1
|
Jin Z, Liu M, Zhao H, Xie J, Yin W, Zheng M, Cai D, Liu H, Liu J. Effects of Zeaxanthin on the Insulin Resistance and Gut Microbiota of High-Fat-Diet-Induced Obese Mice. Foods 2024; 13:3388. [PMID: 39517172 PMCID: PMC11544810 DOI: 10.3390/foods13213388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Obesity-induced insulin resistance (IR) can precipitate metabolic disorders such as diabetes. Zeaxanthin, a crucial member of the carotenoid family, has been found to mitigate the damage caused by obesity. However, reports on the effects of zeaxanthin on obesity-induced IR are lacking. Our objective was to examine the metabolic regulatory impacts of zeaxanthin on mice subjected to a high-fat diet (HFD) that triggered IR and to explore their influence on gut microbiota regulation. This study constructed a mouse model of metabolic dysfunction caused by lipid-rich nutritional patterns to investigate physiological and biochemical indices, liver pathway expression, and the intestinal microbiota. The mechanisms by which zeaxanthin improved both IR and glucose metabolic disorders were elucidated. The results demonstrate that zeaxanthin effectively suppressed obesity. The fasting blood glucose, area under curve of oral glucose tolerance test and insulin tolerance test, and homeostatic model assessment-insulin resistance (HOMA-IR) indices in the HFDZEA group decreased by 14.9%, 25.2%, 28.9%, and 29.8%. Additionally, zeaxanthin improved the lipid metabolism and alleviated damage to the liver and pancreas while also activating the PI3K/Akt pathway, regulating hepatic gluconeogenesis and the glycogen metabolism. The number of OTUs in the HFDZEA group increased by 29.04%. Zeaxanthin improved the structure and profile of the gastrointestinal microbiome and enhanced its diversity, increasing probiotics abundance, decreasing pathogen abundance, and thereby ameliorating the dysbiosis of enteric microbial communities in rodents with obesity resulting from excessive fat consumption. The outcomes of our analysis provide a rational basis for advancing zeaxanthin-based nutritional products.
Collapse
Affiliation(s)
- Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Hongyu Zhao
- Key Laboratory of TCM Pharmacology, Jilin Academy of Chinese Medicine Sciences, Changchun 130021, China;
| | - Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Wandi Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Z.J.); (M.L.); (J.X.); (W.Y.); (M.Z.); (D.C.)
| | - Jingsheng Liu
- National Engineering Research Center of Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
2
|
Zumaraga MP, Desmarchelier C, Gleize B, Nowicki M, Ould-Ali D, Borel P. Characterization of the interindividual variability of lutein and zeaxanthin concentrations in the adipose tissue of healthy male adults and identification of combinations of genetic variants associated with it. Food Funct 2024; 15:9995-10006. [PMID: 39279719 DOI: 10.1039/d4fo03087g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Lutein (L) and zeaxanthin (Z) are involved in visual function and could prevent age-related macular degeneration and chronic diseases and improve cognitive performances. Adipose tissue is the main storage site for these xanthophylls (Xanth). The factors affecting their concentrations in this tissue remain poorly understood but in animal models, genetic variations in apolipoprotein E and β-carotene oxygenase 2 have been associated with adipose tissue L concentration. Therefore, the aims of this study were to better characterize the interindividual variability of adipose tissue Xanth concentration and to identify single nucleotide polymorphisms (SNPs) associated with it. Periumbilical subcutaneous adipose tissue samples were collected on 6 occasions in 42 healthy adult males and L and Z concentrations were measured by HPLC. Participants had their whole genome genotyped and the associations of 3589 SNPs in 49 candidate genes with the concentrations of L and Z were measured. Mean L and Z concentrations were 281 ± 27 and 150 ± 14 nmol g-1 proteins, respectively. There was no significant correlation between plasma and adipose tissue Xanth concentrations, although the correlation for L approached significance (Pearson's r = 0.276, p = 0.077). Following univariate filtering, 109 and 97 SNPs were then entered into a partial least squares regression analysis to identify the combination of SNPs that explained best adipose tissue concentration of L and Z, respectively. A combination of 7 SNPs in ELOVL5, PPARG, ISX and ABCA1, explained 58% of the variability in adipose tissue L concentration while 11 SNPs located in or near PPARG, ABCA1, ELOVL5, CXCL8, IRS1, ISX, MC4R explained 53% of the variance in adipose tissue Z concentration. This suggests that some genetic variations influence the concentrations of these Xanth in adipose tissue and could therefore indirectly influence the health effects of these compounds. Clinical Trial Registry: https://ClinicalTrials.gov registration number NCT02100774.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
- Department of Science and Technology - Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Charles Desmarchelier
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
- Institut Universitaire de France (IUF), France
| | - Beatrice Gleize
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | - Marion Nowicki
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, Paris, France
| | - Patrick Borel
- C2VN, Aix-Marseille Univ, INRAE, INSERM, 27, boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| |
Collapse
|
3
|
Kim J, Lee GE, Kim S. Optimization of accelerated solvent extraction of zeaxanthin from orange paprika using response surface methodology and an artificial neural network coupled with a genetic algorithm. Food Sci Biotechnol 2024; 33:2521-2531. [PMID: 39144187 PMCID: PMC11319554 DOI: 10.1007/s10068-023-01514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 08/16/2024] Open
Abstract
This study aimed to optimize the accelerated solvent extraction (ASE) condition of zeaxanthin from orange paprika using a response surface methodology (RSM) or an artificial neural network (ANN) with a genetic algorithm (GA). Input variables were ethanol concentration, extraction time, and extraction temperature, while output variable was zeaxanthin. The mean squared error and regression correlation coefficient of the developed ANN model were 0.3038 and 0.9983, respectively. Predicted optimal extraction conditions from ANN-GA for maximum zeaxanthin were 100% ethanol, 3.4 min, and 99.2 °C. The relative errors under the optimal extraction conditions were RSM for 10.46% and ANN-GA for 2.18%. We showed that the recovery of hydrophobic zeaxanthin could be performed using ethanol, an eco-friendly solvent, via ASE, and the extraction efficiency could be improved by ANN-GA modeling than RSM. Therefore, combining ASE and ANN-GA might be desirable for the efficient and eco-friendly extraction of hydrophobic functional materials from food resources. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01514-8.
Collapse
Affiliation(s)
- Jaecheol Kim
- School of Bio-Health Convergence, Health & Wellness College, Sungshin Women’s University, Seoul, 01133 Republic of Korea
| | - Ga Eun Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Suna Kim
- Division of Human Ecology, College of Natural Science, Korea National Open University, Seoul, 03078 Republic of Korea
| |
Collapse
|
4
|
Moreno LG, César NR, Melo DS, Figueiró MTO, Dos Santos EC, Evangelista-Silva PH, de Sousa Santos C, Costa KB, Rocha-Vieira E, Dias-Peixoto MF, Castro Magalhães FD, Esteves EA. A MUFA/carotenoid-rich oil ameliorated insulin resistance by improving inflammation and oxidative stress in obese rats. Mol Cell Endocrinol 2024; 581:112110. [PMID: 37981187 DOI: 10.1016/j.mce.2023.112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Obesity is associated with low-grade inflammation and oxidative stress, leading to insulin resistance and type II diabetes. Caryocar brasiliense pulp oil (pequi oil - PO) is rich in oleic acid and carotenoids and positively implicated in regulating inflammation and oxidative stress. This study investigated PO's antioxidant and anti-inflammatory effects in a diet-induced obesity model. Male Wistar rats were allocated into three experimental groups: Control (CD), Western Diet (WD), and Western Diet, with 27% of lard switched by PO (WDP). Metabolic, inflammatory, and oxidative stress biomarkers were evaluated after 12 weeks of diet protocols in liver and adipose tissue. WDP rats gained less body mass and epididymal fat, had less hepatic fat infiltration, and were more glucose-tolerant and insulin-sensitive than WD (p < 0.05). In the liver, the WDP group had the highest non-enzymatic antioxidant capacity, SOD and GPx activities, CAT, SOD II, and HSP72 expression compared to WD (p < 0.05). Adipose tissue IL-6 and TNF were reduced, and IL-10 was increased in WDP compared to WD (p < 0.05). Our data suggest that the partial replacement of lard by PO in a Western diet prevented visceral fat accumulation and contributed to reducing inflammation in adipose tissue and liver oxidative stress, improving obesity-related insulin resistance.
