1
|
Hua Y, Liu J, Zhang D, Deng J, Liu C, Zhang X, Zhu Z, Wang H, Shao Y. Electrochemical Behaviors of Ultramicro Triangular Pipettes. Anal Chem 2024; 96:20445-20453. [PMID: 39694691 DOI: 10.1021/acs.analchem.4c04197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Ultramicro pipettes with circular orifices have practically become common probes in exploring the microscopic world, yet the versatility of differently shaped pipettes is undermined in the pore family. Herein, ultramicro triangular pipettes with a pseudotriangular-shaped orifice were fabricated by laser-pulling triangular quartz capillaries and characterized by microscopic and electrochemical methods. Then, the differences in the electrochemical behaviors of triangular and circular pores were revealed through experiments and simulations. A liquid/liquid interface was supported first at a triangular pipette, and the facilitated potassium ion transfer reactions exhibited steady-state voltammetric responses. An empirical equation for triangular pores between the diffusion-limited current and the side length (a) of the orifice was evaluated, and the corresponding mass transfer coefficient of ion ingress was estimated as mTri = 8.05D/a. As for ion egress transfer, the tip angle and pore shape would affect the diffusion regime and the ion distribution, where the mass transfer would be enhanced at the corners of a triangular pipette with a large tip angle. Triangular submicropores and nanopores were employed to detect particle translocations at a high capture rate, though the events had broader distributions and lower charges than those of circular pores. These findings demonstrate the shape effect in triangular pores that promotes the mass transfer rate of interfacial ion transfer reactions and the capture rate of ionic blockades. The universal laser-pulling method could make ultramicro pores of arbitrary shapes accessible in fundamental studies and applicable as chemical sensors.
Collapse
Affiliation(s)
- Yutong Hua
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Deyi Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jintao Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chang Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Kuanaeva RM, Vaneev AN, Gorelkin PV, Erofeev AS. Nanopipettes as a Potential Diagnostic Tool for Selective Nanopore Detection of Biomolecules. BIOSENSORS 2024; 14:627. [PMID: 39727892 DOI: 10.3390/bios14120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Nanopipettes, as a class of solid-state nanopores, have evolved into universal tools in biomedicine for the detection of biomarkers and different biological analytes. Nanopipette-based methods combine high sensitivity, selectivity, single-molecule resolution, and multifunctionality. The features have significantly expanded interest in their applications for the biomolecular detection, imaging, and molecular diagnostics of real samples. Moreover, the ease of manufacturing nanopipettes, coupled with their compatibility with fluorescence and electrochemical methods, makes them ideal for portable point-of-care diagnostic devices. This review summarized the latest progress in nanopipette-based nanopore technology for the detection of biomarkers, DNA, RNA, proteins, and peptides, in particular β-amyloid or α-synuclein, emphasizing the impact of technology on molecular diagnostics. By addressing key challenges in single-molecule detection and expanding applications in diverse biological areas, nanopipettes are poised to play a transformative role in the future of personalized medicine.
Collapse
Affiliation(s)
- Regina M Kuanaeva
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Alexander N Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Petr V Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Alexander S Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Wachta I, Balasubramanian K. Electroanalytical Strategies for Local pH Sensing at Solid-Liquid Interfaces and Biointerfaces. ACS Sens 2024; 9:4450-4468. [PMID: 39231377 PMCID: PMC11443533 DOI: 10.1021/acssensors.4c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Obtaining analytical information about chemical species at interfaces is fundamentally important to improving our understanding of chemical reactions and biological processes. pH at solid-liquid interfaces is found to deviate from the bulk solution value, for example, in electrocatalytic reactions at surfaces or during the corrosion of metals. Also, in the vicinity of living cells, metabolic reactions or cellular responses cause changes in pH at the extracellular interface. In this review, we collect recent progress in the development of sensors with the capability to detect pH at or close to solid-liquid and bio interfaces, with spatial and time resolution. After the two main principles of pH detection are presented, the different classes of molecules and materials that are used as active components in these sensors are described. The review then focuses on the reported electroanalytical techniques for local pH sensing. As application examples, we discuss model studies that exploit local pH sensing in the area of electrocatalysis, corrosion, and cellular interfaces. We conclude with a discussion of key challenges for wider use of this analytical approach, which shows promise to improve the mechanistic understanding of reactions and processes at realistic interfaces.
Collapse
Affiliation(s)
- Isabell Wachta
- Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Kannan Balasubramanian
- Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| |
Collapse
|
4
|
Huang J, Zhou H, Zou Y, Liu H, Chen Q. Ultrasensitive detection of dopamine using Au microelectrodes integrated with mesoporous silica thin films. Analyst 2024; 149:4208-4212. [PMID: 38856368 DOI: 10.1039/d4an00398e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
An electrochemical method was developed for ultrasensitive and selective detection of dopamine in human serum using mesoporous silica thin film modified gold microelectrodes. Vertically aligned mesoporous silica thin films were deposited onto Au microelectrodes by electrochemically assisted self-assembly (EASA). The mesochannels have uniform pore sizes of 2.1 nm in diameter and a negatively charged wall surface. Cyclic voltammetry reveals effective charge permselectivity through the negatively charged mesoporous channels. By using differential pulse voltammetry, the mesoporous silica thin film modified Au microelectrode can be employed for the ultrasensitive detection of dopamine with a detection limit as low as 0.084 μM. In addition, thanks to the electrostatic and steric effects of the silica mesochannels, excellent anti-interference and anti-fouling properties of the electrochemical sensors are demonstrated.
Collapse
Affiliation(s)
- Juan Huang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Huaxu Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Yanqi Zou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Huiqing Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
5
|
Qi YT, Zhang FL, Tian SY, Wu HQ, Zhao Y, Zhang XW, Liu YL, Fu P, Amatore C, Huang WH. Nanosensor detection of reactive oxygen and nitrogen species leakage in frustrated phagocytosis of nanofibres. NATURE NANOTECHNOLOGY 2024; 19:524-533. [PMID: 38172432 DOI: 10.1038/s41565-023-01575-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Exposure to widely used inert fibrous nanomaterials (for example, glass fibres or carbon nanotubes) may result in asbestos-like lung pathologies, becoming an important environmental and health concern. However, the origin of the pathogenesis of such fibres has not yet been clearly established. Here we report an electrochemical nanosensor that is used to monitor and quantitatively characterize the flux and dynamics of reactive species release during the frustrated phagocytosis of glass nanofibres by single macrophages. We show the existence of an intense prolonged release of reactive oxygen and nitrogen species by single macrophages near their phagocytic cups. This continued massive leakage of reactive oxygen and nitrogen species damages peripheral cells and eventually translates into chronic inflammation and lung injury, as seen during in vitro co-culture and in vivo experiments.
