1
|
Zhao Q, Zhang J, Li Y, Yang Z, Wang Q, Jia Q. Integrated Metabolomic and Transcriptomic Analysis of Nitraria Berries Indicate the Role of Flavonoids in Adaptation to High Altitude. Metabolites 2024; 14:591. [PMID: 39590827 PMCID: PMC11596137 DOI: 10.3390/metabo14110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Plants of Nitraria, belonging to the Zygophyllaceae family, are not only widely distributed at an altitude of about 1000 m but also at an altitude of about 3000 m, which is a rare phenomenon. However, little is known about the effect of altitude on the accumulation of metabolites in plants of Nitraria. Furthermore, the mechanism of the high-altitude adaptation of Nitraria has yet to be fully elucidated. Methods: In this study, metabolomics and transcriptomics were used to investigate the differential accumulation of metabolites of Nitraria berries and the regulatory mechanisms in different altitudes. Results: As a result, the biosynthesis of flavonoids is the most significant metabolic pathway in the process of adaptation to high altitude, and 5 Cyanidins, 1 Pelargonidin, 3 Petunidins, 1 Peonidin, and 4 Delphinidins are highly accumulated in high-altitude Nitraria. The results of transcriptomics showed that the structural genes C4H (2), F3H, 4CL (2), DFR (2), UFGT (2), and FLS (2) were highly expressed in high-altitude Nitraria. A network metabolism map of flavonoids was constructed, and the accumulation of differential metabolites and the expression of structural genes were analyzed for correlation. Conclusions: In summary, this study preliminarily offers a new understanding of metabolic differences and regulation mechanisms in plants of Nitraria from different altitudes.
Collapse
Affiliation(s)
- Qing Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (Q.Z.); (Y.L.); (Z.Y.); (Q.W.)
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
| | - Jie Zhang
- Department of Basic Medicine, Qinghai Institude of Health Sciences, Xining 810000, China;
| | - Yanhong Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (Q.Z.); (Y.L.); (Z.Y.); (Q.W.)
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
| | - Zufan Yang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (Q.Z.); (Y.L.); (Z.Y.); (Q.W.)
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
| | - Qian Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (Q.Z.); (Y.L.); (Z.Y.); (Q.W.)
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (Q.Z.); (Y.L.); (Z.Y.); (Q.W.)
- Department of Pharmacy, Medical College, Qinghai University, Xining 810016, China
| |
Collapse
|
2
|
Li X, Liu H, Li C, Li Y. A systematic review on the morphology structure, propagation characteristics, resistance physiology and exploitation and utilization of Nitraria tangutorum Bobrov. PeerJ 2024; 12:e17830. [PMID: 39161968 PMCID: PMC11332387 DOI: 10.7717/peerj.17830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Nitraria tangutorum Bobrov., belonging to the family Nitrariaceae, is a drought-tolerant and salt-loving plant and has drawn attention for its good economic and ecological value. As one of the main group species and dominant species in China's desert and semi-desert regions, N. tangutorum possesses superior tolerance to drought, high temperature, cold, barren, high salinity and alkalinity and wind and sand. Its root system is well developed, with many branches and a strong germination capacity. Once buried in sandy soil, N. tangutorum can quickly produce a large number of adventitious roots, forming new plants and continuously expanding the shrubs, forming fixed and semi-fixed shrub sand dunes. Sand dune shrubs can trap and fix a large amounts of quicksand, prevent desert expansion and erosion, and play an important role in maintaining regional ecosystem balance and improving ecological environmental quality. In addition, the phytochemical screening studies report that N. tangutorum contains an abundance of various compounds including flavonoids, alkaloids, phenolic acids and polysaccharides. These compounds confer a range of beneficial bioactivities such as antioxidant, anti-inflammatory, anti-tumor, anti-fatigue, liver protection, neuroprotection, cardiovascular protection, lowering blood lipid, regulating blood sugar level and immunoregulation. The fruits of N. tangutorum also contain vitamin C, amino acids, minerals and microelements. It has been traditionally used as a nutritional food source and in folk medicine to treat diseases of the spleen and stomach, abnormal menstruation, indigestion, and hyperlipidemia. N. tangutorum, as a wild plant with medicinal and edible homology, possesses remarkable economic and medicinal values. This detailed, comprehensive review gathers and presents all the information related to the morphological structure, propagation characteristics, resistance physiology and exploitation and utilization of N. tangutorum, providing a theoretical basis for the researchers to conduct future in-depth research on N. tangutorum.
