1
|
Ren L, Guo Y, Ying C, Tangxin Zhong J, Liu J, Katie Zhong WH. Arginine as a Multifunctional Additive for High Performance S-Cathode. CHEMSUSCHEM 2025; 18:e202402284. [PMID: 39753509 DOI: 10.1002/cssc.202402284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathode. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides. The experimental results indicate that the interaction enable capability of trapping polysulfides within the S cathode, responsible for reducing shuttle effects. Furthermore, the positively charged Arg also promotes efficient ion diffusion and polysulfides conversion. The new findings include that, with addition of only 1 wt % Arg, the resultant cathode demonstrates effectively enhanced electrolyte wettability, polysulfide adsorption and redox kinetics, leading to enhanced rate performance and long-term cycling stability. This study highlights the great potential of amino acids being able to act as effective functional bio-additives in S cathode, paving a new way to high-performance and sustainable energy storage solutions.
Collapse
Affiliation(s)
- Lulu Ren
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA
| | - Ying Guo
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA
| | - Chunhua Ying
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA
| | - Justin Tangxin Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA
| | - Wei-Hong Katie Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA-99164, USA
| |
Collapse
|
2
|
Kubra MJ, Ahmed T, Rahaman MS, Hasnine SMM, Sultana S, Mortuza F, Sultana N, Alam MA. Eco-friendly Lignin/N,N-dimethylacrylamide Hydrogel with Carrageenan and Polyvinylpyrrolidone for Amphoteric Adsorption of Methylene Blue and Congo Red: Optimization, Characterization, and Adsorption. Int J Biol Macromol 2025; 306:141471. [PMID: 40020823 DOI: 10.1016/j.ijbiomac.2025.141471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
This study presents a new approach for the preparation of N,N-dimethyl acrylamide (DMA), and lignin/DMA hydrogels using gamma radiation, highlighting the synergistic amphoteric adsorption of Methylene Blue (MB) and Congo Red (CR) facilitated by incorporating carrageenan and polyvinylpyrrolidone (PVP). The hydrogel formulation was optimized with a ratio of 2:1:0.75:5 for carrageenan:PVP:lignin:DMA and a radiation dose of 25 kGy, resulting in maximum gelation and adsorption efficiency. X-ray diffraction and spectroscopic analysis suggested that ionic interactions among carrageenan, PVP, and DMA and hydrogen bonding from lignin facilitated amphoteric adsorption via sulfate-mediated amide activation. The adsorption process followed a pseudo-first order kinetic model, with film-layer diffusion recognized as the primary transport mechanism. The maximum adsorption capacities were 405 mg·g-1 for MB and 417 mg·g-1 for CR, aligning with Freundlich isotherm behavior, while both the adsorptions were endothermic and thermodynamically spontaneous. The hydrogels were reusable for at least four adsorption-desorption cycles. Assessments of germination index indicated that the hydrogels are non-phytotoxic to Zea mays, with root elongation suggesting possible agricultural applications. Further research is necessary to evaluate the long-term viability of repurposing dye-desorbed hydrogels in agrarian systems. The findings indicate that gamma-irradiated hydrogels may serve as effective and reusable adsorbents for dye removal.
Collapse
Affiliation(s)
- Monia Jannatul Kubra
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Noakhali Science and Technology University, Noakhali, Sonapur 3814, Bangladesh; Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Tanvir Ahmed
- Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Md Saifur Rahaman
- Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Shah Md Marzuk Hasnine
- Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Salma Sultana
- Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Firoz Mortuza
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Savar, Dhaka 1349, Bangladesh
| | - Nahid Sultana
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Noakhali Science and Technology University, Noakhali, Sonapur 3814, Bangladesh
| | - Md Ashraful Alam
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Noakhali Science and Technology University, Noakhali, Sonapur 3814, Bangladesh.
| |
Collapse
|
3
|
Zhao T, Wang X, Li J, Wang C, Bakhtiyarovich Ibragimov A, Gao J, Yang X. Uranium Extraction from Seawater: A Novel Approach Using Aluminum Fumarate-Based Metal-Organic Framework Aerogels. Chem Asian J 2025; 20:e202401385. [PMID: 39932360 DOI: 10.1002/asia.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Efficient extraction of uranyl ions from seawater is crucial for the commercialization of nuclear technology. Metal-organic frameworks (MOFs), with their superior uranium extraction properties, face challenges in large-scale applications due to their powdery nature and the difficulty of assembling them into mechanically stable macroscopic composites. To address this, successfully synthesized 90 wt % nanoMOF (aluminum fumarate) loaded directional aerogels (AlFA-3-10) using polyvinyl alcohol (PVA) as an adhesive, which demonstrates robust strength longitudinally and transversely. Our uranium adsorption experiments reveal that at a pH of 8 (akin to that of seawater), the AlFA-3-10 achieves a maximum adsorption capacity of 1146.25 mg g-1, maintaining this exceptional performance over five cycles. Notably, in simulated seawater, AlFA-3-10 exhibits high selectivity for uranyl ions with minimal interference from other ions. The directional pores within AlFA-3-10 facilitate fluid transmission and exchange, ensuring optimal contact between the MOF and uranyl ions, thereby enhancing electrostatic attraction and electron transport for improved capture efficiency. This streamlined approach maximizes the intrinsic potential of nano-MOFs and heralds a new era for their integration into macroscopic composite materials.
Collapse
Affiliation(s)
- Tao Zhao
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xue Wang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiacheng Li
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chunqi Wang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Aziz Bakhtiyarovich Ibragimov
- Institute of General and Inorganic Chemistry, Uzbekistan Academy of Sciences, M.Ulugbek Str., 77a, Tashkent, 100170, Uzbekistan
| | - Junkuo Gao
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaogang Yang
- China-Uzbekistan Joint Laboratory on Advanced Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
4
|
Passornraprasit N, Hinestroza JP, Rodthongkum N, Potiyaraj P. Cellulose nanofibers/polyacrylic acid hydrogels integrated with a 3D printed strip: A platform for screening prostate cancer via sarcosine detection. Carbohydr Polym 2025; 352:123134. [PMID: 39843047 DOI: 10.1016/j.carbpol.2024.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Cellulose nanofiber/polyacrylic acid (CNF/PAA) hydrogel-based colorimetric sensor was fabricated for non-invasive screening of prostate cancer (PCa) via selective detection of sarcosine. The hydrogel was synthesized by photo-crosslinking of acrylic acid in the presence of CNF which acted as mechanical reinforcement and as color enhancer. The hydrogel exhibited a high aqueous absorption and high mechanical strength. A homogeneous distribution of CNF in the hydrogel was confirmed by TEM. A significant improvement in the compressive modulus and stress in the hydrogel were obtained after the incorporation of 0.25%wt CNF. The hydrogel sensor was integrated within a 3D printing strip on a diaper, and it offered a vivid color change from light yellow to blue for detecting sarcosine for PCa indication with a detection limit starting from 10 μM. The colorimetric results were semi-quantitatively evaluated by a spectrophotometer offering a linear range of 0-100 μM with R2 of 0.9901. Furthermore, the increase in CNF content significantly enhanced the sensor's sensitivity toward sarcosine. This sensor could open new avenues for non-invasive screening of prostate cancer in the future.
Collapse
Affiliation(s)
- Nichaphat Passornraprasit
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Juan P Hinestroza
- Department of Human Centered Design, Cornell University, Ithaca, NY 14850, United States
| | - Nadnudda Rodthongkum
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Liu N, Wang D, Wang N, Jin F, Li Y, Wang R, Zhang H, Liang H, Guo R, Mo Z. An Amidoxime-functionalized chitosan dual-network hydrogel: Enhanced uranium-water separation capacity. Int J Biol Macromol 2025; 289:138867. [PMID: 39701262 DOI: 10.1016/j.ijbiomac.2024.138867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The source and after treatment of uranium, a key aspect of its use as a nuclear fuel, had been a topic of intense debate among developers. Therefore, a novel antimicrobial amidoxime-functionalized chitosan/polyacrylamide dual network hydrogel (CP-AO) had been developed utilizing a straightforward methodology. The results demonstrated excellent adsorption capacity and selectivity for uranium extraction under varying conditions, the U(VI) removal was above 94 % when pH was 4. Batch adsorption experiments revealed that CP-AO attained a maximum uranium adsorption capacity of 886.73 mg/g at 298 K, which was higher than most reported adsorbents. The kinetic and thermodynamic studies presented that adsorption process for CP-AO conformed to spontaneous monolayer chem-adsorption, and it can reach equilibrium quickly within 120 min. In addition, the adsorption mechanism revealed that the chemical-interaction between CP-AO hydrogel and U(VI) was attributed to -OH, -NH2 and amidoxime group. Notably, the hydrogel showed optimistic anti-biosludge performance against three common bacteria (E. coli, S. aureus and B. subtilis) owing to effects of chitosan. CP-AO also especially was susceptible to be recycled, its adsorption capacity was 2.8 mg/g and 38.67 mg/g in simulated and actual seawater, respectively. Hence, this work provides a promising material for the extraction of uranium resources and new insights.
