1
|
Sharma AK, Mukherjee M, Akhtar MS, Orayj K, Farooqui S, Khan A. Genetic-epigenetic targets for PCOS-associated diabesity. Drug Discov Today 2025; 30:104373. [PMID: 40345613 DOI: 10.1016/j.drudis.2025.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 04/08/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
Polycystic ovary syndrome (PCOS) and diabesity are interconnected endocrine disorders driven by a complex interplay of genetic, epigenetic and environmental factors. This review examines the molecular crosstalk between PCOS and diabesity, focusing on shared pathophysiological pathways and their regulatory mechanisms. Key genetic predispositions (such as polymorphisms) associated with insulin resistance, androgen biosynthesis and inflammation have been conferred that could significantly contribute to their overlapping phenotypes. Additionally, epigenetic modifications, including DNA methylation, histone modifications and non-coding RNAs, have been discussed that further participate in regulation of gene expression and metabolic dysfunction. Understanding these molecular interconnections highlights crucial signaling nodes that can serve as potential therapeutic targets. This review underscores emerging avenues for drug development, aiming to mitigate disease progression and improve patient outcomes.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, Haryana 122413, India.
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Alfara, Abha 62223, Saudi Arabia
| | - Khalid Orayj
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Alfara, Abha 62223, Saudi Arabia
| | - Sadaf Farooqui
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abida Khan
- Center for Health Research, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
2
|
Sharma V, Kansara S, Singh J, Kumar Y, Kumar A, Akhtar MS, Khan MF, Alamoudi MK, Mukherjee M, Sharma AK. Validating the temporal performance of genetic biomarkers in an animal model of recurrence/ non-recurrence myocardial infarction persuades by bioinformatics tools. Eur J Pharmacol 2024; 978:176795. [PMID: 38950836 DOI: 10.1016/j.ejphar.2024.176795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
With a global towering prevalence of index acute myocardial infarction (nonrecurrent MI, NR-MI), a high incidence of recurrent MI (R-MI) has emerged in recent decades. Despite the extensive occurrence, the promising predictors of R-MI have been elusive within the cohort of survivors. This study investigates and validates the involvement of distinct gene expressions in R-MI and NR-MI. Bioinformatics tools were used to identify DEGs from the GEO dataset, functional annotation, pathway enrichment analysis, and the PPI network analysis to find hub genes. The validation of proposed genes was conceded by qRT-PCR and Western Blot analysis in experimentally induced NR-MI and R-MI models on a temporal basis. The temporal findings based on RT-PCR consequences reveal a significant and constant upregulation of the UBE2N in the NR-MI model out of the proposed three DEGs (UBE2N, UBB, and TMEM189), while no expression was reported in the R-MI model. Additionally, the proteomics study proposed five DEGs (IL2RB, NKG7, GZMH, CXCR6, and GZMK) for the R-MI model since IL2RB was spotted for significant and persistent downregulation with different time points. Further, Western Blot analysis validated these target genes' expressions temporally. I/R-induced NR-MI and R-MI models were confirmed by the biochemical parameters (CKMB, LDH, cTnI, serum nitrite/nitrate concentration, and inflammatory cytokines) and histological assessments of myocardial tissue. These results underscore the importance of understanding genetic mechanisms underlying MI and highlight the potential of UBE2N and IL2RB as biomarkers for non-recurrent and recurrent MI, respectively.
Collapse
Affiliation(s)
- Vikash Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Samarth Kansara
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana, 122413, India
| | - Jitender Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Yash Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Ashish Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Md Sayeed Akhtar
- College of Pharmacy, King Khalid University, Alfara, Abha, 62223, Saudi Arabia
| | - Mohd Faiyaz Khan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mariam K Alamoudi
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India.
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India.
| |
Collapse
|
3
|
Singh J, Bisht P, Srivastav S, Kumar Y, Sharma V, Kumar A, Akhtar MS, Khan MF, Aldosari SA, Yadav S, Yadav NK, Mukherjee M, Sharma AK. Amelioration of endothelial integrity by 3,5,4'-trihydroxy-trans-stilbene against high-fat-diet-induced obesity and -associated vasculopathy and myocardial infarction in rats, targeting TLR4/MyD88/NF-κB/iNOS signaling cascade. Biochem Biophys Res Commun 2024; 705:149756. [PMID: 38460440 DOI: 10.1016/j.bbrc.2024.149756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Exacerbated expression of TLR4 protein (foremost pattern recognition receptor) during obesity could trigger NF-κB/iNOS signaling through linker protein (MyD88), predisposed to an indispensable inflammatory response. The induction of this detrimental cascade leads to myocardial and vascular abnormalities. Molecular docking was studied for protein-ligand interaction between these potential targets and resveratrol. The pre-treatment of resveratrol (20 mg/kg/p.o/per day for ten weeks) was given to investigate the therapeutic effect against HFD-induced obesity and associated vascular endothelial dysfunction (VED) and myocardial infarction (MI) in Wistar rats. In addition to accessing the levels of serum biomarkers for VED and MI, oxidative stress, inflammatory cytokines, and histopathology of these tissues were investigated. Lipopolysaccharide (for receptor activation) and protein expression analysis were introduced to explore the mechanistic involvement of TLR4/MyD88/NF-κB/iNOS signaling. Assessment of in-silico analysis showed significant interaction between protein and ligand. The involvement of this proposed signaling (TLR4/MyD88/NF-κB/iNOS) was further endorsed by the impact of lipopolysaccharide and protein expression analysis in obese and treated rats. Moreover, resveratrol pre-treated rats showed significantly lowered cardio and vascular damage measured by the distinct down expression of the TLR4/MyD88/NF-κB/iNOS pathway by resveratrol treatment endorses its ameliorative effect against VED and MI.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Priyanka Bisht
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Srishti Srivastav
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Yash Kumar
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Vikash Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Ashish Kumar
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Alfara, Abha, 62223, Saudi Arabia
| | - Mohd Faiyaz Khan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Saad A Aldosari
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Snehlata Yadav
- Department of Pharmaceutical Sciences, Indra Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Nirmala K Yadav
- Department of Pharmaceutical Sciences, Indra Gandhi University, Meerpur, Rewari, 122502, Haryana, India
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh, 201303, India
| | - Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, 122413, India.