Collapse
Affiliation(s)
- Lauane Gomes Moreno
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Nayara Rayane César
- Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Dirceu Sousa Melo
- Instituto de Ciências Naturais, Departamento de Biologia, Universidade Federal de Lavras - UFLA, Aquenta Sol, Lavras, MG, 37200-900, Brazil.
| | - Maria Thereza Otoni Figueiró
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Edivânia Cordeiro Dos Santos
- Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | | | - Carina de Sousa Santos
- Faculdade de Ciências da Saúde, Curso de Nutrição, Universidade Federal de Grande Dourados - UFGD, Dourados, Brazil.
| | - Karine Beatriz Costa
- Programa de Pós-graduação Em Ciências Aplicadas à Saúde - PPgCAS, Universidade Federal de Juiz de Fora - UFJF, Governador Valadares, MG, 35010-180, Brazil.
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Marco Fabrício Dias-Peixoto
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Flávio de Castro Magalhães
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| | - Elizabethe Adriana Esteves
- Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri - UFVJM, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil; Programa de Pós-graduação Multicêntrico Em Ciências Fisiológicas, Universidade Federal Dos Vales Do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583. N. 5000, Alto da Jacuba, Diamantina, MG, 39100-000, Brazil.
| |
Collapse
|
5
|
Yadav R, Swetanshu, Singh P. The molecular mechanism of obesity: The science behind natural exercise yoga and healthy diets in the treatment of obesity. Curr Probl Cardiol 2024; 49:102345. [PMID: 38103823 DOI: 10.1016/j.cpcardiol.2023.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The review centers on the scientific evidence underlying obesity, providing a detailed examination of the role of perilipin in this condition. It explores potential causes of obesity and delves into therapeutic approaches involving exercise, yoga, and herbal treatments. The paper discusses natural sources that can contribute to combating obesity and underscores the importance of exercise in a scientific context for overcoming obesity. Additionally, it includes information on herbal ingredients that aid in reducing obesity. The review also examines the impact of exercise type and intensity at various time intervals on muscle development. It elucidates triglyceride hydrolysis through different enzymes and the deposition of fatty acids in adipose tissue. The mechanisms by which alpha/beta hydrolase domain-containing protein 5 (ABHD5) and hormone-sensitive lipase (HSL) target and activate their functions are detailed. The inflammatory response in obesity is explored, encompassing inflammatory markers, lipid storage diseases, and their classification with molecular mechanisms. Furthermore, the hormonal regulation of lipolysis is elaborated upon in the review.
Collapse
Affiliation(s)
- Rajesh Yadav
- Sharda School of Allied Health Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India; Department of Physiology, All India Institute of Medical Science, New Delhi, India
| | - Swetanshu
- Department of Zoology, Banaras Hindu University, U.P, India
| | - Pratichi Singh
- School of Biological and Life Sciences, Galgotias University, Greater Noida-203201, Uttar Pradesh, India.
| |
Collapse
|
6
|
Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R. A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity. Foods 2023; 12:3610. [PMID: 37835263 PMCID: PMC10572887 DOI: 10.3390/foods12193610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion and absorption of phytonutrients, interaction with other substances, cooking processes, and individual differences. Hence, several phytochemicals, like polyphenols, alkaloids, saponins, terpenoids, etc., have been investigated to assess their efficiencies and safety in the prevention and treatment of obesity. These phytochemicals have anti-obesity effects, mediated via modulation of many pathways, such as decreased lipogenesis, lipid absorption, accelerated lipolysis, energy intake, expenditure, and preadipocyte differentiation and proliferation. Owing to these anti-obesity effects, new food formulations incorporating these phytonutrients were introduced that can be beneficial in reducing the prevalence of obesity and promoting public health.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 Quakenbrück, Germany
| | | | - Priyanka Suthar
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan 173230, Himachal Pradesh, India;
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Nibedita Ghosh
- Department of Pharmacology, Girijananda Chowdhury University, Guwahati 781017, Assam, India;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
7
|
Inhibitory Effects of Loganin on Adipogenesis In Vitro and In Vivo. Int J Mol Sci 2023; 24:ijms24054752. [PMID: 36902181 PMCID: PMC10003152 DOI: 10.3390/ijms24054752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Obesity is characterized by the excessive accumulation of mature adipocytes that store surplus energy in the form of lipids. In this study, we investigated the inhibitory effects of loganin on adipogenesis in mouse preadipocyte 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) in vitro and in mice with ovariectomy (OVX)- and high-fat diet (HFD)-induced obesity in vivo. For an in vitro study, loganin was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs, lipid droplets were evaluated by oil red O staining, and adipogenesis-related factors were assessed by qRT-PCR. For in vivo studies, mouse models of OVX- and HFD-induced obesity were orally administered with loganin, body weight was measured, and hepatic steatosis and development of excessive fat were evaluated by histological analysis. Loganin treatment reduced adipocyte differentiation by accumulating lipid droplets through the downregulation of adipogenesis-related factors, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), perilipin 2 (Plin2), fatty acid synthase (Fasn), and sterol regulatory element binding transcription protein 1 (Srebp1). Loganin administration prevented weight gain in mouse models of obesity induced by OVX and HFD. Further, loganin inhibited metabolic abnormalities, such as hepatic steatosis and adipocyte enlargement, and increased the serum levels of leptin and insulin in both OVX- and HFD-induced obesity models. These results suggest that loganin is a potential candidate for preventing and treating obesity.
Collapse
|
8
|
Shih MK, Hsieh SL, Huang YW, Patel AK, Dong CD, Hou CY. Resveratrol butyrate esters inhibit lipid biosynthesis in 3T3-L1 cells by AMP-activated protein kinase phosphorylation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1015-1025. [PMID: 36908355 PMCID: PMC9998790 DOI: 10.1007/s13197-022-05436-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Resveratrol butyrate esters (RBEs), which are novel resveratrol-synthesized derivatives, exhibit increased biological activity. This study elucidated the effect of RBEs on fat metabolism and their anti-obesity characteristics. Their molecular mechanism was investigated in the 3T3-L1 murine preadipocyte cells and adipocytes. RBE doses of < 2 μM did not induce a significant change in the viability of 3T3-L1 adipocytes. After RBEs treatment, intracellular lipid droplet accumulation in 3T3-L1 adipocytes was stimulated by methylisobutylxanthine, dexamethasone, and insulin-containing medium. However, a significant dose-dependent reduction in intracellular lipid levels was observed. The mRNA levels of two adipogenic transcription factors (peroxisome proliferator-activated receptor [PPAR] and CCAAT/enhancer-binding proteins [C/EBP]) and lipogenic proteins (fatty acid-binding protein 4 [FABP4] and fatty acid synthase [FAS]) were significantly attenuated by RBE treatment in both MDI-stimulated and differentiated 3T3-L1 adipocytes. Moreover, the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) also dramatically increased in the MDI + RBE-treated group compared to that in the MDI + vehicle-treated group. Collectively, our study provides strong evidence that RBEs inhibit adipogenesis by regulating adipogenic protein expression and increasing the p-AMPK/AMPK ratio. Future studies will be conducted on animal models to validate the application of RBEs as a functional food ingredient in improving human health. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05436-x.
Collapse
Affiliation(s)
- Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, No.1, Songhe Rd., Xiaogang Dist., Kaohsiung, 812301 Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
| | - Yu-Wen Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
| | - Anil Kumar Patel
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
| | - Cheng-di Dong
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142, Haijhuan Rd., Nanzih Dist., Kaohsiung, 81157 Taiwan
| |
Collapse
|
9
|
Ban OH, Lee M, Bang WY, Nam EH, Jeon HJ, Shin M, Yang J, Jung YH. Bifidobacterium lactis IDCC 4301 Exerts Anti-Obesity Effects in High-Fat Diet-Fed Mice Model by Regulating Lipid Metabolism. Mol Nutr Food Res 2023; 67:e2200385. [PMID: 36517937 DOI: 10.1002/mnfr.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SCOPE Chronic hypernutrition promotes lipid accumulation in the body and excessive lipid accumulation leads to obesity. An increase in the number and size of adipocytes, a characteristic of obesity is closely associated with adipose dysfunction. Recent in vitro and in vivo studies have shown that probiotics may prevent this dysfunction by regulating lipid metabolism. However, the mechanisms of action of probiotics in obesity are not fully understood and their usage for treating obesity remains limited. METHODS AND RESULTS Bifidobacterium lactis IDCC 4301 is selected for its anti-obesity potential after evaluating inhibitory activity of pancreatic lipase and cholesterol reducing activity. Next, this study investigates the roles of B. lactis IDCC 4301 on lipid metabolism in 3T3-L1 preadipocytes and high-fat diet (HFD)-fed mice. B. lactis IDCC 4301 inhibits cell differentiation and lipid accumulation by suppressing the expression of adipogenic enzymes in 3T3-L1 cells. Moreover, the administration of B. lactis IDCC 4301 decreases body and adipose tissue weight, improves serum lipid levels, and downregulates adipogenic mRNA expression in HFD-fed mice. Additionally, metabolomic analysis suggests that 2-ketobutyrate should be a possible target compound against obesity. CONCLUSIONS B. lactis IDCC 4301 may be used as an alternative treatment for obesity.
