1
|
Wang S, Li Z, Zhao L, Lin Y, Che H. Polycarbonate-Based Polymersome Photosensitizers with Cell-Penetrating Properties for Improved Killing of Cancer Cells. Biomacromolecules 2025; 26:1251-1259. [PMID: 39812017 DOI: 10.1021/acs.biomac.4c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications. In this work, we present the development of guanidine-functionalized biodegradable photosensitizers based on poly(trimethylene carbonate) (PTMC) block copolymers, which can self-assemble into polymersomes. The presence of guanidine groups on the surface of polymersomes can significantly enhance the cellular uptake efficiency of photosensitizers, thereby improving the intracellular production of reactive oxygen species (ROS). The in vitro study demonstrates that the guanidinylated polymersome photosensitizers can promote the killing of cancer cells compared to unfunctionalized polymersomes in the presence of light irradiation. The guanidine-functionalized PTMC-based polymersome photosensitizers, with the integration of cell-targeting ability and biodegradability, are anticipated to provide a novel strategy for developing advanced biomedical polymer systems for PDT.
Collapse
Affiliation(s)
- Suzhen Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhezhe Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lili Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuerong Lin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hailong Che
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Wang J, Zhao Z, Wang Q, Shi J, Wong DWC, Cheung JCW. Advancements in Nanoparticle-Based Adjuvants for Enhanced Tuberculosis Vaccination: A Review. Vaccines (Basel) 2024; 12:1335. [PMID: 39771997 PMCID: PMC11680411 DOI: 10.3390/vaccines12121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective vaccines. Nanoparticle-based adjuvants represent a promising approach to enhancing tuberculosis vaccine efficacy. This review focuses on the advantages of nanoparticulate-loaded vaccines, emphasizing their ability to improve antigen delivery, safety, and immunogenicity. We discuss the various types of nanoparticles and their unique physicochemical properties that contribute to improved antigen delivery and sustained immune activation. Additionally, we highlight the advantages of nanoparticle-based adjuvants in inducing strong cellular and humoral immunity, enhancing vaccine stability, and reducing adverse effects. Finally, we address current challenges and future perspectives in the application of these novel adjuvants, emphasizing their potential to transform TB vaccine strategies and ultimately contribute to better global health outcomes.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Department of Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430073, China
| | - Zian Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jingyu Shi
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
3
|
Song Y, Teng L, Chen Y, Dong CM. Glycopolypeptide Coordinated Nanovaccine: Fabrication, Characterization, and Antitumor Immune Response. CHEM & BIO ENGINEERING 2024; 1:633-646. [PMID: 39974696 PMCID: PMC11835264 DOI: 10.1021/cbe.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 02/21/2025]
Abstract
Cancer nanovaccine is a frontier immunotherapy strategy, in which the delivery carrier can protect antigen and adjuvant from degradation, increase blood circulation half-life, and improve antigen permeability and presentation, thus enhancing the security and potency of nanovaccine. To address the barriers of antigen delivery, we design and fabricate a kind of intracellular pH-sensitive glycopolypeptide coordinated nanovaccine (OVA-HPGM-Mn) with ∼30% loading capacity of ovalbumin (OVA). The nanovaccine OVA-HPGM-Mn could specifically deliver antigen to dendritic cells (DCs) and effectively escape from endolysosomes to cytoplasm after 6 h of incubation, while the blank counterpart HPGM-Mn acted as an adjuvant to promote DCs maturation and increase the percentage of maturated cells to 26.5% from 11.8% in vitro. Furthermore, the mannosylated polypeptide nanovaccine prolonged the retention time of OVA for 72 h to facilitate 29.5% DCs maturation in lymph nodes, activated 48.8% CD8+T cells in spleen, increased the CD8+/CD4+T cell ratio twice to 1.06, and upregulated the levels of pro-inflammatory cytokines including TNF-α, IFN-γ, and IL-6, thus inhibiting the tumor growth of ∼80%. Consequently, this work provides a versatile strategy for the fabrication of glycosylated polypeptide coordinated nanomaterials for antigen delivery and cancer immunotherapy.