| |
Collapse
|
4
|
Ruan S, Guo X, Ren Y, Cao G, Xing H, Zhang X. Nanomedicines based on trace elements for intervention of diabetes mellitus. Biomed Pharmacother 2023; 168:115684. [PMID: 37820567 DOI: 10.1016/j.biopha.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Epidemiology shows that the incidence of diabetes mellitus (DM) is increasing year by year globally. Proper interventions are highly aspired for diabetics to improve the quality of life and prevent development of chronic complications. Trace elements, also known as microelements, are chemical substances that are present in our body in minute amounts. They are necessitated by the body for growth, development and functional metabolism. For the past few years, trace element nanoparticles have aroused considerable interest as a burgeoning form of nanomedicines in antidiabetic applications. These microelement-based nanomedicines can regulate glucose metabolism in several ways, showing great potential for diabetes management. Starting from the pathophysiology of diabetes, the state-of-the-art of diabetes treatment, the physiological roles of trace elements, various emerging trace element nanoparticles specific for diabetes were comprehensively reviewed in this work. Our findings disclose that trace element nanoparticles can fight against diabetes by lowering blood glucose, promoting insulin secretion, alleviating glucose intolerance, improving insulin sensitivity, ameliorating lipid profile, anti-inflammation and anti-oxidant stress, and other mechanisms. In conclusion, trace element nanoparticles can be applied as nanomedicines or dietary modifiers for effective intervention for diabetes.
Collapse
Affiliation(s)
- Shuxian Ruan
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaolei Guo
- Office of Academic Research, Binzhou Polytechnic, Binzhou, China
| | - Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guangshang Cao
- Department of Pharmaceutics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Huijie Xing
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China.
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Sharma AK, Mukherjee M, Kumar A, Sharma G, Tabassum F, Akhtar MS, Imam MT, Almalki ZS. Preliminary investigation on impact of intergenerational treatment of resveratrol endorses the development of 'super-pups'. Life Sci 2023; 314:121322. [PMID: 36574941 DOI: 10.1016/j.lfs.2022.121322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Redox biology balances free radical generation and scavenging systems, whereas an imbalanced cellular redox can hasten the onset of various diseases and be regarded as a Pandora's box of ailments. The current study aims to assess the pathophysiological impact of intergenerational resveratrol treatment on diabetes-related cognitive and cardio-renal disorders. MATERIAL AND METHOD Diabetic rats of the first, second, and third generations were subjected to an intergenerational treatment of resveratrol (20 mg/kg/p.o./day) for 5 months. During this period, the second generation of animals (pups of the first generation) was produced. After the adulthood of second-generation rats, they used to produce third-generation rats. The rats of each generation were evaluated for physiological parameters (BMI, litter size, and life expectancy) and the pathological impact of streptozotocin (55 mg/kg/i.p.), cognitive dysfunctions, and cardio-renal injury. RESULTS The intergenerational treatment of resveratrol significantly reduced litter size and improved anthropometric parameters, life expectancy, and blood glucose levels in diabetic animals. Resveratrol treatment ameliorates oxidative stress as measured by increased serum nitrite/nitrate concentrations, SOD activity, reduced glutathione concentrations, total serum antioxidant capacity, and diminished serum TBARS level in diabetic animals. Furthermore, diabetic rats receiving intergenerational resveratrol treatment showed improved cognitive behaviour and cardio-renal functionality when compared to the disease control group. CONCLUSION The intergenerational treatment of resveratrol improved the physiological traits and vital abilities of the heart, kidney, and brain, which endorse its antioxidant potential. Surprisingly, resveratrol treatment increases the second and third generations' resistance to neurobehavioral changes, diabetes, and -associated cardio-renal dysfunction, implying that these generations are "super-pups."
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India.
| | - Monalisa Mukherjee
- Molecular Sciences and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201303, India
| | - Ashish Kumar
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - Gunjan Sharma
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Fauzia Tabassum
- Department of Pharmacology, College of Dentistry and Pharmacy, Buraydah Private College, Al Qassim 51418, Saudi Arabia
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Ziyad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
6
|
Mariadoss AVA, Sivakumar AS, Lee CH, Kim SJ. Diabetes mellitus and diabetic foot ulcer: Etiology, biochemical and molecular based treatment strategies via gene and nanotherapy. Biomed Pharmacother 2022; 151:113134. [PMID: 35617802 DOI: 10.1016/j.biopha.2022.113134] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetes mellitus (DM) is a collection of metabolic and pathophysiological disorders manifested with high glucose levels in the blood due to the inability of β-pancreatic cells to secrete an adequate amount of insulin or insensitivity of insulin towards receptor to oxidize blood glucose. Nevertheless, the preceding definition is only applicable to people who do not have inherited or metabolic disorders. Suppose a person who has been diagnosed with Type 1 or Type 2DM sustains an injury and the treatment of the damage is complicated and prolonged. In that case, the injury is referred to as a diabetic foot ulcer (DFU). In the presence of many proliferating macrophages in the injury site for an extended period causes the damage to worsen and become a diabetic wound. In this review, the scientific information and therapeutic management of DM/DFU with nanomedicine, and other related data were collected (Web of Science and PubMed) from January 2000 to January 2022. Most of the articles revealed that standard drugs are usually prescribed along with hypoglycaemic medications. Conversely, such drugs stabilize the glucose transporters and homeostasis for a limited period, resulting in side effects such as kidney damage/failure, absorption/gastrointestinal problems, and hypoglycemic issues. In this paper, we review the current basic and clinical evidence about the potential of medicinal plants, gene therapy, chemical/green synthesized nanoparticles to improving the metabolic profile, and facilitating the DM and DFU associated complications. Preclinical studies also reported lower plasma glucose with molecular targets in DM and DFU. Research is underway to explore chemical/green synthesized nanoparticle-based medications to avoid such side effects. Hence, the present review is intended to address the current challenges, recently recognized factors responsible for DM and DFU, their pathophysiology, insulin receptors associated with DM, medications in trend, and related complications.
