1
|
Mikeska ER, Blakemore JD. Differentiating Ligand Tailoring and Cation Incorporation as Strategies for Tuning Heterobimetallic Cerium Complexes. Chemistry 2025:e202500474. [PMID: 40289020 DOI: 10.1002/chem.202500474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Tuning of redox-active complexes featuring metals with high coordination numbers by incorporation of secondary redox-inactive cations has received far less attention than it deserves. Here, appending moderate steric bulk to a tripodal ligand framework has been tested for its influence on secondary-cation-driven structural and electrochemical tuning of cerium, a lanthanide that tends to adopt high coordination numbers. A quasi-C3-symmetric cerium(III) complex denoted [Ce] has been prepared that features pendant benzyloxy groups, and this work demonstrates that this species offers a site capable of binding single Na+ or Ca2+ ions. Electrochemical and UV-visible spectroscopic studies reveal equilibrium binding affinity of [Ce] for Na+ in acetonitrile solvent, contrasting with tight binding of all cations in all other previously studied systems of this type. The modulated cation binding can be attributed to the bulky benzyloxy groups, which impact the thermodynamics of cation binding but do not impede the formation of cerium centers with coordination number 8 upon binding of either Na+ or Ca2+. The Ce(IV/III) reduction potential was found to be tunable under the equilibrium binding conditions, highlighting the potentially significant role that controlled structural changes can play in modulating the solution properties of heterobimetallic complexes.
Collapse
Affiliation(s)
- Emily R Mikeska
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas, 66045, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas, 66045, USA
| |
Collapse
|
2
|
Saini P, Gupta S, Ramakrishnan S. Influence of internal electrostatics on reduction potentials in amine-ligated bimetallic copper complexes. Phys Chem Chem Phys 2025; 27:4398-4406. [PMID: 39927757 DOI: 10.1039/d4cp04569f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The electrostatic modulation of redox potentials of molecular electrocatalysts is a promising strategy to minimize overpotentials without compromising their catalytic activity given their intrinsic correlation. While the introduction of s-block cations to modulate the redox potential of single-site transition metal catalysts is known, the prevalence and nature of such electrostatic interactions in bimetallic complexes deserves further attention. In this work, using density functional theory and electrostatic charged sphere models, we quantify the influence of distance-dependent electrostatic effects on the reduction potentials of a bimetallic Cu(II) model system with a dipicolylamine (DPA) ligand, wherein the Cu(II) centers are bridged by an aliphatic diamine (NH2-(CH2)n-NH2) linker of varying chain lengths (n = 0 to 10). The calculated reduction potentials in non-aqueous solvation environments were found to vary linearly with the reciprocal of the Cu-Cu distance with a slope of 4.1 V Å, and span more than 500 mV, suggesting a strong distance-dependent coulombic electrostatic interaction between the two metal centers. The effect of chemical perturbations to the primary coordination sphere on the distance-dependent electrostatic effects, viz. nature of the metal ion, overall charge and ligand field, was quantified. The in silico predicted shifts in the one-electron redox potential as a function of the chain length in the model system were experimentally validated with the synthesis and cyclic voltammetry studies of two bimetallic Cu(II)(DPA) complexes bridged by 1,4-diaminobutane and 1,8-diaminooctane in acetonitrile.
Collapse
Affiliation(s)
- Prateek Saini
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Shubham Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Srinivasan Ramakrishnan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
3
|
Karnes JP, Lind NM, Oliver AG, Day CS, Day VW, Blakemore JD. Tunability in Heterobimetallic Complexes Featuring an Acyclic "Tiara" Polyether Motif. Inorg Chem 2025; 64:571-593. [PMID: 39715321 DOI: 10.1021/acs.inorgchem.4c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Both cyclic "crown" and acyclic "tiara" polyethers have been recognized as useful for the binding of metal cations and enabling the assembly of multimetallic complexes. However, the properties of heterobimetallic complexes built upon acyclic polyethers have received less attention than they deserve. Here, the synthesis and characterization of a family of eight redox-active heterobimetallic complexes that pair a nickel center with secondary redox-inactive cations (K+, Na+, Li+, Sr2+, Ca2+, Zn2+, La3+, and Lu3+) bound in acyclic polyether "tiara" moieties are reported. Structural studies with X-ray diffraction analysis were carried out on the monometallic nickel precursor complex to the heterobimetallics and the adducts with K+, Li+, Sr2+, Zn2+, and Lu3+; the results confirm the binding of secondary cations in the tiara site and demonstrate that the tiara moiety is more conformationally flexible than the analogous 18-crown-6-like moiety of a closely related macrocyclic "crown" ligand. Spectroscopic and electrochemical studies show, however, that the stability and cation-driven tunability of the tiara-based heterobimetallic species are quite similar to those previously measured for crown-based species. Consequently, the tiara motif appears to be at least as equally useful for constructing tunable multimetallic species as the more commonly encountered crown motif; a comprehensive set of titration data collected in an acetonitrile solution support this conclusion as well. Because the use of acyclic tiaras avoids the need for tedious and/or time-intensive syntheses of macrocyclic structures, these findings suggest that tiara motifs could be broadly advantageous in the design of ligands to support multimetallic chemistry.