Collapse
Affiliation(s)
- Nijuan Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Duoqiang Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Nana Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Fupeng Jin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China; Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yuanzhuo Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Ruijuan Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Hongping Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Hao Liang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Ruibin Guo
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zunli Mo
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| |
Collapse
|
6
|
Zhang M, Ren J, Li R, Zhang W, Li Y, Yang W. Ultrastretchable and highly sensitive ionic conductive hydrogel for environmentally resistant all-in-one human-motion sensors. Int J Biol Macromol 2025; 287:138567. [PMID: 39653198 DOI: 10.1016/j.ijbiomac.2024.138567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Conductive hydrogels have been considered ideal candidate materials for fabricating human-motion sensors due to their combination properties of electronic and tissue-like soft nature and the similar functions of human skin with mechanical and sensory properties. However, the perfect integration of multiple functionalities such as environmentally tolerant, stretchable, self-adhesive, self-healing, transparent, high sensitivity, and rapid response in one system (all-in-one) is still a significant challenge. Herein, a novel ionic conductive hydrogel platform with excellent comprehensive performance through multiple dynamic interactions was prepared by employing [BMIm]BF4/glycerol/water ternary solvent system. The dynamic hydrogen bonds, coordination bonds, and electrostatic interaction within the network endows the hydrogel excellent mechanical performance. The synchronous effect of ionic liquids and glycerol realized the high ionic conductivity, transparency, environmentally tolerance, and long-term stability. Sensors based on this hydrogel have a relatively high sensitivity, a fast response time, and a wide linear sensing range in monitoring human movements. It can also serve as electronic skin, like human skin, for touchscreen pen and writing. Thus, the all-in-one hydrogel was concluded to hold considerable promise for constructing the next generation of hydrogel platforms for human-motion sensors.
Collapse
Affiliation(s)
- Minmin Zhang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Jie Ren
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China.
| | - Ruirui Li
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Wenjing Zhang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Yan Li
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| | - Wu Yang
- Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China
| |
Collapse
|
7
|
Sutradhar SC, Banik N, Islam M, Rahman Khan MM, Jeong JH. Gamma Radiation-Induced Synthesis of Carboxymethyl Cellulose-Acrylic Acid Hydrogels for Methylene Blue Dye Removal. Gels 2024; 10:785. [PMID: 39727543 DOI: 10.3390/gels10120785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.5, 5:10, 5:15) were treated with 37% NaOH and exposed to 1-15 kGy radiation, with the optimal hydrogel obtained at 5 kGy. Swelling studies showed an increase in swelling with 5-7.5% AAc content, with the 5:7.5 hydrogel achieving the highest swelling at 18,774.60 (g/g). FTIR spectroscopy confirmed the interaction between AAc and CMC, indicating the successful formation of the hydrogel. DSC analysis revealed that higher AAc content led to increased glass transition and decomposition temperatures, thereby enhancing thermal stability. The swelling kinetics were linked to a reduction in pore size and improved AAc grafting. The 5:7.5 hydrogel demonstrated the highest adsorption capacity (681 mg/g) for methylene blue at 80 mg/L, achieving a desorption efficiency of 95% in 2M HCl. Kinetic analysis revealed non-uniform physisorption on a heterogeneous surface, which followed Schott's pseudo-second-order model. This study advances the development of efficient hydrogels for water purification, providing a cost-effective and environmentally friendly solution for large-scale applications.
Collapse
Affiliation(s)
- Sabuj Chandra Sutradhar
- Department of Energy & Materials Engineering, Konkuk University, Chungju-si 27478, Republic of Korea
| | - Nipa Banik
- Department of Chemical and Biological Engineering, College of Engineering, Korea National University of Transportation, Chungju-si 27469, Republic of Korea
| | - Mobinul Islam
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Mohammad Mizanur Rahman Khan
- Research Center for Green Energy Systems, Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Jae-Ho Jeong
- Research Center for Green Energy Systems, Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
8
|
Zhou Y, Li H, Gu J, Fu Y, Liu J, Li Z, Li X, Liu X, Qiao Z, Liu Y. Construction of a Fluorescence/Phase-Change Dual-Mode Sensor Based on Carbon Dots/Poly(acrylic acid) for Highly Selective and Sensitive Detection of Ferric Ions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61036-61049. [PMID: 39436028 DOI: 10.1021/acsami.4c14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Fe3+ is one of the crucial metal ions in biological systems, and its excess or deficiency in the body can trigger various diseases, posing a serious threat to human health. Moreover, improper handling or disposal of Fe3+ can lead to water pollution, thereby harming the environment. Therefore, the development of highly selective and sensitive Fe3+ detection probes is particularly urgent. In this paper, a dual-mode sensor based on sol-gel and fluorescence signal responses was developed for the visual detection of Fe3+. The visual sensing method based on the simultaneous response of Fe3+-triggered dual signals can minimize the interference from false-positive signals and enhance detection accuracy. The dual-mode sensor, denoted as PAA@CDs, was constructed by incorporating high-brightness (high fluorescence emission intensity) green-yellow carbon dots (CDs) into poly(acrylic acid) (PAA), which possesses a large number of carboxyl functional groups. Based on the interaction of Fe3+ with the surface functional groups of CDs, nonfluorescent complexes are formed, leading to nonradiative electron transfer, which induces fluorescence quenching and produces a fluorescence signal visible to the naked eye. Additionally, the interaction of Fe3+ with the carboxyl groups of PAA triggers the cross-linking of PAA, causing a sol-gel phase change signal. Consequently, the PAA@CDs exhibit a dual-response signal in Fe3+ detection. Based on the fluorescence method, the linear detection range of PAA@CDs for Fe3+ is 0.05-2.60 mM with a limit of detection (LOD) of 5.14 μM. Meanwhile, using the sol-gel method, the linear detection range is 0.02-2.20 mM, and the LOD is 42.5 μM. Furthermore, the PAA@CDs probes can be successfully applied to the detection of Fe3+ in real water samples, demonstrating their potential value in the analysis of real samples containing multiple ions.
Collapse
Affiliation(s)
- Yao Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huidong Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Junqi Gu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yonglin Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jingchun Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Zhaoyang Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xinlong Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xunyong Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Zhuhui Qiao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Yi Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| |
Collapse
|
9
|
Zhang L, Wen S, Khan JU, Liu Y, Maddahfar M, Zhou J, Jin D. Ultrasensitive Rapid Antigen Test by Geometric Lateral Flow Assays and Highly Doped Upconversion Nanoparticles. Anal Chem 2024; 96:16581-16589. [PMID: 39374910 DOI: 10.1021/acs.analchem.4c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The paper-based lateral flow assay (LFA) testing strips are currently the most widely used for point-of-care testing (POCT), valued for their rapid result turnaround times in a few minutes. However, their sensitivity has been limited. Upconversion nanoparticles (UCNPs), especially highly doped ones, have emerged as promising luminescent reporters to enhance the LFA sensitivity. These UCNPs exhibit a nonlinear enhancement in luminescence with excitation power density, necessitating higher power densities for higher brightness. In this study, we utilized a geometric paper strip design to minimize the immune reaction area and maximize the excitation power density, enabling ultrasensitive detection of the SARS-CoV-2 nucleoprotein antigen. This design also slowed the antigen flow on the paper strip, extending the reaction time between antigen and antibody, thereby enhancing the efficiency of the immune reaction. Through this design, our approach achieved over a 100-fold enhancement in the limit of detection (LOD) compared with the widely used LFAs, based on gold colloidal nanoparticles and europium nanoparticles. This innovation expands the scope of LFA applications that require a low LOD.
Collapse
Affiliation(s)
- Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Jawairia Umar Khan
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Yuan Liu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Mahnaz Maddahfar
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Ultimo 2007, New South Wales, Australia
| |
Collapse
|
10
|
Călina I, Demeter M, Crăciun G, Scărișoreanu A, Mănăilă E. The Influence of the Structural Architecture on the Swelling Kinetics and the Network Behavior of Sodium-Alginate-Based Hydrogels Cross-Linked with Ionizing Radiation. Gels 2024; 10:588. [PMID: 39330190 PMCID: PMC11431678 DOI: 10.3390/gels10090588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The present work discusses the influence of the structural architecture of sodium alginate-co-acrylic acid-poly(ethylene) oxide hydrogels, crosslinked through electron beam (e-beam) radiation processing. The most important properties of the hydrogels were studied in detail to identify a correlation between the architecture of the hydrogels and their properties. Furthermore, the effect of sodium alginate (NaAlg) concentration, the amounts of the polymer blend, and the size of the samples on hydrogel properties were investigated. The results show that the hydrogels cross-linked (0.5% and 1% NaAlg) with 12.5 kGy exhibit improved physicochemical properties. High gel fraction levels (exceeding 83.5-93.7%) were achieved. Smaller hydrogel diameter (7 mm) contributed to a maximum swelling rate and degree of 20.440%. The hydrogel network was dependent on the hydrogels' diameter and the amount of polymer blend used. The hydrogels best suited the first-order rate constants and exhibited a non-Fickian diffusion character with diffusion exponent values greater than 0.5. This study indicates that the cross-linked hydrogel has good properties, particularly because of its high degree of swelling and extensive stability (more than 180 h) in water. These findings show that hydrogels can be effectively applied to the purification of water contaminated with metals, dyes, or even pharmaceuticals, as well as materials with a gradual release of bioactive chemicals and water retention.