Collapse
Affiliation(s)
- Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Si-Yu Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hui-Qian Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, People's Republic of China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China.
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, Paris, France.
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
6
|
Liu K, Zhang Z, Liu R, Li JP, Jiang D, Pan R. Click-Chemistry-Enabled Nanopipettes for the Capture and Dynamic Analysis of a Single Mitochondrion inside One Living Cell. Angew Chem Int Ed Engl 2023; 62:e202303053. [PMID: 37334855 DOI: 10.1002/anie.202303053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The in-depth study of single cells requires the dynamically molecular information in one particular nanometer-sized organelle in a living cell, which is difficult to achieve using current methods. Due to high efficiency of click chemistry, a new nanoelectrode-based pipette architecture with dibenzocyclooctyne at the tip is designed to realize fast conjugation with azide group-containing triphenylphosphine, which targets mitochondrial membranes. The covalent binding of one mitochondrion at the tip of the nanopipette allows a small region of the membrane to be isolated on the Pt surface inside the nanopipette. Therefore, the release of reactive oxygen species (ROS) from the mitochondrion is monitored, which is not interfered by the species present in the cytosol. The dynamic tracking of ROS release from one mitochondrion reveals the distinctive "ROS-induced ROS release" within the mitochondria. Further study of RSL3-induced ferroptosis using nanopipettes provides direct evidence for supporting the noninvolvement of glutathione peroxidase 4 in the mitochondria during RSL3-induced ROS generation, which has not previously been observed at the single-mitochondrion level. Eventually, this established strategy should overcome the existing challenge of the dynamic measurement of one special organelle in the complicated intracellular environment, which opens a new direction for electroanalysis in subcellular analysis.
Collapse
Affiliation(s)
- Kang Liu
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zheng Zhang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing, 100190, China
| | - Jie P Li
- The State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
7
|
Miao L, Huang B, Fang H, Chai J, Liu Z, Zhai Y. Single-Nanoparticle-Based Nanomachining for Fabrication of a Uniform Nanochannel Sensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305159. [PMID: 37486796 DOI: 10.1002/adma.202305159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Indexed: 07/26/2023]
Abstract
The structure of nanomaterials and nanodevices determines their functionality and applications. A single uniform nanochannel with a high aspect ratio is an attractive structure due to its unique rigid structures, easy preparation, and diverse pore structures and it holds significant promising importance in fields such as nanopore sensing and nanomanufacturing. Although the metal-nanoparticle-assistant silicon etching technique can produce uniform nanochannels, however, the fabrication of single through nanochannels remains a challenge thus far. A simple and versatile strategy is developed that allows for the retention of individual gold nanoparticle on a substrate, enabling single-nanoparticle nanomachining. This method involves three steps: the formation of a carbon protective layer on individual nanoparticles via electron-beam irradiation, selective removal of unprotected nanoparticles using a corrosive agent, and subsequent elimination of the carbon layer. This enables the fabrication of a single submillimeter-long uniform through nanochannel in the silicon wafer, which can be employed for nanopore sensing and shape-based nanoparticle distinguishing. The developed method can also facilitate single-nanoparticle studies and nanomachining for a broad application in materials science, electronics, micro/nano-optics, and catalysis.
Collapse
Affiliation(s)
- Longfei Miao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Bintong Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Hui Fang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jia Chai
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yueming Zhai
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
8
|
Dong Y, Zhai J, Zhang Z, Peng C, Zhang Y, Zhang Z. A regenerable electrochemical sensor for electro-inactive cyclovirobuxine D detection in biological samples. Analyst 2023; 148:1265-1274. [PMID: 36786730 DOI: 10.1039/d2an01859d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Based on the pKa determination of cyclovirobuxine D (CVB-D) using the method of potentiometry, we predicted the ionization state of CVB-D at physiological pH. Thus, by taking advantage of the ionization state and consequent non-covalent interactions between protonated CVB-D and deprotonated polymerized bromothymol blue (poly-BTB) under physiological conditions, we developed a simple and reusable electrochemical sensor that contains a poly-BTB/SWNT-modified electrode for electro-inactive CVB-D detection in biological fluids using poly-BTB as both the recognition unit and the electrochemical probe. Upon being immersed in the solution of CVB-D, the poly BTB-based electrode shows a current decrease due to the interaction-driven binding of CVB-D on the electrode surface. The current decrease in the electrochemical sensor toward CVB-D concentration shows a linear relationship in the dynamic ranges of 0.01-1 μM and 1-50 μM with a detection limit of 1.65 nM based on 3σ. The sensor can be easily regenerated through the removal of the binding of CVB-D from the electrode surface by highly negatively charged heparin, and it presents high repeatability with an RSD of less than 4.0% for seven measurements. In animal experiments, the electrochemical sensor was selective and sensitive for CVB-D determination in plasma and liver homogenates. The electrochemical sensor is readily accessible, robust, and cost-effective and holds good promise for more applications in biological and clinical fields associated with CVB-D using less technically demanding and simple operating procedures.
Collapse
Affiliation(s)
- Yongliang Dong
- Anhui University of Chinese Medicine, School of Pharmacy, Hefei 230012, China.
| | - Jiali Zhai
- Anhui University of Chinese Medicine, School of Pharmacy, Hefei 230012, China.
| | - Ziwei Zhang
- Wannan Medical College, School of Forensic Medicine, Wuhu 241002, China.
| | - Can Peng
- Anhui University of Chinese Medicine, School of Pharmacy, Hefei 230012, China.
| | - Yunjing Zhang
- Anhui University of Chinese Medicine, School of Pharmacy, Hefei 230012, China.
| | - Zipin Zhang
- Anhui University of Chinese Medicine, School of Pharmacy, Hefei 230012, China.
| |
Collapse
|
9
|
Micro- and nano-devices for electrochemical sensing. Mikrochim Acta 2022; 189:459. [DOI: 10.1007/s00604-022-05548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
AbstractElectrode miniaturization has profoundly revolutionized the field of electrochemical sensing, opening up unprecedented opportunities for probing biological events with a high spatial and temporal resolution, integrating electrochemical systems with microfluidics, and designing arrays for multiplexed sensing. Several technological issues posed by the desire for downsizing have been addressed so far, leading to micrometric and nanometric sensing systems with different degrees of maturity. However, there is still an endless margin for researchers to improve current strategies and cope with demanding sensing fields, such as lab-on-a-chip devices and multi-array sensors, brain chemistry, and cell monitoring. In this review, we present current trends in the design of micro-/nano-electrochemical sensors and cutting-edge applications reported in the last 10 years. Micro- and nanosensors are divided into four categories depending on the transduction mechanism, e.g., amperometric, impedimetric, potentiometric, and transistor-based, to best guide the reader through the different detection strategies and highlight major advancements as well as still unaddressed demands in electrochemical sensing.