Collapse
Affiliation(s)
- O-Hyun Ban
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea.,School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minjee Lee
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Won Yeong Bang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Eoun Ho Nam
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Hyeon Ji Jeon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
10
|
Tian Q, Liu Y, Yuan P, Liu J, Li H, Han X, Pan C, Wu Y, Zhou Z, Liu S, Li Y, Duan S, Xia K. Glucagon-like peptide-1 receptor mediates the improvement in glycolipid metabolism disorder via AKT and AMPK signalling pathways in L02 cells with insulin resistance. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Gopal SS, Sukhdeo SV, Vallikannan B, Ponesakki G. Lutein ameliorates high-fat diet-induced obesity, fatty liver, and glucose intolerance in C57BL/6J mice. Phytother Res 2023; 37:329-341. [PMID: 36086831 DOI: 10.1002/ptr.7615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 07/21/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023]
Abstract
Obesity is a multi-factorial metabolic syndrome that increases the risk of cardiovascular diseases, diabetes, and cancer. We recently demonstrated the antiadipogenic efficacy of lutein using a 3 T3-L1 cell culture model. This study aimed to examine the antiobesity efficacy of lutein on high-fat (60% kcal fat) diet-induced C57BL/6J obese mice model. Lutein (300 and 500 μM), Orlistat (30 mg/kg body weight - positive control), and its combination (orlistat, 15 mg/kg body weight+lutein, 300 μM) were administered in high-fat diet (HFD)-fed mice every other day for 24 weeks. The effect on serum and hepatic lipid parameters was estimated using biochemical assay kits. The adipose tissue expression of adipocyte differentiation markers at gene and protein levels was analyzed by RT-PCR and western blotting, respectively. The results showed that lutein administration and drug significantly reduced epididymal and abdominal adipose tissue weights. Further, lutein reduced the serum cholesterol and LDL-C concentration compared to the HFD group. The HFD-induced elevation in the hepatic triglycerides and cholesterol levels were significantly blocked by lutein and its combination with the drug. Similarly, lutein and its drug combination efficiently lowered the HFD-mediated elevated blood glucose levels. Lutein downregulated the expression of CEBP-α, PPAR-γ, and FAS in the epididymal adipose tissue. Thus, supplementation of lutein may control diet-induced obesity and associated complications in the human population.
Collapse
Affiliation(s)
- Sowmya Shree Gopal
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shinde Vijay Sukhdeo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Department of Meat and Marine Science, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Baskaran Vallikannan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Ganesan Ponesakki
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute (CLRI), Chennai, India
| |
Collapse
|
12
|
Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation. Biofactors 2022; 49:297-321. [PMID: 36468445 DOI: 10.1002/biof.1921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Obesity is the result of the long-term energy imbalance between the excess calories consumed and the few calories expended. Reducing the intake of energy dense foods (fats, sugars), and strategies such as fasting and caloric restriction can promote body weight loss. Not only energy in terms of calories, but also the specific composition of the diet can affect the way the food is absorbed and how its energy is stored, used or dissipated. Recent research has shown that bioactive components of food, such as polyphenols and vitamins, can influence obesity and its pathologic complications such as insulin resistance, inflammation and metabolic syndrome. Individual micronutrients can influence lipid turnover but for long-term effects on weight stability, dietary patterns containing several micronutrients may be required. At the molecular level, these molecules modulate signaling and the expression of genes that are involved in the regulation of energy intake, lipid metabolism, adipogenesis into white, beige and brown adipose tissue, thermogenesis, lipotoxicity, adipo/cytokine synthesis, and inflammation. Higher concentrations of these molecules can be reached in the intestine, where they can modulate the composition and action of the microbiome. In this review, the molecular mechanisms by which bioactive compounds and vitamins modulate energy metabolism, inflammation and obesity are discussed.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Al-thepyani M, Algarni S, Gashlan H, Elzubier M, Baz L. Evaluation of the Anti-Obesity Effect of Zeaxanthin and Exercise in HFD-Induced Obese Rats. Nutrients 2022; 14:nu14234944. [PMID: 36500974 PMCID: PMC9737220 DOI: 10.3390/nu14234944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity is a worldwide epidemic associated with many health problems. One of the new trends in health care is the emphasis on regular exercise and a healthy diet. Zeaxanthin (Zea) is a carotenoid with many beneficial effects on human health. The aim of this study was to investigate whether the combination of Zea and exercise had therapeutic effects on obesity induced by an HFD in rats. Sixty male Wistar rats were randomly divided into five groups of twelve: rats fed a standard diet; rats fed a high-fat diet (HFD); rats fed an HFD with Zea; rats fed an HFD with Exc; and rats fed an HFD with both Zea and Exc. To induce obesity, rats were fed an HFD for twelve weeks. Then, Zea and exercise were introduced with the HFD for five weeks. The results showed that the HFD significantly increased visceral adipose tissue, oxidative stress, and inflammation biomarkers and reduced insulin, high-density lipoprotein, and antioxidant parameters. Treatments with Zea, Exc, and Zea plus Exc reduced body weight gain, triacylglycerol, glucose, total cholesterol, and nitric oxide levels and significantly increased catalase and insulin compared with the HFD group. This study demonstrated that Zea administration and Exc performance appeared to effectively alleviate the metabolic alterations induced by an HFD. Furthermore, Zea and Exc together had a better effect than either intervention alone.
Collapse
Affiliation(s)
- Mona Al-thepyani
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Salha Algarni
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Hana Gashlan
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Elzubier
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah P.O. Box 7607, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| |
Collapse
|
14
|
He Y, Tao Y, Qiu L, Xu W, Huang X, Wei H, Tao X. Lotus ( Nelumbo nucifera Gaertn.) Leaf-Fermentation Supernatant Inhibits Adipogenesis in 3T3-L1 Preadipocytes and Suppresses Obesity in High-Fat Diet-Induced Obese Rats. Nutrients 2022; 14:4348. [PMID: 36297031 PMCID: PMC9610561 DOI: 10.3390/nu14204348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
The lotus (Nelumbo nucifera Gaertn.) leaf is a typical homologous ingredient of medicine and food with lipid-lowering and weight-loss effects. In the present study, lotus leaves were fermented by two probiotics, Enterococcus faecium WEFA23 and Enterococcus hirae WEHI01, and the anti-adipogenic effect of Enterococcus fermented lotus leaf supernatant (FLLS) was evaluated in 3T3-L1 preadipocytes with the aim of exploring whether its anti-obesity ability will be enhanced after fermentation with Enterococcus and to dig out the potential corresponding mechanism. The FLLS fermented by E. hirae WEHI01 (FLLS-WEHI01) was selected and further investigated for its ability to inhibit obesity in vivo in high-fat diet (HFD)-induced obese rats (male, 110 ± 5 g, 4 weeks old) due to its superior inhibitory effect on adipogenesis and lipid accumulation (inhibition rate of up to 56.17%) in 3T3-L1 cells (p = 0.008 for WEHI01-L, p < 0.001 for WEHI01-H). We found that the oral administration of both the low and high doses of FLLS-WEHI01 could achieve some effects, namely decreasing body weight (p < 0.001), epididymal fat mass, adipocyte cell size, LDL-C levels (p = 0.89, 0.02, respectively), liver TC levels (p < 0.001, p = 0.01, respectively), and TG levels (p = 0.2137, p = 0.0464, respectively), fasting blood glucose (p = 0.1585, p = 0.0009), and improved insulin resistance (p = 0.33, 0.01, respectively) in rats of the model group. Moreover, the administration of both high and low doses of FLLS-WEHI01 decreased the transcription levels of adipogenic transcription factors and corresponding genes such as Pparγ (p < 0.001), Cebpα (p < 0.001), Acc (p < 0.001), and Fas (p < 0.001) by at least three times. These results indicate that FLLS-WEHI01 can potentially be developed as an healthy, anti-obesity foodstuff.