Collapse
Affiliation(s)
- Ion Călina
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 077125 Măgurele, Romania
| | - Maria Demeter
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 077125 Măgurele, Romania
| | - Gabriela Crăciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 077125 Măgurele, Romania
| | - Anca Scărișoreanu
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 077125 Măgurele, Romania
| | - Elena Mănăilă
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor St., 077125 Măgurele, Romania
| |
Collapse
|
11
|
Al-Anazi M, Ibrahim MM, Al-Fawwaz A, Elsayed NH, Albalawi M, Alhawiti A, Al-Anazi W, Monier M. Selective uranyl ion-imprinting with clickable amidoxime-functionalized pullulan. Int J Biol Macromol 2024; 273:132780. [PMID: 38825291 DOI: 10.1016/j.ijbiomac.2024.132780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Manufacturing a highly effective sorbent for removing UO22+ ions from aqueous effluents is vital for safeguarding the environment and recovering valuable resources. This research presents an innovative strategy employing adsorbents derived from pullulan, specifically tailored with furfuryl-amidoxime (FAO), to improve their affinity for UO22+ ions. The formation of a UO22+ ion-imprinted sorbent (U-II-P) was achieved by crosslinking the UO22+/FAO-modified pullulan (FAO-P) complex with bis(maleimido)ethane (BME) via click Diels-Alder (DA) cyclization, enhancing its attraction and specificity for UO22+ ions. Detailed characterization of the synthesis was performed using NMR and FTIR spectroscopy, and the sorbent's external textures were analyzed using scanning electron microscopy (SEM). The U-II-P sorbent showcased outstanding preference for UO22+ over other metallic ions, with the most efficient adsorption occurring at pH 5. It exhibited a significant adsorption capacity of 262 mg/g, closely aligning with the predictions of the Langmuir adsorption model and obeying pseudo-second-order kinetic behavior. This investigation underlines the effectiveness of FAO-P as a specialized solution for UO22+ ion extraction from wastewater, positioning it as a viable option for the remediation of heavy metals.
Collapse
Affiliation(s)
- Menier Al-Anazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Mohammad M Ibrahim
- Department of Chemistry, Faculty of Science, Al Al-Bayt University, P.O. Box 130040, Al-Mafraq 25113, Jordan
| | - Abdullah Al-Fawwaz
- Department of Biological Sciences, Faculty of Science, Al Al-Bayt University, Al-Mafraq 25113, Jordan
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mody Albalawi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aliyah Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Wejdan Al-Anazi
- Department of Computer of Science, Faculty of Computers and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
12
|
Sharma H, Kaith BS, Kumar R, Mehra R, Bhatti MS. Fabrication of cellulose-collagen based biosorbent as eco-friendly scavengers for uranyl ions. Int J Biol Macromol 2024; 266:131400. [PMID: 38582480 DOI: 10.1016/j.ijbiomac.2024.131400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/07/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The aim of the present research is to fabricate a biosorbent using agricultural waste for removal of uranium from contaminated water i.e. "waste to wealth" approach. Cellulose extracted from wheat straw was mercerized and a novel semi-interpenetrating polymer network (semi-IPN) was fabricated through graft copolymerization of polyvinyl alcohol onto hybrid mercerized cellulose + collagen backbone. Response surface methodology was used for optimization of different reaction parameters as a function of % grafting (195.1 %) was carried out. Semi-IPN was found to possess higher thermal stability. Adsorption results revealed that the optimum parameters for the elimination of uranium using semi-IPN were: adsorbent dose = 0.15 g, pH = 6.0, contact time = 120 min and initial U (VI) concentration = 100 μg/L. The pseudo-second-order kinetic model gave the best description of the adsorption equilibrium data as the calculated qe value is nearest to the experimental qe for the different initial U(VI) concentrations. Adsorption experiments followed Langmuir isotherm with R2 = 0.999. Furthermore, recyclability and reusability studies showed that the adsorption efficiency of semi-IPN was 82 % after 5 cycles indicating the superior recycling execution of fabricated biosorbent. Thus, the fabricated ecofriendly device can be used effectively for the removal of uranium from contaminated wastewater sources.
Collapse
Affiliation(s)
- Himani Sharma
- Smart Materials Laboratory, Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab 144 008, India.
| | - Balbir Singh Kaith
- Smart Materials Laboratory, Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab 144 008, India.
| | - Rakesh Kumar
- Smart Materials Laboratory, Department of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab 144 008, India
| | - Rohit Mehra
- Department of Physics, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab 144 008, India
| | - Manpreet Singh Bhatti
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143 005, India
| |
Collapse
|
13
|
Karimi SY, Marofi S, Zare MA. Fabricating pentaazatetraethylene modified sulfonated polyacrylamide for dye adsorption from aqueous media: isotherms and kinetics models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25849-25866. [PMID: 38488921 DOI: 10.1007/s11356-024-32590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
In this study, pentaazatetraethylene-modified sulfonated polyacrylamide (PAm-SO3-N5) was synthesized and used as a novel efficient adsorbent to remove calmagite from aqueous media. To this end, a central composite design (CCD) was applied to reduce the number of reaction variables (i.e., adsorbent concentration, temperature, initial concentration, and pH) on calmagite removal. The results showed that calmagite was entirely adsorbed by the PAm-SO3-N5 within 30 min. In addition, a pseudo-second-order (PSO) model was prepared as the optimum formula to fit the kinetics information. The modeling results revealed that film diffusion and adsorption are rate-limiting stages to remove the dyes. Using a Langmuir isotherm to fit the equilibrium data, the highest equilibrium adsorption was calculated to be 1732.5 mg/g. In the present study, the ΔH value indicates that the adsorption is of chemical type. Also, the negative sign of ΔS° shows that PAm-SO3-N5 removes calmagite during a relatively stable process with randomness in the system. The increase in ΔG° values with increasing temperature indicates a descending trend in the feasibility degree of calmagite adsorption. Eventually, recycling the adsorbent for 7 cycles to adsorb calmagite dye showed no remarkable activity loss.
Collapse
Affiliation(s)
| | - Safar Marofi
- Water Engineering Department, Bu Ali Sina University, Hamedan, Iran.
| | - Mohamad Ali Zare
- Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
14
|
Mohammadi AB, Pourmadadi M, Abdouss M, Rahdar A, Díez-Pascual AM. Polyacrylic acid/polyvinylpyrrolidone/iron oxide nanocarrier for efficient delivery of doxorubicin. INORG CHEM COMMUN 2024; 161:112037. [DOI: 10.1016/j.inoche.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Ma T, Peng L, Ran Q, Zeng Y, Liang F. Toward the Development of Simplified Lateral Flow Assays Using Hydrogels as the Universal Control Line. ACS APPLIED BIO MATERIALS 2023; 6:5685-5694. [PMID: 38035477 DOI: 10.1021/acsabm.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Lateral flow assays (LFA) have been widely utilized as point-of-care testing devices in diverse fields. However, it is imperative to preprint costly bioreceptors onto the lateral flow nitrocellulose membrane at the control line. The complex manufacturing process and relatively limited detection capabilities of LFA have impeded their utilization in more challenging fields. Here, we propose a novel and simple strategy to simplify the manufacture of LFA while simultaneously improving the sensitivity by modifying the hydrogel line (HL). In our study, it was observed that the sensitivity of commercial LFA strips could be enhanced by 2-5-fold by incorporating an extra HL. Particularly, a universal control line was developed to accommodate multiple LFA detection modes by substituting the conventional antibody control line with a hydrogel control line (HCL). As a proof of concept, the HCL performance could be associated with the slowdown and interception effect toward fluid, which are dependent on the permeation and hydrophilicity of the hydrogel with varying concentrations in the nitrocellulose membrane. This new design builds the foundation to enhance the sensitivity and develop the simplified LFA sensing platform without additional complicated processes.
Collapse
Affiliation(s)
- Tao Ma
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Linlin Peng
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qinying Ran
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yan Zeng
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
16
|
Ali JS, Ma M, Alamova M, Chong C, Duda A, Liu F, Groveman S, Alexandratos SD, Younes A. Investigation of Chelating Agents for the Removal of Thorium from Human Teeth upon Nuclear Contamination. Chem Res Toxicol 2023; 36:1693-1702. [PMID: 37871261 DOI: 10.1021/acs.chemrestox.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Thorium-232 (232Th) is a radioactive heavy metal that is of increasing interest as a source of nuclear energy. However, upon nuclear incidents, the ingestion or inhalation of Th in major quantities can contribute to chemical and radiological health problems, including accumulation in the bone tissue and an increased risk of developing pancreatic, lung, and hematopoietic cancers. The major mineral component of the bone is hydroxyapatite (HAP)─also the major mineral component of the teeth. As such, the teeth are the first site of exposure upon oral ingestion of Th-contaminated materials, and Th can pose a potential risk to teeth development. In essence, in the case of human contamination, it is critical to identify effective chelating agents capable of removing Th. Using a batch study methodology, this present work investigates the uptake and the removal of Th from synthetic HAP and from teeth samples by diethylenetriamine pentaacetate (DTPA), ethylenediaminetetraacetic acid (EDTA), and other promising chelating agents. Th uptake over synthetic HAP exceeds 98% at physiological pH with <1 min of contact time and uptake exceeds 90% across the entire pH range. Regarding teeth, over 1 mg Th uptaken per gram of tooth is observed after 24 h. The overall effectiveness of chelating agents for the removal of Th from is as follows: DTPA > EDTA > NaF/mouthwash/3,4,3-LI(1,2-HOPO); this trend was observed both in synthetic HAP and Th-impregnated teeth samples.