Collapse
Affiliation(s)
- Joseph P Karnes
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Natalie M Lind
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Cynthia S Day
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Cypcar AD, Yang JY. Controlling Hydrogen Evolution and CO 2 Reduction at Transition Metal Hydrides. Acc Chem Res 2024; 57:3488-3499. [PMID: 39587958 DOI: 10.1021/acs.accounts.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
ConspectusFuel-forming reactions such as the hydrogen evolution reaction (HER) and CO2 reduction (CO2R) are vital to transitioning to a carbon-neutral economy. The equivalent oxidation reactions are also important for efficient utilization in fuel cells. Metal hydride intermediates are common in these catalytic and electrocatalytic processes. Guiding metal hydride reactivity is important for achieving selective, kinetically fast, and low overpotential redox reactions. Our work has focused on understanding kinetic and thermodynamic aspects for controlling these reactive hydride species in an effort to design more selective electrocatalysts that operate at low overpotentials. Key to our research approach is understanding the free energy changes and rate of discrete steps of catalysis through the synthesis of proposed intermediates to independently investigate catalytic steps. Hydricity, the free energy of hydride dissociation, and how these values change with metal and ligand environment have informed catalyst design in the past few decades. We describe here how we have advanced upon these earlier studies.In our early studies we sought to understand solvent-dependent changes in hydricity for transition metal hydrides and how they impact the free energy for reduction of CO2 to formate (HCO2-). Additionally, we described how hydricity values can be applied to optimize HER and CO2R catalysis. This framework provides general guidelines for achieving selective CO2 reduction to formate without concomitant generation of H2. Kinetic information on steps in the proposed catalytic cycle of HER and CO2R catalysts were evaluated to identify potential rate-determining steps. As a second approach to achieve selective reduction for CO2, we explored two catalyst design strategies to kinetically inhibit HER using electrostatic (charged) and steric interactions. Hydricity values and other considerations for minimizing the free energy of proposed catalytic steps were also used to design an electrocatalyst for the interconversion between CO2 and HCO2- at low overpotentials. Further, we discuss our efforts to translate the CO2 hydrogenation activity of homogeneous catalysts to electrocatalysis.All of these catalytic systems operate with classical metal hydrides, where the electrons and proton are colocated on the metal center. However, classical metal hydrides all require very reducing potentials to generate sufficiently strong hydride donors for CO2 reduction. An analysis of metal hydride hydricity and reduction potentials shows that the strong correlation between reduction potential and hydricity is a general trend because the former is also highly correlated to pKa. However, formate dehydrogenase (FDH) generates a competent hydride donor at more mild potentials through bidirectional hydride transfer, where the proton and electrons of the hydride are not colocated. This bioinspired approach points to a promising new strategy for generating strong hydride donors at milder potentials and will surely open new avenues for using hydricity as a guide for addressing new and existing problems in catalysis.
Collapse
Affiliation(s)
- Andrew D Cypcar
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, California 92697, United States of America
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, California 92697, United States of America
| |
Collapse
|
5
|
Subasinghe SMS, Mankad NP. Quantifying effects of second-sphere cationic groups on redox properties of dimolybdenum quadruple bonds. Chem Commun (Camb) 2024; 60:9966-9969. [PMID: 39189060 DOI: 10.1039/d4cc02759k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A series of four dimolybdenum paddlewheel complexes supported by anionic N,N-dimethylglycinate (DMG) or zwitterionic N,N,N-trimethylglycine (TMG) ligands was synthesised to examine the effects of charged groups in the second coordination sphere on redox properties of MoMo bonds. An average shift in reduction potential of +35 mV per cationically charged group was measured, which is approximately half of what would be expected for an analogous mononuclear complex.