Collapse
Affiliation(s)
- Xiaolan Li
- Gansu Agricultural University, Lanzhou, China
| | | | - Chaoqun Li
- Gansu Agricultural University, Lanzhou, China
| | - Yi Li
- Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Zhou Z, Li G, Gao L, Zhou Y, Xiao Y, Bi H, Yang H. Lichen pectin-containing polysaccharide from Xanthoria elegans and its ability to effectively protect LX-2 cells from H 2O 2-induced oxidative damage. Int J Biol Macromol 2024; 265:130712. [PMID: 38471602 DOI: 10.1016/j.ijbiomac.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Xanthoria elegans, a drought-tolerant lichen, is the original plant of the traditional Chinese medicine "Shihua" and effectively treats a variety of liver diseases. However, thus far, the hepatoprotective effects of polysaccharides, the most important chemical constituents of X. elegans, have not been determined. The aim of this study was to screen the polysaccharide fraction for hepatoprotective activity by using free radical scavenging assays and a H2O2-induced Lieming Xu-2 cell (LX-2) oxidative damage model and to elucidate the chemical composition of the bioactive polysaccharide fraction. In the present study, three polysaccharide fractions (XEP-50, XEP-70 and XEP-90) were obtained from X. elegans by hot-water extraction, DEAE-cellulose anion exchange chromatography separation and ethanol gradient precipitation. Among the three polysaccharide fractions, XEP-70 exhibited the best antioxidant activity in free radical scavenging capacity and reducing power assays. Structural studies showed that XEP-70 was a pectin-containing heteropolysaccharide fraction that was composed mainly of (1 → 4)-linked and (1 → 4,6)-linked α-D-Glcp, (1 → 4)-linked α-D-GalpA, (1 → 2)-linked, (1 → 6)-linked and (1 → 2,6)-linked α-D-Manp, and (1 → 6)-linked and (1 → 2,6)-linked β-D-Galf. Furthermore, XEP-70 exhibited effectively protect LX-2 cells against H2O2-induced oxidative damage by enhancing cellular antioxidant capacity by activating the Nrf2/Keap1/ARE signaling pathway. Thus, XEP-70 has good potential to protect hepatic stellate cells against oxidative damage.
Collapse
Affiliation(s)
- Zheng Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubi Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Jia QQ, Yang ZF, Wang Q, Zhao Q, Jia YJ, Guo BH, Li XY, Wang W. Chemical Profiling of Nitraria roborowskii Kom. by UPLC-Q-Orbitrap-MS and Their Hypolipidemic Effects in Vivo. Chem Biodivers 2023; 20:e202300683. [PMID: 37801345 DOI: 10.1002/cbdv.202300683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
The Nitraria roborowskii Kom. (NRK) berries, as fruits of the genus Nitraria of the Zygophyllceae family, have been widely used as folk medicine. Modern pharmacological research has demonstrated that Nitraria berries had hypolipidemic, hypoglycemic, and immunomodulatory effects. However, more research needs to be reported on the chemical composition and biological activity of NRK. Hence, the phenolic compounds in the NRK berries were comprehensively analyzed and characterized by Ultra Performance Liquid Chromatography-Quadruple-Orbitrap MS system (UPLC-Q-Orbitrap MS) in this study. In total, 52 phenolics were identified, and all were reported for the first time. In addition, the hypolipidemic efficacy of NRK berries extract was studied in the hyperlipidemic mouse model. After treatment, the high dose group of NRK substantially reversed total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels. Through lipidomics technology, 27 potential biomarkers were characterized. And there was a significant callback at 25 of them after NRK treatment by using statistical analysis methods. Pathway analysis results demonstrated that NRK might exert therapeutic effects by regulating glycerophospholipid and glycerolipid metabolism pathways. This study could provide firsthand information on NRK berries for their phenolic compounds and potential application in preventing and treating hyperlipidemia.
Collapse
Affiliation(s)
- Qiangqiang Q Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Zufan F Yang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- Department of Pharmacy, Medical College of Qinghai University, Xining, 810001, China
| | - Qian Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- Department of Pharmacy, Medical College of Qinghai University, Xining, 810001, China
| | - Qing Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- Department of Pharmacy, Medical College of Qinghai University, Xining, 810001, China
| | - Yujiao J Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Banghao H Guo
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Xiangyang Y Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
- Department of Pharmacy, Medical College of Qinghai University, Xining, 810001, China
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| |
Collapse
|
5
|
Jiang S, Wang L, Jia W, Wu D, Wu L, Zhao X, Mei L, Tao Y, Yue H. Hypoglycemic effect of Nitraria tangutorum fruit by inhibiting glycosidase and regulating IRS1/PI3K/AKT signalling pathway and its active ingredient identification by UPLC-MS. Food Funct 2023; 14:7869-7881. [PMID: 37525586 DOI: 10.1039/d3fo02495d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The hypoglycemic effect of NTB-40 (40% ethanol fraction of Nitraria tangutorum fruit) in type I/II diabetic mice and its underlying mechanism and active ingredient structure were investigated. The postprandial blood glucose (PBG) lowering effect of NTB-40 treatment was confirmed by maltose, starch, and sucrose tolerance tests in alloxan-induced DM mice and sucrase and maltase inhibitory activities in vitro. More importantly, long-term dosing experiments in high-fat diet-STZ-induced diabetic mice further demonstrated that NTB-40 intervention could improve glycolipid metabolism disorder and insulin resistance (IR) by maintaining glucose homeostasis (FBG, OGTT, ITT, FINS, and HOMA-IR) and lipid homeostasis (TC, TG, HDL-C, LDL-C, and FFA), reducing inflammation (IL-6, IL-1β, and TNF-α) and oxidative stress (SOD and MDA), ameliorating the liver's histological structural abnormalities, and modulating the IRS1/PI3K/AKT signaling pathway and downstream targets (FOXO1, GSK3β, GLUT4) for decreasing hepatic gluconeogenesis and promoting glycogen synthesis and glucose uptake. All these results indicated that NTB-40 had an anti-diabetic effect by modulating the IRS1/PI3K/AKT signaling pathway and inhibiting α-glucosidase activity. Finally, the main chemical components of NTB-40, including phenolic acids, flavonoids, and alkaloids, were assigned by UPLC-Triple-TOF MS/MS.
Collapse
Affiliation(s)
- Sirong Jiang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai 810008, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Luya Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai 810008, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Jia
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai 810008, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Wu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai 810008, China.