Collapse
Affiliation(s)
- Jafar Sunga Ali
- Department of Chemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Michelle Ma
- Department of Chemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Malika Alamova
- Department of Chemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Chloe Chong
- Department of Chemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Artem Duda
- Department of Chemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Felicity Liu
- Department of Chemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Samuel Groveman
- Department of Chemistry and Environmental Science, Medgar Evers College, 1650 Bedford Ave #2010, Brooklyn, New York 11225, United States
| | - Spiro D Alexandratos
- Department of Chemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Ali Younes
- Department of Chemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| |
Collapse
|
17
|
Rekaby M, Abou-Aly AI, El-Khatib M. Preparation and characterization of a novel nanocomposite based on MnCr-layered double oxide and CoFe 2O 4 spinel ferrite for methyl orange adsorption. Sci Rep 2023; 13:18006. [PMID: 37865692 PMCID: PMC10590389 DOI: 10.1038/s41598-023-45136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
Herein, the adsorption of methyl orange (MO), a dangerous anionic dye, from an aqueous solution was investigated using a novel magnetic nanocomposite adsorbent. A nanocomposite entitled manganese chromium-layered double oxide/cobalt spinel ferrite, (MnCr)-LDO5wt.%/CoFe2O4, which links the interlayer structural characteristics of layered double oxides (LDOs) with the magnetic properties of spinel ferrites (SFs) was synthesized using the eco-friendly co-precipitation technique. Determination of structural parameters, crystallite size, and micro-strain was done using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) was used to determine grain shape and size. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) to identify elements and oxidation states present in the prepared nanocomposite. Vibrating sample magnetometer (VSM) was utilized to examine the magnetic characteristic. A comprehensive comparative study about the effectiveness and durability of CoFe2O4 and (MnCr)5wt.%/CoFe2O4 as nanoadsorbents for MO was conducted. Numerous variables, including contact time, MO concentration, adsorbent dosage, and pH were tested for their effects on the adsorption removal percentages. The findings showed that the maximum removal percentage was 86.1% for 25 ppm of MO was for 0.1 g/100 mL of (MnCr)-LDO5wt.%/CoFe2O4 at pH = 3. Investigations of isotherms and kinetics were conducted under batch conditions. The Langmuir isotherm matched the experimental data, for both nanoadsorbents, quite well due to the homogeneous distribution of active sites. Adsorption kinetics data were found to be compatible with intra-particle diffusion and pseudo-second order models for CoFe2O4 and (MnCr)5wt.%/CoFe2O4, respectively. A total of five adsorption-desorption cycles were performed to determine the prepared adsorbents' recyclable nature.
Collapse
Affiliation(s)
- M Rekaby
- Department of Physics, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - A I Abou-Aly
- Department of Physics, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - M El-Khatib
- Department of basic sciences, Faculty of Computer Science and Artificial Intelligence, Pharos University, Alexandria, Egypt
| |
Collapse
|
18
|
Liu Y, Yuan W, Lin W, Yu S, Zhou L, Zeng Q, Wang J, Tao L, Dai Q, Liu J. Efficacy and mechanisms of δ-MnO 2 modified biochar with enhanced porous structure for uranium(VI) separation from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122262. [PMID: 37506804 DOI: 10.1016/j.envpol.2023.122262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Even though uranium (U) is considered to be an essential strategic resource with vital significance to nuclear power development and climate change mitigation, U exposure to human and ecological environment has received growing concerns due to its both highly chemically toxic and radioactively hazardous property. In this study, a composite (M-BC) based on Ficus macrocarpa (banyan tree) aerial roots biochar (BC) modified by δ-MnO2 was designed to separate U(VI) from synthetic wastewater. The results showed that the separation capacity of M-BC was 61.53 mg/g under the solid - liquid ratio of 1 g/L, which was significantly higher than that of BC (12.39 mg/g). The separation behavior of U(VI) both by BC and M-BC fitted well with Freundlich isothermal models, indicating multilayer adsorption occurring on heterogeneous surfaces. The reaction process was consistent with the pseudo-second-order kinetic model and the main rate-limiting step was particle diffusion process. It is worthy to note that the removal of U(VI) by M-BC was maintained at 94.56% even after five cycles, indicating excellent reusability and promising application potential. Multiple characterization techniques (e.g. Scanning Electron Microscope-Energy Dispersive Spectrometer (SEM-EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET) and X-ray Photoelectron Spectroscopy (XPS)) uncovered that U(VI) complexation with oxygen-containing functional groups (e.g. O-CO and Mn-O) and cation exchange with protonated ≡MnOH were the dominant mechanisms for U(VI) removal. Application in real uranium wastewater treatment showed that 96% removal of U was achieved by M-BC and more than 92% of co-existing (potentially) toxic metals such as Tl, Co, Pb, Cu and Zn were simultaneously removed. The work verified a feasible candidate of banyan tree aerial roots biowaste based δ-MnO2-modified porous BC composites for efficient separation of U(VI) from uranium wastewater, which are beneficial to help address the dilemma between sustainability of nuclear power and subsequent hazard elimination.
Collapse
Affiliation(s)
- Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenli Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shan Yu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lei Zhou
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Luoheng Tao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qunwei Dai
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Ayiotis A, Georgiou E, Ioannou PS, Pashalidis I, Krasia-Christoforou T. 3D Composite U(VI) Adsorbents Based on Alginate Hydrogels and Oxidized Biochar Obtained from Luffa cylindrica. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6577. [PMID: 37834714 PMCID: PMC10574392 DOI: 10.3390/ma16196577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
3D naturally derived composites consisting of calcium alginate hydrogels (CA) and oxidized biochar obtained from Luffa cylindrica (ox-LC) were synthesized and further evaluated as adsorbents for the removal of U(VI) from aqueous media. Batch-type experiments were conducted to investigate the effect of various physicochemical parameters on the adsorption performance of materials. The maximum adsorption capacity (qmax) was 1.7 mol kg-1 (404.6 mg·g-1) at pH 3.0 for the CA/ox-LC with a 10% wt. ox-LC content. FTIR spectroscopy indicated the formation of inner-sphere complexes between U(VI) and the surface-active moieties existing on both CA and ox-LC, while thermodynamic data revealed that the adsorption process was endothermic and entropy-driven. The experimental data obtained from the adsorption experiments were well-fitted by the Langmuir and Freundlich models. Overall, the produced composites exhibited enhanced adsorption efficiency against U(VI), demonstrating their potential use as effective adsorbents for the recovery of uranium ions from industrial effluents and seawater.
Collapse
Affiliation(s)
- Andreas Ayiotis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| | - Efthalia Georgiou
- Department of Chemistry, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (E.G.); (I.P.)
| | - Panagiotis S. Ioannou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (E.G.); (I.P.)
| | - Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue, 2109, Aglantzia, P.O. Box 20537, 1678 Nicosia, Cyprus; (A.A.); (P.S.I.)
| |
Collapse
|
20
|
Fröhlich AC, Mazur LP, da Silva A, de Andrade Maranhão T, Parize AL. Development of hydrogels based on xylan and poly (acrylic acid) for melamine adsorption in batch and continuous mode: experimental design, kinetics, isotherms, recyclability, and fixed-bed column. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107970-107992. [PMID: 37749464 DOI: 10.1007/s11356-023-29891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Two hydrogels were synthesized, characterized, and applied as alternative materials to remove melamine (MEL) from aqueous media by adsorption. For the first time, a complete study of MEL adsorption is presented, including optimization, kinetics, isotherm, reuse, and column studies with these new materials. One hydrogel is based on xylan and poly (acrylic acid) and was named HXy, and the other is based on the same components functionalized with activated carbon and was named HXy-AC. The materials were synthesized by free radical polymerization and characterized by FTIR, XRD, TGA, DSC, SEM, zeta potential, point of zero charge, N2 adsorption isotherms (BET), helium gas pycnometry, Archimedes method, swelling analysis, and stability tests. The characterization results confirmed the intended synthesis and showed the thermal, morphological, textural, structural, and compositional profile, as well as the adsorption characteristics of the materials. The adsorption studies in batch process included experimental design, kinetics, isotherms, and recyclability, and in continuous mode, the studies included fixed-bed column experiments. The full factorial design showed that adsorbent dosage, pH, and ionic strength are significant for adsorption capacity and removal percentage responses. Doehlert design enabled the definition of the values of adsorbent dosage and pH that were most suitable for MEL adsorption into the materials, indicating the optimal adsorption conditions. The kinetics were well described by the pseudo-first-order model, with R2 above 0.9920 for both materials at all concentrations tested. The isotherm obeyed the Langmuir model, with R2 above 0.9939 for both materials at all temperatures tested. Equilibrium was attained at 180 min, and the maximum experimental adsorption capacity was up to 132.46 and 118.96 mg g-1 at pH 7, with adsorbent dosage of 0.5 g L-1, and 298 K for HXy and HXy-AC, respectively. Furthermore, HXy and HXy-AC materials maintained about 58 and 70% of their initial adsorption capacity at the end of five adsorption/desorption cycles, respectively. Breakthrough curves were described by the Yan model and presented a maximum adsorption capacity of 30.2 and 30.4 mg g-1, treating 3.4 and 6.1 L of influent until the breakthrough point of 0.5 mg L-1 with HXy-AC using 2.0 and 4.0 g of material, respectively. These findings show that the hydrogels produced present the potential to be applied in the adsorption of basic molecules, such as MEL.