Collapse
Affiliation(s)
- Yao He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yue Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liang Qiu
- Department of Medical Translational Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wenfeng Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoli Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
15
|
Deng X, Chen B, Luo Q, Zao X, Liu H, Li Y. Hulless barley polyphenol extract inhibits adipogenesis in 3T3-L1 cells and obesity related-enzymes. Front Nutr 2022; 9:933068. [PMID: 35990339 PMCID: PMC9389463 DOI: 10.3389/fnut.2022.933068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity is characterized by excessive lipid accumulation, hypertrophy, and hyperplasia of adipose cells. Hulless barley (Hordeum vulgare L. var. nudum Hook. f.) is the principal crop grown in the Qinghai-Tibet plateau. Polyphenols, the major bioactive compound in hulless barley, possess antioxidant, anti-inflammatory, and antibacterial properties. However, the anti-obesity effect of hulless barley polyphenol (HBP) extract has not been explored. Therefore, the current study assessed the impact of HBP extract on preventing obesity. For this purpose, we evaluated the inhibitory effect of HBP extract against obesity-related enzymes. Moreover, we investigated the effect of HBP extract on adipocyte differentiation and adipogenesis through 3T3-L1 adipocytes. Our results demonstrated that HBP extract could inhibit α-amylase, α-glucosidase (α-GLU), and lipase in a dose-dependent manner. In addition, HBP extract inhibited the differentiation of 3T3-L1 preadipocytes by arresting the cell cycle at the G0/G1 phase. Furthermore, the extract suppressed the expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), regulating fatty acid synthase (FAS), fatty acid-binding protein 4 (FABP4), and adipose triglyceride lipase (ATGL). It was also observed that HBP extract alleviated intracellular lipid accumulation by attenuating oxidative stress. These findings specify that HBP extract could inhibit obesity-related enzymes, adipocyte differentiation, and adipogenesis. Therefore, it is potentially beneficial in preventing obesity.
Collapse
Affiliation(s)
- Xianfeng Deng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bi Chen
- School of Life and Health Science, Kaili University, Kaili, China
| | - Qin Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xingru Zao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Haizhe Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongqiang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
16
|
Soujanya KV, Jayadeep AP. Obesity-associated biochemical markers of inflammation and the role of grain phytochemicals. J Food Biochem 2022; 46:e14257. [PMID: 35674206 DOI: 10.1111/jfbc.14257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023]
Abstract
The incidence of obesity or excessive fat accumulation in the body is increasing worldwide and has become one of the major growing health problems. Obese condition is linked with an increased level of body lipids, oxidative stress, and expression of inflammatory markers. This leads to plasma and hepatic hyperlipidemia, activation of proinflammatory cytokines (TNF-α, IL-6, and IL-1β), and transcriptional factors, which in turn lead to a high risk of cardiovascular diseases, insulin resistance, diabetes, asthma, rheumatological problem, and liver failure. Grains are the major staple food crops grown for consumption in most of the developing countries. Cereals and millets, such as rice, wheat, maize, barley, finger millet, foxtail millet, proso millet, kodo millet in the whole form with bran, germ, and endosperm, are found to be rich in phytochemicals, such as phenolics acids, vitamin E, phytosterols, carotenoids, antioxidants, dietary fiber, which have a potential health benefit on various lifestyle disorders. In this article, we summarize the findings and investigations regarding the anti-inflammatory effect of various grain phytochemicals in in vitro and in vivo models and their potential health benefits. PRACTICAL APPLICATIONS: The occurrence of obesity is rising globally and is becoming a major health concern. Obesity will lead to multiple health problems due to oxidative and inflammatory stress in the body. Whole forms of cereals and millets consumptions have shown to reduce the risk of metabolic disorders and several chronic diseases. Potential bioactive components in various grains will act on the inhibition ofbiochemical markers connected with inflammation and adipogenesis.
Collapse
Affiliation(s)
- Kategowdru Vijayakumar Soujanya
- Department of Grain Science and Technology, CSIR - Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research, CSIR - Central Food Technological Research Institute, Mysuru, India
| | - Appukuttan Padmanabhan Jayadeep
- Department of Grain Science and Technology, CSIR - Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research, CSIR - Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
17
|
Xie J, Liu M, Liu H, Jin Z, Guan F, Ge S, Yan J, Zheng M, Cai D, Liu J. Zeaxanthin ameliorates obesity by activating the β3-adrenergic receptor to stimulate inguinal fat thermogenesis and modulating the gut microbiota. Food Funct 2021; 12:12734-12750. [PMID: 34846398 DOI: 10.1039/d1fo02863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stimulation of fat thermogenesis and modulation of the gut microbiota are promising therapeutic strategies against obesity. Zeaxanthin (ZEA), a carotenoid plant pigment, has been shown to prevent various diseases; however, the therapeutic mechanism for obesity remains unclear. Herein, whether ZEA improves obesity by activating the β3-adrenergic receptor (β3-AR) to stimulate white adipose tissue (WAT) thermogenesis and modulating the gut microbiota was investigated. C57BL6/N mice were fed a high-fat diet (HFD) supplemented with ZEA for 22 weeks. ZEA treatment reduced body weight, fat weight, adipocyte hypertrophy, liver weight, and lipid deposition, and improved dyslipidaemia, serum GPT, GOT, leptin, and irisin levels, glucose intolerance, and insulin resistance in HFD-fed mice. Mechanistically, ZEA treatment induced the expression of β3-AR and thermogenic factors, such as PRDM16, PGC-1α, and UCP1, in inguinal WAT (iWAT) and brown adipose tissue. ZEA treatment stimulated iWAT thermogenesis through the synergistic cooperation of key organelles, which manifested as an increased expression of lipid droplet degradation factors (ATGL, CGI-58 and pHSL), mitochondrial biogenesis factors (Sirt1, Nrf2, Tfam, Nampt and Cyt-C), peroxisomal biogenesis factors (Pex16, Pex19 and Pmp70), and β-oxidation factors (Cpt1, Cpt2, Acadm and Acox1). The thermogenic effect of ZEA was abolished by β3-AR antagonist (SR59230A) treatment. Additionally, dietary supplementation with ZEA reversed gut microbiota dysbiosis by regulating the abundance of Firmicutes, Clostridia, Proteobacteria, and Desulfovibrio, which were associated with the thermogenesis- and obesity-associated indices by Spearman's correlation analysis. Functional analysis of the gut microbiota indicated that ZEA treatment significantly enriched the lipid metabolism pathways. These results demonstrate that ZEA is a promising multi-target functional food for the treatment of obesity by activating β3-AR to stimulate iWAT thermogenesis, and modulating the gut microbiota.
Collapse
Affiliation(s)
- Jiahan Xie
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Fengtao Guan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Sitong Ge
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jie Yan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China. .,National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| |
Collapse
|
18
|
Bu S, Yuan C, Cao F, Xu Q, Zhang Y, Ju R, Chen L, Li Z. Concentrated extract of Prunus mume fruit exerts dual effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing beiging/browning. Food Nutr Res 2021; 65:5492. [PMID: 34776833 PMCID: PMC8559450 DOI: 10.29219/fnr.v65.5492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 07/28/2021] [Accepted: 09/18/2021] [Indexed: 12/20/2022] Open
Abstract
Background The fruit Prunus mume has beneficial effects in the treatment of obesity and metabolic syndrome. However, its mechanism of action is unclear. Objective We assessed the effect of a concentrated water extract of P. mume fruit (CEPM) on adipogenesis and beiging/browning in 3T3-L1 cells. Methods The cell viability was determined by MTT assay. Lipid accumulation was assessed with Oil Red O (ORO) staining under different concentrations of CEPM. The effects of CEPM treatment during differentiation on beiging/browning and mitochondrial biogenesis in 3T3-L1 cells were investigated. Results CEPM treatment suppressed differentiation and decreased lipid accumulation by downregulating the expression of key adipogenic genes, including PPARγ, C/EBPα, SREBP-1c, FAS, and perilipin A. In contrast, CEPM treatment increased the mitochondrial DNA (mtDNA) content and mRNA levels of mitochondrial biogenesis genes, including NAMPT, Nrf1, Nrf2, and CPT1α, and reduced reactive oxygen species levels. Importantly, CEPM increased the expression of brown/beige hallmark genes (Pgc-1α, Ucp1, Cidea, Cox7α1, Cox8b, Cd137, and Pdk-4), as well as proteins (UCP1, PGC-1α, NRF1, TBX1, and CPT1α). The high-performance liquid chromatography (HPLC) analysis reveals that CEPM contains mumefural, naringin, 5-HMF, citric acid, caffeic acid, and hesperidin. Conclusion The first evidence we provided showed that CEPM has a dual role in 3T3-L1 cells inhibiting adipogenesis and promoting beiging/browning, and hence, could be a potential agent in the fight against obesity.