Collapse
Affiliation(s)
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
6
|
Bhunia P, Gomila RM, Frontera A, Ghosh A. Shift of the reduction potential of nickel(II) Schiff base complexes in the presence of redox innocent metal ions. Dalton Trans 2024; 53:12316-12330. [PMID: 38984589 DOI: 10.1039/d4dt00953c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the objective of gaining insight into the modulation of the reduction potential of the Ni(II/I) couple, we have synthesized two mononuclear nickel(II) complexes, NiLen (H2Len = N,N'-bis(3-methoxysalicylidene)-1,2-diamino-2-methylpropane) and NiLpn (H2Lpn = N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2,2-dimethylpropane) of two N2O4 donor ligands and recorded their cyclic voltammograms. Both the nickel complexes show reversible reduction processes for the Ni(II/I) couple in acetonitrile solution but the reduction potential of NiLpn (E1/2 = -1.883 V) is 188 mV more positive than that of NiLen (E1/2 = -2.071 V). In the presence of redox inactive metal ions (Li+, Na+, K+, Mg2+, Ca2+ and Ba2+), the reduction potentials are shifted by 49-331 mV and 99-435 mV towards positive values compared to NiLen and NiLpn, respectively. The shift increases with the decrease of the pKa of the respective aqua-complexes of the metal ion but is poorly co-linear; however, better linearity is found when the shift of the mono- and bi-positive metal ion aqua complexes is plotted separately. Spectrophotometric titrations of these two nickel complexes with the guest metal ions in acetonitrile showed a well-anchored isosbestic point in all cases, confirming the adduct formation of NiLen and NiLpn with the metal ions. Structural analysis of single crystals, [(NiLen)Li(H2O)2]·ClO4 (1), [(NiLpn)Li(H2O)]·ClO4 (2), [(NiLpn)2Na]·BF4 (3) and [(NiLpn)2Ba(H2O)(ClO4)]·ClO4 (4), also corroborates the heterometallic adduct formation. The orbital energies of the optimised heterometallic adducts from which electron transfers originated were calculated in order to explain the observed reduction process. A strong linear connection between the calculated orbital energies and the experimental E1/2 values was observed. According to MEP and 2D vector field plots, the largest shift for divalent metal ions is most likely caused by the local electric field that they impose in addition to Lewis acidity.
Collapse
Affiliation(s)
- Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India.
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India.
| |
Collapse
|
7
|
Alvarez-Hernandez JL, Zhang X, Cui K, Deziel AP, Hammes-Schiffer S, Hazari N, Piekut N, Zhong M. Long-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt-porphyrin complexes. Chem Sci 2024; 15:6800-6815. [PMID: 38725508 PMCID: PMC11077573 DOI: 10.1039/d3sc06177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
A CoII-porphyrin complex (1) with an appended aza-crown ether for Lewis acid (LA) binding was synthesized and characterized. NMR spectroscopy and electrochemistry show that cationic group I and II LAs (i.e., Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) bind to the aza-crown ether group of 1. The binding constant for Li+ is comparable to that observed for a free aza-crown ether. LA binding causes an anodic shift in the CoII/CoI couple of between 10 and 40 mV and also impacts the CoIII/CoII couple. The magnitude of the anodic shift of the CoII/CoI couple varies linearly with the strength of the LA as determined by the pKa of the corresponding metal-aqua complex, with dications giving larger shifts than monocations. The extent of the anodic shift of the CoII/CoI couple also increases as the ionic strength of the solution decreases. This is consistent with electric field effects being responsible for the changes in the redox properties of 1 upon LA binding and provides a novel method to tune the reduction potential. Density functional theory calculations indicate that the bound LA is 5.6 to 6.8 Å away from the CoII ion, demonstrating that long-range electrostatic effects, which do not involve changes to the primary coordination sphere, are responsible for the variations in redox chemistry. Compound 1 was investigated as a CO2 reduction electrocatalyst and shows high activity but rapid decomposition.
