sites on metal oxide supports under DRM conditions are lacking, and the catalytically active sites remain undetermined. Data characterizing the DRM reaction-driven structural evolution of a cerium oxide-supported catalyst, initially incorporating atomically dispersed platinum, and the corresponding changes in catalyst performance are reported. X-ray absorption and infrared spectra show that the reduction and agglomeration of isolated cationic platinum atoms to form small platinum clusters/nanoparticles are necessary for DRM activity. Density functional theory calculations of the energy barriers for methane dissociation on atomically dispersed platinum and on platinum clusters support these observations. The results emphasize the need for in-operando experiments to assess the active sites in such catalysts. The inferences about the catalytically active species are suggested to pertain to a broad class of catalytic conversions involving the rate-limiting dissociation of light alkanes.
Collapse
Affiliation(s)
- Sonali Das
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, 400076, India
| | - Uzma Anjum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
9
|
Abstract
The field of single-atom catalysis (SAC) has expanded greatly in recent years. While there has been much success developing new synthesis methods, a fundamental disconnect exists between most experiments and the theoretical computations used to model them. The real catalysts are based on powder supports, which inevitably contain a multitude of different facets, different surface sites, defects, hydroxyl groups, and other contaminants due to the environment. This makes it extremely difficult to determine the structure of the active SAC site using current techniques. To be tractable, computations aimed at modeling SAC utilize periodic boundary conditions and low-index facets of an idealized support. Thus, the reaction barriers and mechanisms determined computationally represent, at best, a plausibility argument, and there is a strong chance that some critical aspect is omitted. One way to better understand what is plausible is by experimental modeling, i.e., comparing the results of computations to experiments based on precisely defined single-crystalline supports prepared in an ultrahigh-vacuum (UHV) environment. In this review, we report the status of the surface-science literature as it pertains to SAC. We focus on experimental work on supports where the site of the metal atom are unambiguously determined from experiment, in particular, the surfaces of rutile and anatase TiO2, the iron oxides Fe2O3 and Fe3O4, as well as CeO2 and MgO. Much of this work is based on scanning probe microscopy in conjunction with spectroscopy, and we highlight the remarkably few studies in which metal atoms are stable on low-index surfaces of typical supports. In the Perspective section, we discuss the possibility for expanding such studies into other relevant supports.
Collapse
Affiliation(s)
- Florian Kraushofer
- Institute of Applied Physics, Technische Universitat Wien, 1040 Vienna, Austria
| | - Gareth S. Parkinson
- Institute of Applied Physics, Technische Universitat Wien, 1040 Vienna, Austria
| |
Collapse
|
10
|
Chiang TH, Rao KN, Hsu JW. Cerium Vanadium Oxide Enhanced Methanol Electrooxidation Reaction and Carbon Monoxide Tolerance Performance in Direct Methanol Fuel Cells. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Jiang D, Yao Y, Li T, Wan G, Pereira‐Hernández XI, Lu Y, Tian J, Khivantsev K, Engelhard MH, Sun C, García‐Vargas CE, Hoffman AS, Bare SR, Datye AK, Hu L, Wang Y. Tailoring the Local Environment of Platinum in Single‐Atom Pt
1
/CeO
2
Catalysts for Robust Low‐Temperature CO Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong Jiang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
| | - Yonggang Yao
- Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA
- Current address: State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Tangyuan Li
- Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA
| | - Gang Wan
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Xavier Isidro Pereira‐Hernández
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
| | - Yubing Lu
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Jinshu Tian
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Konstantin Khivantsev
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Mark H. Engelhard
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Chengjun Sun
- X-ray Science Division Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA
| | - Carlos E. García‐Vargas
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
| | - Adam S. Hoffman
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials University of New Mexico Albuquerque NM 87131 USA
| | - Liangbing Hu
- Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA
| | - Yong Wang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| |
Collapse
|
12
|
Insights into formation of Pt species in Pt/CeO2 catalysts: Effect of treatment conditions and metal-support interaction. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Kwon HC, Park Y, Park JY, Ryoo R, Shin H, Choi M. Catalytic Interplay of Ga, Pt, and Ce on the Alumina Surface Enabling High Activity, Selectivity, and Stability in Propane Dehydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Han Chang Kwon
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Younghwan Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Ryong Ryoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyeyoung Shin
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minkee Choi