Collapse
Affiliation(s)
- Su Bu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.,These authors contributed equally to this study
| | - Chunying Yuan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.,These authors contributed equally to this study
| | - Fuliang Cao
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qifeng Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yichun Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ronghua Ju
- National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing, China
| | - Longyun Chen
- Nanjing Longlijia Agricultural Development Co. Ltd., Nanjing, China
| | - Zhong Li
- National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
19
|
Saleh-E-In MM, Choi YE. Anethum sowa Roxb. ex fleming: A review on traditional uses, phytochemistry, pharmacological and toxicological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:113967. [PMID: 33640440 DOI: 10.1016/j.jep.2021.113967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum sowa Roxb. ex Fleming (Syn. Peucedanum sowa Roxb. ex Fleming, Family: Apiaceae) is a pharmacologically important as aromatic and medicinal plant. Various parts of this plant are used in traditional medicine systems for carminative, uterine and colic pain, digestion disorder, flatulence in babies, appetite-stimulating agent and used to treat mild flue and cough. The essential oil is used for aromatherapy. It is also used as a spice for food flavouring and culinary preparations in many Asian and European countries. AIM OF THE REVIEW This review aims to provide a comprehensive and critical assessment from the reported traditional and pharmaceutical uses and pharmacological activities of the extracts, essential oil and phytoconstituents with emphasis on its therapeutic potential as well as toxicological evaluation of A. sowa. MATERIALS AND METHODS Online search engines such as SciFinder®, GoogleScholar®, ResearchGate®, Web of Science®, Scopus®, PubMed and additional data from books, proceedings and local prints were searched using relevant keywords and terminologies related to A. sowa for critical analyses. RESULTS The literature studies demonstrated that A. sowa possesses several ethnopharmacological activities, including pharmaceutical prescriptions, traditional applications, and spice in food preparations. The phytochemical investigation conducted on crude extracts has been characterized and identified various classes of compounds, including coumarins, anthraquinone, terpenoids, alkaloid, benzodioxoles, phenolics, polyphenols, phenolic and polyphenols, fatty acids, phthalides and carotenoids. The extracts and compounds from the different parts of A. sowa showed diverse in vitro and in vivo biological activities including antioxidant, antiviral, antibacterial, analgesic and anti-inflammatory, Alzheimer associating neuromodulatory, cytotoxic, anticancer, antidiabetes, insecticidal and larvicidal. CONCLUSION A. sowa is a valuable medicinal plant which is especially used in food flavouring and culinary preparations. This review summarized the pertinent information on A. sowa and its traditional and culinary uses, as well as potential pharmacological properties of essential oils, extracts and isolated compounds. The traditional uses of A. sowa are supported by in vitro/vivo pharmacological studies; however, further investigation on A. sowa should be focused on isolation and identification of more active compounds and establish the links between the traditional uses and reported pharmacological activities with active compounds, as well as structure-activity relationship and in vivo mechanistic studies before integrated into the medicine. The toxicological report confirmed its safety. Nonetheless, pharmacokinetic evaluation tests to validate its bioavailability should be encouraged.
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
20
|
Liu X, Lv Y, Zheng M, Yin L, Wang X, Fu Y, Yu B, Li J. Polyphenols from blue honeysuckle (Lonicera caerulea var. edulis) berry inhibit lipid accumulation in adipocytes by suppressing lipogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114403. [PMID: 34245835 DOI: 10.1016/j.jep.2021.114403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blue honeysuckle (Lonicera caerulea var. edulis) berry has been used in folk medicine for the treatment of bacterial infections, gastrointestinal disorders, and metabolic diseases. There is evidence to support its pharmacological effects in improving diabetes, fatty liver, and obesity. AIM OF STUDY To investigate the effect of blue honeysuckle berry extract (BHBE) on lipid accumulation in adipocytes and the underlying mechanism. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) was applied to analyze the polyphenolic compounds in BHBE. 3T3-L1 cells were used to induce into adipocytes. Oil Red O staining combined with triglyceride (TG) content determination were carried out to evaluate intracellular lipid accumulation. Western blot was used to determine the expression of lipogenic enzymes and transcription factors. Real-time PCR was used to determine the expression of lipolytic enzymes and adipocyte markers. RESULTS The primary polyphenols in BHBE are flavonoids (mainly flavonols and anthocyanins). BHBE dose-dependently inhibited lipid accumulation in adipocytes by reducing the expression of fatty acid synthase (FAS) and increasing the phosphorylation level of acetyl-CoA carboxylase (ACC). Moreover, BHBE was found to promote the phosphorylation of AMP-activated protein kinase (AMPK) and further reduce the expression of lipogenic transcription factors (PPARγ, C/EBPα, and SREBP-1c), while the selective AMPK inhibitor attenuated the suppressive effect of BHBE on lipogenesis. In addition, BHBE increased the expression of beige adipocyte markers (Cd137 and Tmem26) and uncoupling protein 1 (UCP1) without affecting the expression of brown adipocyte markers (Ebf3 and Eva1). CONCLUSION BHBE inhibits lipid accumulation in adipocytes by suppressing lipogenesis via AMPK activation as well as by promoting beiging of adipocytes, which supports the anti-obesity potential of blue honeysuckle berry.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Mengyu Zheng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Li Yin
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Xiqing Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Yujie Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, PR China
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, PR China.
| |
Collapse
|
21
|
A2E-induced inflammation and angiogenesis in RPE cells in vitro are modulated by PPAR-α, -β/δ, -γ, and RXR antagonists and by norbixin. Aging (Albany NY) 2021; 13:22040-22058. [PMID: 34544906 PMCID: PMC8507260 DOI: 10.18632/aging.203558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
N-retinylidene-N-retinylethanolamine (A2E) plays a central role in age-related macular degeneration (AMD) by inducing angiogenesis and inflammation. A2E effects are mediated at least partly via the retinoic acid receptor (RAR)-α. Here we show that A2E binds and transactivates also peroxisome proliferator-activated receptors (PPAR) and retinoid X receptors (RXR). 9’-cis-norbixin, a di-apocarotenoid is also a ligand of these nuclear receptors (NR). Norbixin inhibits PPAR and RXR transactivation induced by A2E. Moreover, norbixin reduces protein kinase B (AKT) phosphorylation, NF-κB and AP-1 transactivation and mRNA expression of the inflammatory interleukins (IL) -6 and -8 and of vascular endothelial growth factor (VEGF) enhanced by A2E. By contrast, norbixin increases matrix metalloproteinase 9 (MMP9) and C-C motif chemokine ligand 2 (CCL2) mRNA expression in response to A2E. Selective PPAR-α, -β/δ and –γ antagonists inhibit the expression of IL-6 and IL-8 while only the antagonist of PPAR-γ inhibits the transactivation of NF-κB following A2E exposure. In addition, a cocktail of all three PPARs antagonists and also HX531, an antagonist of RXR reproduce norbixin effects on inflammation. Altogether, A2E’s deleterious biological effects could be inhibited through PPAR and RXR regulation. Moreover, the modulation of these NR by norbixin may open new avenues for the treatment of AMD.
Collapse
|
22
|
Zhao B, Liu M, Liu H, Xie J, Yan J, Hou X, Liu J. Zeaxanthin promotes browning by enhancing mitochondrial biogenesis through the PKA pathway in 3T3-L1 adipocytes. Food Funct 2021; 12:6283-6293. [PMID: 34047728 DOI: 10.1039/d1fo00524c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is closely associated with maintaining mitochondrial homeostasis, and mitochondrial dysfunction can lead to systemic lipid metabolism disorders. Zeaxanthin (ZEA) is a kind of carotenoid with potent antioxidant activity and has been reported to promote mitochondrial biogenesis. Nevertheless, the molecular mechanism has not been explained. In this study, we first discovered that ZEA stimulated 3T3-L1 adipocyte browning by increasing the expression of specific markers (Cd137, Tbx1, Sirt1, Cidea, Ucp1, Tmem26, and Cited1), thereby reducing lipid accumulation. Besides, ZEA promoted mitochondrial biogenesis by increasing the expression of PRDM16, UCP1, NRF2, PGC-1α, and SIRT1. Moreover, the uncoupled oxygen consumption rate (OCR) of protons leaked in 3T3-L1 adipocytes was rapidly increased by ZEA treatment, which improved mitochondrial respiration and energy metabolism. Furthermore, we found that ZEA promotes browning by enhancing mitochondrial biogenesis partly through the protein kinase A (PKA) pathway. This study provided new insight into the promotion of browning and mitochondrial biogenesis by ZEA, suggesting that ZEA probably has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Bailing Zhao
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Murugan DD, Balan D, Wong PF. Adipogenesis and therapeutic potentials of antiobesogenic phytochemicals: Insights from preclinical studies. Phytother Res 2021; 35:5936-5960. [PMID: 34219306 DOI: 10.1002/ptr.7205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Obesity is one of the most serious public health problems in both developed and developing countries in recent years. While lifestyle and diet modifications are the most important management strategies of obesity, these may be insufficient to ensure long-term weight reduction in certain individuals and alternative strategies including pharmacotherapy need to be considered. However, drugs option remains limited due to low efficacy and adverse effects associated with their use. Hence, identification of safe and effective alternative therapeutic agents remains warranted to combat obesity. In recent years, bioactive phytochemicals are considered as valuable sources for the discovery of new pharmacological agents for the treatment of obesity. Adipocyte hypertrophy and hyperplasia increases with obesity and undergo molecular and cellular alterations that can affect systemic metabolism giving rise to metabolic syndrome and comorbidities such as type 2 diabetes and cardiovascular diseases. Many phytochemicals have been reported to target adipocytes by inhibiting adipogenesis, inducing lipolysis, suppressing the differentiation of preadipocytes to mature adipocytes, reducing energy intake, and boosting energy expenditure mainly in vitro and in animal studies. Nevertheless, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals. This review outlines common pathways involved in adipogenesis and phytochemicals targeting effector molecules of these pathways, the challenges faced and the way forward for the development of phytochemicals as antiobesity agents.