Collapse
Affiliation(s)
- Andressa Cristiana Fröhlich
- POLIMAT, Grupo de Estudos em Materiais Poliméricos, Chemistry Department-Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Luciana Prazeres Mazur
- BIOMAT, Laboratório de Biomateriais, Faculty of Chemical Engineering, Department of Materials Engineering and Bioprocess, University of Campinas, Cidade Universitária Zeferino Vaz, 13083-852, Campinas, SP, Brazil
| | - Adriano da Silva
- LABMASSA, Laboratório de Transferência de Massa, Chemical Engineering Department-Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Tatiane de Andrade Maranhão
- LEMA/LARES, Laboratório de Espectrometria de Massas e Atômica/Laboratório de Análises de Resíduos, Chemistry Department-Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Alexandre Luis Parize
- POLIMAT, Grupo de Estudos em Materiais Poliméricos, Chemistry Department-Federal University of Santa Catarina-UFSC, Campus Reitor João David Ferreira Lima, s/n-Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
21
|
Chen X, Wang Y, Xia H, Ren Q, Li Y, Xu L, Xie C, Wang Y. "One-can" strategy for the synthesis of hydrothermal biochar modified with phosphate groups and efficient removal of uranium(VI). JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 263:107182. [PMID: 37094506 DOI: 10.1016/j.jenvrad.2023.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Significant selectivity, reasonable surface modification and increased structural porosity were three key factors to improve the competitiveness of biochar in the adsorption field. In this study, a hydrothermal bamboo-derived biochar modified with phosphate groups (HPBC) was synthesized using "one-can" strategy. BET showed that this method could effectively increase the specific surface area (137.32 m2 g-1) and simulation of wastewater experiments indicated HPBC had an excellent selectivity for U(VI) (70.35%), which was conducive to removal of U(VI) in real and complex environments. The accurate matchings of pseudo-second-order kinetic model, thermodynamic model and Langmuir isotherm showed that at 298 K, pH = 4.0, the adsorption process dominated by chemical complexation and monolayer adsorption was spontaneous, endothermic and disordered. Saturated adsorption capacity of HPBC could reach 781.02 mg g-1 within 2 h. The introduction of phosphoric acid and citric acid by "one-can" method not only provided abundant -PO4 to assist adsorption, but also activated oxygen-containing groups on the surface of the bamboo matrix. Results showed that adsorption mechanism of U(VI) by HPBC included electrostatic action and chemical complexation involving P-O, PO and ample oxygen-containing functional groups. Therefore, HPBC with high phosphorus content, outstanding adsorption performance, excellent regeneration, remarkable selectivity and green value provided a novel solution for the field of radioactive wastewater treatment.
Collapse
Affiliation(s)
- Xinchen Chen
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yang Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Hongtao Xia
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Qi Ren
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Yang Li
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China
| | - Lejin Xu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chuting Xie
- School of Architecture & Urban Planning, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yun Wang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
22
|
Craciun G, Calina IC, Demeter M, Scarisoreanu A, Dumitru M, Manaila E. Poly(Acrylic Acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron Beam Irradiation Part I: Impact of Initiator Concentration and Irradiation Dose on Structure, Network Parameters and Swelling Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4552. [PMID: 37444866 DOI: 10.3390/ma16134552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
In the present paper, hydrogels based on acrylic acid (20%), sodium alginate (0.5%) and poly(ethylene oxide) (0.1%) were obtained by electron beam irradiation at room temperature with doses between 5 and 20 kGy, using potassium persulfate in concentrations up to 0.3% as a reaction initiator. The influence of initiator concentration and irradiation dose on hydrogel network parameters, swelling and deswelling behavior, gelation and degradation points, structure and morphology were investigated. Cross-link density increased with the irradiation dose and initiator addition, except at 20 kGy. The gel fraction was over 87.0% in all cases. Swelling experiments in distilled water showed swelling degrees of 40,000% at an irradiation dose of 5 kGy when a concentration of 0.1% initiator was added. A relationship between the swelling degree and irradiation dose, cross-linking degree (that increases from 0.044 × 102 to 0.995 × 102 mol/cm3) and mesh size (that decreases from about 220 nm to 26 nm) was observed. The addition of only 0.1% of PP led to the obtaining of hydrogels with a swelling degree of 42,954% (about 430 g/g) at an irradiation dose of 5 kGy and of 7206% (about 62 g/g) at 20 kGy, which are higher percentages than those obtained in the same irradiation conditions but without PP.
Collapse
Affiliation(s)
- Gabriela Craciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Ion Cosmin Calina
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Maria Demeter
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Anca Scarisoreanu
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Marius Dumitru
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Elena Manaila
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| |
Collapse
|
23
|
Manaila E, Demeter M, Calina IC, Craciun G. NaAlg-g-AA Hydrogels: Candidates in Sustainable Agriculture Applications. Gels 2023; 9:gels9040316. [PMID: 37102928 PMCID: PMC10138036 DOI: 10.3390/gels9040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Nowadays, the degradation of agricultural soil due to various factors should be a major concern for everyone. In this study, a new sodium alginate-g-acrylic acid-based hydrogel was developed simultaneously by cross-linking and grafting with accelerated electrons to be used as soil remediation. The effect of irradiation dose and NaAlg contents on the gel fraction, network and structural parameters, sol-gel analysis, swelling power, and swelling kinetics of NaAlg-g-AA hydrogels have been investigated. It was demonstrated that NaAlg hydrogels show significative swelling power that is greatly dependent on their composition and irradiation dose; they keep the structure and are not degraded in different pH conditions and different water sources. Diffusion data revealed a non-Fickian transport mechanism (0.61-0.99) also specific to cross-linked hydrogels. The prepared hydrogels were proved as excellent candidates in sustainable agriculture applications.
Collapse
Affiliation(s)
- Elena Manaila
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Maria Demeter
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Ion Cosmin Calina
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Gabriela Craciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| |
Collapse
|
24
|
Advanced Fabrication and Multi-Properties of Aluminum-Based Aerogels from Aluminum Waste for Thermal Insulation and Oil Absorption Applications. Molecules 2023; 28:molecules28062727. [PMID: 36985697 PMCID: PMC10058144 DOI: 10.3390/molecules28062727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Metal-based aerogels have attracted numerous studies due to their unique physical, structural, thermal, and chemical properties. Utilizing aluminum waste, a novel, facile, environmentally friendly approach to aluminum-based aerogels is proposed. In this work, the aluminum-based aerogels produced do not use toxic chemicals unlike conventional aerogel production. Aluminum powder, with poly(acrylic acid) and carboxymethyl cellulose as binders, is converted into aluminum-based aerogels using the freeze-drying method. The aluminum-based aerogels have low density (0.08–0.12 g/cm3) and high porosity (93.83–95.68%). The thermal conductivity of the aerogels obtained is very low (0.038–0.045 W/m·K), comparable to other types of aerogels and commercial heat insulation materials. Additionally, the aerogels can withstand temperatures up to 1000 °C with less than 40% decomposition. The aerogels exhibited promising oil absorption properties with their absorption capacity of 9.8 g/g and 0.784 g/cm3. The Young’s modulus of the aerogels ranged from 70.6 kPa to 330.2 kPa. This study suggests that aluminum-based aerogels have potential in thermal insulation and oil absorption applications.
Collapse
|
25
|
Badiei YM, Annon O, Maldonado C, Delgado E, Nguyen C, Rivera C, Li C, Ortega AF. Single‐Site Molecular Ruthenium(II) Water‐Oxidation Catalysts Grafted into a Polymer‐Modified Surface for Improved Stability and Efficiency. ChemElectroChem 2023. [DOI: 10.1002/celc.202300028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Yosra M. Badiei
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Oshane Annon
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Christina Maldonado
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Emily Delgado
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Caroline Nguyen
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Christina Rivera
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| | - Clive Li
- Department of STEM Hudson County Community College 07306 Jersey City NJ USA
| | - Abril Flores Ortega
- Department of Chemistry Saint Peter's University 07306 Jersey City New Jersey USA
| |
Collapse
|
26
|
A robust polyethyleneimine-based supramolecular hydrogel towards uranium adsorption and deposition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Kobylinska N, Puzyrnaya L, Pshinko G. Magnetic nanocomposites based on Zn,Al-LDH intercalated with citric and EDTA groups for the removal of U(vi) from environmental and wastewater: synergistic effect and adsorption mechanism study. RSC Adv 2022; 12:32156-32172. [PMID: 36425713 PMCID: PMC9644705 DOI: 10.1039/d2ra05503a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
The efficient removal of U(vi) ions from contaminated natural waters and wastewaters of industrial processing plants by novel magnetic nanocomposites based on magnetite and Zn,Al-layered double hydroxides intercalated with citric and EDTA groups (Fe3O4/Zn,Al-LDH/Cit and Fe3O4/Zn,Al-LDH/EDTA) was shown. These adsorbents were obtained using co-precipitation and ion-exchange techniques. The infrared spectroscopy confirmed the existence of O-containing groups on the surfaces of Fe3O4/Zn,Al-LDH/Cit and Fe3O4/Zn,Al-LDH/EDTA, which could provide active sites in the interlayer of the adsorbents for the pollutants removal. The intercalation of Zn,Al-LDH with chelating EDTA-groups significantly increased the adsorption capacity toward U(vi) ions (131.22 mg g-1) compared to citric moieties in a wide range of pH (3.5-9.0). The maximum adsorption capacities of U(vi) at pH 7.5 were 81.12 mg g-1 for Fe3O4/Zn,Al-LDH/EDTA and 21.6 mg g-1 for Fe3O4/Zn,Al-LDH/Cit. The higher adsorption capacity of Fe3O4/Zn,Al-LDH/EDTA vs. the citric sample might be explained by high affinity of LDH-supports and high-activity of the chelating groups in formation of the complexes in the interlayer space of the magnetic nanocomposite. The removal of U(vi) by the magnetic nanocomposites occurred due to interlayer complexation and electrostatic interactions. The cations (Na+, K+, Ca2+), HCO3 - and fulvic acid anions being typical for natural waters were practically not affected upon the removal of U(vi) from aqueous media. The adsorption performance of Fe3O4/Zn,Al-LDH/EDTA nanocomposites was evaluated in the analysis of environmental and wastewater samples with recoveries in the range of 95.8-99.9%. This superior intercalation performance of LDH-supports provides simple and low-cost adsorbents, providing a strategy for decontamination of radionuclides from wastewater.