Collapse
Affiliation(s)
- Arokia Vijaya Anand Mariadoss
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Allur Subramaniyan Sivakumar
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sung Jae Kim
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea.
| |
Collapse
|
7
|
Sahu M, Sharma AK, Sharma G, Kumar A, Nandave M, Babu V. Facile synthesis of bromelain copper nanoparticles to improve the primordial therapeutic potential of copper against acute myocardial infarction in diabetic rats. Can J Physiol Pharmacol 2022; 100:210-219. [PMID: 34910610 DOI: 10.1139/cjpp-2021-0129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our current investigation comprises the synthesis and pharmacological impact of bromelain copper nanoparticles (BrCuNP) against diabetes mellitus (DM) and associated ischemia/reperfusion (I/R) - induced myocardial infarction. Bromelain is a proteolytic enzyme obtained from Ananas comosus L. Merr., which has blood platelet aggregation inhibiting and arterial thrombolytic potential. Moreover, copper is well-known to facilitate glucose metabolism and strengthen cardiac muscle and antioxidant activity; although, chronic or long-term exposure to high doses of copper may lead to copperiedus. To restrict these potential hazards, we synthesized herbal nano-formulation which convincingly indicated the improved primordial therapeutic potential of copper by reformulating the treatment carrier with bromelain, resulting in facile synthesis of BrCuNP. DM was induced by administration of double cycle repetitive dose of low dose streptozotocin (20 mg/kg, i.p.) in high-fat diet- fed animals. DM and associated myocardial I/R injury were estimated by increased serum levels of total cholesterol, low-density lipoprotein, very low-density lipoprotein, lactate dehydrogenase, creatine kinase myocardial band, cardiac troponin, thiobarbituric acid reactive substances, tumor necrosis factor α, interleukin 6, and reduced serum level of high-density lipoprotein and nitrite/nitrate concentration. However, treatment with BrCuNP ameliorates various serum biomarkers by approving cardioprotective potential against DM- and I/R-associated injury. Furthermore, upturn of histopathological changes were observed in cardiac tissue of BrCuNP-treated rats in comparison to disease models.
Collapse
Affiliation(s)
- Megha Sahu
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida-201313, UP, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram - 122412, Haryana, India
| | - Gunjan Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram - 122412, Haryana, India
| | - Ashish Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram - 122412, Haryana, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Varsha Babu
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida-201313, UP, India
| |
Collapse
|
8
|
Tural K, Ozden O, Bilgi Z, Kubat E, Ermutlu CS, Merhan O, Tasoglu I. The protective effect of betanin and copper on spinal cord ischemia-reperfusion injury. J Spinal Cord Med 2021; 44:704-710. [PMID: 32223592 PMCID: PMC8477937 DOI: 10.1080/10790268.2020.1737788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Context: Both copper and betanin have been implicated as having significant bioactivity against ischemic damage in a variety of experimental and clinical settings. The aim of this study is to investigate whether betanin and copper have any protective effect on spinal cord in an ischemia-reperfusion (I/R) model in rats.Design: Spraque-Dawley rats were used in four groups: Sham group (n = 7), control group (laparotomy and cross-clamping of aorta, n = 7), betanin treatment group (dosage of 100 mg/kg of betanin administered intraperitoneally (i.p.) 60 min before laparotomy, n = 7), copper sulfate treatment group (administered copper sulfate i.p. at a dose of 0.1 mg/kg/day for 7 days before laparotomy, n = 7). Malondialdehyde (MDA), glutathione (GSH) levels, myeloperoxidase (MPO) and superoxide dismutase (SOD) activity were measured. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay was also performed to evaluate apoptosis.Setting: Kafkas University, Faculty of Medicine, Kars, Turkey.Results: I/R injury was successfully demonstrated with the surgical model. Betanin and copper treatment significantly decreased MDA levels, MPO activity and the number of apoptotic cells in the spinal cord. Betanin and copper treatment significantly increased GSH levels. Copper treatment significantly increased SOD activity, whereas betanin was not as effective. Apoptotic cells were significantly decreased in both treatment groups.Conclusion: I/R injury of the spinal cord can be successfully demonstrated by aortic clamping in this surgical model. Betanin/Copper sulphate has ameliorative effects against operative I/R injury. Low toxicity of those agents makes them ideal targets for clinical research for this purpose.
Collapse
Affiliation(s)
- Kevser Tural
- Medical Faculty, Department of Cardiovascular Surgery, Kafkas University, Kars, Turkey,Correspondence to: Kevser Tural, Medical Faculty, Department of Cardiovascular Surgery, Kafkas University, Kars, 36100, Turkey; Ph: 0474 2252105.
| | - Ozkan Ozden
- Faculty of Engineering and Architecture, Department of Bioengineering, Kafkas University, Kars, Turkey
| | - Zeynep Bilgi
- Medical Faculty, Department of Thoracic Surgery, Medeniyet University, İstanbul, Turkey
| | - Emre Kubat
- Gulhane Education and Research Hospital, Clinic of Cardiovascular Surgery, Ankara, Turkey
| | - Celal Sahin Ermutlu
- Faculty of Veterinary, Department of Surgery, Kafkas University, Kars, Turkey
| | - Oguz Merhan
- Faculty of Veterinary, Department of Biochemistry, Kafkas University, Kars, Turkey
| | - Irfan Tasoglu
- Department of Cardiovascular Surgery, Turkiye Yuksek Ihtisas Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
9
|
Alkazazz FF, Taher ZA. A Review on nanoparticles as a promising approach to improving diabetes mellitus. JOURNAL OF PHYSICS: CONFERENCE SERIES 2021; 1853:012056. [DOI: 10.1088/1742-6596/1853/1/012056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Diabetes mellitus (DM) is a chronic disease condition that causes multiple complications in various organs such as kidney, reproductive system, and liver. It is mainly characterized by high blood glucose, insulin secretion deficiency or insulin resistance. In conventional diabetes, medications of insulin production and increased insulin sensitivity usually cause undesirable side effects and lead to poor adherence and therapy failure. In addition to insulin and oral hypoglycemic agents, there are different healthy ways to treat diabetes. Nanoparticles (NPs) such as zinc oxide (ZnO) NPs, selenium (Se) NPs, magnesium oxide (MgO) NPs, Copper (Cu) NPs, and cerium oxide (CeO2) NPs play an important role in controlling diabetes. The results reviewed here presented antidiabetic activity of CeO2 NPs, Se NPs, ZnO NPs, Cu NPs, and MgO NPs with fewer side effects when compared to antioxidant enzymes, glucose use, or increased insulin sensitivity, as these showed complications with diabetes.