Graphical Abstract
Collapse
|
10
|
Sciurti E, Biscaglia F, Prontera C, Giampetruzzi L, Blasi L, Francioso L. Nanoelectrodes for Intracellular and Intercellular electrochemical detection: working principles, fabrication techniques and applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Enhanced single-nanoparticle collisions for the hydrogen evolution reaction in a confined microchannel. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64034-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Hatamie A, He X, Zhang XW, Oomen PE, Ewing AG. Advances in nano/microscale electrochemical sensors and biosensors for analysis of single vesicles, a key nanoscale organelle in cellular communication. Biosens Bioelectron 2022; 220:114899. [DOI: 10.1016/j.bios.2022.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
13
|
Liu K, Liu R, Wang D, Pan R, Chen HY, Jiang D. Spatial Analysis of Reactive Oxygen Species in a 3D Cell Model Using a Sensitive Nanocavity Electrode. Anal Chem 2022; 94:13287-13292. [DOI: 10.1021/acs.analchem.2c03444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kang Liu
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210093, China
| | - Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing100190, China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing100190, China
| | - Rongrong Pan
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210093, China
| | - Hong-Yuan Chen
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210093, China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210093, China
| |
Collapse
|
14
|
Moshrefi R, Stockmann TJ. Electrodeless Synthesis of Low Dispersity Au Nanoparticles and Nanoclusters at an Immiscible Micro Water/Ionic Liquid Interface. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2748. [PMID: 36014613 PMCID: PMC9416156 DOI: 10.3390/nano12162748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Owing to their biocompatibility, optical, and catalytic properties, Au nanoparticles (NPs) have been the subject of much research. Since smaller NPs have enhanced catalytic properties and NP morphology greatly impacts their effectiveness, controlled and reproducible methods of generating Au NPs are still being sought. Herein, Au NPs were electrochemically generated at a water|ionic liquid (w|IL) immiscible micro-interface, 25 µm in diameter, using a redox active IL and compared to results at a water|oil (w|o) one. The liquid|liquid interface is advantageous as it is pristine and highly reproducible, as well as an excellent means of species and charge separation. In this system, KAuCl4 dissolved in the aqueous phase reacts under external potential control at the water|P8888TB (tetraoctylphosphonium tetrakis(pentafluorophenyl)borate) with trioctyl(ferrocenylhexanoyl)phosphonium tetrakis(pentafluorophenyl)borate (FcIL), an electron donor and redox active IL. FcIL was prepared with a common anion to P8888TB, which greatly enhances its solubility in the bulk IL. Simple ion transfer of AuCl4− and AuCl(4−γ)(OH)γ− at the w|P8888TB micro-interface were characterized voltammetrically as well as their heterogeneous electron transfer reaction with FcIL. This interfacial reaction generates Au NPs whose size can be thermodynamically controlled by modifying the pH of the aqueous phase. Critically, at low pH, nanoclusters, <1.7 nm in diameter, were generated owing to inhibited thermodynamics in combination with the supramolecular fluidic nature of the IL microenvironment that was observed surrounding the as-prepared NPs.
Collapse
|
15
|
Ma Y, Zhao Y, Liu R, Wang D. Scanning Electrochemical Microscopy Featuring Transient Current Signals in Carbon Nanopipets with Dilute or No Redox Mediator. Anal Chem 2022; 94:11124-11128. [PMID: 35920511 DOI: 10.1021/acs.analchem.2c02596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a sensitive scanning electrochemical microscopy (SECM) method based on the high transient current signals in carbon nanopipets (CNPs) under step potential waveforms. Taking advantage of the transient peak current, the approach curve can be conducted with very dilute (1 μM) or even no redox mediator and fitted by the scanning ion conductance microscopy (SICM) theory. In addition, a trace amount of electroactive species generated at the substrate can also be directly revealed from the transient current at the CNP tips. With the established feedback and generation/collection methods, we present the constant-height topography and electroactivity imaging of the substrates with only 1 μM K4Fe(CN)6. The developed new SECM method would allow the usage of CNPs to achieve both high sensitivity and spatial resolution with dilute or no redox mediator and thus find great potential applications in biological and electrocatalytic studies.
Collapse
Affiliation(s)
- Yingfei Ma
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Zhao
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rujia Liu
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dengchao Wang
- Department of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
16
|
Chen Q, Zhao J, Deng X, Shan Y, Peng Y. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. J Phys Chem Lett 2022; 13:6153-6163. [PMID: 35762985 DOI: 10.1021/acs.jpclett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gas bubbles are found in diverse electrochemical processes, ranging from electrolytic water splitting to chlor-alkali electrolysis, as well as photoelectrochemical processes. Understanding the intricate influence of bubble evolution on the electrode processes and mass transport is key to the rational design of efficient devices for electrolytic energy conversion and thus requires precise measurement and analysis of individual gas bubbles. In this Perspective, we review the latest advances in single-entity measurement of gas bubbles on electrodes, covering the approaches of voltammetric and galvanostatic studies based on nanoelectrodes, probing bubble evolution using scanning probe electrochemistry with spatial information, and monitoring the transient nature of nanobubble formation and dynamics with opto-electrochemical imaging. We emphasize the intrinsic and quantitative physicochemical interpretation of single gas bubbles from electrochemical data, highlighting the fundamental understanding of the heterogeneous nucleation, dynamic state of the three-phase boundary, and the correlation between electrolytic bubble dynamics and nanocatalyst activities. In addition, a brief discussion of future perspectives is presented.