- Qinghai University, Qinghai, China
| | - Li Wu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai 810008, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Zhao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai 810008, China.
| | - Lijuan Mei
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai 810008, China.
| | - Yanduo Tao
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai 810008, China.
| | - Huilan Yue
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Qinghai 810008, China.
| |
Collapse
|
6
|
Zhang H, Hu A, Wu H, Zhu J, Zhang J, Cheng T, Shabala S, Zhang H, Yang X. Integrated metabolome and transcriptome analysis unveils novel pathway involved in the fruit coloration of Nitraria tangutorum Bobr. BMC PLANT BIOLOGY 2023; 23:65. [PMID: 36721098 PMCID: PMC9890838 DOI: 10.1186/s12870-023-04076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The desert shrub Nitraria tangutorum Bobr. is important for its resistance to salt and alkali in Northwest China. It is an ecologically important species in this region and provides edible and medicinal berries. This study showed a mutant of N. tangutorum (named Jincan, JC) that has a strong yellow pericarp vs red in a wild type (represented by NT). RESULTS In this study, the secondary metabolic and molecular mechanisms responsible for Nitraria fruit coloration were investigated using LC-MS-based widely targeted metabolomics and transcriptomics data. As a result of our study, 122 and 104 flavonoid metabolites were differentially expressed throughout the mature and transition stages between JC and NT, respectively. Furthermore, two cyanidin derivatives (cyanidin 3-O-glucoside and cyanidin-3-O-(2''-O-glucosyl) glucoside) and one pelargonidin derivative (pelargonidin-3-O-glucoside) were identified only in the NT phenotype. The functional genes F3H (flavanone 3-hydroxylase), F3'H (flavonoid 3'-hydroxylase) and UFGT (flavonoid 3-O-glucosyltransferase) and the transcription factors MYB, bHLH, NAC and bZIP were significantly downregulated in JC. Meanwhile, the activity of UFGT was extremely low in both periods of JC, with a five-fold higher enzymatic activity of UFGT in RT than in YT. In summary, due to the lack of catalysis of UGFT, yellow fruit of JC could not accumulate sufficient cyanidin and pelargonidin derivatives during fruit ripening. CONCLUSION Taken together, our data provide insights into the mechanism for the regulation of anthocyanin synthesis and N. tangutorum fruit coloration and provide a theoretical basis to develop new strategies for developing bioactive compounds from N. tangutorum fruits.
Collapse
Affiliation(s)
- Huilong Zhang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, 10091, China
- The Comprehensive Experimental Center, Chinese Academy of Forestry in Yellow River Delta, Dongying, 257000, China
| | - Aishuang Hu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, 10091, China
- The Comprehensive Experimental Center, Chinese Academy of Forestry in Yellow River Delta, Dongying, 257000, China
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, China
| | - Haiwen Wu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, 10091, China
- The Comprehensive Experimental Center, Chinese Academy of Forestry in Yellow River Delta, Dongying, 257000, China
| | - Jianfeng Zhu
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, 10091, China
- The Comprehensive Experimental Center, Chinese Academy of Forestry in Yellow River Delta, Dongying, 257000, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, 015200, China
| | - Tielong Cheng
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Huaxin Zhang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, 10091, China
- The Comprehensive Experimental Center, Chinese Academy of Forestry in Yellow River Delta, Dongying, 257000, China
| | - Xiuyan Yang
- Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing, 10091, China.
- The Comprehensive Experimental Center, Chinese Academy of Forestry in Yellow River Delta, Dongying, 257000, China.
| |
Collapse
|
7
|
Dietary Supplementation of Fruit from Nitraria tangutorum Improved Immunity and Abundance of Beneficial Ruminal Bacteria in Hu Sheep. Animals (Basel) 2022; 12:ani12223211. [PMID: 36428439 PMCID: PMC9686964 DOI: 10.3390/ani12223211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The fruit of Nitraria tangutorum (FNT) is reputed to possess medicinal properties; however, its effect on sheep (Ovis aries) is unknown. The aim of this study was to fill this gap. In a 3 × 3 Latin square design, six 12-month-old rumen-fistulated Hu rams (56.2 ± 8.26 kg; mean ± SD) were penned individually and offered one of three levels of FNT, namely, 0 g/d (control; CON), 16 g/d (N16), and 48 g/d (N48). The concentration of serum immunoglobulin G increased linearly (p = 0.03) with an increasing intake of FNT. The serum concentration of β-hydroxybutyrate in the N48 group was lower than in the CON group (p = 0.01) and decreased linearly with increasing FNT (p = 0.001). The concentration of serum lactate dehydrogenase tended to decrease (p = 0.07) linearly with an increase in FNT intake, while the concentration of glucose did not differ among groups (p = 0.14) but displayed a quadratic curve with an increase in FNT (p = 0.05). The rumen concentration of lipase decreased linearly with increasing FNT (p = 0.04). The rumen fermentation variables were not affected by FNT. The FNT intake increased the abundance of beneficial ruminal bacteria, such as Lachnoclostridium, Rhodocyclaceae, and Candidatus Arthromitus. Prevotella, Rikenellaceae_RC9_gut_group, Ruminococcus, Olsenella, Lachnospiraceae_NK3A20_group, and Quinella were the dominant bacterial genera in all treatments. We conclude that FNT can improve immunity and increase the relative abundance of beneficial ruminal bacteria in sheep.