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Jiang D, Yao Y, Li T, Wan G, Pereira-Hernández XI, Lu Y, Tian J, Khivantsev K, Engelhard MH, Sun C, García-Vargas CE, Hoffman AS, Bare SR, Datye AK, Hu L, Wang Y. Tailoring the Local Environment of Platinum in Single-Atom Pt 1 /CeO 2 Catalysts for Robust Low-Temperature CO Oxidation. Angew Chem Int Ed Engl 2021; 60:26054-26062. [PMID: 34346155 DOI: 10.1002/anie.202108585] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/09/2022]
Abstract
A single-atom Pt1 /CeO2 catalyst formed by atom trapping (AT, 800 °C in air) shows excellent thermal stability but is inactive for CO oxidation at low temperatures owing to over-stabilization of Pt2+ in a highly symmetric square-planar Pt1 O4 coordination environment. Reductive activation to form Pt nanoparticles (NPs) results in enhanced activity; however, the NPs are easily oxidized, leading to drastic activity loss. Herein we show that tailoring the local environment of isolated Pt2+ by thermal-shock (TS) synthesis leads to a highly active and thermally stable Pt1 /CeO2 catalyst. Ultrafast shockwaves (>1200 °C) in an inert atmosphere induced surface reconstruction of CeO2 to generate Pt single atoms in an asymmetric Pt1 O4 configuration. Owing to this unique coordination, Pt1 δ+ in a partially reduced state dynamically evolves during CO oxidation, resulting in exceptional low-temperature performance. CO oxidation reactivity on the Pt1 /CeO2 _TS catalyst was retained under oxidizing conditions.
Collapse
Affiliation(s)
- Dong Jiang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA.,Current address: State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tangyuan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gang Wan
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Xavier Isidro Pereira-Hernández
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Yubing Lu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jinshu Tian
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Konstantin Khivantsev
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Mark H Engelhard
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chengjun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Carlos E García-Vargas
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Abhaya K Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Yong Wang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
15
|
Hulva J, Meier M, Bliem R, Jakub Z, Kraushofer F, Schmid M, Diebold U, Franchini C, Parkinson GS. Unraveling CO adsorption on model single-atom catalysts. Science 2021; 371:375-379. [PMID: 33479148 DOI: 10.1126/science.abe5757] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Understanding how the local environment of a "single-atom" catalyst affects stability and reactivity remains a challenge. We present an in-depth study of copper1, silver1, gold1, nickel1, palladium1, platinum1, rhodium1, and iridium1 species on Fe3O4(001), a model support in which all metals occupy the same twofold-coordinated adsorption site upon deposition at room temperature. Surface science techniques revealed that CO adsorption strength at single metal sites differs from the respective metal surfaces and supported clusters. Charge transfer into the support modifies the d-states of the metal atom and the strength of the metal-CO bond. These effects could strengthen the bond (as for Ag1-CO) or weaken it (as for Ni1-CO), but CO-induced structural distortions reduce adsorption energies from those expected on the basis of electronic structure alone. The extent of the relaxations depends on the local geometry and could be predicted by analogy to coordination chemistry.
Collapse
Affiliation(s)
- Jan Hulva
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Matthias Meier
- Institute of Applied Physics, TU Wien, Vienna, Austria.,Computational Materials Physics, University of Vienna, Vienna, Austria
| | - Roland Bliem
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Zdenek Jakub
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | | | | | | - Cesare Franchini
- Computational Materials Physics, University of Vienna, Vienna, Austria.,Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | | |
Collapse
|
16
|
Resasco J, Christopher P. Atomically Dispersed Pt-group Catalysts: Reactivity, Uniformity, Structural Evolution, and Paths to Increased Functionality. J Phys Chem Lett 2020; 11:10114-10123. [PMID: 33191757 DOI: 10.1021/acs.jpclett.0c02904] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of experimental and computational tools that give accurate and visual active site descriptions has renewed research interest in atomically dispersed metal catalysts. In this perspective, we describe our approach to synthesizing and understanding atomically dispersed Pt-group metals on oxide supports. Using site-specific characterization, we show that these metal species have distinct reactivity from metal clusters. We argue that producing materials where all metal sites have identical local coordination is key to both accurately assessing catalytic properties and achieving single-site behavior. Methods for assessing site uniformity are considered. We show that producing uniform metal species allows us to describe their structure at the atomic scale and understand how this structure evolves under different conditions. Finally, we suggest pathways to increased functionality for atomically dispersed catalysts, through control of their local coordination and steric environment and through cooperativity with different sites.