Collapse
Affiliation(s)
| | - Xiaowei Zhang
- Department of Chemical and Environmental Engineering, Yale University New Haven CT 06520 USA
| | - Kai Cui
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | | | | | - Nilay Hazari
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Nicole Piekut
- Department of Chemistry, Yale University New Haven CT 06520 USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University New Haven CT 06520 USA
| |
Collapse
|
8
|
Long C, Ray M. Water-soluble chiral coordination polymers of Li +, Na +, K +, and Ba 2+ with an anionic iron(III) complex of a L-threonine derivative and a significant red shift of visible spectra with Al 3+ salt. Dalton Trans 2024; 53:6642-6652. [PMID: 38525650 DOI: 10.1039/d3dt03945e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Four salts of an anionic iron(III) bis-complex, [Fe(LL-thr)2]1-, were synthesized from water or methanol. H2LL-thr is a tridentate ligand derived from the L-threonine amino acid, and the cations used are Li+ (1), Na+ (2), K+ (3), and Ba2+ (4). Single-crystal X-ray diffraction showed that all the complexes are coordination polymers of different dimensionalities. The iron(III) complex binds to cations through its coordinated phenolate and non-coordinated carboxylate oxygen atoms. While Li+ forms a linear chain, all others have a pair of bridged cations intervening the iron(III) complexes. The 3D network of Ba2+ salt has a sizeable solvent-accessible space occupied by aquated chloride ions. The differences in circular dichroism (CD) spectra and significantly lower conductance values in water and methanol support partial retention of the polymeric nature in methanol. The visible spectra of 4 in methanol or water showed an ∼10 nm shift of the charge transfer bands from 3. However, the addition of Al3+ salt to 2 showed a significant colour shift. Further investigation confirmed that the colour shift is due to partial protonation of the complex with protons generated from salt hydrolysis. Most reports on visual aluminium detection consider aluminium's binding as the shift's source. The present results show that protonation due to hydrolysis of aluminium salt can skew the observation.
Collapse
Affiliation(s)
- Chanreingam Long
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Manabendra Ray
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| |
Collapse
|
9
|
Lionetti D, Suseno S, Shiau AA, de Ruiter G, Agapie T. Redox Processes Involving Oxygen: The Surprising Influence of Redox-Inactive Lewis Acids. JACS AU 2024; 4:344-368. [PMID: 38425928 PMCID: PMC10900226 DOI: 10.1021/jacsau.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
Metalloenzymes with heteromultimetallic active sites perform chemical reactions that control several biogeochemical cycles. Transformations catalyzed by such enzymes include dioxygen generation and reduction, dinitrogen reduction, and carbon dioxide reduction-instrumental transformations for progress in the context of artificial photosynthesis and sustainable fertilizer production. While the roles of the respective metals are of interest in all these enzymatic transformations, they share a common factor in the transfer of one or multiple redox equivalents. In light of this feature, it is surprising to find that incorporation of redox-inactive metals into the active site of such an enzyme is critical to its function. To illustrate, the presence of a redox-inactive Ca2+ center is crucial in the Oxygen Evolving Complex, and yet particularly intriguing given that the transformation catalyzed by this cluster is a redox process involving four electrons. Therefore, the effects of redox inactive metals on redox processes-electron transfer, oxygen- and hydrogen-atom transfer, and O-O bond cleavage and formation reactions-mediated by transition metals have been studied extensively. Significant effects of redox inactive metals have been observed on these redox transformations; linear free energy correlations between Lewis acidity and the redox properties of synthetic model complexes are observed for several reactions. In this Perspective, these effects and their relevance to multielectron processes will be discussed.
Collapse
Affiliation(s)
| | - Sandy Suseno
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Angela A. Shiau
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Graham de Ruiter
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Boggiano AC, Studvick CM, Steiner A, Bacsa J, Popov IA, La Pierre HS. Structural distortion by alkali metal cations modulates the redox and electronic properties of Ce 3+ imidophosphorane complexes. Chem Sci 2023; 14:11708-11717. [PMID: 37920331 PMCID: PMC10619540 DOI: 10.1039/d3sc04262f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
A series of Ce3+ complexes with counter cations ranging from Li to Cs are presented. Cyclic voltammetry data indicate a significant dependence of the oxidation potential on the alkali metal identity. Analysis of the single-crystal X-ray diffraction data indicates that the degree of structural distortion of the secondary coordination sphere is linearly correlated with the measured oxidation potential. Solution electronic absorption spectroscopy confirms that the structural distortion is reflected in the solution structure. Computational studies further validate this analysis, deciphering the impact of alkali metal cations on the Ce atomic orbital contributions, differences in energies of Ce-dominant molecular orbitals, energy shift of the 4f-5d electronic transitions, and degree of structural distortions. In sum, the structural impact of the alkali metal cation is demonstrated to modulate the redox and electronic properties of the Ce3+ complexes, and provides insight into the rational tuning of the Ce3+ imidophosphorane complex oxidation potential through alkali metal identity.