Collapse
Affiliation(s)
- Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dharvind Balan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Chen C, Yang X, Liu S, Zhang M, Wang C, Xia X, Lou Y, Xu H. The effect of lipid metabolism regulator anthocyanins from Aronia melanocarpa on 3T3-L1 preadipocytes and C57BL/6 mice via activating AMPK signaling and gut microbiota. Food Funct 2021; 12:6254-6270. [PMID: 34114580 DOI: 10.1039/d1fo00907a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study investigated lipid metabolism regulation by anthocyanins from Aronia melanocarpa (AAM) in 3T3-L1 preadipocytes and high fat diet (HFD) mice. Ultra-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry analysis identified the constituents of AAM, which decreased lipid content and inflammation in 3T3-L1 cells without cytotoxicity. Meanwhile, taking normal diet and orlistat mice as references, AAM supplementation improved blood lipid levels and adipocyte degeneration, promoted beneficial gut microbial growth, and maintained lipid metabolism in HFD mice. Furthermore, AAM activated the AMP-activated protein kinase (AMPK) signaling pathway, accompanied by the regulation of adipogenic transcription factors and their target genes in vitro and in vivo. Collectively, our data demonstrated that AAM exhibits anti-adipogenic activities that were partially mediated by the AMPK pathway and gut microbiota regulation. This study provides new insight into the regulation of lipid metabolism by AAM and suggests that AAM has potential therapeutic effects on hyperlipidemia.
Collapse
Affiliation(s)
- Chunping Chen
- Department of Food Science and Engineering, College of Agriculture, Yanbian University, Yanji 133000, Jilin, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Obesity has become a worldwide issue and is accompanied by serious complications. Western high energy diet has been identified to be a major factor contributing to the current obesity pandemic. Thus, it is important to optimize dietary composition, bioactive substances, and agents to prevent and treat obesity. To date, extracts from plants, such as vegetables, tea, fruits, and Chinese herbal medicine, have been showed to have the abilities of regulating adipogenesis and attenuating obesity. These plant extracts mainly contain polyphenols, alkaloids, and terpenoids, which could play a significant role in anti-obesity through various signaling pathways and gut microbiota. Those reported anti-obesity mechanisms mainly include inhibiting white adipose tissue growth and lipogenesis, promoting lipolysis, brown/beige adipose tissue development, and muscle thermogenesis. In this review, we summarize the plant extracts and their possible mechanisms responsible for their anti-obesity effects. Based on the current findings, dietary plant extracts and foods containing these bioactive compounds can be potential preventive or therapeutic agents for obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Han-Ning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jin-Zhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhi Qi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
26
|
Wan X, Yang Z, Ji H, Li N, Yang Z, Xu L, Yang H, Wang Z. Effects of lycopene on abdominal fat deposition, serum lipids levels and hepatic lipid metabolism-related enzymes in broiler chickens. Anim Biosci 2020; 34:385-392. [PMID: 33152222 PMCID: PMC7961199 DOI: 10.5713/ajas.20.0432] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/20/2020] [Indexed: 11/27/2022] Open
Abstract
Objective The present study was conducted to investigate the effects of lycopene on growth performance, abdominal fat deposition, serum lipids levels, activities of hepatic lipid metabolism related enzymes and genes expression in broiler chickens. Methods A total of 256 healthy one-day-old male Arbor Acres broiler chicks were randomly divided into four groups with eight replicates of eight birds each. Birds were fed basal diet supplemented with 0 (control), 100, 200, and 400 mg/kg lycopene, respectively. Results Dietary 100 mg/kg lycopene increased the body weight at 21 day of age compared to the control group (p<0.05). Compared to the basal diet, broilers fed diet with 100 mg/kg lycopene had decreased abdominal fat weight, and broilers fed diet with 100 and 200 mg/kg lycopene had decreased abdominal fat percentage (p<0.05). Compared to control, diets with 100, 200, and 400 mg/kg lycopene reduced the levels of total triglyceride and total cholesterol in serum, and diets with 100 and 200 mg/kg lycopene reduced the level of serum low density lipoprotein cholesterol (p<0.05). The activity of fatty acid synthase (FAS) in 400 mg/kg lycopene treated broilers and the activity of acetyl-CoA carboxylase (ACC) in 100, 200, and 400 mg/kg lycopene treated broilers were lower than those fed basal diet (p<0.05). Lycopene increased the mRNA abundance of adenosine monophosphate activated protein kinase α (AMPK-α), whereas decreased the mRNA abundance of sterol regulatory element-binding protein 1, FAS, and ACC compared to the control group (p<0.05). Conclusion Dietary lycopene supplementation can alleviate abdominal fat deposition and decrease serum lipids levels, possibly through activating the AMPK signaling pathway, thereby regulating lipid metabolism such as lipogenesis. Therefore, lycopene or lycopene-rich plant materials might be added to poultry feed to regulate lipid metabolism.
Collapse
Affiliation(s)
- Xiaoli Wan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhengfeng Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haoran Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ning Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhi Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lei Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiyue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
27
|
Novel Function of α-Cubebenoate Derived from Schisandra chinensis as Lipogenesis Inhibitor, Lipolysis Stimulator and Inflammasome Suppressor. Molecules 2020; 25:molecules25214995. [PMID: 33126679 PMCID: PMC7663250 DOI: 10.3390/molecules25214995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023] Open
Abstract
The efficacy of α-cubebenoate isolated from Schisandra chinensis has been previously studied in three disease areas, namely inflammation, sepsis, and allergy, and its role in other diseases is still being explored. To identify the novel function of α-cubebenoate on lipid metabolism and related inflammatory response, alterations in fat accumulation, lipogenesis, lipolysis, and inflammasome activation were measured in 3T3-L1 preadipocytes and primary adipocytes treated with α-cubebenoate. Lipid accumulation significantly decreased in MDI (3-isobutyl-1-methylxanthine, dexamethasone, and insulin)-stimulated 3T3-L1 adipocytes treated with α-cubebenoate without any significant cytotoxicity. The mRNA levels of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT-enhancer binding protein (C/EBP) α for adipogenesis, as well as adipocyte fatty acid binding protein 2 (aP2) and fatty acid synthetase (FAS) for lipogenesis, were reduced after α-cubebenoate treatment, while cell cycle arrest at G2/M stage was restored in the same group. α-cubebenoate treatment induced glycerol release in primary adipocytes and enhanced expression of lipolytic proteins (HSL, perilipin, and ATGL) expression in MDI-stimulated 3T3-L1 adipocytes. Inflammasome activation and downstream cytokines expression were suppressed with α-cubebenoate treatment, but the expression of insulin receptor signaling factors was remarkably increased by α-cubebenoate treatment in MDI-stimulated 3T3-L1 adipocytes. These results indicate that α-cubebenoate may play a novel role as lipogenesis inhibitor, lipolysis stimulator, and inflammasome suppressor in MDI-stimulated 3T3-L1 adipocytes. Our results provide the possibility that α-cubebenoate can be considered as one of the candidates for obesity management.