Collapse
Affiliation(s)
- Joaquin Resasco
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
17
|
Xin Y, Zhang N, Lv Y, Wang J, Li Q, Zhang Z. From nanoparticles to single atoms for Pt/CeO2: Synthetic strategies, characterizations and applications. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Guan E, Ciston J, Bare SR, Runnebaum RC, Katz A, Kulkarni A, Kronawitter CX, Gates BC. Supported Metal Pair-Site Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02000] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Erjia Guan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Jim Ciston
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ron C. Runnebaum
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
- Department of Viticulture & Enology, University of California, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Coleman X. Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
19
|
Benedetti S, Righi G, Luches P, D'Addato S, Magri R, Selloni A. Surface Reactivity of Ag-Modified Ceria to Hydrogen: A Combined Experimental and Theoretical Investigation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27682-27690. [PMID: 32508088 DOI: 10.1021/acsami.0c03968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the mechanism of H2 activation on Ag-modified cerium oxide surfaces, of interest for different catalytic applications. The study is performed on thin epitaxial cerium oxide films, investigated by X-ray photoemission spectroscopy to assess the changes of both the Ag oxidation state and the concentration of Ce3+ ions, O vacancies, and hydroxyl groups on the surface during thermal reduction cycles in vacuum and under hydrogen exposure. The results are interpreted using density functional theory calculations to model pristine and Ag-modified ceria surfaces. Although the reactivity of ceria toward H2 oxidation improves when a fraction of Ce cations is substituted with Ag, the concentration of reduced Ce3+ ions in Ag-modified ceria is found to be lower than in pure ceria under the same conditions. This behavior is observed even though the number of surface oxygen vacancies caused by the thermal treatment under hydrogen exposure is larger for the Ag-modified surface. These results are explained in terms of a change of the oxidation state of the surface Ag, which is able to acquire some of the extra surface electrons created by the oxygen vacancies and the adsorbed hydrogen atoms. Our findings provide new insights into the reactivity of Ag-modified ceria, which has been proposed as a promising alternative to platinum electrodes in electrochemical devices.
Collapse
Affiliation(s)
| | - Giulia Righi
- CNR-Instituto Nanoscienze, via Campi 213/A, 41125 Modena, Italy
- Dipartimento di Fisica, Informatica e Matematica, Università di Modena e Reggio-Emilia, via Campi 213/A, 41125 Modena, Italy
| | - Paola Luches
- CNR-Instituto Nanoscienze, via Campi 213/A, 41125 Modena, Italy
| | - Sergio D'Addato
- CNR-Instituto Nanoscienze, via Campi 213/A, 41125 Modena, Italy
- Dipartimento di Fisica, Informatica e Matematica, Università di Modena e Reggio-Emilia, via Campi 213/A, 41125 Modena, Italy
| | - Rita Magri
- CNR-Instituto Nanoscienze, via Campi 213/A, 41125 Modena, Italy
- Dipartimento di Fisica, Informatica e Matematica, Università di Modena e Reggio-Emilia, via Campi 213/A, 41125 Modena, Italy
| | - Annabella Selloni
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| |
Collapse
|
20
|
Zhang W, Pu M, Lei M. Theoretical Studies on the Stability and Reactivity of the Metal-Doped CeO 2(100) Surface: Toward H 2 Dissociation and Oxygen Vacancy Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5891-5901. [PMID: 32378412 DOI: 10.1021/acs.langmuir.0c00644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface doping is a common method to improve the performance of nanostructured materials. Different dopants will affect the structure and catalytic reactivity of the support. For a comprehensive understanding of the doping effects of metals doped into CeO2, we conducted density functional theory (DFT) studies on the stabilities and geometry structures of transition-metal atoms (M = Fe, Co, Ni, Cu; Ru, Rh, Pd, Ag; Os, Ir, Pt, Au) doped into CeO2(111), (110), and (100) surfaces. Moreover, the reactivity for H2 dissociation and oxygen vacancy formation are systematically investigated on M-doped CeO2(100) surfaces. The greater the binding energies of doped M atoms on the CeO2 surface, the more difficult the formation of oxygen vacancies. The doped Co and Ir atoms do not directly participate in H2 activation but serve as a promoter to make the H-H bond to break easily. The Cu, Ru, Pd, Ag, Pt, and Au atoms could act as the catalytically active center for H2 dissociation and greatly reduce the activation energy barrier. Besides, it is easier to generate H2O (WM) and a surface oxygen vacancy from the intermediate H2M/H4M than from H3M/H5M, which is related to the acid-base interaction between HCe/M* and HO* in H2M/H4M. This work could provide theoretical insights into the atomic structure characteristics of the transition-metal-doped CeO2(100) surface and give ideas for the design of hydrogenation catalysts.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Ferré G, Aouine M, Bosselet F, Burel L, Cadete Santos Aires FJ, Geantet C, Ntais S, Maurer F, Casapu M, Grunwaldt JD, Epicier T, Loridant S, Vernoux P. Exploiting the dynamic properties of Pt on ceria for low-temperature CO oxidation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00732c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-temperature redispersion leads to an intermediate Pt monolayer arrangement, very active for CO oxidation.