Collapse
Affiliation(s)
- Yingying Song
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Teng
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanzheng Chen
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical
Engineering, Frontiers Science Center for Transformative Molecules,
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Li Z, Wang S, Zhao L, Feng S, Che H. Synthesis and Characterization of Guanidinylated CO-Releasing Micelles Based on Biodegradable Polycarbonate. Biomacromolecules 2024; 25:5149-5159. [PMID: 39045816 DOI: 10.1021/acs.biomac.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
As one of the gaseous signals in living cells, carbon monoxide (CO) not only participates in many biological activities but also serves as a therapeutic agent for the treatment of diseases. However, the limited applicability of CO in gas therapy emerges from the inconvenience of direct administration of CO. Here we reported the construction of guanidinylated CO-releasing micelles, which are composed of poly(trimethylene carbonate) (PTMC)-based CO donors. The in vitro studies demonstrated that micelles in the presence of light irradiation can induce cancer death, whereas no obvious toxicity to normal cells was observed. Moreover, the functionalization of guanidine groups imparts improved cellular uptake efficiency to micelles owing to the specific interactions with the surface of cells, which synergistically increase the anticancer capacity of the system. The guanidine-functionalized CO-releasing micelles provide a new strategy for the construction of CO-releasing nanocarriers, which are expected to find applications in gas therapeutics.
Collapse
Affiliation(s)
- Zhezhe Li
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Suzhen Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lili Zhao
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shaofeng Feng
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Choi YS, Felgner J, Jan S, Hernandez-Davies JE, Davies DH, Kwon YJ. Administration sequence- and formation-dependent vaccination using acid-degradable polymeric nanoparticles with high antigen encapsulation capability. J Mater Chem B 2024; 12:6577-6586. [PMID: 38872501 DOI: 10.1039/d3tb02834h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Vaccines aim to efficiently and specifically activate the immune system via a cascade of antigen uptake, processing, and presentation by antigen-presenting cells (APCs) to CD4 and CD8 T cells, which in turn drive humoral and cellular immune responses. The specific formulation of vaccine carriers can not only shield the antigens from premature sequestering before reaching APCs but also favorably promote intracellular antigen presentation and processing. This study compares two different acid-degradable polymeric nanoparticles that are capable of encapsulating a moderately immunogenic antigen, GFP, at nearly full efficacy via electrostatic interactions or molecular affinity between His tag and Ni-NTA-conjugated monomners. This resulted in GFP-encapsulating NPs composed of ketal monomers and crosslinkers (KMX/GFP NPs) and NTA-conjugated ketal monomers and crosslinkers (NKMX/GFP NPs), respectively. Encapsulated GFP was found to be released more rapidly from NKMX/GFP NPs (electrostatic encapsulation) than from KMX/GFP NPs (affinity-driven encapsulation). In vivo vaccination studies demonstrated that while repeated injections of either NP formulation resulted in poorer generation of anti-GFP antibodies than injections of the GFP antigen itself, sequential injections of NPs and GFP as prime and booster vaccines, respectively, restored the humoral response. We proposed that NPs primarily assist APCs in antigen presentation by T cells, and B cells need to be further stimulated by free protein antigens to produce antibodies. The findings of this study suggest that the immune response can be modulated by varying the chemistry of vaccine carriers and the sequences of vaccination with free antigens and antigen-encapsulating NPs.
Collapse
Affiliation(s)
- Yeon Su Choi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA.
| | - Jiin Felgner
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA.
| | - Sharon Jan
- Vaccine Research and Development Center, University of California, Irvine, CA 92697, USA.
| | | | - D Huw Davies
- Vaccine Research and Development Center, University of California, Irvine, CA 92697, USA.
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Lamrayah M, Phelip C, Coiffier C, Lacroix C, Willemin T, Trimaille T, Verrier B. A Polylactide-Based Micellar Adjuvant Improves the Intensity and Quality of Immune Response. Pharmaceutics 2022; 14:pharmaceutics14010107. [PMID: 35057003 PMCID: PMC8778782 DOI: 10.3390/pharmaceutics14010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Micelles from amphiphilic polylactide-block-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) (PLA-b-P(NAS-co-NVP)) block copolymers of 105 nm in size were characterized and evaluated in a vaccine context. The micelles were non-toxic in vitro (both in dendritic cells and HeLa cells). In vitro fluorescence experiments combined with in vivo fluorescence tomography imaging, through micelle loading with the DiR near infrared probe, suggested an efficient uptake of the micelles by the immune cells. The antigenic protein p24 of the HIV-1 was successfully coupled on the micelles using the reactive N-succinimidyl ester groups on the micelle corona, as shown by SDS-PAGE analyses. The antigenicity of the coupled antigen was preserved and even improved, as assessed by the immuno-enzymatic (ELISA) test. Then, the performances of the micelles in immunization were investigated and compared to different p24-coated PLA nanoparticles, as well as Alum and MF59 gold standards, following a standardized HIV-1 immunization protocol in mice. The humoral response intensity (IgG titers) was substantially similar between the PLA micelles and all other adjuvants over an extended time range (one year). More interestingly, this immune response induced by PLA micelles was qualitatively higher than the gold standards and PLA nanoparticles analogs, expressed through an increasing avidity index over time (>60% at day 365). Taken together, these results demonstrate the potential of such small-sized micellar systems for vaccine delivery.