Collapse
Affiliation(s)
- Natalia Kobylinska
- Dumansky Institute of Colloid and Water Chemistry, National Academy of Sciences of Ukraine 42 Akad. Vernadsky Blvd. Kyiv 03142 Ukraine
| | - Liubov Puzyrnaya
- Dumansky Institute of Colloid and Water Chemistry, National Academy of Sciences of Ukraine 42 Akad. Vernadsky Blvd. Kyiv 03142 Ukraine
| | - Galina Pshinko
- Dumansky Institute of Colloid and Water Chemistry, National Academy of Sciences of Ukraine 42 Akad. Vernadsky Blvd. Kyiv 03142 Ukraine
| |
Collapse
|
28
|
Dalei G, Das S. Polyacrylic acid-based drug delivery systems: A comprehensive review on the state-of-art. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Al‐Bataineh QM, Telfah AD, Ahmad AA, Bani‐Salameh AA, Abu‐Zurayk R, Hergenröder R. E
/
Z
reversible photoisomerization of methyl orange doped polyacrylic acid‐based polyelectrolyte brush films. J Appl Polym Sci 2022. [DOI: 10.1002/app.53138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qais M. Al‐Bataineh
- Leibniz Institut für Analytische Wissenschaften‐ISAS‐e.V. Dortmund Germany
- Experimental Physics TU Dortmund University Dortmund Germany
- Department of Physics Jordan University of Science & Technology Irbid Jordan
| | - Ahmad D. Telfah
- Leibniz Institut für Analytische Wissenschaften‐ISAS‐e.V. Dortmund Germany
- Nanotechnology Center The University of Jordan Amman Jordan
| | - Ahmad A. Ahmad
- Department of Physics Jordan University of Science & Technology Irbid Jordan
| | | | - Rund Abu‐Zurayk
- Nanotechnology Center – The University of Jordan Amman Jordan
- Nanotechnology Center The University of Jordan Amman Jordan
| | - Roland Hergenröder
- Leibniz Institut für Analytische Wissenschaften‐ISAS‐e.V. Dortmund Germany
| |
Collapse
|
30
|
Synthesis and Characterization of a Novel Dual-Responsive Nanogel for Anticancer Drug Delivery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1548410. [PMID: 36193087 PMCID: PMC9526620 DOI: 10.1155/2022/1548410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
In this study, to reduce the side effects of anticancer drugs and also to increase the efficiency of current drug delivery systems, a pH and temperature-responsive polymeric nanogel was synthesized by copolymerization of N-vinylcaprolactam (VCL) and acrylic acid (AA) monomers (P(VCL-co-AA)) with a novel cross-linker, triethylene glycol dimethacrylate (TEGDMA), as a biocompatible and nontoxic component. The structural and physicochemical features of the P(VCL-co-AA) nanogel were characterized by FT-IR, DLS/Zeta potential, FE-SEM, and 1HNMR techniques. The results indicated that spherical polymeric nanogel was successfully synthesized with a 182 nm diameter. The results showed that the polymerization process continues with the opening of the carbon-carbon double bond of monomers, which was approved by C-C band removing located at 1600 cm-1. Doxorubicin (Dox) as a chemotherapeutic agent was loaded into the P(VCL-co-AA), whit a significant loading of Dox (83%), and the drug release profile was investigated in the physiological and cancerous site simulated conditions. P(VCL-co-AA) exhibited a pH and temperature-responsive behavior, with an enhanced release rate in the cancerous site condition. The biocompatibility and nontoxicity of P(VCL-co-AA) were approved by MTT assay on the normal human foreskin fibroblasts-2 (HFF-2) cell line. Also, Dox-loaded P(VCL-co-AA) had excellent toxic behavior on the Michigan Cancer Foundation-7 (MCF-7) cell line as model cancerous cells. Moreover, Dox-loaded P(VCL-co-AA) had higher toxicity in comparison with free Dox, which would be a vast advantage in reducing Dox side effects in the clinical cancer treatment applications.
Collapse
|
31
|
Younes A, Fitzsimmons J, Ali JS, Groveman S, Cutler CS, Medvedev D. Inorganic resins enable the increased purification efficiency of 82Sr from rubidium targets for use in PET imaging isotope production. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Yin W, Liu M, Wang YH, Huang Y, Zhao TL, Yao QZ, Fu SQ, Zhou GT. Fe 3O 4-Mg(OH) 2 nanocomposite as a scavenger for silver nanoparticles: Rational design, facile synthesis, and enhanced performance. ENVIRONMENTAL RESEARCH 2022; 212:113292. [PMID: 35427596 DOI: 10.1016/j.envres.2022.113292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) are considered as emerging contaminants because of their high toxicity and increasing environmental impact. Removal of discharged AgNPs from water is crucial for mitigating the health and environmental risks. However, developing facile, economical, and environment-friendly approaches remains challenging. Herein, an Fe3O4-Mg(OH)2 nanocomposite, as a novel magnetic scavenger for AgNPs, was prepared by loading Fe3O4 nanoparticles on Mg(OH)2 nanoplates in a one-pot synthesis. Batch removal experiments revealed that the maximum removal capacities for the two model AgNPs (citrate- or polyvinylpyrrolidone-coated AgNPs) were 476 and 442 mg/g, respectively, corresponding to partition coefficients 8.03 and 4.89 mg/g/μM. Removal feasibilities over a wide pH range of 5-11 and in real water matrices and scavenger reusability with five cycles were also confirmed. Both Fe3O4 and Mg(OH)2 components contributed to the removal; however, their nanocomposites exhibited an enhanced performance because of the high specific surface area and pore volume. Chemical adsorption and electrostatic attraction between the coatings on the AgNPs and the two components in the nanocomposite was considered to be responsible for the removal. Overall, the facile synthesis, convenient magnetic separation, and high removal performance highlight the great potential of the Fe3O4-Mg(OH)2 nanocomposite for practical applications.
Collapse
Affiliation(s)
- Wei Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Han Wang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Tian-Lei Zhao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Qi-Zhi Yao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Sheng-Quan Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Gen-Tao Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; CAS Center for Excellence in Comparative Planetology, Hefei, 230026, China.
| |
Collapse
|
33
|
Şimşek S, Derin Y, Kaya S, Şenol ZM, Katin KP, Özer A, Tutar A. High-Performance Material for the Effective Removal of Uranyl Ion from Solution: Computationally Supported Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10098-10113. [PMID: 35946525 PMCID: PMC9404547 DOI: 10.1021/acs.langmuir.2c00978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Indexed: 05/19/2023]
Abstract
Adsorption is a widely used method for pollution removal and for the recovery of valuable species. In recent years, the use of metal-organic compounds among the adsorbents used in adsorption studies has increased. In this study, the performance of the water-insoluble Fe complex as a metal organic framework (MOF-Fe-Ta) of water-soluble tannic acid, which is not used as an adsorbent in uranium recovery and removal, was investigated. For the characterization of the new synthesized material, Fourier transform infrared, scanning electron microscopy, and X-ray diffraction analyses were performed. The changes in the adsorption process based on various parameters were investigated and discussed. The point of zero charges value of the adsorbent was found as 5.52. It was noticed that the adsorption increases as the pH increases. Analyzing the effect of concentration on adsorption, we determined which model explained the adsorption better. The monolayer capacity of the adsorbent determined in light of the Langmuir model was reported as 0.347 mol kg-1. The Freundlich constant, namely the β value obtained in the Freundlich model, which is a measure of surface heterogeneity, was found to be 0.434, and the EDR value, which was found from the Dubinin-Raduskevich model and accepted as a measure of adsorption energy, was 10.3 kJ mol-1. The adsorption was kinetically explained by the pseudo-second-order model and the adsorption rate constant was reported as 0.15 mol-1 kg min-1. The effect of temperature on adsorption was studied; it was emphasized that adsorption was energy consuming, that is, endothermic and ΔH was found as 7.56 kJ mol-1. The entropy of adsorption was positive as 69.3 J mol-1 K-1. As expected, the Gibbs energy of adsorption was negative (-13.1 kJ mol-1 at 25 °C), so adsorption was considered as a spontaneous process. Additionally, the power and mechanism of the interaction between studied adsorbent and adsorbate are explained through density functional theory computations. Computationally obtained data supported the experimental studies.