Collapse
|
22
|
Zhang S, Lee J, Kim DH, Kim T. Effects of Ni loading on the physicochemical properties of NiOx/CeO2 catalysts and catalytic activity for NO reduction by CO. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02619c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The NO reduction by CO reaction was investigated using NiOx/CeO2 catalysts with different Ni loadings. Surface NiOx controls the catalytic activity which was related to the molecular structure and reducibility of the catalysts.
Collapse
Affiliation(s)
- Shuhao Zhang
- Materials Science and Chemical Engineering Department
- Stony Brook University
- Stony Brook
- USA
| | - Jaeha Lee
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Do Heui Kim
- School of Chemical and Biological Engineering
- Institute of Chemical Processes
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Taejin Kim
- Materials Science and Chemical Engineering Department
- Stony Brook University
- Stony Brook
- USA
| |
Collapse
|
23
|
Resasco J, DeRita L, Dai S, Chada JP, Xu M, Yan X, Finzel J, Hanukovich S, Hoffman AS, Graham GW, Bare SR, Pan X, Christopher P. Uniformity Is Key in Defining Structure–Function Relationships for Atomically Dispersed Metal Catalysts: The Case of Pt/CeO2. J Am Chem Soc 2019; 142:169-184. [DOI: 10.1021/jacs.9b09156] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Joaquin Resasco
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Leo DeRita
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | | | - Joseph P. Chada
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Mingjie Xu
- Fok Ying Tung Research Institute, Hong Kong University of Science and Technology, Guangzhou 511458, PR China
| | | | - Jordan Finzel
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Sergei Hanukovich
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Adam S. Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - George W. Graham
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Phillip Christopher
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
24
|
Daelman N, Capdevila-Cortada M, López N. Dynamic charge and oxidation state of Pt/CeO 2 single-atom catalysts. NATURE MATERIALS 2019; 18:1215-1221. [PMID: 31384029 DOI: 10.1038/s41563-019-0444-y] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 06/24/2019] [Indexed: 05/20/2023]
Abstract
The catalytic activity of metals supported on oxides depends on their charge and oxidation state. Yet, the determination of the degree of charge transfer at the interface remains elusive. Here, by combining density functional theory and first-principles molecular dynamics on Pt single atoms deposited on the CeO2 (100) surface, we show that the common representation of a static metal charge is oversimplified. Instead, we identify several well-defined charge states that are dynamically interconnected and thus coexist. The origin of this new class of strong metal-support interactions is the relative position of the Ce(4f) levels with respect to those of the noble metal, allowing electron injection to (or recovery from) the support. This process is phonon-assisted, as the Ce(4f) levels adjust by surface atom displacement, and appears for other metals (Ni) and supports (TiO2). Our dynamic model explains the unique reactivity found for activated single Pt atoms on ceria able to perform CO oxidation, meeting the Department of Energy 150 °C challenge for emissions.
Collapse
Affiliation(s)
- Nathan Daelman
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Marçal Capdevila-Cortada
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain.
| |
Collapse
|
25
|
Lykhach Y, Piccinin S, Skála T, Bertram M, Tsud N, Brummel O, Farnesi Camellone M, Beranová K, Neitzel A, Fabris S, Prince KC, Matolín V, Libuda J. Quantitative Analysis of the Oxidation State of Cobalt Oxides by Resonant Photoemission Spectroscopy. J Phys Chem Lett 2019; 10:6129-6136. [PMID: 31553619 DOI: 10.1021/acs.jpclett.9b02398] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantitative assessment of the charge transfer phenomena in cobalt oxides and cobalt complexes is essential for the design of advanced catalytic materials. We propose a method for the evaluation of the oxidation state of cobalt oxides with mixed valence states using resonant photoemission spectroscopy. The method is based on the calculation of the resonant enhancement ratio (RER) from the heights of the resonant features associated with the Co3+ and Co2+ states. The nature of the corresponding states was corroborated by means of density functional calculations. We employed a well-ordered Co3O4(111) film to calibrate the RER with respect to the atomic Co3+/Co2+ ratio. The method was applied to monitor the reduction of a well-ordered Co3O4(111) film to CoO(111) upon annealing under exposure to isopropanol. We demonstrate that this method yields the stoichiometry of cobalt oxides at a level of accuracy that cannot be achieved when fitting the Co 2p core level spectra.