Collapse
|
8
|
Vascular Protective Effect and Its Possible Mechanism of Action on Selected Active Phytocompounds: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3311228. [PMID: 35469164 PMCID: PMC9034927 DOI: 10.1155/2022/3311228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Vascular endothelial dysfunction is characterized by an imbalance of vasodilation and vasoconstriction, deficiency of nitric oxide (NO) bioavailability and elevated reactive oxygen species (ROS), and proinflammatory factors. This dysfunction is a key to the early pathological development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. Therefore, modulation of the vascular endothelium is considered an important therapeutic strategy to maintain the health of the cardiovascular system. Epidemiological studies have shown that regular consumption of medicinal plants, fruits, and vegetables promotes vascular health, lowering the risk of cardiovascular diseases. This is mainly attributed to the phytochemical compounds contained in these resources. Various databases, including Google Scholar, MEDLINE, PubMed, and the Directory of Open Access Journals, were searched to identify studies demonstrating the vascular protective effects of phytochemical compounds. The literature had revealed abundant data on phytochemical compounds protecting and improving the vascular system. Of the numerous compounds reported, curcumin, resveratrol, cyanidin-3-glucoside, berberine, epigallocatechin-3-gallate, and quercetin are discussed in this review to provide recent information on their vascular protective mechanisms in vivo and in vitro. Phytochemical compounds are promising therapeutic agents for vascular dysfunction due to their antioxidative mechanisms. However, future human studies will be necessary to confirm the clinical effects of these vascular protective mechanisms.
Collapse
|
9
|
Bao X, Zong Y, Hu N, Li S, Liu B, Wang H. Functional R2R3-MYB transcription factor NsMYB1, regulating anthocyanin biosynthesis, was relative to the fruit color differentiation in Nitraria sibirica Pall. BMC PLANT BIOLOGY 2022; 22:186. [PMID: 35395726 PMCID: PMC8994311 DOI: 10.1186/s12870-022-03561-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nitraria sibirica Pall. is an economic plant with two kinds of fruit color, widely spreads in the Qinghai Tibet Plateau. The chemical analysis and pharmacological evaluation had been carried out for several tens of years, the mechanism behind the fruit color differentiation is still unclear. RESULTS In this manuscript, the chemical analysis of the extractions showed that the chemical composition of fruit color was anthocyanin, and two kind of Nitraria sibirica Pall. were caused by the content differentiation with the same anthocyanin kinds. Cyanidin-3-[2"-(6'"-coumaroyl)-glucosyl]-glucoside (C3G) was the major anthocyanin. Transcriptome analysis and the qRT-PCR revealed that the structural genes relative to anthocyanin biosynthesis except CHS, F3'5'H and ANS were up-regulated in the peels of BF (Black fruit) compared with the peels of RF (Red fruit), which indicated that transcript factor should be the reason for the expression difference of the structure genes. In the unigenes of the transcript factor MYB and bHLH, relative to anthocyanin, only NsMYB1 (Cluster 8422.10600), was high-expression and up-expression in the peels of BF. NsMYB1 encoded the same length protein with four amino acid differences in the RF and BF, and both contained the intact DNA, HTH-MYB and SANT domains. NsMYB1 was close to the AtMYB114, AtMYB113 and AtPAP1, regulating anthocyanin biosynthesis, in phylogenetic relationship. Both NsMYB1r and NsMYB1b could promote the transcript of the structural genes, and induced the anthocyanin accumulation in all tissues of transgenic tobacco. The insertion of 'TATA' in the promoter of NsMYB1r gave one more promoter region, and was the reason for higher transcripts in black fruit possibly. CONCLUSIONS Cyanidin-3-[2''-(6'"-coumaroyl)-glucosyl]-glucoside was the major anthocyanin in black fruit of Nitraria sibirica Pall.. NsMYB1 was a functional R2R3-MYB transcription factor, regulated the anthocyanin biosynthesis, and led to the fruit color differentiation in Nitraria sibirica Pall.
Collapse
Affiliation(s)
- Xuemei Bao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
- College of Education, Qinghai Normal University, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Zong
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
| | - Shiming Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China.
| |
Collapse
|
10
|
Chen S, Hu N, Wang H, Wu Y, Li G. Bioactivity-guided isolation of the major anthocyanin from Lycium ruthenicum Murr. fruit and its antioxidant activity and neuroprotective effects in vitro and in vivo. Food Funct 2022; 13:3247-3257. [PMID: 35233585 DOI: 10.1039/d1fo04095b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lycium ruthenicum Murr. fruit (LRF) is an edible berry known for its rich anthocyanin content. Our previous study has shown that LRF-derived anthocyanins have neuroprotective effects in rats, which may be due to their effective antioxidant activity. Therefore, this study performed online HPLC-DPPH screening as a bioactivity-guided method for the preparative separation of anthocyanins from LRF. Finally, the main fraction was isolated and identified as petunidin-3,5-O-diglucoside (Pn3G5G). Pn3G5G exhibited strong antioxidant capacity during DPPH and ABTS free radical scavenge assays. Furthermore, Pn3G5G exhibited protective effects on Nε-carboxymethyllysine (CML)-treated Neuro-2a cells by enhancing cell viability in a dose-dependent manner. CML-induced apoptosis was also reduced by Pn3G5G potentially by suppressing oxidative stress and inflammation. More importantly, Pn3G5G significantly improved cognitive impairment, neuroinflammation and neuronal apoptosis in D-galactose-induced aging mice. The result suggests the development of Pn3G5G as a healthcare product or a potent dietary supplement with antioxidant and neuroprotective effects.