Collapse
|
10
|
Virgen-Ortiz A, Apolinar-Iribe A, Díaz-Reval I, Parra-Delgado H, Limón-Miranda S, Sánchez-Pastor EA, Castro-Sánchez L, Jesús Castillo S, Dagnino-Acosta A, Bonales-Alatorre E, Rodríguez-Hernández A. Zinc Oxide Nanoparticles Induce an Adverse Effect on Blood Glucose Levels Depending On the Dose and Route of Administration in Healthy and Diabetic Rats. NANOMATERIALS 2020; 10:nano10102005. [PMID: 33053624 PMCID: PMC7599450 DOI: 10.3390/nano10102005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
Different studies in experimental diabetes models suggest that zinc oxide nanoparticles (ZnONPs) are useful as antidiabetic agents. However, this evidence was performed and measured in long-term treatments and with repeated doses of ZnONPs. This work aimed to evaluate the ZnONPs acute effects on glycemia during the next six h after an oral or intraperitoneal administration of the treatment in healthy and diabetic rats. In this study, the streptozotocin-nicotinamide intraperitoneal administration in male Wistar rats were used as a diabetes model. 10 mg/kg ZnONPs did not modify the baseline glucose in any group. Nevertheless, the ZnONPs short-term administration (100 mg/kg) induced a hyperglycemic response in a dose and route-dependent administration in healthy (130 ± 2 and 165 ± 10 mg/dL with oral and intraperitoneal, respectively) and diabetic rats (155 ± 2 and 240 ± 20 mg/dL with oral, and intraperitoneal, respectively). The diabetic rats were 1.5 fold more sensitive to ZnONPs effect by the intraperitoneal route. In conclusion, this study provides new information about the acute response of ZnONPs on fasting glycemia in diabetic and healthy rat models; these data are essential for possible future clinical approaches.
Collapse
Affiliation(s)
- Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
- Correspondence:
| | - Alejandro Apolinar-Iribe
- Departamento de Física, Universidad de Sonora, A.P. 1626, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | - Hortensia Parra-Delgado
- Facultad de Ciencias Químicas, Universidad de Colima, Coquimatlán, Colima C.P. 28400, Mexico;
| | - Saraí Limón-Miranda
- Departamento de Ciencias Químico Biológicas y Agropecuarias, URS, Universidad de Sonora, Navojoa, Sonora C.P. 85880, Mexico;
| | - Enrique Alejandro Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima C.P. 28045, Mexico; (L.C.-S.); (A.D.-A.)
| | - Santos Jesús Castillo
- Departamento de Investigación en Física, A.P. 5-088, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Adan Dagnino-Acosta
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima C.P. 28045, Mexico; (L.C.-S.); (A.D.-A.)
| | - Edgar Bonales-Alatorre
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima C.P. 28045, Mexico; (I.D.-R.); (E.A.S.-P.); (E.B.-A.)
| | | |
Collapse
|
11
|
Acharya A, Patial V. Nanotechnological interventions for the treatment of renal diseases: Current scenario and future prospects. J Drug Deliv Sci Technol 2020; 59:101917. [DOI: 10.1016/j.jddst.2020.101917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Dose and time-dependent toxicological impact of pantoprazole on vascular endothelium and renal tissue. Toxicol Lett 2020; 333:97-104. [PMID: 32763312 DOI: 10.1016/j.toxlet.2020.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/21/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Proton pump inhibitors (PPIs) have wide pleiotropic action in addition to their therapeutic potential in gastroesophageal reflux diseases. Conversely, recent reports revealed a significant incidence of toxic events of PPIs including nephritis, osteoporosis, and cardiac damage. Thus, the study was designed to reconcile the deceptive contraindications. The present investigation targeted to reveal the toxic impact of sub-acute and sub-chronic administration of pantoprazole (PPZ) with different concentrations (low dose 4 mg/kg, medium-dose 8 mg/kg and high dose 16 mg/kg once a day) on normal vascular endothelium and renal tissue of rats. Vascular endothelial dysfunction (VED) was estimated by the contractility of an isolated aortic ring, nitrite/nitrate concentration, oxidative stress, and integrity of the endothelium layer. Moreover, the renal abnormalities were further confirmed by an increased level of serum creatinine, blood urea nitrogen (BUN), the incidence of microproteinuria, and structural alteration. Sub-acute administration of PPZ treatment did not produce any toxicological impact on endothelium and renal tissue. Whereas, sub-chronic administration of PPZ treatment causes moderate VED and renal dysfunction in a dose-dependent manner. Sub-chronic treatment of PPZ also influences the mitigation of NO and elevation of oxidative stress. Collecting all the evidence, it concludes that decreased nitric oxide availability and increased levels of oxidative stress may be a possible underlying mechanism of causing VED and renal abnormalities from high-dose PPZ treatment.