Collapse
Affiliation(s)
- Yaroslava Lykhach
- Interface Research and Catalysis, Erlangen Catalysis Resource Center , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Simone Piccinin
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (CNR-IOM) , Via Bonomea 265 , Trieste 34136 , Italy
| | - Tomáš Skála
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science , Charles University , V Holešovičkách 2 , 18000 Prague , Czech Republic
| | - Manon Bertram
- Interface Research and Catalysis, Erlangen Catalysis Resource Center , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Nataliya Tsud
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science , Charles University , V Holešovičkách 2 , 18000 Prague , Czech Republic
| | - Olaf Brummel
- Interface Research and Catalysis, Erlangen Catalysis Resource Center , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Matteo Farnesi Camellone
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (CNR-IOM) , Via Bonomea 265 , Trieste 34136 , Italy
| | - Klára Beranová
- Elettra-Sincrotrone Trieste SCpA , Strada Statale 14, km 163.5 , Basovizza-Trieste 34149 , Italy
| | - Armin Neitzel
- Interface Research and Catalysis, Erlangen Catalysis Resource Center , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Stefano Fabris
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (CNR-IOM) , Via Bonomea 265 , Trieste 34136 , Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste SCpA , Strada Statale 14, km 163.5 , Basovizza-Trieste 34149 , Italy
| | - Vladimír Matolín
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science , Charles University , V Holešovičkách 2 , 18000 Prague , Czech Republic
| | - Jörg Libuda
- Interface Research and Catalysis, Erlangen Catalysis Resource Center , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| |
Collapse
|
26
|
Parkinson GS. Single-Atom Catalysis: How Structure Influences Catalytic Performance. Catal Letters 2019; 149:1137-1146. [PMID: 30971855 PMCID: PMC6432890 DOI: 10.1007/s10562-019-02709-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/05/2019] [Indexed: 02/01/2023]
|
27
|
Abstract
Ceria in nanoscale with different morphologies, rod, tube and cube, were prepared through a hydrothermal process. The structure, morphology and textural properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and isothermal N2 adsorption-desorption. Ceria with different morphologies were evaluated as catalysts for CO oxidation. CeO2 nanorods showed superior activity to the others. When space velocity was 12,000 mL·gcat−1·h−1, the reaction temperature for 90% CO conversion (T90) was 228 °C. The main reason for the high activity was the existence of large amounts of easily reducible oxygen species, with a reduction temperature of 217 °C on the surface of CeO2 nanorods. Another cause was their relatively large surface area.
Collapse
|
28
|
Guo Y, Mei S, Yuan K, Wang DJ, Liu HC, Yan CH, Zhang YW. Low-Temperature CO2 Methanation over CeO2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04469] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Metal Clusters Dispersed on Oxide Supports: Preparation Methods and Metal-Support Interactions. Top Catal 2018. [DOI: 10.1007/s11244-018-0957-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Aleksandrov HA, Neyman KM, Hadjiivanov KI, Vayssilov GN. Can the state of platinum species be unambiguously determined by the stretching frequency of an adsorbed CO probe molecule? Phys Chem Chem Phys 2018; 18:22108-21. [PMID: 27444400 DOI: 10.1039/c6cp03988j] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The paper addresses possible ambiguities in the determination of the state of platinum species by the stretching frequency of a CO probe, which is a common technique for characterization of platinum-containing catalytic systems. We present a comprehensive comparison of the available experimental data with our theoretical modeling (density functional) results of pertinent systems - platinum surfaces, nanoparticles and clusters as well as reduced or oxidized platinum moieties on a ceria support. Our results for CO adsorbed on-top on metallic Pt(0), with C-O vibrational frequencies in the region 2018-2077 cm(-1), suggest that a decrease of the coordination number of the platinum atom, to which CO is bound, by one lowers the CO frequency by about 7 cm(-1). This trend corroborates the Kappers-van der Maas correlation derived from the analysis of the experimental stretching frequency of CO adsorbed on platinum-containing samples on different supports. We also analyzed the effect of the charge of platinum species on the CO frequency. Based on the calculated vibrational frequencies of CO in various model systems, we concluded that the actual state of the platinum species may be mistaken based only on the measured value of the C-O vibrational frequency due to overlapping regions of frequencies corresponding to different types of species. In order to identify the actual state of platinum species one has to combine this powerful technique with other approaches.