Collapse
Affiliation(s)
- Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yun Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
17
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
18
|
Qiu X, Tang H, Dong J, Wang C, Li Y. Stochastic Collision Electrochemistry from Single Pt Nanoparticles: Electrocatalytic Amplification and MicroRNA Sensing. Anal Chem 2022; 94:8202-8208. [PMID: 35642339 DOI: 10.1021/acs.analchem.2c00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-particle collisions have made many achievements in basic research, but challenges still exist due to their low collision frequency and selectivity in complex samples. In this work, we developed an "on-off-on" strategy based on Pt nanoparticles (PtNPs) that catalyze N2H4 collision signals on the surface of carbon ultramicroelectrodes and established a new method for the detection of miRNA21 with high selectivity and sensitivity. PtNPs catalyze the reduction of N2H4 on the surface of carbon ultramicroelectrodes to generate a stepped collision signal, which is in the "on" state. The single-stranded DNA paired with miRNA21 is coupled with PtNPs to form the complex DNA/PtNPs. Because PtNPs are covered by DNA, the electrocatalytic collision of N2H4 oxidation is inhibited. At this time, the signal is in the "off" state. When miRNA21 is added, the strong complementary pairing between miRNA21 and DNA destroys the electrostatic adsorption of DNA/PtNP conjugates and restores the electrocatalytic performance of PtNPs, and the signal is in the "on" state again. Based on this, a new method for detecting miRNA21 was established. It provides a new way for small-molecule sensing and has a wide range of applications in electroanalysis, electrocatalysis, and biosensing.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Jingyi Dong
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Chaohui Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|
19
|
Qi YT, Jiang H, Wu WT, Zhang FL, Tian SY, Fan WT, Liu YL, Amatore C, Huang WH. Homeostasis inside Single Activated Phagolysosomes: Quantitative and Selective Measurements of Submillisecond Dynamics of Reactive Oxygen and Nitrogen Species Production with a Nanoelectrochemical Sensor. J Am Chem Soc 2022; 144:9723-9733. [PMID: 35617327 DOI: 10.1021/jacs.2c01857] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) are generated by macrophages inside their phagolysosomes. This production is essential for phagocytosis of damaged cells and pathogens, i.e., protecting the organism and maintaining immune homeostasis. The ability to quantitatively and individually monitor the four primary ROS/RNS (ONOO-, H2O2, NO, and NO2-) with submillisecond resolution is clearly warranted to elucidate the still unclear mechanisms of their rapid generation and to track their concentration variations over time inside phagolysosomes, in particular, to document the origin of ROS/RNS homeostasis during phagocytosis. A novel nanowire electrode has been specifically developed for this purpose. It consisted of wrapping a SiC nanowire with a mat of 3 nm platinum nanoparticles whose high electrocatalytic performances allow the characterization and individual measurements of each of the four primary ROS/RNS. This allowed, for the first time, a quantitative, selective, and statistically robust determination of the individual amounts of ROS/RNS present in single dormant phagolysosomes. Additionally, the submillisecond resolution of the nanosensor allowed confirmation and measurement of the rapid ability of phagolysosomes to differentially mobilize their enzyme pools of NADPH oxidases and inducible nitric oxide synthases to finely regulate their homeostasis. This reveals an essential key to immune responses and immunotherapies and rationalizes its biomolecular origin.
Collapse
Affiliation(s)
- Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fu-Li Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Yu Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.,PASTEUR, Départment de Chimie, École Normale Supérieure, PSL Research University, Sorbonne University, UPMC Univ. Paris 06, CNRS 24 rue Lhomond, Paris 75005, France
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
20
|
Wu WT, Chen X, Jiao YT, Fan WT, Liu YL, Huang WH. Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione. Angew Chem Int Ed Engl 2022; 61:e202115820. [PMID: 35134265 DOI: 10.1002/anie.202115820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/08/2022]
Abstract
The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.
Collapse
Affiliation(s)
- Wen-Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Jiao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
21
|
Wu W, Chen X, Jiao Y, Fan W, Liu Y, Huang W. Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yu‐Ting Jiao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wen‐Ting Fan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan‐Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wei‐Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
22
|
Rojas D, Hernández-Rodríguez JF, Della Pelle F, Escarpa A, Compagnone D. New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis. Mikrochim Acta 2022; 189:102. [DOI: 10.1007/s00604-022-05185-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022]
|
23
|
Zhou Y, Sun L, Watanabe S, Ando T. Recent Advances in the Glass Pipet: from Fundament to Applications. Anal Chem 2021; 94:324-335. [PMID: 34841859 DOI: 10.1021/acs.analchem.1c04462] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuanshu Zhou
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Linhao Sun
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shinji Watanabe
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshio Ando
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
24
|
Jiang X, Zhou Y, Chen Y, Shao Y, Feng J. Etching-Engineered Low-Voltage Dielectrophoretic Nanotweezers for Trapping of Single Molecules. Anal Chem 2021; 93:12549-12555. [PMID: 34514774 DOI: 10.1021/acs.analchem.1c01818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the functions of biomolecules at the single-molecule level is crucial due to their important and diverse roles in cell regulation. Recently, nanotweezers made of dual carbon nanoelectrodes have been developed for single-cell biopsies by applying a high alternating voltage. However, high electric voltage can induce Joule heating, water electrolysis, and other side effects on cell activity, which may be unfavorable for cellular applications. Here, we report a low-voltage nanotweezer for trapping of single DNA molecules using etching-engineered nanoelectrodes which effectively reduce the minimum trapping voltage by six times. Meanwhile, the low-voltage nanotweezer displays an improved trapping stiffness. Based on the finite element method simulations, we attribute the mechanism for the low-voltage nanotweezers to the increase in spatial heterogeneity and nonuniformity of electric field by etching of quartz near the nanoelectrodes. This work opens a new dimension for noninvasive single-molecule manipulation in solution and potential applications in single-cell biopsies.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuan Zhou
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
25
|
Wu W, Jiang H, Qi Y, Fan W, Yan J, Liu Y, Huang W. Large‐Scale Synthesis of Functionalized Nanowires to Construct Nanoelectrodes for Intracellular Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen‐Tao Wu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yu‐Ting Qi
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wen‐Ting Fan
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Jing Yan
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan‐Ling Liu
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wei‐Hua Huang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
26
|
Wu WT, Jiang H, Qi YT, Fan WT, Yan J, Liu YL, Huang WH. Large-Scale Synthesis of Functionalized Nanowires to Construct Nanoelectrodes for Intracellular Sensing. Angew Chem Int Ed Engl 2021; 60:19337-19343. [PMID: 34121300 DOI: 10.1002/anie.202106251] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/03/2021] [Indexed: 01/15/2023]
Abstract
A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4-ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles-polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core-shell NWs with excellent conductivity, adjustable size, and well-designed properties. Nanoelectrodes manufactured with such core-shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells.