Collapse
Affiliation(s)
- Shasha Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, P.R. China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, P.R. China
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, P.R. China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
11
|
Kurskaya O, Prokopyeva E, Bi H, Sobolev I, Murashkina T, Shestopalov A, Wei L, Sharshov K. Anti-Influenza Activity of Medicinal Material Extracts from Qinghai–Tibet Plateau. Viruses 2022; 14:v14020360. [PMID: 35215953 PMCID: PMC8878895 DOI: 10.3390/v14020360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
To discover sources for novel anti-influenza drugs, we evaluated the antiviral potential of nine extracts from eight medicinal plants and one mushroom (Avena sativa L., Hordeum vulgare Linn. var. nudum Hook. f., Hippophae rhamnoides Linn., Lycium ruthenicum Murr., Nitraria tangutorum Bobr., Nitraria tangutorum Bobr. by-products, Potentilla anserina L., Cladina rangiferina (L.) Nyl., and Armillaria luteo-virens) from the Qinghai–Tibetan plateau against the influenza A/H3N2 virus. Concentrations lower than 125 μg/mL of all extracts demonstrated no significant toxicity in MDCK cells. During screening, seven extracts (A. sativa, H. vulgare, H. rhamnoides, L. ruthenicum, N. tangutorum, C. rangiferina, and A. luteo-virens) exhibited antiviral activity, especially the water-soluble polysaccharide from the fruit body of the mushroom A. luteo-virens. These extracts significantly reduced the infectivity of the human influenza A/H3N2 virus in vitro when used at concentrations of 15.6–125 μg/mL. Two extracts (N. tangutorum by-products and P. anserina) had no A/H3N2 virus inhibitory activity. Notably, the extract obtained from the fruits of N. tangutorum and N. tangutorum by-products exhibited different anti-influenza effects. The results suggest that extracts of A. sativa, H. vulgare, H. rhamnoides, L. ruthenicum, N. tangutorum, C. rangiferina, and A. luteo-virens contain substances with antiviral activity, and may be promising sources of new antiviral drugs.
Collapse
Affiliation(s)
- Olga Kurskaya
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
- Correspondence: (O.K.); (E.P.)
| | - Elena Prokopyeva
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
- Medical Department, Novosibirsk State University, Novosibirsk 630090, Russia
- Correspondence: (O.K.); (E.P.)
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
| | - Ivan Sobolev
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
| | - Tatyana Murashkina
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
| | - Alexander Shestopalov
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
| | - Lixin Wei
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China;
| | - Kirill Sharshov
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (I.S.); (T.M.); (A.S.); (K.S.)
| |
Collapse
|
12
|
Wang H, Zhou J, Bi H, Yang X, Chen W, Jiang K, Yao Y, Ni W. Bioactive Ingredients from Nitraria tangutorun Bobr. Protect Against Cerebral Ischemia/Reperfusion Injury Through Attenuation of Oxidative Stress and the Inflammatory Response. J Med Food 2021; 24:686-696. [PMID: 34280030 DOI: 10.1089/jmf.2020.4848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nitraria tangutorun Bobr. has been used for thousands of years as a native folk medicine to alleviate dizziness and neurasthenia due to oxygen. In our previous study, natural antioxidant components (namely, NJBE) were isolated from industrial N. tangutorun Bobr. juice byproducts (NJBE) from the Qinghai-Tibet plateau. The current investigation assessed the effects of NJBE on ischemic stroke in mice and the potential mechanisms. C57BL/6 mice received NJBE (25, 50, or 100 mg/Kg) by gavage for 14 days and then stroke was induced by the middle cerebral artery occlusion (MCAO) model, followed by reperfusion for 72 h. The evaluation of brain infarct size, behavioral tests, and functional assessments was conducted to assess the effects of NJBE after MCAO. Our results suggested that NJBE significantly decreases infarct size, improves neurological deficits, as well as reduces the number of GFAP+ and Iba-1+ cells after MCAO. NJBE inhibited nitric oxide and malondialdehyde production in the ischemic brain. Meanwhile, it attenuated the expressions of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Also, NJBE significantly attenuated the expression levels of proinflammatory indicators, including TNF-α, IL-1β, IL-6, and IL-12. This process was accompanied by the downregulation of TLR4, TRAF6, pIκB/pIκB, and MMP9 expression and the upregulation of claudin-5 expression. NJBE induced improvements in brain injury. The neuroprotective effect of NJBE provides evidence for its potential application in stroke treatment.