Collapse
|
28
|
Gopal SS, Eligar SM, Vallikannan B, Ponesakki G. Inhibitory efficacy of lutein on adipogenesis is associated with blockage of early phase regulators of adipocyte differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158812. [PMID: 32920140 DOI: 10.1016/j.bbalip.2020.158812] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 01/21/2023]
Abstract
A comprehensive molecular mechanistic role of lutein on adipogenesis is not well understood. The present study focused to evaluate the effect of lutein at the early and late phase of adipocyte differentiation in vitro using a 3T3-L1 cell model. The effect of purified carotenoid on the viability of normal and differentiated 3T3-L1 cells was analyzed by WST-1 assay. Oil Red O and Nile red staining were employed to observe lipid droplets in mature adipocytes. The effect of lutein on gene and protein expression of major transcription factors and adipogenic markers was analyzed by RT-PCR and western blotting, respectively. The role of lutein on mitotic clonal expansion was analyzed by flow cytometry. The results showed a significant reduction (p < 0.05) in the accumulation of lipid droplets in lutein-treated (5 μM) cells. Inhibition in lipid accumulation was associated with down-regulated expression of CEBP-α and PPAR-γ at gene and protein levels. Subsequently, lutein repressed gene expression of FAS, FABP4, and SCD1 in mature adipocytes. Interestingly, it blocks the protein expression of CEBP-α and PPAR-γ in the initial stages of adipocyte differentiation. This early-stage inhibition of adipocyte differentiation is linked with repressed phosphorylation AKT and ERK. Further, upregulated cyclin D and down-regulated CDK4 and CDK2 in lutein treated adipocytes enumerate its role in delaying the cell cycle progression at the G0/G1 phase. Our results emphasize that adipogenesis inhibitory efficacy of lutein is potentiated by halting early phase regulators of adipocyte differentiation, which strengthens the competency of lutein besides its inevitable presence in the human body.
Collapse
Affiliation(s)
- Sowmya Shree Gopal
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sachin M Eligar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570 020, India
| | - Baskaran Vallikannan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570 020, India
| | - Ganesan Ponesakki
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India.
| |
Collapse
|
29
|
Yao Y, Xu F, Ju X, Li Z, Wang L. Lipid-Lowering Effects and Intestinal Transport of Polyphenol Extract from Digested Buckwheat in Caco-2/HepG2 Coculture Models. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4205-4214. [PMID: 32141744 DOI: 10.1021/acs.jafc.0c00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polyphenol extracts derived from gastrointestinal digestates of buckwheat (Fagopyrum Mill) were studied for their intestinal transport and lipid-lowering effects in Caco-2/HepG2 coculture models. The relative amounts of all phenolic compounds throughout the digestion and intestinal absorption process were determined by UHPLC-Q-Orbitrap mass spectrometry. The digestible and easily transported phenolic compounds in buckwheat extract were identified. Herein, four main phenolic compounds and their metabolites were found on both the apical and basolateral sides of the Caco-2 cell transwell model. The transepithelial transport rates in the Caco-2 cell monolayer were scoparone (0.97) > hydroxycinnamic acid (0.40) > rutin (0.23) > quercetin (0.20). The main metabolism of hydroxycinnamic acid, quercetin, and scoparone in transepithelial transport was found to be methylation. Furthermore, results indicated that triglyceride, low-density lipoprotein cholesterol, total cholesterol, aspartate aminotransferase, and alanine aminotransferase levels in HepG2 cells on the basolateral side of coculture models can be suppressed by 53.64, 23.44, 36.49, 27.98, and 77.42% compared to the oleic acid-induced group (p < 0.05). In addition, the mRNA expression of Fabp4 relative to the control was found to be significantly upregulated (85.82 ± 10.64 to 355.18 ± 65.83%) by the easily transported buckwheat polyphenol components in HepG2 cells (p < 0.01).
Collapse
Affiliation(s)
- Yijun Yao
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Feiran Xu
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Xingrong Ju
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Zhifang Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, No. 3 Wenyuan Road, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
30
|
Bonet ML, Ribot J, Galmés S, Serra F, Palou A. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158676. [PMID: 32120014 DOI: 10.1016/j.bbalip.2020.158676] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Antiobesity activities of carotenoids and carotenoid conversion products (CCPs) have been demonstrated in pre-clinical studies, and mechanisms behind have begun to be unveiled, thus suggesting these compounds may help obesity prevention and management. The antiobesity action of carotenoids and CCPs can be traced to effects in multiple tissues, notably the adipose tissues. Key aspects of the biology of adipose tissues appear to be affected by carotenoid and CCPs, including adipogenesis, metabolic capacities for energy storage, release and inefficient oxidation, secretory function, and modulation of oxidative stress and inflammatory pathways. Here, we review the connections of carotenoids and CCPs with adipose tissue biology and obesity as revealed by cell and animal intervention studies, studies addressing the role of endogenous retinoid metabolism, and human epidemiological and intervention studies. We also consider human genetic variability influencing carotenoid and vitamin A metabolism, particularly in adipose tissues, as a potentially relevant aspect towards personalization of dietary recommendations to prevent or manage obesity and optimize metabolic health. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- M Luisa Bonet
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain.
| | - Joan Ribot
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | | | - Francisca Serra
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Andreu Palou
- Grup de Recerca Nutrigenòmica i Obesitat, Laboratori de Biologia Molecular, Nutrició i Biotecnologia (LBNB), Universitat de les Illes Balears, Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| |
Collapse
|
31
|
Liu M, Zheng M, Cai D, Xie J, Jin Z, Liu H, Liu J. Zeaxanthin promotes mitochondrial biogenesis and adipocyte browning via AMPKα1 activation. Food Funct 2019; 10:2221-2233. [PMID: 30950462 DOI: 10.1039/c8fo02527d] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zeaxanthin (ZEA), a type of oxygenated carotenoid with strong antioxidant activity, has previously been found to exhibit an anti-lipogenesis effect. In the present study, we investigated the effect of ZEA on brown-like adipocyte formation and mitochondrial biogenesis in 3T3-L1 adipocytes. Brown adipocyte-specific markers, mitochondrial biogenesis and oxidative stress, and the involvement of AMP-activated protein kinase (AMPK) α1 were assessed. ZEA treated adipocytes demonstrated a brown-like pattern, with upregulated expression of uncoupling protein 1 (UCP1) and other brown adipocyte markers. In addition, ZEA intervention induced a dramatic increase in mitochondrial DNA (mtDNA) content and in the mRNA levels of genes associated with mitochondrial biogenesis. Furthermore, ZEA attenuated mitochondrial oxidative damage caused by lipid peroxidation in adipocytes, significantly improved the mitochondrial membrane potential (MMP), and scavenged intracellular reactive oxygen species (ROS) and mitochondrial superoxide. Finally, we concluded that AMPKα1 mediated the ZEA-caused inhibition of lipid accumulation and promotion of brown and beige adipocyte-biomarker expression, as the positive effects of ZEA were diminished by Prkaa1 (AMPKα1) knockdown. These findings demonstrated that ZEA promoted the expression of brown and beige adipogenesis markers and mitochondrial biogenesis, which involved AMPKα1 activation, thus contributing to the anti-obesity effects of ZEA.
Collapse
Affiliation(s)
- Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Mounien L, Tourniaire F, Landrier JF. Anti-Obesity Effect of Carotenoids: Direct Impact on Adipose Tissue and Adipose Tissue-Driven Indirect Effects. Nutrients 2019; 11:nu11071562. [PMID: 31373317 PMCID: PMC6683027 DOI: 10.3390/nu11071562] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023] Open
Abstract
This review summarizes current knowledge on the biological relevance of carotenoids and some of their metabolites in obesity management. The relationship between carotenoids and obesity is considered in clinical studies and in preclinical studies. Adipose tissue is a key organ in obesity etiology and the main storage site for carotenoids. We thus first describe carotenoid metabolism in adipocyte and adipose tissue and the effects of carotenoids on biological processes in adipose tissue that may be linked to obesity management in in vitro and preclinical studies. It is also now well established that the brain is strongly involved in obesity processes. A section is accordingly devoted to the potential effect of carotenoids on obesity via their direct and/or adipose tissue-driven indirect biological effects on the brain.
Collapse
Affiliation(s)
- Lourdes Mounien
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385 Marseille, France
| | - Franck Tourniaire
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385 Marseille, France
- CriBioM, criblage biologique Marseille, faculté de Médecine de la Timone, 13256 Marseille, France
| | - Jean-Francois Landrier
- Aix Marseille Univ, INSERM, INRA, C2VN, 13385 Marseille, France.