Collapse
|
13
|
Ashrafizadeh H, Abtahi SR, Oroojan AA. Trace element nanoparticles improved diabetes mellitus; a brief report. Diabetes Metab Syndr 2020; 14:443-445. [PMID: 32371187 DOI: 10.1016/j.dsx.2020.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease that induces several complications in various organs such as the liver, kidney, and reproductive system. Trace elements such as copper, zinc, selenium, and magnesium play an essential role in the management or treatment of diabetes mellitus. AIM the aim of the present study was conducted to investigate the effect of these trace elements nanoparticles and their probable mechanism of action on diabetes and its complications. METHODS The present brief report was conducted with a search of articles published in several databases including PubMed, ScienceDirect, Google Scholar, and Scopus. The articles were selected from 2011 to 2018 using the keywords "zinc," "copper," "selenium," "magnesium," and "diabetes." Following the eligibility criteria were selected 16 articles and 1 book. RESULTS The scientific results of the presented brief report show that zinc, copper, selenium, and magnesium have antidiabetic effects. Also, they improved the diabetes-induced complications through increase antioxidant enzyme level, glucose utilization, and insulin sensitivity. CONCLUSION While zinc, copper, selenium, and magnesium revealed antidiabetic effects, but their nanoparticles were more potent for the treatment of this disease.
Collapse
Affiliation(s)
- Hadis Ashrafizadeh
- Department of Nursing, School of Nursing and Midwifery, Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Seyed Reza Abtahi
- Department of Pharmacology and Toxicology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Oroojan
- Department of Physiology, Faculty of Medicine, Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
14
|
Majewski M, Lis B, Olas B, Ognik K, Juśkiewicz J. Dietary supplementation with copper nanoparticles influences the markers of oxidative stress and modulates vasodilation of thoracic arteries in young Wistar rats. PLoS One 2020; 15:e0229282. [PMID: 32084205 PMCID: PMC7034852 DOI: 10.1371/journal.pone.0229282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/03/2020] [Indexed: 01/23/2023] Open
Abstract
We aimed to study the physiological effects of diet supplemented with copper (Cu) nanoparticles (NPs). During the eight weeks of the experiment, young Wistar rats (at seven weeks of age, n = 9) were supplemented with 6.5 mg of Cu either as NPs or carbonate salt (Cu6.5). A diet that was not supplemented with Cu served as a negative control (Cu0). The impact of nano Cu supplementation on lipid (reflected as thiobarbituric acid reactive substances-TBARS) and protein peroxidation (thiol and carbonyl groups) in blood plasma as well as the influence on the vasodilatory mechanism(s) of isolated rat thoracic arteries were studied. Supplementation with Cu enhanced lipid peroxidation (TBARS) in NP6.5 (x2.4) and in Cu6.5 (x1.9) compared to the negative control. Significant increase in TBARS was also observed in NP6.5 (x1.3) compared to the Cu6.5 group. The level of thiol groups increased in NP6.5 (x1.6) compared to Cu6.5. Meanwhile, significant (x0.6) decrease was observed in the Cu6.5 group compared to the negative control. Another marker of protein oxidation, carbonyl groups increased in NP6.5 (x1.4) and Cu6.5 (x2.3) compared to the negative control. However significant difference (x0.6) was observed between NP6.5 and Cu6.5. Arteries from Cu supplemented rats exhibited an enhanced vasodilation to gasotransmitters: nitric oxide (NO) and carbon monoxide (CO). An enhanced vasodilation to NO was reflected in the increased response to acetylcholine (ACh) and calcium ionophore A23187. The observed responses to ACh and CO releasing molecule (CORM-2) were more pronounced in NP6.5. The activator of cGMP-dependent protein kinases (8-bromo-cGMP) induced similar vasodilation of thoracic arteries in NP6.5 and Cu0 groups, while an increased response was observed in the Cu6.5 group. Preincubation with the inducible nitric oxide (iNOS) synthase inhibitor- 1400W, decreased the ACh-induced vasodilation in NP6.5, exclusively. Meanwhile the eicosanoid metabolite of arachidonic acid (20-HETE) synthesis inhibitor-HET0016, enhanced vasodilation of arteries from Cu0 group. In conclusion, this study demonstrates that supplementation with nano Cu influences oxidative stress, which further has modified the vascular response.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, Poland
- * E-mail:
| | - Bernadetta Lis
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences, Lublin, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
15
|
Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM, Durazzo A, Santini A, Garcia ML, Souto EB. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E292. [PMID: 32050443 PMCID: PMC7075170 DOI: 10.3390/nano10020292] [Citation(s) in RCA: 584] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Daniela Gomes
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
| | - Ana Laura Lopez-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Ruth Galindo
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Maria L. Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (L.B.); (A.L.L.-M.); (R.G.); (A.C.); (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Eliana B. Souto
- Faculty of Pharmacy (FFUC), Department of Pharmaceutical Technology, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
16
|
The antioxidant status, lipid profile, and modulation of vascular function by fish oil supplementation in nano-copper and copper carbonate fed Wistar rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
17
|
Majewski M, Ognik K, Juśkiewicz J. The interaction between resveratrol and two forms of copper as carbonate and nanoparticles on antioxidant mechanisms and vascular function in Wistar rats. Pharmacol Rep 2019; 71:862-869. [PMID: 31408785 DOI: 10.1016/j.pharep.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Experimental studies have emphasized that cardiovascular alterations can be improved by the long-term use of resveratrol (trans-3,5,4'-trihydroxystilbene; RSV) as well as dietary copper (Cu) intake. METHODS Male Wistar rats were supplemented for 8 weeks with Cu (6.5 mg/kg diet) as either nanoparticles (40 nm, CuNPs) or carbonate (CuCO3). Half of the studied animals were supplemented with RSV (500 mg/kg diet). Vascular function and blood plasma antioxidant status, expressed as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), lipid hydroperoxides (LOOH) and malondialdehyde (MDA) were analyzed. The activity of ceruloplasmin (Cp), lipid profile, fasting glucose, and concentrations of Cu and zinc (Zn) were analyzed. RESULTS RSV supplementation resulted in the elevated activity of SOD and decreased CAT, GPx and LDL-cholesterol in both groups. RSV supplementation on CuNPs increased the participation of vasoconstrictor prostanoids and decreased ACh-induced vasodilation, while the participation of hyperpolarizing mechanism(s) was restored by activating KATP channels. Blood plasma glucose was decreased. RSV supplementation on CuCO3 enhanced ACh- and SNP-induced vasodilation and decreased NA-induced vasoconstriction. The lipid profile was improved, as well as Zn concentration. Meanwhile, Cu and Cp, and the markers of lipid peroxidation, reflected as LOOH and MDA, were decreased. CONCLUSION The use of RSV during CuCO3 intake improves vascular responses, the lipid profile and the antioxidant mechanism(s). The beneficial role of RSV was not observed in the CuNP group and decreased ACh-induced vasodilation and increased participation of vasoconstrictor prostanoids in the vascular regulation were noticed.