Collapse
Affiliation(s)
- Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
27
|
Recent advances in single-cell analysis: Encapsulation materials, analysis methods and integrative platform for microfluidic technology. Talanta 2021; 234:122671. [PMID: 34364472 DOI: 10.1016/j.talanta.2021.122671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/27/2022]
Abstract
Traditional cell biology researches on cell populations by their origin, tissue, morphology, and secretions. Because of the heterogeneity of cells, research at the single-cell level can obtain more accurate and comprehensive information that reflects the physiological state and process of the cell, increasing the significance of single-cell analysis. The application of single-cell analysis is faced with the problem of contaminated or damaged cells caused by cell sample transportation. Reversible encapsulation of a single cell can protect cells from the external environment and open the encapsulation shell to release cells, thus preserving cell integrity and improving extraction efficiency of analytes. Meanwhile, microfluidic single cell analysis (MSCA) exhibits integration, miniaturization, and high throughput, which can considerably improve the efficiency of single-cell analysis. The researches on single-cell reversible encapsulation materials, single-cell analysis methods, and the MSCA integration platform are analyzed and summarized in this review. The problems of single-cell viability, network of single-cell signal, and simultaneous detection of multiple biotoxins in food based on single-cell are proposed for future research.
Collapse
|
28
|
Burgoyne ED, Molina-Osorio AF, Moshrefi R, Shanahan R, McGlacken GP, Stockmann TJ, Scanlon MD. Detection of Pseudomonas aeruginosa quorum sensing molecules at an electrified liquid|liquid micro-interface through facilitated proton transfer. Analyst 2021; 145:7000-7008. [PMID: 32869782 DOI: 10.1039/d0an01245a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Miniaturization of electrochemical detection methods for point-of-care-devices is ideal for their integration and use within healthcare environments. Simultaneously, the prolific pathogenic bacteria Pseudomonas aeruginosa poses a serious health risk to patients with compromised immune systems. Recognizing these two factors, a proof-of-concept electrochemical method employing a micro-interface between water and oil (w/o) held at the tip of a pulled borosilicate glass capillary is presented. This method targets small molecules produced by P. aeruginosa colonies as signalling factors that control colony growth in a pseudo-multicellular process known as quorum sensing (QS). The QS molecules of interest are 4-hydroxy-2-heptylquinoline (HHQ) and 2-heptyl-3,4-dihydroxyquinoline (PQS, Pseudomonas quinolone signal). Hydrophobic HHQ and PQS molecules, dissolved in the oil phase, were observed electrochemically to facilitate proton transfer across the w/o interface. This interfacial complexation can be exploited as a facile electrochemical detection method for P. aeruginosa and is advantageous as it does not depend on the redox activity of HHQ/PQS. Interestingly, the limit-of-linearity is reached as [H+] ≈ [ligand]. Density functional theory calculations were performed to determine the proton affinities and gas-phase basicities of HHQ/PQS, as well as elucidate the likely site of stepwise protonation within each molecule.
Collapse
Affiliation(s)
- Edward D Burgoyne
- The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
30
|
Zhao W, Chen HY, Xu JJ. Electrogenerated chemiluminescence detection of single entities. Chem Sci 2021; 12:5720-5736. [PMID: 34168801 PMCID: PMC8179668 DOI: 10.1039/d0sc07085h] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), is an electrochemically induced production of light by excited luminophores generated during redox reactions. It can be used to sense the charge transfer and related processes at electrodes via a simple visual readout; hence, ECL is an outstanding tool in analytical sensing. The traditional ECL approach measures averaged electrochemical quantities of a large ensemble of individual entities, including molecules, microstructures and ions. However, as a real system is usually heterogeneous, the study of single entities holds great potential in elucidating new truths of nature which are averaged out in ensemble assays or hidden in complex systems. We would like to review the development of ECL intensity and imaging based single entity detection and place emphasis on the assays of small entities including single molecules, micro/nanoparticles and cells. The current challenges for and perspectives on ECL detection of single entities are also discussed.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| |
Collapse
|
31
|
Luo F, Chen F, Xiong Y, Wu Z, Zhang X, Wen W, Wang S. Single-Particle Electrochemical Biosensor with DNA Walker Amplification for Ultrasensitive HIV-DNA Counting. Anal Chem 2021; 93:4506-4512. [PMID: 33677958 DOI: 10.1021/acs.analchem.0c04861] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Single-particle electrochemical collision has gained great achievements in fundamental research, but it is challenging to use in practice on account of its low collision frequency and the interference of the complex matrix in actual samples. Here, magnetic separation and DNA walker amplification were integrated to build a robust and sensitive single-particle electrochemical biosensor. Magnetic nanobeads (MBs) can specifically capture and separate targets from complex samples, which not only ensures the anti-interference capability of this method but also avoids the aggregation of platinum nanoparticles (Pt NPs) caused by numerous coexisting substances. A low amount of targets can lead to the release of more Pt NPs and the generation of more collision current transients, realizing cyclic amplification. Compared with simple hybridization, a DNA walker can improve the collision frequency by about 3-fold, greatly enhancing detection sensitivity, and a relationship between collision frequency and target concentration is used to realize quantification. The biosensor realized an ultrasensitive detection of 4.86 fM human immunodeficiency virus DNA (HIV-DNA), which is 1-4 orders of magnitude lower than that of traditional methods. The successful HIV-DNA detection in complex systems (serum and urine) demonstrated a great promising application in real samples and in the development of new single-entity biosensors.
Collapse
Affiliation(s)
- Fanwei Luo
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Fei Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yi Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
32
|
Liu Y, Jin C, Liu Y, Ruiz KH, Ren H, Fan Y, White HS, Chen Q. Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates. ACS Sens 2021; 6:355-363. [PMID: 32449344 DOI: 10.1021/acssensors.0c00913] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS2. Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H2 concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS2 substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.