Collapse
Affiliation(s)
- Andrew C Boggiano
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
| | - Chad M Studvick
- Department of Chemistry, The University of Akron Akron Ohio 44325-3601 USA
| | - Alexander Steiner
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
| | - Ivan A Popov
- Department of Chemistry, The University of Akron Akron Ohio 44325-3601 USA
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
- Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
| |
Collapse
|
11
|
Fiorentini F, Diment WT, Deacy AC, Kerr RWF, Faulkner S, Williams CK. Understanding catalytic synergy in dinuclear polymerization catalysts for sustainable polymers. Nat Commun 2023; 14:4783. [PMID: 37553344 PMCID: PMC10409799 DOI: 10.1038/s41467-023-40284-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Understanding the chemistry underpinning intermetallic synergy and the discovery of generally applicable structure-performances relationships are major challenges in catalysis. Additionally, high-performance catalysts using earth-abundant, non-toxic and inexpensive elements must be prioritised. Here, a series of heterodinuclear catalysts of the form Co(III)M(I/II), where M(I/II) = Na(I), K(I), Ca(II), Sr(II), Ba(II) are evaluated for three different polymerizations, by assessment of rate constants, turn over frequencies, polymer selectivity and control. This allows for comparisons of performances both within and between catalysts containing Group I and II metals for CO2/propene oxide ring-opening copolymerization (ROCOP), propene oxide/phthalic anhydride ROCOP and lactide ring-opening polymerization (ROP). The data reveal new structure-performance correlations that apply across all the different polymerizations: catalysts featuring s-block metals of lower Lewis acidity show higher rates and selectivity. The epoxide/heterocumulene ROCOPs both show exponential activity increases (vs. Lewis acidity, measured by the pKa of [M(OH2)m]n+), whilst the lactide ROP activity and CO2/epoxide selectivity show linear increases. Such clear structure-activity/selectivity correlations are very unusual, yet are fully rationalised by the polymerization mechanisms and the chemistry of the catalytic intermediates. The general applicability across three different polymerizations is significant for future exploitation of catalytic synergy and provides a framework to improve other catalysts.
Collapse
Affiliation(s)
| | - Wilfred T Diment
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Arron C Deacy
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Ryan W F Kerr
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | | |
Collapse
|
12
|
Nguyen HM, Morgan HWT, Chantarojsiri T, Kerr TA, Yang JY, Alexandrova A, Léonard NG. Charge and Solvent Effects on the Redox Behavior of Vanadyl Salen-Crown Complexes. J Phys Chem A 2023; 127:5324-5334. [PMID: 37316977 PMCID: PMC12020647 DOI: 10.1021/acs.jpca.3c00827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The incorporation of charged groups proximal to a redox active transition metal center can impact the local electric field, altering redox behavior and enhancing catalysis. Vanadyl salen (salen = N,N'-ethylenebis(salicylideneaminato)) complexes functionalized with a crown ether containing a nonredox active metal cation (V-Na, V-K, V-Ba, V-La, V-Ce, and V-Nd) were synthesized. The electrochemical behavior of this series of complexes was investigated by cyclic voltammetry in solvents with varying polarity and dielectric constant (ε) (acetonitrile, ε = 37.5; N,N-dimethylformamide, ε = 36.7; and dichloromethane, ε = 8.93). The vanadium(V/IV) reduction potential shifted anodically with increasing cation charge compared to a complex lacking a proximal cation (ΔE1/2 > 900 mV in acetonitrile and >700 mV in dichloromethane). In contrast, the reduction potential for all vanadyl salen-crown complexes measured in N,N-dimethylformamide was insensitive to the magnitude of the cationic charge, regardless of the electrolyte or counteranion used. Titration studies of N,N-dimethylformamide into acetonitrile resulted in cathodic shifting of the vanadium(V/IV) reduction potential with increasing concentration of N,N-dimethylformamide. Binding constants of N,N-dimethylformamide (log(KDMF)) for the series of crown complexes show increased binding affinity in the order of V-La > V-Ba > V-K > (salen)V(O), indicating an enhancement of Lewis acid/base interaction with increasing cationic charge. The redox behavior of (salen)V(O) and (salen-OMe)V(O) (salen-OMe = N,N'-ethylenebis(3-methoxysalicylideneamine) was also investigated and compared to the crown-containing complexes. For (salen-OMe)V(O), a weak association of triflate salt at the vanadium(IV) oxidation state was observed through cyclic voltammetry titration experiments, and cation dissociation upon oxidation to vanadium(V) was identified. These studies demonstrate the noninnocent role of solvent coordination and cation/anion effects on redox behavior and, by extension, the local electric field.