Collapse
Affiliation(s)
- Myriam Lamrayah
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
- Correspondence: (M.L.); (T.T.)
| | - Capucine Phelip
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
| | - Céline Coiffier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
| | - Céline Lacroix
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
| | - Thibaut Willemin
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
| | - Thomas Trimaille
- Laboratoire Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Lyon 1, Université de Lyon, 69622 Villeurbanne, France
- Correspondence: (M.L.); (T.T.)
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5305, Université Lyon 1, Université de Lyon, 69367 Lyon, France; (C.P.); (C.C.); (C.L.); (T.W.); (B.V.)
| |
Collapse
|
7
|
Al-Mansoori L, Elsinga P, Goda SK. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy. Biomed Pharmacother 2021; 144:112260. [PMID: 34607105 DOI: 10.1016/j.biopha.2021.112260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/09/2023] Open
Abstract
Abnormal structural and molecular changes in malignant tissues were thoroughly investigated and utilized to target tumor cells, hence rescuing normal healthy tissues and lowering the unwanted side effects as non-specific cytotoxicity. Various ligands for cancer cell specific markers have been uncovered and inspected for directional delivery of the anti-cancer drug to the tumor site, in addition to diagnostic applications. Over the past few decades research related to the ligand targeted therapy (LTT) increased tremendously aiming to treat various pathologies, mainly cancers with well exclusive markers. Malignant tumors are known to induce elevated levels of a variety of proteins and peptides known as cancer "markers" as certain antigens (e.g., Prostate specific membrane antigen "PSMA", carcinoembryonic antigen "CEA"), receptors (folate receptor, somatostatin receptor), integrins (Integrin αvβ3) and cluster of differentiation molecules (CD13). The choice of an appropriate marker to be targeted and the design of effective ligand-drug conjugate all has to be carefully selected to generate the required therapeutic effect. Moreover, since some tumors express aberrantly high levels of more than one marker, some approaches investigated targeting cancer cells with more than one ligand (dual or multi targeting). We aim in this review to report an update on the cancer-specific receptors and the vehicles to deliver cytotoxic drugs, including recent advancements on nano delivery systems and their implementation in targeted cancer therapy. We will discuss the advantages and limitations facing this approach and possible solutions to mitigate these obstacles. To achieve the said aim a literature search in electronic data bases (PubMed and others) using keywords "Cancer specific receptors, cancer specific antibody, tumor specific peptide carriers, cancer overexpressed proteins, gold nanotechnology and gold nanoparticles in cancer treatment" was carried out.
Collapse
Affiliation(s)
- Layla Al-Mansoori
- Qatar University, Biomedical Research Centre, Qatar University, Doha 2713, Qatar.
| | - Philip Elsinga
- University of Groningen, University Medical Center Groningen (UMCG), Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sayed K Goda
- Cairo University, Faculty of Science, Giza, Egypt; University of Derby, College of Science and Engineering, Derby, UK.
| |
Collapse
|
8
|
Sivagnanam S, Basak M, Kumar A, Das K, Mahata T, Rana P, Sengar AS, Ghosh S, Subramanian M, Stewart A, Maity B, Das P. Supramolecular Structures Generated via Self-Assembly of a Cell Penetrating Tetrapeptide Facilitate Intracellular Delivery of a Pro-apoptotic Chemotherapeutic Drug. ACS APPLIED BIO MATERIALS 2021; 4:6807-6820. [PMID: 35006981 DOI: 10.1021/acsabm.1c00530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Development of drug carriers, which can chaperone xenobiotics directly to their site of action, is an essential step for the advancement of precision medicine. Cationic nanoparticles can be used as a drug delivery platform for various agents including chemotherapeutics, oligonucleotides, and antibodies. Self-assembly of short peptides facilitates the formation of well-defined nanostructures suitable for drug delivery, and varying the polarity of the self-assembly medium changes the nature of noncovalent interactions in such a way as to generate numerous unique nanostructures. Here, we have synthesized an ultrashort cell-penetrating tetrapeptide (sequence Lys-Val-Ala-Val), with Lys as a cationic amino acid, and studied the self-assembly property of the BOC-protected (L1) and -deprotected (L2) analogues. Spherical assemblies obtained from L1/L2 in a 1:1 aqueous ethanol system have the ability to encapsulate small molecules and successfully enter into cells, thus representing them as potential candidates for intracellular drug delivery. To verify the efficacy of these peptides in the facilitation of drug efficacy, we generated encapsulated versions of the chemotherapeutic drug doxorubicin (Dox). L1- and L2-encapsulated Dox (Dox-L1 and Dox-L2), similar to the unencapsulated drug, induced upregulation of regulator of G protein signaling 6 (RGS6) and Gβ5, the critical mediators of ATM/p53-dependent apoptosis in Dox-treated cancer cells. Further, Dox-L1/L2 damaged DNA, triggered oxidative stress and mitochondrial dysfunction, compromised cell viability, and induced apoptosis. The ability of Dox-L1 to mediate cell death could be ameliorated via knockdown of either RGS6 or Gβ5, comparable to the results obtained with the unencapsulated drug. These data provide an important proof of principle, identifying L1/L2 as drug delivery matrices.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Madhuri Basak