Collapse
Affiliation(s)
- Selçuk Şimşek
- Faculty
of Science, Department of Chemistry, Sivas
Cumhuriyet University, 58140 Sivas, Turkey
- Selçuk
Şimşek.
| | - Yavuz Derin
- Department
of Chemistry, Sakarya University, 54050 Sakarya, Turkey
| | - Savaş Kaya
- Health
Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Savaş Kaya.
| | - Zeynep Mine Şenol
- Zara
Vocational School, Department of Food Technology, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Konstantin P. Katin
- Institute
of Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, Moscow 115409, Russia
| | - Ali Özer
- Engineering
Faculty, Metallurgical and Materials Engineering Department, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Ahmet Tutar
- Department
of Chemistry, Sakarya University, 54050 Sakarya, Turkey
| |
Collapse
|
34
|
Kim J, Baek M, Park K, Park Y, Hwang I, Choi JW. Effect of ionotropic gelation of COOH-functionalized polymeric binders in multivalent ion batteries. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Embaby MA, Haggag ESA, El-Sheikh AS, Marrez DA. Biosorption of Uranium from aqueous solution by green microalga Chlorella sorokiniana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58388-58404. [PMID: 35366208 PMCID: PMC9395467 DOI: 10.1007/s11356-022-19827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Uranium and its compounds are radioactive and toxic, as well as highly polluting and damaging the environment. Novel uranium adsorbents with high biosorption capacity that are both eco-friendly and cost-effective are continuously being researched. The non-living biomass of the fresh water green microalga Chlorella sorokiniana was used to study the biosorption of uranium from aqueous solution. The biosorption of uranium from aqueous solutions onto the biomass of microalga C. sorokiniana was investigated in batch studies. The results showed that the optimal pH for uranium biosorption onto C. sorokiniana was 2.5. Uranium biosorption occurred quickly, with an equilibrium time of 90 min. The kinetics followed a pseudo-second-order rate equation, and the biosorption process fit the Langmuir isotherm model well, with a maximum monolayer adsorption capacity of 188.7 mg/g. The linear plot of the DKR model revealed that the mean free energy E = 14.8 kJ/mol, confirming chemisorption adsorption with ion exchange mode. The morphology of the algal biomass was investigated using a scanning electron microscope and energy dispersive X-ray spectroscopy. The FTIR spectroscopy analysis demonstrated that functional groups (carboxyl, amino, and hydroxyl) on the algal surface could contribute to the uranium biosorption process, which involves ion exchange and uranium absorption, and coordination mechanisms. Thermodynamic simulations indicated that the uranium biosorption process was exothermic (ΔH = -19.5562 kJ/mol) and spontaneous at lower temperatures. The current study revealed that C. sorokiniana non-living biomass could be an efficient, rapid, low-cost, and convenient method of removing uranium from aqueous solution.
Collapse
Affiliation(s)
- Mohamed A Embaby
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, Egypt
| | | | | | - Diaa A Marrez
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, Egypt.
| |
Collapse
|
36
|
Guo Y, Liu X, Xie S, Liu H, Wang C, Wang L. 3D ZnO modified biochar-based hydrogels for removing U(VI) in aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Tang X, Liu Y, Liu M, Chen H, Huang P, Ruan H, Zheng Y, Yang F, He R, Zhu W. Sulfur edge in molybdenum disulfide nanosheets achieves efficient uranium binding and electrocatalytic extraction in seawater. NANOSCALE 2022; 14:6285-6290. [PMID: 35411899 DOI: 10.1039/d2nr01000c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemical extraction of uranium in seawater provides a promising strategy for the persistent supply of fuel in the nuclear industry. However, current operation voltage for the electrochemical extraction of uranium in seawater generally requires a high applied voltage (∼-5 V). Herein, we constructed S-terminated MoS2 nanosheets with abundant electrochemically active S-edge sites for efficient binding and reduction of uranium. In 100 ppm of uranium-spiked seawater at an applied voltage of -3 V, the S-terminated MoS2 nanosheets exhibited a considerable extraction capacity of 1823 mg g-1. After 30 min electrolysis in 100 mL of real seawater with 100 times concentrated uranium (330 ppb), the extracted uranium (29.5 μg) consumes electricity of 8.7 mW h. Moreover, we concentrated 12 L of real seawater (3.3 ppb) into 20 mL of aqueous solution containing 1752.6 ppb U by adding a reverse potential. In the mechanistic study, we directly observed the uranium clusters and single atoms confined by the S-edge at atomic resolution, which served as the intermediate and accounted for the boosted uranium extraction in seawater.
Collapse
Affiliation(s)
- Xingrui Tang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Yan Liu
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Min Liu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Huimei Chen
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Pengling Huang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Haoming Ruan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Yamin Zheng
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Fan Yang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Sichuan Mianyang 621010, China.
| |
Collapse
|
38
|
He M, Chiang Albert Ng T, Huang S, Xu B, Yong Ng H. Ammonium removal and recovery from effluent of AnMBR treating real domestic wastewater using polymeric hydrogel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Spiridon I, Apostol I, Anghel NC, Zaltariov MF. Equilibrium, kinetic and thermodynamic studies of new materials based on xanthan gum and cobalt ferrite for dye adsorption. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Iuliana Spiridon
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica–Vodă Alley 41A Iași Romania
| | - Irina Apostol
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica–Vodă Alley 41A Iași Romania
| | - Narcis Cătălin Anghel
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica–Vodă Alley 41A Iași Romania
| | | |
Collapse
|
40
|
Ferrie L, Arrambide C, Darcos V, Prelot B, Monge S. Synthesis and evaluation of functional carboxylic acid based poly(εCL-st-αCOOHεCL)-b-PEG-b-poly(εCL-st-αCOOHεCL) copolymers for neodymium and cerium complexation. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Wu H, Zhang S, Liu L, Ren Y, Xue C, Wu W, Chen X, Jiang H. Controllable Fabrication of Molecularly Imprinted Microspheres with Nanoporous and Multilayered Structure for Dialysate Regeneration. NANOMATERIALS 2022; 12:nano12030418. [PMID: 35159766 PMCID: PMC8840109 DOI: 10.3390/nano12030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023]
Abstract
Adsorption of urea from dialysate is essential for wearable artificial kidneys (WRK). Molecularly imprinted microspheres with nanoporous and multilayered structures are prepared based on liquid–liquid phase separation (LLPS), which can selectively adsorb urea. In addition, we combine the microspheres with a designed polydimethylsiloxane (PDMS) chip to propose an efficient urea adsorption platform. In this work, we propose a formulation of LLPS including Tripropylene glycol diacrylate (TPGDA), ethanol, and acrylic acid (30% v/v), to prepare urea molecularly imprinted microspheres in a simple and highly controllable method. These microspheres have urea molecular imprinting sites on the surface and inside, allowing selective adsorption of urea and preservation of other essential constituents. Previous static studies on urea adsorption have not considered the combination between urea adsorbent and WRK. Therefore, we design the platform embedded with urea molecular imprinted microspheres, which can disturb the fluid motion and improve the efficiency of urea adsorption. These advantages enable the urea absorption platform to be highly promising for dialysate regeneration in WRK.
Collapse
Affiliation(s)
- Hongchi Wu
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; (L.L.); (C.X.)
- Correspondence: (H.W.); (H.J.)
| | - Shanguo Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, China; (S.Z.); (Y.R.); (W.W.)
| | - Lu Liu
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; (L.L.); (C.X.)
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, China; (S.Z.); (Y.R.); (W.W.)
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, China
| | - Chun Xue
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, China; (L.L.); (C.X.)
| | - Wenlong Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, China; (S.Z.); (Y.R.); (W.W.)
| | - Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, China; (S.Z.); (Y.R.); (W.W.)
- Correspondence: (H.W.); (H.J.)
| |
Collapse
|
42
|
Chen X, Wang Y, Lv J, Feng Z, Liu Y, Xia H, Li Y, Wang C, Zeng K, Liu Y, Yuan D. Simple one-pot synthesis of manganese dioxide modified bamboo-derived biochar composite for uranium(VI) removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj02292c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploitation of bamboo-derived biochar offers a lucrative opportunity for using moso bamboo due to its short growth cycle, large quantity and universality. Novel MnO2 modified bamboo-derived biochar composites (MnO2@BBC) were...
Collapse
|
43
|
Singh S, Kaur M, Bajwa B, Kaur I. Salicylaldehyde and 3-hydroxybenzoic acid grafted NH2-MCM-41: Synthesis, characterization and application as U(VI) scavenging adsorbents using batch mode, column and membrane systems. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Akl ZF, Zaki EG, ElSaeed SM. Green Hydrogel-Biochar Composite for Enhanced Adsorption of Uranium. ACS OMEGA 2021; 6:34193-34205. [PMID: 34963906 PMCID: PMC8697026 DOI: 10.1021/acsomega.1c01559] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/30/2021] [Indexed: 05/15/2023]
Abstract
Uranium is the backbone of the nuclear fuel used for energy production but is still a hazardous environmental contaminant; thus, its removal and recovery are important for energy security and environmental protection. So far, the development of biocompatible, efficient, economical, and reusable adsorbents for uranium is still a challenge. In this work, a new orange peel biochar-based hydrogel composite was prepared by graft polymerization using guar gum and acrylamide. The composite's structural, morphological, and thermal characteristics were investigated via Fourier transform infrared (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) methods. The composite's water absorption properties were investigated in different media. The performance of the prepared composite in adsorbing uranium (VI) ions from aqueous media was systematically investigated under varying conditions including solution's acidity and temperature, composite dose, contact time, and starting amount of uranium. The adsorption efficiency increased with solution pH from 2 to 5.5 and composite dose from 15 to 50 mg. The adsorption kinetics, isotherms, and thermodynamics parameters were analyzed to get insights into the process's feasibility and viability. The equilibrium data were better described through a pseudo-second-order mechanism and a Langmuir isotherm model, indicating a homogeneous composite surface with the maximum uranium (VI) adsorption capacity of 263.2 mg/g. The calculated thermodynamic parameters suggested that a spontaneous and endothermic process prevailed. Interference studies showed high selectivity toward uranium (VI) against other competing cations. Desorption and recyclability studies indicated the good recycling performance of the prepared composite. The adsorption mechanism was discussed in view of the kinetics and thermodynamics data. Based on the results, the prepared hydrogel composite can be applied as a promising, cost-effective, eco-friendly, and efficient material for uranium (VI) decontamination.
Collapse
Affiliation(s)
- Zeinab F. Akl
- Egyptian
Atomic Energy Authority (EAEA), P.O.