Collapse
Affiliation(s)
- Hailiang Wang
- The Second Hospital of Jilin University, Changchun, China
| | - Jianhong Zhou
- College of Basic Medical Science of Jilin University, Changchun, China
| | - Hongtao Bi
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xiaoyu Yang
- College of Basic Medical Science of Jilin University, Changchun, China
| | - Wenlong Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Kuijun Jiang
- The Second Hospital of Jilin University, Changchun, China
| | - Yang Yao
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Weihua Ni
- College of Basic Medical Science of Jilin University, Changchun, China
| |
Collapse
|
13
|
Jiang S, Chen C, Dong Q, Shao Y, Zhao X, Tao Y, Yue H. Alkaloids and phenolics identification in fruit of Nitraria tangutorum Bobr. by UPLC-Q-TOF-MS/MS and their a-glucosidase inhibitory effects in vivo and in vitro. Food Chem 2021; 364:130412. [PMID: 34174646 DOI: 10.1016/j.foodchem.2021.130412] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
Nitraria tangutorum Bobr. (NTB), mainly distributed in the Qaidam Basin of Tibetan Plateau, have high economic, ecological and medicinal value. The chemical compositions in the NTB fruits were tentatively analyzed and characterized by applying UPLC-Q-TOF-MS/MS. Total 45 constituents, including 9 hydroxycinnamic acids derivatives, 12 flavonols, 4 flavonoids, 1 trolox derivative, 8 β-carboline alkaloids, 4 tryptophan derivatives, and 7 other amino acid derivatives were identified by comparing with standard products, and analyzing their retention times, characteristic fragment ions and deprotonated molecule ions. The activity studies in vitro indicated that NTB-Z and NTB-C extracts had marked inhibitory effects against sucrase and maltase. Further sucrose/maltose/starch tolerance experiment demonstrated that both NTB-Z and NTB-C extracts at 400 mg/kg could markedly lower the postprandial blood glucose (PBG) level in diabetic animals. All these results indicated that the NTB fruits could be used as the functional health food or medicine for controlling postprandial blood glucose level.
Collapse
Affiliation(s)
- Sirong Jiang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chen Chen
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Yun Shao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| | - Yanduo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China.
| |
Collapse
|
14
|
The Full-Length Transcriptome Sequencing and Identification of Na +/H + Antiporter Genes in Halophyte Nitraria tangutorum Bobrov. Genes (Basel) 2021; 12:genes12060836. [PMID: 34071650 PMCID: PMC8227117 DOI: 10.3390/genes12060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/20/2023] Open
Abstract
Nitraria tangutorum Bobrov is a halophyte that is resistant to salt and alkali and is widely distributed in northwestern China. However, its genome has not been sequenced, thereby limiting studies on this particular species. For species without a reference genome, the full-length transcriptome is a convenient and rapid way to obtain reference gene information. To better study N. tangutorum, we used PacBio single-molecule real-time technology to perform full-length transcriptome analysis of this halophyte. In this study, a total of 21.83 Gb of data were obtained, and 198,300 transcripts, 51,875 SSRs (simple sequence repeats), 55,574 CDS (coding sequence), and 74,913 lncRNAs (long non-coding RNA) were identified. In addition, using this full-length transcriptome, we identified the key Na+/H+ antiporter (NHX) genes that maintain ion balance in plants and found that these are induced to express under salt stress. The results indicate that the full-length transcriptome of N. tangutorum can be used as a database and be utilized in elucidating the salt tolerance mechanism of N. tangutorum.
Collapse
|
15
|
Chen S, Zhou H, Zhang G, Dong Q, Wang Z, Wang H, Hu N. Characterization, antioxidant, and neuroprotective effects of anthocyanins from Nitraria tangutorum Bobr. fruit. Food Chem 2021; 353:129435. [PMID: 33714113 DOI: 10.1016/j.foodchem.2021.129435] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/21/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
An anthocyanin-rich extract was obtained from Nitraria tangutorum Bobr. fruit, namely ANF, and its composition, antioxidant and neuroprotective effects were studied. Nine anthocyanins were identified from the ANF using UPLC-Triple-TOF/MS analysis, and cyanidin-3-[2''-(6'''-coumaroyl)-glucosyl]-glucoside (C3G) is the most abundant anthocyanin (87.06%). ANF exhibited high ferric reducing antioxidant power (FRAP) and ABTS radical scavenging activity. The online HPLC-DPPH screening revealed that C3G contributed the highest antioxidant capacity. ANF showed potential neuroprotective effects by relieving d-Galactose-induced memory deficits, reducing overexpression of receptor for advanced glycation end products (RAGE) and amyloid-beta42 (Aβ42) in the hippocampus of rats. Besides, ANF could inhibit oxidative stress by reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in the hippocampus, while elevating amounts of total superoxide dismutase (T-SOD) and glutathione (GSH) in the serum of rats. Thus, ANF has great potential in the development of food and health products related to antioxidant and neuroprotective effects.
Collapse
Affiliation(s)
- Shasha Chen
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Haonan Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Gong Zhang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Qi Dong
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, PR China
| | - Zhenhua Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China; Huzhou Plateau Biological Resource Centre of Innovation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Huzhou 313000, PR China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, PR China
| | - Na Hu
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810008, PR China; Huzhou Plateau Biological Resource Centre of Innovation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Huzhou 313000, PR China; Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Xining 810001, PR China.
| |
Collapse
|
16
|
Wen P, Zhu Y, Luo J, Wang P, Liu B, Du Y, Jiao Y, Hu Y, Chen C, Ren F, Alejandro CU, Li Y. Effect of anthocyanin-absorbed whey protein microgels on physicochemical and textural properties of reduced-fat Cheddar cheese. J Dairy Sci 2020; 104:228-242. [PMID: 33189294 DOI: 10.3168/jds.2020-18450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
Abstract
Reduced-fat foods have become more popular due to their health benefits; however, reducing the fat content of food affects the sensory experience. Therefore, it is necessary to improve the sensory acceptance of reduced-fat foods to that of full-fat equivalents. The aim of this study was to evaluate the effect of adding whey protein microgels (WPM) with an average diameter of 4 μm, or WPM with adsorbed anthocyanins [WPM (Ant)] on the textural and sensory properties of reduced-fat Cheddar cheese (RFC). Reduced-fat Cheddar cheese was prepared in 2 ways: (1) by adding WPM, designated as RFC+M, or (2) by adding WPM (Ant), designated as RFC+M (Ant). For comparison, RFC without fat substitutes and full-fat Cheddar cheese were also prepared. We discovered that the addition of WPM and WPM (Ant) increased the moisture content, fluidity, and meltability of RFC, and reduced its hardness, springiness, and chewiness. The textural and sensory characteristics of RFC were markedly inferior to those of full-fat Cheddar cheese, whereas addition of WPM and WPM (Ant) significantly improved the sensory characteristics of RFC. The WPM and WPM (Ant) showed a high potential as fat substitutes and anthocyanin carriers to effectively improve the acceptance of reduced-fat foods.