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGI) Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abilesh Kumar
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGI) Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Mahata
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGI) Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Priya Rana
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Abhishek Singh Sengar
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGI) Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Soumyajit Ghosh
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre (BARC), Anushaktinagar, Mumbai 400085, Maharashtra, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGI) Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
9
|
Hu S, Jiang H, Zhu J, Wang J, Wang S, Tang J, Zhou Z, Liu S, Shen Y. Tumor-specific fluorescence activation of rhodamine isothiocyanate derivatives. J Control Release 2021; 330:842-850. [DOI: 10.1016/j.jconrel.2020.10.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
10
|
Chitosan hydrogel loaded with recombinant protein containing epitope C from HSP90 of Candida albicans induces protective immune responses against systemic candidiasis. Int J Biol Macromol 2021; 173:327-340. [PMID: 33482211 DOI: 10.1016/j.ijbiomac.2021.01.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022]
Abstract
We reported previously a recombinant protein (rP-HSP90C) containing epitope C from heat shock protein 90 of Candida albicans mediates protective immune responses against systemic candidiasis. However, it exhibits weak immunogenicity. Therefore, we evaluated the potential and mechanisms of thermosensitive chitosan hydrogel (CH-HG) as an adjuvant in rP-HSP90C vaccine. CH-HG synthesized by ionic cross-linking showed buffering capacity and control-released rP-HSP90C in vitro. In comparison to naked rP-HSP90C, CH-HG-loaded rP-HSP90C (CH-HG/rP-HSP90C) not only evoked a long-lasting rP-HSP90C-specific IgG, but also enhanced Th1, Th2, Th17 responses and the ratio of Th1/Th2 in vivo; Meanwhile, CH-HG/rP-HSP90C provoked a stronger CTL response than rP-HSP90C. Notably, CH-HG increased the protective immune responses against systemic candidiasis in rP-HSP90C-immunized mice since CH-HG/rP-HSP90C enhanced the survival rate of infected mice, and diminished the CFUs in kidneys compared to rP-HSP90C, which were similar to that of QuilA. Further in vitro investigation displayed CH-HG upgraded the expressions of costimulators, MHCs and cytokines in BMDCs compared to rP-HSP90C;CH-HG also promoted cellular uptake, endosomal escape and "cross-presentation" of rP-HSP90C. In addition, it recruited immune cells at the injection site. Our study demonstrated that CH-HG can be an efficient adjuvant in fungal vaccines.
Collapse
|
11
|
Lee ALZ, Yang C, Gao S, Wang Y, Hedrick JL, Yang YY. Biodegradable Cationic Polycarbonates as Vaccine Adjuvants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52285-52297. [PMID: 33179910 DOI: 10.1021/acsami.0c09649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, biodegradable cationic polycarbonate and polylactide block copolymers were synthesized and successfully used as novel vaccine adjuvants to provide enhanced anticancer immunity. The polymers formed nanoparticles with the model vaccine, ovalbumin (OVA), and the immunostimulant toll-like receptor 3 agonist poly(I:C) (a synthetic analog of the double-stranded RNA). Higher uptake of poly(I:C) by the bone marrow-derived dendritic cells and macrophages and OVA by dendritic cells was observed when delivered using the polymer adjuvant. In vivo experiments showed that these nanoparticles remained longer in the subcutaneous injection site as compared to OVA alone and led to higher production of anti-OVA specific antibodies with prolonged immunostimulation. When OVA was combined with poly(I:C) that was either co-entrapped in the same particles or as separate particles, a comparable level of anti-OVA IgG1 antibodies and interleukin-6 (IL-6) was produced in mouse blood plasma, and a similar level of cytotoxic T lymphocyte (CTL) response in mice was stimulated as compared to OVA/Alum particles. Furthermore, tumor rejection in the mice that were vaccinated for 9 months with the formulations containing the polymer adjuvant was stronger than the other treatment groups without the polymer. Notably, the cationic polycarbonates were not associated with any adverse in vivo effects. Thus, these biodegradable polymers may be promising substitutes for aluminum-based adjuvants in vaccine formulations.