- CriBioM, criblage biologique Marseille, faculté de Médecine de la Timone, 13256 Marseille, France.
| |
Collapse
|
33
|
Chitooligosaccharide supplementation prevents the development of high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in mice via the inhibition of cluster of differentiation 36 (CD36). J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
Coronel J, Pinos I, Amengual J. β-carotene in Obesity Research: Technical Considerations and Current Status of the Field. Nutrients 2019; 11:E842. [PMID: 31013923 PMCID: PMC6521044 DOI: 10.3390/nu11040842] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, obesity has become a rising health problem as the accessibility to high calorie, low nutritional value food has increased. Research shows that some bioactive components in fruits and vegetables, such as carotenoids, could contribute to the prevention and treatment of obesity. Some of these carotenoids are responsible for vitamin A production, a hormone-like vitamin with pleiotropic effects in mammals. Among these effects, vitamin A is a potent regulator of adipose tissue development, and is therefore important for obesity. This review focuses on the role of the provitamin A carotenoid β-carotene in human health, emphasizing the mechanisms by which this compound and its derivatives regulate adipocyte biology. It also discusses the physiological relevance of carotenoid accumulation, the implication of the carotenoid-cleaving enzymes, and the technical difficulties and considerations researchers must take when working with these bioactive molecules. Thanks to the broad spectrum of functions carotenoids have in modern nutrition and health, it is necessary to understand their benefits regarding to metabolic diseases such as obesity in order to evaluate their applicability to the medical and pharmaceutical fields.
Collapse
Affiliation(s)
- Johana Coronel
- Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Jaume Amengual
- Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
35
|
Liu H, Liu M, Jin Z, Yaqoob S, Zheng M, Cai D, Liu J, Guo S. Ginsenoside Rg2 inhibits adipogenesis in 3T3-L1 preadipocytes and suppresses obesity in high-fat-diet-induced obese mice through the AMPK pathway. Food Funct 2019; 10:3603-3614. [DOI: 10.1039/c9fo00027e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rg2-induced activation of AMPK reduced the expression of adipogenic transcription factors, and regulated the lipogenic and lipolysis genes, thus inhibiting adipogenesis.
Collapse
Affiliation(s)
- Huimin Liu
- College of Life Science
- Jilin Agricultural University
- Changchun
- China
- National Engineering Laboratory for Wheat and Corn Deep Processing
| | - Meihong Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing
- Changchun
- China
- College of Food Science and Engineering
- Jilin Agricultural University
| | - Zhibo Jin
- National Engineering Laboratory for Wheat and Corn Deep Processing
- Changchun
- China
- College of Food Science and Engineering
- Jilin Agricultural University
| | - Sanabil Yaqoob
- National Engineering Laboratory for Wheat and Corn Deep Processing
- Changchun
- China
- College of Food Science and Engineering
- Jilin Agricultural University
| | - Mingzhu Zheng
- National Engineering Laboratory for Wheat and Corn Deep Processing
- Changchun
- China
- College of Food Science and Engineering
- Jilin Agricultural University
| | - Dan Cai
- National Engineering Laboratory for Wheat and Corn Deep Processing
- Changchun
- China
- College of Food Science and Engineering
- Jilin Agricultural University
| | - Jingsheng Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing
- Changchun
- China
- College of Food Science and Engineering
- Jilin Agricultural University
| | - Shaodong Guo
- Department of Nutrition and Food Science
- College of Agriculture and Life Sciences
- Texas A&M University
- College Station
- USA
| |
Collapse
|
36
|
Morusin Functions as a Lipogenesis Inhibitor as Well as a Lipolysis Stimulator in Differentiated 3T3-L1 and Primary Adipocytes. Molecules 2018; 23:molecules23082004. [PMID: 30103469 PMCID: PMC6222347 DOI: 10.3390/molecules23082004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 11/21/2022] Open
Abstract
Conflicting results for morusin activity during adipogenic differentiation are reported in 3T3-L1 adipocytes and cancer cells. To elucidate the influence of morusin on fat metabolism, their anti-obesity effects and molecular mechanism were investigated in 3T3-L1 cells and primary adipocytes. Morusin at a dose of less than 20 µM does not induce any significant change in the viability of 3T3-L1 adipocytes. The accumulation of intracellular lipid droplets in 3T3-L1 adipocytes stimulated with 0.5 mM 3-isobutyl-1-methylxanthine, 1 µM dexamethasone, 10 µg/mL insulin in DMEM containing 10% FBS (MDI)-significantly reduces in a dose-dependent manner after morusin treatment. The phosphorylation level of members in the MAP kinase signaling pathway under the insulin receptor downstream also decrease significantly in the MDI + morusin-treated group compared to MDI + vehicle-treated group. Also, the expression of adipogenic transcription factors (PPARγ and C/EBPα) and lipogenic proteins (aP2 and FAS) are significantly attenuated by exposure to the compound in MDI-stimulated 3T3-L1 adipocytes. Furthermore, the decrease in the G0/G1 arrest of cell cycle after culturing in MDI medium was dramatically recovered after co-culturing in MDI + 20 µM morusin. Moreover, morusin treatment induces glycerol release in the primary adipocytes of SD rats and enhances lipolytic protein expression (HSL, ATGL, and perilipin) in differentiated 3T3-L1 adipocytes. Overall, the results of the present study provide strong evidence that morusin inhibits adipogenesis by regulating the insulin receptor signaling, cell cycle and adipogenic protein expression as well as stimulating lipolysis by enhancing glycerol release and lipolytic proteins expression.
Collapse
|
37
|
Liu H, Wang J, Liu M, Zhao H, Yaqoob S, Zheng M, Cai D, Liu J. Antiobesity Effects of Ginsenoside Rg1 on 3T3-L1 Preadipocytes and High Fat Diet-Induced Obese Mice Mediated by AMPK. Nutrients 2018; 10:E830. [PMID: 29954059 PMCID: PMC6073290 DOI: 10.3390/nu10070830] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 01/03/2023] Open
Abstract
Ginsenosides Rg1 is one of the major pharmacologically active saponins in ginseng, which as an antioxidant reduces oxidative damage in the liver and can also be used to prevent cardiovascular diseases and diabetes. However, there is no research targeting the effect of lipid metabolism in high-fat diet (HFD)-induced mice. In this study, we evaluated the anti-obesity effects of Rg1 in 3T3-L1 adipocyte cells and HFD-induced obese C57BL/6J mice. Administration of Rg1 to HFD-induced obese mice significantly decreased body weight, total cholesterol, and total triglyceride levels. In addition to effects in 3T3-L1 cells, Rg1 reduced the accumulation of lipid droplets in a dose-dependent manner. Furthermore, Rg1 exhibits an anti-adipogenic effect via regulation of the expression of the transcriptional factors and lipid metabolism-related genes in vivo and in vitro. We observed that Rg1 administration significantly increased the phosphorylation level of AMP-activated protein kinase (AMPK) in both epididymal white adipose tissue and 3T3-L1 cells. These results indicated that Rg1 works both in an anti-adipogenic and anti-obesity manner through inducing AMPK activation, inhibiting lipogenesis, and decreasing intracellular lipid content, adipocyte size, and adipose weight.
Collapse
Affiliation(s)
- Huimin Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China.
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Jing Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Meihong Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Hongyu Zhao
- Chinese Medicine Science Academy of Jilin Province, Changchun, Jilin 130118, China.
| | - Sanabil Yaqoob
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Mingzhu Zheng
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Dan Cai
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Jingsheng Liu
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
38
|
Hua F, Zhou P, Wu HY, Chu GX, Xie ZW, Bao GH. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu'an GuaPian tea: molecular docking and interaction mechanism. Food Funct 2018; 9:4173-4183. [DOI: 10.1039/c8fo00562a] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu'an GuaPian tea.
Collapse
Affiliation(s)
- Fang Hua
- Natural Products Laboratory
- International Joint Laboratory of Tea Chemistry and Health Effects
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine
- Anhui University of Chinese Medicine
- Research Institute of Integrated Traditional Chinese and Western Medicine
- Anhui Academy of Chinese Medicine
- Hefei 230038
| | - Hao-Yue Wu
- Natural Products Laboratory
- International Joint Laboratory of Tea Chemistry and Health Effects
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
| | - Gang-Xiu Chu
- Natural Products Laboratory
- International Joint Laboratory of Tea Chemistry and Health Effects
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
| | - Zhong-Wen Xie
- Natural Products Laboratory
- International Joint Laboratory of Tea Chemistry and Health Effects
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
| | - Guan-Hu Bao
- Natural Products Laboratory
- International Joint Laboratory of Tea Chemistry and Health Effects
- State Key Laboratory of Tea Plant Biology and Utilization
- Anhui Agricultural University
- Hefei
| |
Collapse
|