Collapse
Affiliation(s)
- Hien M. Nguyen
- Department of Chemistry, University of California, Irvine, California, 92697, United States
| | - Harry W. T. Morgan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Tyler A. Kerr
- Department of Chemistry, University of California, Irvine, California, 92697, United States
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California, 92697, United States
| | - Anastassia Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Nadia G. Léonard
- Department of Chemistry, University of California, Irvine, California, 92697, United States
| |
Collapse
|
13
|
Zars E, Gravogl L, Gau MR, Carroll PJ, Meyer K, Mindiola DJ. Isostructural bridging diferrous chalcogenide cores [Fe II(μ-E)Fe II] (E = O, S, Se, Te) with decreasing antiferromagnetic coupling down the chalcogenide series. Chem Sci 2023; 14:6770-6779. [PMID: 37350823 PMCID: PMC10283490 DOI: 10.1039/d3sc01094e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Iron compounds containing a bridging oxo or sulfido moiety are ubiquitous in biological systems, but substitution with the heavier chalcogenides selenium and tellurium, however, is much rarer, with only a few examples reported to date. Here we show that treatment of the ferrous starting material [(tBupyrpyrr2)Fe(OEt2)] (1-OEt2) (tBupyrpyrr2 = 3,5-tBu2-bis(pyrrolyl)pyridine) with phosphine chalcogenide reagents E = PR3 results in the neutral phosphine chalcogenide adduct series [(tBupyrpyrr2)Fe(EPR3)] (E = O, S, Se; R = Ph; E = Te; R = tBu) (1-E) without any electron transfer, whereas treatment of the anionic starting material [K]2[(tBupyrpyrr2)Fe2(μ-N2)] (2-N2) with the appropriate chalcogenide transfer source yields cleanly the isostructural ferrous bridging mono-chalcogenide ate complexes [K]2[(tBupyrpyrr2)Fe2(μ-E)] (2-E) (E = O, S, Se, and Te) having significant deviation in the Fe-E-Fe bridge from linear in the case of E = O to more acute for the heaviest chalcogenide. All bridging chalcogenide complexes were analyzed using a variety of spectroscopic techniques, including 1H NMR, UV-Vis electronic absorbtion, and 57Fe Mössbauer. The spin-state and degree of communication between the two ferrous ions were probed via SQUID magnetometry, where it was found that all iron centers were high-spin (S = 2) FeII, with magnetic exchange coupling between the FeII ions. Magnetic studies established that antiferromagnetic coupling between the ferrous ions decreases as the identity of the chalcogen is tuned from O to the heaviest congener Te.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Lisa Gravogl
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| |
Collapse
|
14
|
Bhunia P, Gomila RM, Frontera A, Ghosh A. Combined effects of the lewis acidity and electric field of proximal redox innocent metal ions on the redox potential of vanadyl Schiff base complexes: an experimental and theoretical study. Dalton Trans 2023; 52:3097-3110. [PMID: 36786744 DOI: 10.1039/d3dt00024a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The reactivity of biological or synthetic metalloenzymes is modulated in the presence of redox innocent Lewis acidic metal ions as they change the redox potential of the redox active metal ions present in the active site of metalloenzymes. To study this effect, we synthesised a mono-nuclear V(IV) complex (VOL, 1) with an N2O4 donor bicompartmental ligand, characterized it by single-crystal X-ray crystallography and recorded its cyclic voltammogram in acetonitrile. The CV revealed a reversible redox process for the V(IV)/V(V) couple. The potential of the V(IV)/V(V) couple shifted to a more positive value when equivalent amounts of Li+, Na+, K+, Mg2+, Ca2+ and Ba2+ ions were added separately to its acetonitrile solution, but the extent of shift for Li+ and Mg2+ was much less than that of the other metal ions. The guest metal ions except Li+ and Mg2+ were accommodated in the outer compartment of VOL as confirmed by IR and UV-Vis spectral analysis. Single-crystal structural analysis of [(VOL)KPF6]2, (1·K) and [(VOL)Ba(ClO4)2(H2O)]n, (1·Ba) also confirmed the hetero-metallic adduct formation. The correlation of the shift of the V(IV/V) redox potential with the Lewis acidity of respective metal ions deviated appreciably from linearity. DFT calculations suggest that the shift in potential is probably controlled by local electric fields induced by those ions, as indicated by 2D vector electric field maps.