Collapse
Affiliation(s)
- Ashlynn L Z Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, 31 Biopolis Way, #09-01 The Nanos, Singapore 138669, Singapore
| | - Yanming Wang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - James L Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
12
|
Wang D, Wang J, Song J, Shen Q, Wang R, Lu W, Pan J, Xie C, Liu M. Guanidyl and imidazolyl integration group-modified PAMAM for gastric adenocarcinoma gene therapy. J Gene Med 2020; 22:e3240. [PMID: 32558063 DOI: 10.1002/jgm.3240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Gene therapy has become a potential strategy for cancer treatment. However, the development of efficient gene vectors restricts the application for cancer gene treatment. Functionalization of polymers with functional groups can significantly improve their transfection efficacy. METHODS Guanidyl can form bidentate hydrogen with the phosphate groups and phosphate groups are present in DNA and cell membranes, thus increasing DNA condensation and cellular uptake. Imidazolyl has high buffering capacity in endosomal/lysosomal acidic environment, facilitating endosome/lysosome escape. We designed a structure-integrated group of guanidyl and imidazolyl, 2-aminoimidazole (AM), which was conjugated to PAMAM generation 2 (G2) for gene therapy of gastric adenocarcinoma. RESULTS Molecular docking results illustrated that G2-AM bound with DNA molecule effectively via multiple interactions. A quantitative luciferase assay showed that the transfection efficacy of G2-AM/pGL3 was approximately 100-fold greater than that of G2/pGL3, 90-fold greater than that of imidazolyl-modified G2 (G2-M) /pGL3 and 100-fold greater than that of G5/pGL3 without additional cytotoxicity. After introducing the pTRAIL gene into gastric adenocarcinoma cells, the apoptosis ratio of gastric adenocarcinoma cells treated with G2-AM/pTRAIL was 36.95%, which is much larger than the corresponding ratio of G2/pTRAIL (7.45%), G2-M/pTRAIL (11.33%) and G5/pTRAIL (23.2%). In a gastric adenocarcinoma xenograft model, the in vivo transfection efficacy of G2-AM/pRFP was much greater than that of G2/pRFP and G2-M/pRFP. CONCLUSIONS These results demonstrate that AM could be modified with cationic polymers for potential application in gene delivery and gastric adenocarcinoma gene therapy.
Collapse
Affiliation(s)
- Dongli Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Jing Wang
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Song
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Qing Shen
- Hangzhou YITU Healthcare Technology Co. Ltd, Hangzhou, China
| | - Ruifeng Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Jun Pan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| |
Collapse
|
13
|
Dong Z, Wang Q, Huo M, Zhang N, Li B, Li H, Xu Y, Chen M, Hong H, Wang Y. Mannose-Modified Multi-Walled Carbon Nanotubes as a Delivery Nanovector Optimizing the Antigen Presentation of Dendritic Cells. ChemistryOpen 2019; 8:915-921. [PMID: 31338275 PMCID: PMC6625155 DOI: 10.1002/open.201900126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
Dendritic cells (DCs) based cancer immunotherapy is largely dependent on adequate antigen delivery and efficient induction of DCs maturation to produce sufficient antigen presentation and ultimately lead to substantial activation of tumor-specific CD8+ T cells. Carbon nanotubes (CNTs) have attracted great attention in biomedicine because of their unique physicochemical properties. In order to effectively deliver tumor antigens to DCs and trigger a strong anti-tumor immune response, herein, a specific DCs target delivery system was assembled by using multi-walled carbon nanotubes modified with mannose which can specifically bind to the mannose receptor on DCs membrane. Ovalbumin (OVA) as a model antigen, could be adsorbed on the surface of mannose modified multi-walled carbon nanotubes (Man-MWCNTs) with a large drug loading content. This nanotube-antigen complex showed low cytotoxicity to DCs and was efficiently engulfed by DCs to induce DCs maturation and cytokine release in vitro, indicating that it could be a potent antigen-adjuvant nanovector of efficient antigen delivery for therapeutic purpose.