Collapse
Affiliation(s)
- Hristiyan A Aleksandrov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria. and Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Konstantin M Neyman
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| | - Konstantin I Hadjiivanov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Georgi N Vayssilov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria.
| |
Collapse
|
31
|
Unravelling single atom catalysis: The surface science approach. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62878-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Affiliation(s)
- Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences and INSTM; University of Trieste; via L. Giorgieri 1 34127 Trieste Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences and INSTM; University of Trieste; via L. Giorgieri 1 34127 Trieste Italy
- ICCOM-CNR Trieste Associate Unit; University of Trieste; via L. Giorgieri 1 34127 Trieste Italy
| |
Collapse
|
33
|
Lykhach Y, Bruix A, Fabris S, Potin V, Matolínová I, Matolín V, Libuda J, Neyman KM. Oxide-based nanomaterials for fuel cell catalysis: the interplay between supported single Pt atoms and particles. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00710h] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanomaterials coated with atomically dispersed platinum on ceria are structurally dynamic and show high potential for applications in fuel cells.
Collapse
Affiliation(s)
- Yaroslava Lykhach
- Lehrstuhl für Physikalische Chemie II
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Albert Bruix
- Department of Physics and Astronomy and Interdisciplinary Nanoscience Center
- Aarhus University
- DK-8000 Aarhus
- Denmark
| | - Stefano Fabris
- CNR-IOM DEMOCRITOS
- Istituto Officina dei Materiali
- Consiglio Nazionale delle Ricerche and SISSA
- Trieste
- Italy
| | - Valérie Potin
- Laboratoire Interdisciplinaire Carnot de Bourgogne
- UMR 6303 CNRS-Université de Bourgogne Franche-Comté
- F-21078 Dijon Cedex
- France
| | - Iva Matolínová
- Faculty of Mathematics and Physics
- Department of Surface and Plasma Science
- Charles University
- 18000 Prague
- Czech Republic
| | - Vladimír Matolín
- Faculty of Mathematics and Physics
- Department of Surface and Plasma Science
- Charles University
- 18000 Prague
- Czech Republic
| | - Jörg Libuda
- Lehrstuhl für Physikalische Chemie II
- Friedrich-Alexander-Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
- Erlangen Catalysis Resource Center
| | - Konstantin M. Neyman
- Departament de Ciència dels Materials i Química Física and Institut de Química Teòrica i Computacional
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats)
| |
Collapse
|
34
|
|
35
|
Pilger F, Testino A, Carino A, Proff C, Kambolis A, Cervellino A, Ludwig C. Size Control of Pt Clusters on CeO2 Nanoparticles via an Incorporation–Segregation Mechanism and Study of Segregation Kinetics. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00934] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frank Pilger
- Paul Scherrer Institut, Energy and Environment
Research Division, Villigen PSI CH-5232, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), ENAC-IIE, CH-1015 Lausanne, Switzerland
| | - Andrea Testino
- Paul Scherrer Institut, Energy and Environment
Research Division, Villigen PSI CH-5232, Switzerland
| | - Agnese Carino
- Paul Scherrer Institut, Energy and Environment
Research Division, Villigen PSI CH-5232, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), ENAC-IIE, CH-1015 Lausanne, Switzerland
| | - Christian Proff
- Paul Scherrer Institut, Energy and Environment
Research Division, Villigen PSI CH-5232, Switzerland
- Paul Scherrer Institut, Synchrotron Radiation
and Nanotechnology Research Department, Villigen PSI CH-5232, Switzerland
| | - Anastasios Kambolis
- Paul Scherrer Institut, Energy and Environment
Research Division, Villigen PSI CH-5232, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Sciences et Ingénierie Chimiques, CH-1015 Lausanne, Switzerland
| | - Antonio Cervellino
- Paul Scherrer Institut, Synchrotron Radiation
and Nanotechnology Research Department, Villigen PSI CH-5232, Switzerland
| | - Christian Ludwig
- Paul Scherrer Institut, Energy and Environment
Research Division, Villigen PSI CH-5232, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), ENAC-IIE, CH-1015 Lausanne, Switzerland
| |
Collapse
|