Collapse
Affiliation(s)
- Michał Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, UWM, Olsztyn, Poland.
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Poland
| | - Jerzy Juśkiewicz
- Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
18
|
Copper nanoparticles modify the blood plasma antioxidant status and modulate the vascular mechanisms with nitric oxide and prostanoids involved in Wistar rats. Pharmacol Rep 2019; 71:509-516. [DOI: 10.1016/j.pharep.2019.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/31/2019] [Accepted: 02/14/2019] [Indexed: 01/16/2023]
|
19
|
Uma Suganya KS, Govindaraju K, Veena Vani C, Premanathan M, Ganesh Kumar VK. In vitro biological evaluation of anti-diabetic activity of organic-inorganic hybrid gold nanoparticles. IET Nanobiotechnol 2019; 13:226-229. [PMID: 31051455 DOI: 10.1049/iet-nbt.2018.5139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus has been considered as a heterogeneous metabolic disorder characterised by complete or relative impairment in the production of insulin by pancreatic β-cells or insulin resistance. In the present study, propanoic acid, an active biocomponent isolated from Cassia auriculata is employed for the synthesis of propanoic acid functionalised gold nanoparticles (Pa@AuNPs) and its anti-diabetic activity has been demonstrated in vitro. In vitro cytotoxicity of synthesised Pa@AuNPs was performed in L6 myotubes. The mode of action of Pa@AuNPs exhibiting anti-diabetic potential was validated by glucose uptake assay in the presence of Genistein (insulin receptor tyrosine kinase inhibitor) and Wortmannin (Phosphatidyl inositide kinase inhibitor). Pa@AuNPs exhibited significant glucose uptake in L6 myotubes with maximum uptake at 50 ng/ml. Assays were performed to study the potential of Pa@AuNPs in the inhibition of protein-tyrosine phosphatase 1B, α-glucosidases, and α-amylase activity.
Collapse
Affiliation(s)
| | - Kasivelu Govindaraju
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai-600 119, India.
| | - Chitoor Veena Vani
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai-600 119, India
| | - Mariappan Premanathan
- Central Bioscience Research Laboratories (CBRL), Department of Biology, College of Science, Al-Zulfi, Majmaah University, Kingdom of Saudi Arabia
| | | |
Collapse
|
20
|
Tan KX, Pan S, Jeevanandam J, Danquah MK. Cardiovascular therapies utilizing targeted delivery of nanomedicines and aptamers. Int J Pharm 2019; 558:413-425. [PMID: 30660748 DOI: 10.1016/j.ijpharm.2019.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Cardiovascular ailments are the foremost trigger of death in the world today, including myocardial infarction and ischemic heart diseases. To date, extraordinary measures have been prescribed, from the perspectives of both conventional medical therapies and surgeries, to enforce cardiac cell regeneration post cardiac traumas, albeit with limited long-term success. The prospects of successful heart transplants are also grim, considering exorbitant costs and unavailability of suitable donors in most cases. From the perspective of cardiac revascularization, use of nanoparticles and nanoparticle mediated targeted drug delivery have garnered substantial attention, attributing to both active and passive heart targeting, with enhanced target specificity and sensitivity. This review focuses on this aspect, while outlining the progress in targeted delivery of nanomedicines in the prognosis and subsequent therapy of cardiovascular disorders, and recapitulating the benefits and intrinsic challenges associated with the incorporation of nanoparticles. This article categorically provides an overview of nanoparticle-mediated targeted delivery systems and their implications in handling cardiovascular diseases, including their intrinsic benefits and encountered procedural trials and challenges. Additionally, the solicitations of aptamers in targeted drug delivery with identical objectives, are presented. This includes a detailed appraisal on various aptamer-navigated nanoparticle targeted delivery platforms in the diagnosis and treatment of cardiovascular maladies. Despite a few impending challenges, subject to additional investigations, both nanoparticles as well as aptamers show a high degree of promise, and pose as the next generation of drug delivery vehicles, in targeted cardiovascular therapy.
Collapse
Affiliation(s)
- Kei Xian Tan
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| | - Jaison Jeevanandam
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403, United States.