Collapse
Affiliation(s)
- Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanli Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jie Luo
- Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pengjie Wang
- Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bin Liu
- Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yizheng Du
- Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yaoyao Jiao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yulin Hu
- Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chong Chen
- Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Calderón-Urrea Alejandro
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; Department of Biology, College of Science and Mathematics, California State University, Fresno 93740
| | - Yuan Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
17
|
Navarro-Hortal MD, Varela-López A, Romero-Márquez JM, Rivas-García L, Speranza L, Battino M, Quiles JL. Role of flavonoids against adriamycin toxicity. Food Chem Toxicol 2020; 146:111820. [PMID: 33080329 DOI: 10.1016/j.fct.2020.111820] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Doxorubicin (DOX), or adriamycin, is an anthracycline antineoplastic drug widely used in the chemotherapy of a large variety of cancers due to its potency and action spectrum. However, its use is limited by the toxicity on healthy cells and its acute and chronic side effects. One of the developed strategies to attenuate DOX toxicity is the combined therapy with bioactive compounds such as flavonoids. This review embraces the role of flavonoids on DOX treatment side effects. Protective properties of some flavonoidss against DOX toxicity have been investigated and observed mainly in heart but also in liver, kidney, brain, testis or bone marrow. Protective mechanisms involve reduction of oxidative stress by decrease of ROS levels and/or increase antioxidant defenses and interferences with autophagy, apoptosis and inflammation. Studies in cancer cells have reported that the anticancer activity of DOX was not compromised by the flavonoids. Moreover, some of them increased DOX efficiency as anti-cancer drug even in multidrug resistant cells.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - Alfonso Varela-López
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - José M Romero-Márquez
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - Lorenzo Rivas-García
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32, 18016, Armilla, Granada, Spain.
| | - Lorenza Speranza
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100, CH, Italy.
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - José L Quiles
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| |
Collapse
|
18
|
Jia Q, Dong Q, Sang Q, Wang M, Zhang H, Zhou Y, Li Y, Xiao T, Hu P, Zhang S. Rapid qualitative and quantitative analyses of anthocyanin composition in berries from the Tibetan Plateau with UPLC-quadruple-Orbitrap MS and their antioxidant activities. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:301-308. [PMID: 32508139 DOI: 10.1177/1469066720926435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitraria tangutorum B. (NT), Hippophae rhamnoides L. (HR), Lycium ruthenicum M. (LR), Lycii fructus (LF), Rosa xanthina L. (RX), and Rubuscor chorifolius L. f. (RC) are six berries from Tibetan Plateau. They have been used in traditional folk medicine with a long history, which are rich in anthocyanins. However, detailed study of their anthocyanins remains scarce. Therefore, a method for rapid simultaneous identification and quantification of 12 anthocyanins from berries using UPLC-Quadruple-Orbitrap MS system (UPLC-Q-Orbitrap MS) was established in this work. It was verified with limit of detection (3.86-11.61 µg/L), limit of quantification (3.86-11.61 µg/L), precision (0.95-2.38%), repeatability (0.96-2.08%), stability (0.86-2.31%), mean recovery (95.8-103.1%), recovery range (93.1-107.2%) and RSD less than 5.21%. It was then used in the analysis of anthocyanins in six berries species; 8, 7, 7, 7, 6 and 9 species of anthocyanins have been identified in NT, LF, LR, HR, RC and RX, respectively based on their own retention time and exact mass in positive mode, and for the first time quantified successfully in each berry (31.11 ± 0.42-2978 ± 25.67 μg.g-1). Finally, 2, 2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity (0.92 ± 0.12-5.61 ± 0.23 mM TE/100 g), ferric reducing antioxidant power (FRAP) (1.23 ± 0.15-7.42 ± 0.28 mM TE/100 g) and total antioxidant activity (T-AOC) assays were used to evaluate the antioxidant activities of the six berries.
Collapse
Affiliation(s)
- Qiangqiang Jia
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Qiuxia Dong
- Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Qingni Sang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Mingfang Wang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongyang Zhang
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | - Yuxi Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Tingting Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Ping Hu
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
19
|
Wang YM, Yu CH, Zhao XJ, Zhao JQ. A rapid high-performance liquid chromatography separation of a new anthocyanin from Nitraria tangutorum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:503-507. [PMID: 30938548 DOI: 10.1080/10286020.2019.1593968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
In this work, a rapid high-performance liquid chromatography method was developed to efficiently purify anthocyanin from Nitraria tangutorum based on reversed-phase column. A new anthocyanin was purified from N. tangutorum and elucidated on the basis of extensive spectroscopic analysis, including one- and two-dimensional nuclear magnetic resonance, as well as high-resolution mass spectrometry (HR-MS) data. The new anthocyanin was elucidated as cyanidin 3-[2″-(6‴-coumaroyl)-glucosyl]-glucoside.