Collapse
Affiliation(s)
- Zhipeng Dong
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Qiyan Wang
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Ming Huo
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Nanxia Zhang
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Bingxia Li
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Hongmei Li
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Yisong Xu
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| | - Meng Chen
- Nanjing Foreign Language SchoolNO.30 East Beijing RoadNanjing210029China
| | - Hao Hong
- Center for Molecular Imaging, Department of RadiologyUniversity of Michigan, Ann Arbor, Michigan48109-2200United States
| | - Yue Wang
- Key Laboratory of Biomedical Functional Materials, School of SciencesChina Pharmaceutical UniversityNanjing211198, Jiangsu ProvinceChina
| |
Collapse
|
14
|
Trimaille T, Lacroix C, Verrier B. Self-assembled amphiphilic copolymers as dual delivery system for immunotherapy. Eur J Pharm Biopharm 2019; 142:232-239. [PMID: 31229673 DOI: 10.1016/j.ejpb.2019.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/03/2019] [Accepted: 06/19/2019] [Indexed: 01/07/2023]
Abstract
Subunit vaccines using recombinant antigens appear as the privileged vaccination technology for safety reasons but still require the development of carriers/adjuvants ensuring optimal immunogenicity and efficacy. Micelles from self-assembled amphiphilic copolymers have recently emerged as highly relevant and promising candidates owing to their ease of preparation, low size (entering in lymphatic capillaries for reaching lymph nodes), size/surface tunability and chemical versatility enabling introduction of stimuli (e.g. pH) responsive features and biofunctionalization with dedicated molecules. In particular, research efforts have increasingly focused on dendritic cells (DCs) targeting and activation by co-delivering (with antigen) ligands of pattern recognition receptors (PRRs, e.g. toll-like receptors). Such strategy has appeared as one of the most effective for eliciting CD 8+ T-cell response, which is crucial in the eradication of tumors and numerous infectious diseases. In this short review, we highlight the recent advances in such micelle-based carriers in subunit vaccination and how their precise engineering can be a strong asset for guiding and controlling immune responses.
Collapse
Affiliation(s)
- Thomas Trimaille
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, Marseille, France.
| | - Céline Lacroix
- Université Lyon 1, CNRS, UMR 5305, Biologie Tissulaire et Ingénierie Thérapeutique, IBCP, 69367 Lyon, France
| | - Bernard Verrier
- Université Lyon 1, CNRS, UMR 5305, Biologie Tissulaire et Ingénierie Thérapeutique, IBCP, 69367 Lyon, France
| |
Collapse
|
15
|
Song H, Yang P, Huang P, Zhang C, Kong D, Wang W. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 2019; 9:2299-2314. [PMID: 31149045 PMCID: PMC6531311 DOI: 10.7150/thno.30577] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/24/2019] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy, an attractive option for cancer treatment, necessitates the direct stimulation of immune cells in vivo and the simultaneous effective inhibition of immunosuppressive tumor microenvironments. Methods: In the present study, we developed an injectable PEG-b-poly(L-alanine) hydrogel for co-delivery of a tumor vaccine and dual immune checkpoint inhibitors to increase tumor immunotherapy efficacy. Tumor cell lysates, granulocyte-macrophage colony stimulating factor (GM-CSF), and immune checkpoint inhibitors (anti-CTLA-4/PD-1 antibody) were readily encapsulated in the porous hydrogel during the spontaneous self-assembly of polypeptide in aqueous solution. Results: Sustained release of tumor antigens and GM-CSF persistently recruited and activated dendritic cells (DCs) and induced a strong T-cell response in vivo, which was further enhanced by the immune checkpoint therapy. The hydrogel vaccine also upregulated the production of IgG and the secretion of cytokines including IFN-γ, IL-4, and TNF-α. Importantly, the hydrogel-based combination therapy had superior immunotherapy effects against melanoma and 4T-1 tumor in comparison with the vaccine alone or in addition with a single immune checkpoint blockade. In studying the underlying mechanism, we found that the hydrogel-based combinatorial immunotherapy not only significantly increased the activated effector CD8+ T cells within the spleens and tumors of vaccinated mice, but also reduced the ratio of Tregs. Conclusion: Our findings indicate that the polypeptide hydrogel can be used as an effective sustained delivery platform for vaccines and immune checkpoint inhibitors, providing an advanced combinatorial immunotherapy approach for cancer treatment.