| |
Collapse
|
21
|
Taneja G, Sud A, Pendse N, Panigrahi B, Kumar A, Sharma AK. Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies. Cardiovasc Toxicol 2018; 19:1-12. [DOI: 10.1007/s12012-018-9491-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Sharma G, Ashhar MU, Aeri V, Katare DP. Development and characterization of late-stage diabetes mellitus and -associated vascular complications. Life Sci 2018; 216:295-304. [PMID: 30408473 DOI: 10.1016/j.lfs.2018.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/28/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
Preclinical investigation is the key mark of medical research, as the major breakthroughs including treatment of devastating diseases in biomedical research have been led by animal studies. Type 2 diabetes mellitus (T2DM) is a predominant metabolic disorder having high prevalence of morbidity worldwide which create an urgent need to understand the pathogenesis, complication and other possible influences by development of appropriate animal model. High-fat diet (HFD) fed animals (21 days) were treated with single cycle of repetitive dose (SCRD) of streptozotocin (STZ; 40, 30 and 20 mg/kg/per day in three respective group at 1st, 3rd, and 5th day) and double cycle of repetitive dose (DCRD) of streptozocin (STZ) (20, 10 and 5 mg/kg/per day in three respective group at 1st, 3rd, and 5th day in one cycle and 21st, 23rd, 25th day in second cycle of treatment) to induce late-stage diabetic complications. Induction of hyperglycemia was assessed by fasting and postprandial blood glucose, HbA1c, insulin, C-peptide, pancreatic β-cells and dyslipidaemia up to 12 weeks. Combined treatment of HFD and STZ (20 mg/kg) in the DCRD manner were significantly induced late-stage diabetic complication with sustained hyperglycaemia, no mortality, increased HbA1c and dyslipidaemia, reduced insulin, C-peptide and beta cells. Moreover, biochemical and histological assessment of micro and macrovascular tissues confirmed the significant cardio-renal injury, endothelial and hepatic damage. The study confirmed the development of chronic diabetic model in rat mimicked to clinical pathology with associated micro and macrovascular abnormalities which can further explore the molecular aspects of diseases.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Md Umama Ashhar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201303, India
| | - Vidhu Aeri
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Deepshikha Pande Katare
- Proteomic & Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| |
Collapse
|
23
|
Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction. Microvasc Res 2018; 120:59-66. [DOI: 10.1016/j.mvr.2018.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
|
24
|
Kaur P, Sharma AK, Nag D, Das A, Datta S, Ganguli A, Goel V, Rajput S, Chakrabarti G, Basu B, Choudhury D. Novel nano-insulin formulation modulates cytokine secretion and remodeling to accelerate diabetic wound healing. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:47-57. [PMID: 30213518 DOI: 10.1016/j.nano.2018.08.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/02/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022]
Abstract
Little is known about insulin's wound healing capability in normal as well as diabetic conditions. We here report specific interaction of silver nanoparticles (AgNPs) with insulin by making a ~2 nm thick coat around the AgNPs and its potent wound healing efficacy. Characterization of the interaction of human insulin with silver nanoparticles showed confirmed alteration of amide-I in insulin whereas amide-II and III remained unaltered. Further, nanoparticles protein interaction kinetics showed spontaneous interaction at physiological temperature with ΔG, ΔS, Ea and Ka values -7.48, 0.076, 3.84 kcal mol-1 and 6 × 105 s-1 respectively. Insulin loaded AgNPs (IAgNPs) showed significant improvement in healing activity in vitro (HEKa cells) and in vivo (Wister Rats) in comparison with the control in both normal and diabetic conditions. The underlying mechanism was attributed to a regulation of the balance between pro (IL-6, TNFα) and anti-inflammatory cytokines (IL-10) at the wound site to promote faster wound remodeling.
Collapse
Affiliation(s)
- Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | | | - Debasish Nag
- Department of Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Amlan Das
- Department of Biotechnology, National Institute of Technology Sikkim, Sikkim, India
| | - Satabdi Datta
- Department of Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Arnab Ganguli
- Department of Biotechnology, University of Calcutta, Kolkata, West Bengal, India; Department of Microbiology, Techno India University, Kolkata, West Bengal, India
| | - Vanshita Goel
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | | | - Gopal Chakrabarti
- Department of Biotechnology, University of Calcutta, Kolkata, West Bengal, India
| | - Biswarup Basu
- Amity Institute of Biotechnology, Amity University, Noida, India.
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
| |
Collapse
|
25
|
Sharma AK, Kumar A, Taneja G, Nagaich U, Deep A, Datusalia AK, Rajput SK. Combined and individual strategy of exercise generated preconditioning and low dose copper nanoparticles serve as superlative approach to ameliorate ISO-induced myocardial infarction in rats. Pharmacol Rep 2018; 70:789-795. [PMID: 29957339 DOI: 10.1016/j.pharep.2018.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is a solitary fatal condition with towering prevalence of mortality worldwide. Our previous study reports that low-dose copper nanoparticles (CuNP) can halt the progression of diabetes-induced cardiotoxicity as copper has anti-inflammatory, anti-proliferative and anti-oxidant potential. In addition, exercise training has also been considered a hallmark for cardiac health. METHOD Cardioprotective potential of CuNP (1mg/kg/day, po, 4 weeks) and exercise (swimming, 90min, 5days/4 weeks) either alone or in combination was estimated by measuring the surge in serum nitrite/nitrate concentration and reduction in creatine kinase MB (CKMB), lactate dehydrogenase (LDH), cardiac troponin I (cTnI), lipid profile, oxidative stress, structural abnormalities against isproterenol (ISO)-induced MI. RESULTS ISO significantly increased CKMB, LDH, cTnI, lipid alteration, oxidative stress, structural abnormalities and decrease nitrite/nitrate concentration in serum. Quantitative estimation of total and phosphorylated Akt(SER-473)/GSK-3b(SER-9) indicated the significant reduction in pAkt and pGSK-3b in ISO treated animal. Individual and combined treatment of CuNP and exercise significantly reduce ISO -induced CKMB, cTnI, LDH, and improve nitrite/nitrate concentration and lipid profile. Attenuation of myocardial oxidative stress and serum TBARS revealed the associated preconditioning effect of exercise and CuNP against oxidative stress. Exercise and CuNP also showed the protective potential against structural abnormalities. However, the cardioprotective effect of individual and combined strategy of exercise and CuNP was vanished by wortmannin and also avoid the downregulation of pGSK-3b. CONCLUSION Low-dose CuNP and exercise training significantly prevents ISO-induced MI through preconditioning and GSK-3b inhibition. Ability to upsurge the NO level, lipid profile and reduced oxidative stress improve the potency of combined strategy.