Box 11762 Cairo, Egypt
| | - Elsayed G. Zaki
- Egyptian
Petroleum Research Institute (EPRI), P.O. Box 11727 Cairo, Egypt
| | - Shimaa M. ElSaeed
- Egyptian
Petroleum Research Institute (EPRI), P.O. Box 11727 Cairo, Egypt
- National
Committee of Women in Science (ASRT), 11334 Cairo, Egypt
| |
Collapse
|
45
|
Development of porous material via chitosan-based Pickering medium internal phase emulsion for efficient adsorption of Rb +, Cs + and Sr 2. Int J Biol Macromol 2021; 193:1676-1684. [PMID: 34743028 DOI: 10.1016/j.ijbiomac.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022]
Abstract
The radioactive Rb+, Cs+ and Sr2+ have serious threat for the aquatic life and human health, its removal has been granted increasing concern. Hence the adsorbent with excellent adsorption performance and favourable reusability is strongly demanded. This work prepared a novel porous polymer of chitosan-g-polyacrylamide (CTS-g-PAM) by grafting the acrylamide (AM) onto the chitosan (CTS) with sufficient pore structure via an eco-friendly surfactant-free (corn oil)-in-water Pickering medium internal phase emulsion (O/W Pickering MIPE), solely stabilized by CTS. Interestingly, its pore structure could be tuned by varying the emulsion character via changing the molecular weight and concentration of CTS, as well as the pH values. Due to the abundant -COO- and -NH2 functional groups in the porous material of CTS-g-PAM, the high adsorption capacities of 195.43, 237.44 and 185.63 mg/g for Rb+, Cs+ and Sr2+ could be reached within 40, 30 and 20 min, respectively. Moreover, the CTS-g-PAM had excellent regeneration ability and reusability. Herein, we provided a feasible and low-cost pathway for preparation of the porous adsorbent with tunable porous structure for adsorption and separation application.
Collapse
|
46
|
Zeng D, Yuan L, Zhang P, Wang L, Li Z, Wang Y, Liu Y, Shi W. Hydrolytically stable foamed HKUST-1@CMC composites realize high-efficient separation of U(VI). iScience 2021; 24:102982. [PMID: 34485864 PMCID: PMC8405966 DOI: 10.1016/j.isci.2021.102982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
HKUST-1@CMC (HK@CMC) composites that show good acid and alkali resistance and radiation resistance were successfully synthesized by introducing carboxymethyl cellulose (CMC) onto the surface of HKUST-1 using a foaming strategy. For the first time, the composites were explored as efficient adsorbents for U(VI) trapping from aqueous solution, with encouraging results of large adsorption capacity, fast adsorption kinetics, and desirable selectivity toward U(VI) over a series of competing ions. More importantly, a hybrid derivative film was successfully prepared for the dynamic adsorption of U(VI). The results show that ∼90% U(VI) can be removed when 45 mg L-1 U(VI) was passed through the film one time, and the removal percentage is still more than 80% even after four adsorption-desorption cycles, ranking one of the most practical U(VI) scavengers. This work offers new clues for application of the Metal-organic-framework-based materials in the separation of radionuclides from wastewater.
Collapse
Affiliation(s)
- Dejun Zeng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Zhang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Lin Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zijie Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Wang Z, Wang Y, Yao C. Highly efficient removal of uranium(VI) from aqueous solution using the Chitosan- Hexachlorocyclotriphosphazene composite. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07944-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Lahiri S, Mishra A, Mandal D, Bhardwaj RL, Gogate PR. Sonochemical recovery of uranium from nanosilica-based sorbent and its biohybrid. ULTRASONICS SONOCHEMISTRY 2021; 76:105667. [PMID: 34265634 PMCID: PMC8281597 DOI: 10.1016/j.ultsonch.2021.105667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Use of nanomaterials to remove uranium by adsorption from nuclear wastewater is widely applied, though not much work is focused on the recovery of uranium from the sorbents. The present work reports the recovery of adsorbed uranium from the microstructures of silica nanoparticles (SiO2M) and its functionalized biohybrid (fBHM), synthesized with Streptococcus lactis cells and SiO2M, intensified using ultrasound. Effects of temperature, concentration of leachant (nitric acid), sonic intensity, and operating frequency on the recovery as well as kinetics of recovery were thoroughly studied. A comparison with the silent operation demonstrated five and two fold increase due to the use of ultrasound under optimum conditions in the dissolution from SiO2M and fBHM respectively. Results of the subsequent adsorption studies using both the sorbents after sonochemical desorption have also been presented with an aim of checking the efficacy of reusing the adsorbent back in wastewater treatment. The SiO2M and fBHM adsorbed 69% and 67% of uranium respectively in the second cycle. The adsorption capacity of fBHM was found to reduce from 92% in the first cycle to 67% due to loss of adsorption sites in the acid treatment. Recovery and reuse of both the nuclear material and the sorbent (with some make up or activation) would ensure an effective nuclear remediation technique, catering to UN's Sustainable Development Goals.
Collapse
Affiliation(s)
- S Lahiri
- Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai 400094, India.
| | - A Mishra
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - D Mandal
- Alkali Material & Metal Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai 400094, India
| | - R L Bhardwaj
- Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - P R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
49
|
Son MH, Park SW, Jung YK. Antioxidant and anti-aging carbon quantum dots using tannic acid. NANOTECHNOLOGY 2021; 32:415102. [PMID: 34297003 DOI: 10.1088/1361-6528/ac027b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Overexpression of collagenase, elastase, and tyrosinase is caused by external factors such as ultraviolet (UV) radiation and stress, resulting in wrinkle formation and freckles through the loss of skin elasticity and skin pigmentation. In this study, we developed novel carbon quantum dots (CQDs) with antioxidant and anti-aging properties using tannic acid as a carbon source through a simple microwave-assisted pyrolysis method. The synthesized tannic acid-derived CQDs (T-CQDs) showed bright blue fluorescence (QY = 28.2 ± 4.0%), exhibiting maximum emission at 430 nm under 350 nm excitation. Even though small amount of the T-CQDs (3μg ml-1) was used, they exhibited excellent free radical scavenging ability (82.8 ± 4.3%). Also, the T-CQDs (10μg ml-1) revealed remarkable inhibitory activity against skin aging-related collagenase (77.6 ± 4.8%), elastase (52.6 ± 1.0%), and tyrosinase (44.2 ± 1.3%), demonstrating their antioxidant and anti-aging effects. Furthermore, their antioxidant and anti-aging properties were superior to those of tannic acid, L-ascorbic acid, and quercetin used as positive controls. Finally, the T-CQDs effectively suppressed UV-induced reactive oxygen species generation by 30% at the cellular levels and showed high cell viability (99.7 ± 0.8%) even at 500μg ml-1. These results demonstrate that the T-CQDs with superior antioxidant, anti-aging properties, and low cytotoxicity can be utilized as novel anti-aging materials in cosmetic and nanomedicine fields.
Collapse
Affiliation(s)
- Min Hyeong Son
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Seok Won Park
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Yun Kyung Jung
- Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
- School of Biomedical Engineering, Inje University, Gimhae, 50834, Republic of Korea
| |
Collapse
|
50
|
Giannakoudakis DA, Anastopoulos I, Barczak M, Αntoniou Ε, Terpiłowski K, Mohammadi E, Shams M, Coy E, Bakandritsos A, Katsoyiannis IA, Colmenares JC, Pashalidis I. Enhanced uranium removal from acidic wastewater by phosphonate-functionalized ordered mesoporous silica: Surface chemistry matters the most. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125279. [PMID: 33607585 DOI: 10.1016/j.jhazmat.2021.125279] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
The removal of uranium species from aqueous phases using non-hazardous chemicals is still an open challenge, and remediation by adsorption is a prosperous strategy. Among the most crucial concerns regarding the design of an efficient material as adsorbent are, except the cost and the green character, the feasibility to be stable and effective under acidic pH, and to selectively adsorb the desired metal ion (e.g. uranium). Herein, we present a phosphonate functionalized ordered mesoporous silica (OMS-P), prepared by a one-step co-condensation synthesis. The physicochemical features of the material were determined by HR-TEM, XPS, EDX, N2 sorption, and solid NMR, while the surface zeta potential was also measured. The removal efficiency was evaluated at two different temperatures (20 and 50 °C) in acidic environment to avoid interferences like solid phase formation or carbonate complexation and the adsorption isotherms, including data fitting with Langmuir and Freundlich models and thermodynamic parameters are presented and discussed. The high and homogeneous dispersion of the phosphonate groups within the entire silica's structure led to the greatest reported up-todays capacity (345 mg/g) at pH = 4, which was achieved in less than 10 min. Additionally, OMS-P showed that the co-presence of other polyvalent cation like Eu(III) did not affect the efficiency of adsorption, which occurs via inner-sphere complex formation. The comparison to the non-functionalized silica (OMS) revealed that the key feature towards an efficient, stable, and selective removal of the U(VI) species is the specific surface chemistry rather than the textural and structural features. Based on all the results and spectroscopic validations of surface adsorbed U(VI), the main interactions responsible for the elevated uranium removal were proposed.
Collapse
Affiliation(s)
| | - Ioannis Anastopoulos
- Department of Chemistry, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus; Department of Electronics Engineering, School of Engineering, Hellenic Mediterranean University, Chania, Crete 73100, Greece.
| | - Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland.
| | - Εvita Αntoniou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | - Konrad Terpiłowski
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland
| | - Elmira Mohammadi
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc 78371, Czech Republic
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc 78371, Czech Republic; Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 708 00 Ostrava-Poruba, Czech Republic
| | - Ioannis A Katsoyiannis
- Aristotle University, Department of Chemistry, Laboratory of Chemical and Environmental Technology, 54124 Thessaloniki, Greece
| | - Juan Carlos Colmenares
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus.
| |
Collapse
|