Collapse
Affiliation(s)
- Yulong Liu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Cheng Jin
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yuwen Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Karla Hernandez Ruiz
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hang Ren
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Henry S. White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
33
|
Gao L, Sun J, Wang L, Fan Q, Zhu G, Guo H, Sun X. Highly sensitive real-time detection of intracellular oxidative stress and application in mycotoxin toxicity evaluation based on living single-cell electrochemical sensors. Analyst 2021; 146:1444-1454. [PMID: 33410840 DOI: 10.1039/d0an02015j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Single-cell electrochemical sensor is widely used in the local selective detection of single living cells because of its high spatial-temporal resolution and sensitivity, as well as its ability to obtain comprehensive cellular physiological states and processes with increased accuracy. Functionalized nanoprobes can detect the oxidative stress response of cells in single-cell electrochemical sensors. Moreover, the T-2 toxin is one of the most toxic mycotoxins and widely occurs in field crops. T-2 toxin can cause mitochondrial damage in cells and increase intracellular reactive oxygen species (ROS) in various cells. As the most representative free radical of intracellular ROS, H2O2 can effectively reflect the toxic effects of intracellular T-2 toxin. In this study, a functionalized gold nanoprobe was used to dynamically monitor the production of H2O2 in a single live human hepatoma cell HepG2 stimulated by mycotoxin T-2. The concentration of H2O2 produced by HepG2 cells stimulated by T-2 toxin at 1 ppb-1 ppm was linearly correlated, R2 = 0.99055, and LOD = 0.13807 ng mL-1. Sample spiking experiments were conducted, and the recovery rate of spiking was 81.19%-130.17%. A comparative analysis of differences in the current produced by multiple toxins, HT-29 cells, as well as single cells in cell populations, was performed. This method can be applied in real-time monitoring of mycotoxin toxicity during food processing in living cells and provides a novel idea for enhancing food quality and safety in a nanoenvironment.
Collapse
Affiliation(s)
- Lu Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Tan C, Robbins EM, Wu B, Cui XT. Recent Advances in In Vivo Neurochemical Monitoring. MICROMACHINES 2021; 12:208. [PMID: 33670703 PMCID: PMC7922317 DOI: 10.3390/mi12020208] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022]
Abstract
The brain is a complex network that accounts for only 5% of human mass but consumes 20% of our energy. Uncovering the mysteries of the brain's functions in motion, memory, learning, behavior, and mental health remains a hot but challenging topic. Neurochemicals in the brain, such as neurotransmitters, neuromodulators, gliotransmitters, hormones, and metabolism substrates and products, play vital roles in mediating and modulating normal brain function, and their abnormal release or imbalanced concentrations can cause various diseases, such as epilepsy, Alzheimer's disease, and Parkinson's disease. A wide range of techniques have been used to probe the concentrations of neurochemicals under normal, stimulated, diseased, and drug-induced conditions in order to understand the neurochemistry of drug mechanisms and develop diagnostic tools or therapies. Recent advancements in detection methods, device fabrication, and new materials have resulted in the development of neurochemical sensors with improved performance. However, direct in vivo measurements require a robust sensor that is highly sensitive and selective with minimal fouling and reduced inflammatory foreign body responses. Here, we review recent advances in neurochemical sensor development for in vivo studies, with a focus on electrochemical and optical probes. Other alternative methods are also compared. We discuss in detail the in vivo challenges for these methods and provide an outlook for future directions.
Collapse
Affiliation(s)
- Chao Tan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
| | - Elaine M. Robbins
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; (C.T.); (E.M.R.); (B.W.)
- Center for Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
35
|
An JD, Wang TT, Shi YF, Huo JZ, Wu XX, Liu YY, Ding B. Convenient ultrasonic preparation of a water stable cluster-based Cadmium(II) coordination material and highly sensitive fluorescent sensing for biomarkers DPA and 5-HT. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119092. [PMID: 33120122 DOI: 10.1016/j.saa.2020.119092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/28/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
In recent years, a new type of micro-porous material, namely metal organic framework material, has received more and more attention from many basic and industrial fields because these materials possess unique advantages. In this work, through the powerful sonochemical preparation method, a three-dimensional cluster-based CdII-MOFs, {[Cd(abtz)2(H2O)2]·(ClO4)2·H2O}n (1, abtz = 1-(4-aminobenzyl)-1H-1,2,4-triazole) can be quickly synthesized in the facile ultrasonic method. Powder X-ray diffraction (PXRD) measurement confirms that these bulky samples 1 (synthesized on different ultrasonic powers and ultrasonic time conditions) were pure. In addition, ultrasonic chemical time and irradiation power did not change the structure of composites materials 1. SEM and morphological changes of 1 in the ultrasonic synthesis are also determined. Moreover, 1 exhibits good stability, the structure of 1 can be maintained not just in various solvents, and in aqueous environments with pH values from 2 to 12. Photo-luminescent experiment also reveals that complex 1 has the excellent application prospect as highly sensitive sensing material for the biomarker DPA (2,6-pyridine dicarboxylic acid) and 5-HT (5-hydroxytryptamine) through the photo-luminescence "turn-on" and "turn-off" effect, respectively. Further photo-luminescent measurements also show that different ultrasonic powers and ultrasonic time can effectively induce fluorescent sensing enhancement for biomarkers DPA and 5-HT based on the water stable clustered-based cadmium(II) coordination framework.