Collapse
Affiliation(s)
- Pradip Bhunia
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India.
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India. .,Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
15
|
Pattanayak S, Loewen ND, Berben LA. Using Substituted [Fe 4N(CO) 12] - as a Platform To Probe the Effect of Cation and Lewis Acid Location on Redox Potential. Inorg Chem 2023; 62:1919-1925. [PMID: 36006454 DOI: 10.1021/acs.inorgchem.2c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The impact of cationic and Lewis acidic functional groups installed in the primary or secondary coordination sphere (PCS or SCS) of an (electro)catalyst is known to vary depending on the precise positioning of those groups. However, it is difficult to systematically probe the effect of that position. In this report, we probe the effect of the functional group position and identity on the observed reduction potentials (Ep,c) using substituted iron clusters, [Fe4N(CO)11R]n, where R = NO+, PPh2-CH2CH2-9BBN, (MePTA+)2, (MePTA+)4, and H+ and n = 0, -1, +1, or +3 (9-BBN is 9-borabicyclo(3.3.1)nonane; MePTA+ is 1-methyl-1-azonia-3,5-diaza-7-phosphaadamantane). The cationic NO+ and H+ ligands cause anodic shifts of 700 and 320 mV, respectively, in Ep,c relative to unsubstituted [Fe4N(CO)12]-. Infrared absorption band data, νCO, suggests that some of the 700 mV shift by NO+ results from electronic changes to the cluster core. This contrasts with the effects of cationic MePTA+ and H+ which cause primarily electrostatic effects on Ep,c. Lewis acidic 9-BBN in the SCS had almost no effect on Ep,c.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Natalia D Loewen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Louise A Berben
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
16
|
Hanaway D, Kennedy CR. Automated Variable Electric-Field DFT Application for Evaluation of Optimally Oriented Electric Fields on Chemical Reactivity. J Org Chem 2023; 88:106-115. [PMID: 36507909 PMCID: PMC9830642 DOI: 10.1021/acs.joc.2c01893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent theoretical work and experiments at molecular junctions have provided a strong conceptualization for the effects of oriented electric fields (OEFs) on organic reactions. Depending on the axis of application, OEFs can increase (or decrease) the reaction rate or distinguish between isomeric pathways. Despite the conceptual elegance of OEFs, which may be applied externally or induced locally, as tools for catalyzing organic reactions, implementation in synthetically relevant systems has been hampered by inefficiencies in evaluating reaction sensitivity to field effects. Herein, we describe the development of the Automated Variable Electric-Field DFT Application (A.V.E.D.A.) for streamlined evaluation of a reaction's susceptibility to OEFs. This open-source software was designed to be accessible for nonexpert users of computational and programming tools. Following initiation by a single command (and with no subsequent intervention) the Linux workflow manages a series of density functional theory calculations and mathematical manipulations to optimize local-minimum and transition-state structures in oriented electric fields of increasing magnitude. The resulting molecular and reaction dipole moments, field-perturbed geometries, and net effective activation energies are compiled for user interpretation. Ten representative pericyclic reactions that showcase the development and evaluation of A.V.E.D.A. are described.