Collapse
Affiliation(s)
- Arun K Sharma
- Cardiovascular Pharmacology Division, Department of Pharmacology, Amity University, Noida, Uttar Pradesh, India.
| | - Ashish Kumar
- Department of Nanomedicine and Pharmaceutics, Amity University, Noida, Uttar Pradesh, India
| | - Gaurav Taneja
- Cardiovascular Pharmacology Division, Department of Pharmacology, Amity University, Noida, Uttar Pradesh, India; Department of Clinical Pharmacology, Fortis Escort Heart Institute, Okhla Road, New Delhi, India
| | - Upendra Nagaich
- Department of Nanomedicine and Pharmaceutics, Amity University, Noida, Uttar Pradesh, India
| | - Aakash Deep
- Department of Pharmaceutical Chemistry, Chaudhary Bansi Lal University, Bhiwani, India
| | | | - Satyendra K Rajput
- Cardiovascular Pharmacology Division, Department of Pharmacology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
26
|
Arora TK, Arora AK, Sachdeva MK, Rajput SK, Sharma AK. Pulmonary hypertension: Molecular aspects of current therapeutic intervention and future direction. J Cell Physiol 2017; 233:3794-3804. [DOI: 10.1002/jcp.26191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/08/2017] [Indexed: 12/28/2022]
Affiliation(s)
| | - Amit K. Arora
- Cardiovascular DivisionSir Ganga ram HospitalNew DelhiIndia
| | | | - Satyendra K. Rajput
- Department of Cardiovascular PharmacologyAmity UniversityNoidaUttar PradeshIndia
| | - Arun K. Sharma
- Department of Cardiovascular PharmacologyAmity UniversityNoidaUttar PradeshIndia
| |
Collapse
|
27
|
Asri-Rezaei S, Dalir-Naghadeh B, Nazarizadeh A, Noori-Sabzikar Z. Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats. J Trace Elem Med Biol 2017; 42:129-141. [PMID: 28595785 DOI: 10.1016/j.jtemb.2017.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/17/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022]
Abstract
The cardio-protective effects of zinc oxide nanoparticles (Zn NPs) against diabetes-induced cardiopathy were evaluated and compared with zinc sulfate (ZnSO4). A total of 120 Wistar rats were randomly categorized as healthy and diabetic groups. Then, the 2 groups were classified in 5 subgroups. The animals received oral supplementations containing different Zn NP (ie, doses of 1, 3, and 10mg/kg) and ZnSO4 (30mg/kg) concentrations over 8 weeks. Blood and cardiac tissue samples were collected in the different time intervals and subjected to biochemical and histopathological analysis. Zn NPs showed dual effects, as its middle dose played protective role and recovered cardiac damages evidenced by significant reduction of serum cholesterol, HDL-cholesterol, lipoprotein (a), atherogenic index, TNF-α, cardiac MDA, B-type natriuretic peptide and caspase-3 activity. Apoptosis indices and histopathological features also were improved. However, the highest dose was found to be toxic and resulted in aggravation of the injuries. Another interesting finding is the ability of the higher doses of Zn-NPs (3 and 10mg/kg) to elevate cardiac zinc levels above the normal range in healthy animal. ZnSO4 also helped to recuperation of the damages, but the middle dose of Zn NPs was more efficient as compared to ZnSO4. Conclusively, Zn NPs have the potential for Zn delivery in diabetic patients.
Collapse
Affiliation(s)
- Siamak Asri-Rezaei
- Department of Clinical Pathology and Internal Medicine, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, West Azerbaijan, Iran.
| | - Bahram Dalir-Naghadeh
- Department of Clinical Pathology and Internal Medicine, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, West Azerbaijan, Iran
| | - Ali Nazarizadeh
- Department of Clinical Pathology and Internal Medicine, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, West Azerbaijan, Iran
| | - Zahra Noori-Sabzikar
- Department of Clinical Pathology and Internal Medicine, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, West Azerbaijan, Iran
| |
Collapse
|
28
|
Suhag D, Kumar Sharma A, Rajput SK, Saini G, Chakrabarti S, Mukherjee M. Electrochemically synthesized highly crystalline nitrogen doped graphene nanosheets with exceptional biocompatibility. Sci Rep 2017; 7:537. [PMID: 28373705 PMCID: PMC5428811 DOI: 10.1038/s41598-017-00616-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/17/2017] [Indexed: 11/09/2022] Open
Abstract
This work reports first electrochemical preparation of exceptionally biocompatible, highly crystalline, and well exfoliated nitrogen doped graphene nanosheets (eNGS) from carbon nanosheets for the development of mighty platforms in the field of modern biosensing and other biological applications for human welfare. eNGS displayed exceptional biocompatibility. Administration of the as-synthesized eNGS to rat models did not lead to any significant deviation or inimical consequences in its functional observation battery (FOB) tests, GSH levels or the histology of the vital organs of the rat models. The pictomicrographs of myocytes nuclei and myofibrillar for heart, hippocampus (CA1) section for brain, central vein, and hepatocytes for liver and parenchyma, tubules and glomeruli for kidney also remained unaffected. Moreover, the resultant nanoelectrocatalyst displayed enhanced electrochemical performance towards real-time sensing of dopamine (DA) from human urine sample in the presence of interferences, such as ascorbic acid (AA) and uric acid (UA).
Collapse
Affiliation(s)
- Deepa Suhag
- Biomimetic and Nanostructured Materials Research laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201303, India
| | - Arun Kumar Sharma
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201303, India
| | - Satyendra K Rajput
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201303, India
| | - Gajender Saini
- Advance Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
| | - Sandip Chakrabarti
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201303, India
| | - Monalisa Mukherjee
- Biomimetic and Nanostructured Materials Research laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201303, India.
| |
Collapse
|
29
|
Sharma AK, Kumar A, Kumar S, Mukherjee S, Nagpal D, Nagaich U, Rajput SK. Preparation and therapeutic evolution of Ficus benjamina solid lipid nanoparticles against alcohol abuse/antabuse induced hepatotoxicity and cardio-renal injury. RSC Adv 2017. [DOI: 10.1039/c7ra04866a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chronic alcoholism destroys the propensity for hepatic detoxification of toxic substances, which further promotes the rapid and intense accumulation of aldehydes in the liver.
Collapse
Affiliation(s)
- Arun K. Sharma
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- Amity University
- Noida
- India
| | - Ashish Kumar
- Department of Nanomedicine and Pharmaceutics
- Amity University
- Noida
- India
| | - Shantanu Kumar
- Department of Nanomedicine and Pharmaceutics
- Amity University
- Noida
- India
| | | | - Dheeraj Nagpal
- Department of Nanomedicine and Pharmaceutics
- Amity University
- Noida
- India
| | - Upendra Nagaich
- Department of Nanomedicine and Pharmaceutics
- Amity University
- Noida
- India
| | - Satyendra K. Rajput
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- Amity University
- Noida
- India
| |
Collapse
|