Collapse
Affiliation(s)
- Jun-Dan An
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Tian-Tian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yang-Fan Shi
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jian-Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Xiang-Xia Wu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yuan-Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
36
|
Zhang Q, Shao Y, Li B, Wu Y, Dong J, Zhang D, Wang Y, Yan Y, Wang X, Pu Q, Guo G. Visually precise, low-damage, single-cell spatial manipulation with single-pixel resolution. Chem Sci 2021; 12:4111-4118. [PMID: 34163682 PMCID: PMC8179525 DOI: 10.1039/d0sc05534d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The analysis of single living cells, including intracellular delivery and extraction, is essential for monitoring their dynamic biochemical processes and exploring intracellular heterogeneity. However, owing to the 2D view in bright-field microscopy and optical distortions caused by the cell shape and the variation in the refractive index both inside and around the cells, achieving spatially undistorted imaging for high-precision manipulation within a cell is challenging. Here, an accurate and visual system is developed for single-cell spatial manipulation by correcting the aberration for simultaneous bright-field triple-view imaging. Stereo information from the triple view enables higher spatial resolution that facilitates the precise manipulation of single cells. In the bright field, we resolved the spatial locations of subcellular structures of a single cell suspended in a medium and measured the random spatial rotation angle of the cell with a precision of ±5°. Furthermore, we demonstrated the visual manipulation of a probe to an arbitrary spatial point of a cell with an accuracy of <1 pixel. This novel system is more accurate and less destructive for subcellular content extraction and drug delivery. We achieved the low-damage spatial puncture of single cells at specific visual points with an accuracy of <65 nm.![]()
Collapse
Affiliation(s)
- Qi Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yunlong Shao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Boye Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yuanyuan Wu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Jingying Dong
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yanan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Yong Yan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| | - Qiaosheng Pu
- Department of Chemistry, Lanzhou University Lanzhou Gansu 730000 China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
37
|
Sero JE, Stevens MM. Nanoneedle-Based Materials for Intracellular Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:191-219. [PMID: 33543461 DOI: 10.1007/978-3-030-58174-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanoneedles, defined as high aspect ratio structures with tip diameters of 5 to approximately 500 nm, are uniquely able to interface with the interior of living cells. Their nanoscale dimensions mean that they are able to penetrate the plasma membrane with minimal disruption of normal cellular functions, allowing researchers to probe the intracellular space and deliver or extract material from individual cells. In the last decade, a variety of strategies have been developed using nanoneedles, either singly or as arrays, to investigate the biology of cancer cells in vitro and in vivo. These include hollow nanoneedles for soluble probe delivery, nanocapillaries for single-cell biopsy, nano-AFM for direct physical measurements of cytosolic proteins, and a wide range of fluorescent and electrochemical nanosensors for analyte detection. Nanofabrication has improved to the point that nanobiosensors can detect individual vesicles inside the cytoplasm, delineate tumor margins based on intracellular enzyme activity, and measure changes in cell metabolism almost in real time. While most of these applications are currently in the proof-of-concept stage, nanoneedle technology is poised to offer cancer biologists a powerful new set of tools for probing cells with unprecedented spatial and temporal resolution.
Collapse
Affiliation(s)
- Julia E Sero
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath, UK
| | - Molly M Stevens
- Institute for Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
38
|
Affiliation(s)
- Kira L. Rahn
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| | - Robbyn K. Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, Iowa 50011-1021, United States
| |
Collapse
|
39
|
Scheibel OV, Schrlau MG. A Self‐contained Two‐electrode Nanosensor for Electrochemical Analysis in Aqueous Microenvironments. ELECTROANAL 2020. [DOI: 10.1002/elan.201900672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Olivia V. Scheibel
- Department of Mechanical Engineering Rochester Institute of Technology 1 Lomb Memorial Drive Rochester New York 14425 USA
| | - Michael G. Schrlau
- Department of Mechanical Engineering Rochester Institute of Technology 1 Lomb Memorial Drive Rochester New York 14425 USA
| |
Collapse
|
40
|
Zanut A, Cian A, Cefarin N, Pozzato A, Tormen M. Nanoelectrode Arrays Fabricated by Thermal Nanoimprint Lithography for Biosensing Application. BIOSENSORS 2020; 10:E90. [PMID: 32764306 PMCID: PMC7459808 DOI: 10.3390/bios10080090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5-10 μg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications.
Collapse
Affiliation(s)
- Alessandra Zanut
- Department of Physics, University of Trieste, P.le Europa 1, 34100 Trieste, Italy;
- IOM-CNR, TASC Laboratory, Area Science Park—Basovizza, S.S 14 Km 163.5, I-34149 Trieste, Italy;
| | - Alessandro Cian
- ThunderNIL srl, via Foscolo 8, I-35131 Padova, Italy; (A.C.); (A.P.)
- Center for Materials and Microsystems, Fondazione Bruno Kessler, 38123 Trento, Italy
| | - Nicola Cefarin
- Department of Physics, University of Trieste, P.le Europa 1, 34100 Trieste, Italy;
- IOM-CNR, TASC Laboratory, Area Science Park—Basovizza, S.S 14 Km 163.5, I-34149 Trieste, Italy;
| | | | - Massimo Tormen
- IOM-CNR, TASC Laboratory, Area Science Park—Basovizza, S.S 14 Km 163.5, I-34149 Trieste, Italy;
- ThunderNIL srl, via Foscolo 8, I-35131 Padova, Italy; (A.C.); (A.P.)
| |
Collapse
|
41
|
Jiang H, Qi YT, Wu WT, Wen MY, Liu YL, Huang WH. Intracellular monitoring of NADH release from mitochondria using a single functionalized nanowire electrode. Chem Sci 2020; 11:8771-8778. [PMID: 34123129 PMCID: PMC8163350 DOI: 10.1039/d0sc02787a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the powerhouse of cells, and also their suicidal weapon store. Mitochondrial dysfunction can cause the opening of the mitochondrial permeability transition pore (mPTP) and nicotinamide adenine dinucleotide (NADH) release from mitochondria, eventually leading to the disruption of energy metabolism and even cell death. Hence, NADH is often considered a marker of mitochondrial function, but in situ monitoring of NADH release from mitochondria in single living cells remains a great challenge. Herein, we develop a functionalized single nanowire electrode (NWE) for electrochemical detection of NADH release from intracellular mitochondria by modifying conductive polymer (poly(3,4-ethylendioxythiophene), PEDOT)-coated carbon nanotubes (CNTs) on the surface of a SiC@C nanowire. The positively charged PEDOT facilitates the accumulation of negatively charged NADH at the electrode surface and CNTs promote electron transfer, thus endowing the NWE with high sensitivity and selectivity. Further studies show that resveratrol, a natural product, specifically induced NADH release from mitochondria of MCF-7 cancer cells rather than non-cancerous MCF-10 A cells, indicating the potential therapeutic effects of resveratrol in cancer treatment. This work provides an efficient method to monitor mitochondrial function by in situ electrochemical measurement of NADH release, which will be of great benefit for physiological and pathological studies.