Collapse
|
16
|
Huang P, Wang X, Liang X, Yang J, Zhang C, Kong D, Wang W. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater 2019; 85:1-26. [PMID: 30579043 DOI: 10.1016/j.actbio.2018.12.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022]
Abstract
Immunotherapy is moving to the frontier of cancer treatment. Drug delivery systems (DDSs) have greatly advanced the development of cancer immunotherapeutic regimen and combination treatment. DDSs can spatiotemporally present tumor antigens, drugs, immunostimulatory molecules, or adjuvants, thus enabling the modulation of immune cells including dendritic cells (DCs) or T-cells directly in vivo and thereby provoking robust antitumor immune responses. Cancer vaccines, immune checkpoint blockade, and adoptive cell transfer have shown promising therapeutic efficiency in clinic, and the incorporation of DDSs may further increase antitumor efficiency while decreasing adverse side effects. This review focuses on the use of nano-, micro-, and macroscale DDSs for co-delivery of different immunostimulatory factors to reprogram the immune system to combat cancer. Regarding to nanoparticle-based DDSs, we emphasize the nanoparticle-based tumor immune environment modulation or as an addition to gene therapy, photodynamic therapy, or photothermal therapy. For microparticle or capsule-based DDSs, an overview of the carrier type, fabrication approach, and co-delivery of tumor vaccines and adjuvants is introduced. Finally, macroscale DDSs including hydrogels and scaffolds are also included and their role in personalized vaccine delivery and adoptive cell transfer therapy are described. Perspective and clinical translation of DDS-based cancer immunotherapy is also discussed. We believe that DDSs hold great potential in advancing the fundamental research and clinical translation of cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Immunotherapy is moving to the frontier of cancer treatment. Drug delivery systems (DDSs) have greatly advanced the development of cancer immunotherapeutic regimen and combination treatment. In this comprehensive review, we focus on the use of nano-, micro-, and macroscale DDSs for the co-delivery of different immunostimulatory factors to reprogram the immune system to combat cancer. We also propose the perspective on the development of next-generation DDS-based cancer immunotherapy. This review indicates that DDSs can augment the antitumor T-cell immunity and hold great potential in advancing the fundamental research and clinical translation of cancer immunotherapy by simultaneously delivering dual or multiple immunostimulatory drugs.
Collapse
|
17
|
Song H, Huang P, Niu J, Shi G, Zhang C, Kong D, Wang W. Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials 2018; 159:119-129. [DOI: 10.1016/j.biomaterials.2018.01.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/13/2017] [Accepted: 01/01/2018] [Indexed: 12/27/2022]
|
18
|
Bucci R, Das P, Iannuzzi F, Feligioni M, Gandolfi R, Gelmi ML, Reches M, Pellegrino S. Self-assembly of an amphipathic ααβ-tripeptide into cationic spherical particles for intracellular delivery. Org Biomol Chem 2018; 15:6773-6779. [PMID: 28767120 DOI: 10.1039/c7ob01693j] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development of molecular carriers able to carry molecules directly into the cell is an area of intensive research. Cationic nanoparticles are effective delivery systems for several classes of molecules, such as anticancer agents, oligonucleotides and antibodies. Indeed, a cationic charge on the outer surface allows a rapid cellular uptake together with the possibility of carrying negatively charged molecules. In this work, we studied the self-assembly of an ultra-short ααβ-tripeptide containing an l-Arg-l-Ala sequence and an unnatural fluorine substituted β2,3-diaryl-amino acid. The presence of the unnatural β2,3-diaryl-amino acid allowed us to obtain a protease stable sequence. Furthermore, an arginine guanidinium group triggered the formation of spherical assemblies that were able to load small molecules and enter cells. These spherical architectures, thus, represent interesting candidates for the delivery of exogenous entities directly into cells.
Collapse
Affiliation(s)
- Raffaella Bucci
- University of Milano, Department of Pharmaceutical Sciences, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Li P, Song H, Zhang H, Yang P, Zhang C, Huang P, Kong D, Wang W. Engineering biodegradable guanidyl-decorated PEG-PCL nanoparticles as robust exogenous activators of DCs and antigen cross-presentation. NANOSCALE 2017; 9:13413-13418. [PMID: 28876002 DOI: 10.1039/c7nr04470d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoparticles (NPs)-based adjuvants are attracting much attention in the development of vaccines. Previously, we reported a type of guanidyl-decorated polymeric NPs used as antigen delivery carriers for the first time. However, its un-degradability may restrict potential clinical translation. More importantly, the specific cellular pathway by which dendritic cells (DCs) endocytosed these NPs and the relationship among guanidyl with the antigen cross-presentation, cytokine secretion, and lymph node targeting still remain unclear. Here, we show NPs assembled by biodegradable methoxyl poly(ethylene glycol)-block-poly(ε-caprolactone)-graft-poly(2-(guanidyl) ethyl methacrylate) (mPEG-b-PCL-g-PGEM, PECG) copolymers can robustly activate DCs and promote their maturation; additionally antigen cross-presentation was improved both in vitro and in vivo. Significantly, our results also demonstrate the increase of surface guanidyl on nanoparticles modulates the depot effect and lymph node drainage of PECG NPs-based adjuvants, as well as immune responses, by regulating the secretion of cytokines including IFN-γ and TNF-α. Our study provides insights into the action of guanidyl-decorated nanoscale adjuvants and new adjuvants for vaccines containing protein antigens. We anticipate the strategy of guanidyl decoration to be a starting point for the development of more exciting immunoadjuvants.