Collapse
Affiliation(s)
- Yan-Ming Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Chun-Hao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xiao-Juan Zhao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jian-Qiang Zhao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
20
|
Jiang S, Zhang Y, Zhao X, Shao Y, Wei W, Tao Y, Yue H. A new flavonol acylglycoside from the fruits of Nitraria tangutorum Bobr. Nat Prod Res 2020; 35:3652-3657. [DOI: 10.1080/14786419.2020.1721487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sirong Jiang
- Key Laboratory of Tibetan Medicine Research, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yupei Zhang
- Key Laboratory of Tibetan Medicine Research, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Zhao
- Key Laboratory of Tibetan Medicine Research, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Yun Shao
- Key Laboratory of Tibetan Medicine Research, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Wei Wei
- Key Laboratory of Tibetan Medicine Research, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Yanduo Tao
- Key Laboratory of Tibetan Medicine Research, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Huilan Yue
- Key Laboratory of Tibetan Medicine Research, CAS and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| |
Collapse
|
21
|
Chen C, Jiang L, Zhang M, Pan X, Peng C, Huang W, Jiang Q. Isodunnianol alleviates doxorubicin-induced myocardial injury by activating protective autophagy. Food Funct 2020; 10:2651-2657. [PMID: 31025676 DOI: 10.1039/c9fo00063a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recurrent cardiotoxicity limits the clinical application of doxorubicin (DOX); however the detailed molecular mechanism of DOX cardiotoxicity remains unclear. In the current study, we found that a natural product extracted from Illicium verum, isodunnianol (IDN), mitigates DOX-induced cardiotoxicity by regulating autophagy and apoptosis both in vitro and in vivo. DOX suppressed protective autophagy and induced apoptosis in H9C2 cardiac myoblasts. Additionally, IDN demonstrated up-regulated autophagy and reduced apoptosis through the activation of the AMPK-ULK1 pathway. In addition, the beneficial effects of IDN on DOX which induced myocardial injury were dependent on AMPK and ULK1 phosphorylation. Similar results were also observed in a DOX-induced cardiotoxicity rat model. The combination of IDN and DOX resulted in decreased apoptosis and inflammatory myocardial fibrosis compared to the DOX mono-treatment group. In summary, our findings provide novel insights into the prevention of DOX-related toxicity by isodunnianol, a food source natural product, warranting further investigation.
Collapse
Affiliation(s)
- Can Chen
- The First Affiliated Hospital, Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Voronkova M, Banaev E, Tomoshevich M, AK-Lama T. Possibilities of using the HPLC method in the taxonomy of the genus Nitraria (Nitrariaceae). BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202400096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The paper shows composition and content of phenolic compounds in leaves of 4 Nitraria L. species from 58 populations of Russia, Kazakhstan, and Tajikistan studied with high-performance liquid chromatography(HPLC). The investigation has revealed 27 compounds of phenolic nature: the maximum number (18 components) is detected in leaves of N. sibirica Pall. from Kazakhstan (the Karatal river valley), 16-17 components – in plants from three populations of Siberia, the minimum (6 components) – in leaves of N. komaroviiilljin & Lava ex Bobrov. The analysis has identified hyperoside (quercetin O-glycoside), narcissin (isoramnetin O-glycoside), quercetin (flavonol) and luteolin (flavon). The studied plants accumulate a generous quantity of phenolic compounds. Their content reaches 4.64% in leaves of N. sibirica, 3.11% – in N. schoberi L., up to 3.96% – in N. komarovii. The research results allow speaking about the species-specific composition and content of phenolic compounds of N. sibirica, N. schoberi and N. komarovii. The component composition is weaker in extracts of N. komarovii leaves, but there is a higher content of total phenolic compounds compared to N. schoberi plants. N. pamirica L. Vassil sample is close to N. schoberi on multidimensional analysis of the phenolic compound composition and content.
Collapse
|
23
|
Anthocyanins from Nitraria tangutorun: qualitative and quantitative analyses, antioxidant and anti-inflammatory activities and their stabilities as affected by some phenolic acids. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-018-9956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Traditional Tibetan medicinal plants: a highlighted resource for novel therapeutic compounds. Future Med Chem 2018; 10:2537-2555. [PMID: 30499690 DOI: 10.4155/fmc-2018-0235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Around 70-80% of drugs used in traditional Tibetan medicine (TTM) come from Qinghai Tibet Plateau, the majority of which are plants. The biological and medicinal culture diversity on Qinghai Tibet Plateau are amazing and constitute a less tapped resource for innovative drug research and development. Meanwhile, the problem of the exhausting Tibetan medicine resources is worrying. Here, the latest awareness, as well as the gaps of the traditional Tibetan medicinal plant issues in drug development and clinical usage of TTM compounds, was systematically reviewed and highlighted. The TTM resource studies should be enhanced within the context of deeper and more extensive investigations of molecular biology and genomics of TTM plants, phytometabolites and metabolomics and ethnopharmacology-based bioactivity, thus enabling the sustainable conservation and exploitation of Tibetan medicinal resource.
Collapse
|
25
|
Tan Q, Liu Z, Li H, Liu Y, Xia Z, Xiao Y, Usman M, Du Y, Bi H, Wei L. Hormesis of mercuric chloride-human serum albumin adduct on N9 microglial cells via the ERK/MAPKs and JAK/STAT3 signaling pathways. Toxicology 2018; 408:62-69. [DOI: 10.1016/j.tox.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/07/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
|