Collapse
Affiliation(s)
- Hong Jiang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yu-Ting Qi
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wen-Tao Wu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
42
|
Wei X, Lu Y, Zhang X, Chen ML, Wang JH. Recent advances in single-cell ultra-trace analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 2020; 412:6121-6132. [PMID: 32424795 DOI: 10.1007/s00216-020-02655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591-596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Kristen Alanis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Theresa M Welle
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
44
|
Lemineur JF, Noël JM, Courty A, Ausserré D, Combellas C, Kanoufi F. In Situ Optical Monitoring of the Electrochemical Conversion of Dielectric Nanoparticles: From Multistep Charge Injection to Nanoparticle Motion. J Am Chem Soc 2020; 142:7937-7946. [PMID: 32223242 DOI: 10.1021/jacs.0c02071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By shortening solid-state diffusion times, the nanoscale size reduction of dielectric materials-such as ionic crystals-has fueled synthetic efforts toward their use as nanoparticles, NPs, in electrochemical storage and conversion cells. Meanwhile, there is a lack of strategies able to image the dynamics of such conversion, operando and at the single NP level. It is achieved here by optical microscopy for a model dielectric ionic nanocrystal, a silver halide NP. Rather than the classical core-shrinking mechanism often used to rationalize the complete electrochemical conversion and charge storage in NPs, an alternative mechanism is proposed here. Owing to its poor conductivity, the NP conversion proceeds to completion through the formation of multiple inclusions. The superlocalization of NP during such heterogeneous multiple-step conversion suggests the local release of ions, which propels the NP toward reacting sites enabling its full conversion.
Collapse
Affiliation(s)
- Jean-François Lemineur
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France.,Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Alexa Courty
- Sorbonne Université, MONARIS, CNRS-UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Dominique Ausserré
- Université du Maine, Institut des Matériaux et Molécules du Mans, CNRS-UMR 6283, Avenue O. Messiaen, 72000 Le Mans, France
| | - Catherine Combellas
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| | - Frédéric Kanoufi
- Université de Paris, ITODYS, CNRS-UMR 7086, 15 rue Jean-Antoine de Baïf, 75013 Paris, France
| |
Collapse
|
45
|
|
46
|
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue-Yi Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
47
|
Jin ZH, Liu YL, Fan WT, Huang WH. Integrating Flexible Electrochemical Sensor into Microfluidic Chip for Simulating and Monitoring Vascular Mechanotransduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903204. [PMID: 31402582 DOI: 10.1002/smll.201903204] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 05/20/2023]
Abstract
As an interface between the blood flow and vessel wall, endothelial cells (ECs) are exposed to hemodynamic forces, and the biochemical molecules released from ECs-blood flow interaction are important determinants of vascular homeostasis. Versatile microfluidic chips have been designed to simulate the biological and physiological parameters of the human vascular system, but in situ and real-time monitoring of the mechanical force-triggered signals during vascular mechanotransduction still remains a significant challenge. Here, such challenge is fulfilled for the first time, by preparation of a flexible and stretchable electrochemical sensor and its incorporation into a microfluidic vascular chip. This allows simulating of in vivo physiological and biomechanical parameters of blood vessels, and simultaneously monitoring the mechanically induced biochemical signals in real time. Specifically, the cyclic circumferential stretch that is actually exerted on endothelium but is hard to reproduce in vitro is successfully recapitulated, and nitric oxide signals under normal blood pressure, as well as reactive oxygen species signals under hypertensive states, are well documented. Here, the first integration of a flexible electrochemical sensor into a microfluidic chip is reported, therefore paving a way to evaluate in vitro organs by built-in flexible sensors.
Collapse
Affiliation(s)
- Zi-He Jin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
48
|
Nguyen THT, Lee J, Kim HY, Nam KM, Kim BK. Current research on single-entity electrochemistry for soft nanoparticle detection: Introduction to detection methods and applications. Biosens Bioelectron 2020; 151:111999. [DOI: 10.1016/j.bios.2019.111999] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
49
|
Polymer/enzyme-modified HF-etched carbon nanoelectrodes for single-cell analysis. Bioelectrochemistry 2020; 133:107487. [PMID: 32120322 DOI: 10.1016/j.bioelechem.2020.107487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/01/2020] [Accepted: 02/14/2020] [Indexed: 11/20/2022]
Abstract
Carbon-based nanoelectrodes fabricated by means of pyrolysis of an alkane precursor gas purged through a glass capillary and subsequently etched with HF were modified with redox polymer/enzyme films for the detection of glucose at the single-cell level. Glucose oxidase (GOx) was immobilized and electrically wired by means of an Os-complex-modified redox polymer in a sequential dip coating process. For the synthesis of the redox polymer matrix, a poly(1-vinylimidazole-co-acrylamide)-based backbone was used that was first modified with the electron transfer mediator [Os(bpy)2Cl]+ (bpy = 2,2'-bipyridine) followed by the conversion of the amide groups within the acrylamide monomer into hydrazide groups in a polymer-analogue reaction. The hydrazide groups react readily with bifunctional epoxide-based crosslinkers ensuring high film stability. Insertion of the nanometre-sized polymer/enzyme modified electrodes into adherently growing single NG108-15 cells resulted in a positive current response correlating with the intracellular glucose concentration. Moreover, the nanosensors showed a stable current output without significant loss in performance after intracellular measurements.
Collapse
|
50
|
Chang M, Morgan G, Bedier F, Chieng A, Gomez P, Raminani S, Wang Y. Review-Recent Advances in Nanosensors Built with Pre-Pulled Glass Nanopipettes and Their Applications in Chemical and Biological Sensing. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:037533. [PMID: 34326553 PMCID: PMC8317590 DOI: 10.1149/1945-7111/ab64be] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanosensors built with pre-pulled glass nanopipettes, including bare or chemically modified nanopipettes and fully or partially filled solid nanoelectrodes, have found applications in chemical and biological sensing via resistive-pulse, current rectification, and electrochemical sensing. These nanosensors are easily fabricated and provide advantages through their needle-like geometry with nanometer-sized tips, making them highly sensitive and suitable for local measurements in extremely small samples. The variety in the geometry and layout have extended sensing capabilities. In this review, we will outline the fundamentals in fabrication, modification, and characterization of those pre-pulled glass nanopipette based nanosensors and highlight the most recent progress in their development and applications in real-time monitoring of biological processes, chemical ion sensing, and single entity analysis.
Collapse
|