Collapse
Affiliation(s)
- Pan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tostanoski LH, Jewell CM. Engineering self-assembled materials to study and direct immune function. Adv Drug Deliv Rev 2017; 114:60-78. [PMID: 28392305 PMCID: PMC6262758 DOI: 10.1016/j.addr.2017.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022]
Abstract
The immune system is an awe-inspiring control structure that maintains a delicate and constantly changing balance between pro-immune functions that fight infection and cancer, regulatory or suppressive functions involved in immune tolerance, and homeostatic resting states. These activities are determined by integrating signals in space and time; thus, improving control over the densities, combinations, and durations with which immune signals are delivered is a central goal to better combat infectious disease, cancer, and autoimmunity. Self-assembly presents a unique opportunity to synthesize materials with well-defined compositions and controlled physical arrangement of molecular building blocks. This review highlights strategies exploiting these capabilities to improve the understanding of how precisely-displayed cues interact with immune cells and tissues. We present work centered on fundamental properties that regulate the nature and magnitude of immune response, highlight pre-clinical and clinical applications of self-assembled technologies in vaccines, cancer, and autoimmunity, and describe some of the key manufacturing and regulatory hurdles facing these areas.
Collapse
Key Words
- Autoimmunity and tolerance
- Biomaterial
- Cancer
- Immunomodulation
- Manufacturing, regulatory approval and FDA
- Nanoparticle, microparticle, micelle, liposome, polyplex, lipoplex, polyelectrolyte multilayer
- Nanotechnology
- Non-covalent, hydrophobic, hydrogen bonding, and electrostatic interaction
- Self-assembly
- Sensor, diagnostic, and theranostic
- Vaccine and immunotherapy
Collapse
Affiliation(s)
- Lisa H Tostanoski
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, 8228 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA; United States Department of Veterans Affairs, 10 North Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
21
|
Li P, Zhou J, Huang P, Zhang C, Wang W, Li C, Kong D. Self-assembled PEG- b-PDPA- b-PGEM copolymer nanoparticles as protein antigen delivery vehicles to dendritic cells: preparation, characterization and cellular uptake. Regen Biomater 2017; 4:11-20. [PMID: 28149525 PMCID: PMC5274708 DOI: 10.1093/rb/rbw044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 10/22/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
Antigen uptake by dendritic cells (DCs) is a key step for initiating antigen-specific T cell immunity. In the present study, novel synthetic polymeric nanoparticles were prepared as antigen delivery vehicles to improve the antigen uptake by DCs. Well-defined cationic and acid-responsive copolymers, monomethoxy poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate)-block-poly(2-(guanidyl) ethyl methacrylate) (mPEG-b-PDPA-b-PGEM, PEDG) were synthesized by reversible addition-fragmentation chain transfer polymerization of 2-(diisopropylamino)ethyl methacrylate) and N-(tert-butoxycarbonyl) amino ethyl methacrylate monomers, followed by deprotection of tert-butyl protective groups and guanidinylation of obtained primary amines. 1H NMR, 13C NMR and GPC results indicated the successful synthesis of well-defined PEDG copolymers. PEDG copolymers could self-assemble into nanoparticles in aqueous solution, which were of cationic surface charges and showed acid-triggered disassembly contributed by PGEM and PDPA moieties, respectively. Significantly, PEDG nanoparticles could effectively condense with negatively charged model antigen ovalbumin (OVA) to form OVA/PEDG nanoparticle formulations with no influence on its secondary and tertiary structures demonstrating by far-UV circular dichroism and UV-vis spectra. In vitro antigen cellular uptake by bone marrow DCs (BMDCs) indicated using PEDG nanoparticles as antigen delivery vehicles could significantly improve the antigen uptake efficiency of OVA compared with free OVA or the commercialized Alum adjuvant. Moreover, as the surface cationic charges of OVA/PEDG nanoparticle formulations reduced, the uptake efficiency decreased correspondingly. Collectively, our work suggests that guanidinylated, cationic and acid-responsive PEDG nanoparticles represent a new kind of promising antigen delivery vehicle to DCs and hold great potential to serve as immunoadjuvants in the development of vaccines.
Collapse
Affiliation(s)
- Pan Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Junhui Zhou
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|