Collapse
|
17
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
18
|
Diment WT, Lindeboom W, Fiorentini F, Deacy AC, Williams CK. Synergic Heterodinuclear Catalysts for the Ring-Opening Copolymerization (ROCOP) of Epoxides, Carbon Dioxide, and Anhydrides. Acc Chem Res 2022; 55:1997-2010. [PMID: 35863044 PMCID: PMC9350912 DOI: 10.1021/acs.accounts.2c00197] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The development of sustainable
plastic materials is an essential
target of chemistry in the 21st century. Key objectives toward this
goal include utilizing sustainable monomers and the development of
polymers that can be chemically recycled/degraded. Polycarbonates
synthesized from the ring-opening copolymerization (ROCOP) of epoxides
and CO2, and polyesters synthesized from the ROCOP of epoxides
and anhydrides, meet these criteria. Despite this, designing efficient
catalysts for these processes remains challenging. Typical issues
include the requirement for high catalyst loading; low catalytic activities
in comparison with other commercialized polymerizations; and the requirement
of costly, toxic cocatalysts. The development of efficient catalysts
for both types of ROCOP is highly desirable. This Account details
our work on the development of catalysts for these two related polymerizations
and, in particular, focuses on dinuclear complexes, which are typically
applied without any cocatalyst. We have developed mechanistic hypotheses
in tandem with our catalysts, and throughout the Account, we describe
the kinetic, computational, and structure–activity studies
that underpin the performance of these catalysts. Our initial research
on homodinuclear M(II)M(II) complexes for cyclohexene oxide (CHO)/CO2 ROCOP provided data to support a chain shuttling catalytic
mechanism, which implied different roles for the two metals in the
catalysis. This mechanistic hypothesis inspired the development of
mixed-metal, heterodinuclear catalysts. The first of this class of
catalysts was a heterodinuclear Zn(II)Mg(II) complex, which showed
higher rates than either of the homodinuclear [Zn(II)Zn(II) and Mg(II)Mg(II)]
analogues for CHO/CO2 ROCOP. Expanding on this finding,
we subsequently developed a Co(II)Mg(II) complex that showed field
leading rates for CHO/CO2 ROCOP and allowed for unique
insight into the role of the two metals in this complex, where it
was established that the Mg(II) center reduced transition state entropy
and the Co(II) center reduced transition state enthalpy. Following
these discoveries, we subsequently developed a range of heterodinuclear
M(III)M(I) catalysts that were capable of catalyzing a broad range
of copolymerizations, including the ring-opening copolymerization
of CHO/CO2, propylene oxide (PO)/CO2, and CHO/phthalic
anhydride (PA). Catalysts featuring Co(III)K(I) and Al(III)K(I) were
found to be exceptionally effective for PO/CO2 and CHO/PA
ROCOP, respectively. Such M(III)M(I) complexes operate through a dinuclear
metalate mechanism, where the M(III) binds and activates monomers
while the M(I) species binds the polymer change in close proximity
to allow for insertion into the activated monomer. Our research illustrates
how careful catalyst design can yield highly efficient systems and
how the development of mechanistic understanding aids this process.
Avenues of future research are also discussed, including the applicability
of these heterodinuclear catalysts in the synthesis of sustainable
materials.
Collapse
Affiliation(s)
- Wilfred T Diment
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Wouter Lindeboom
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Francesca Fiorentini
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Arron C Deacy
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Charlotte K Williams
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
19
|
Teptarakulkarn P, Lorpaiboon W, Anusanti T, Laowiwatkasem N, Chainok K, Sangtrirutnugul P, Surawatanawong P, Chantarojsiri T. Incorporation of Cation Affects the Redox Reactivity of Fe- NNN Complexes on C-H Oxidation. Inorg Chem 2022; 61:11066-11074. [PMID: 35815773 DOI: 10.1021/acs.inorgchem.2c00762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cations such as Lewis acids have been shown to enhance the catalytic activity of high-valent Fe-oxygen intermediates. Herein, we present a pyridine diamine ethylene glycol macrocycle, which can form Zn(II)- or Fe(III)-complex with the NNN site, while allowing redox-inactive cations to bind to the ethylene glycol moiety. The addition of alkali, alkali earth, and lanthanum ions resulted in positive shifts to the Fe(III/II) redox potential. Calculation of dissociation constants showed the tightest binding with a Ba2+ ion. Density functional theory calculations were used to elucidate the effects of redox inactive cations toward the electronic structures of Fe complexes. Although the Fe-NNN complexes, both in the absence and presence of cations, can catalyze C-H oxidation of 9,10-dihydroanthracene, to give anthracene [hydrogen atom transfer (HAT) product], anthrone, and anthraquinone [oxygen atom transfer (OAT) products], highest overall activity and OAT/HAT product ratios were obtained in the presence of dications, that is, Ba2+ and Mg2+, respectively.
Collapse
Affiliation(s)
- Pathorn Teptarakulkarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Wanutcha Lorpaiboon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Thana Anusanti
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Natchapol Laowiwatkasem
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Preeyanuch Sangtrirutnugul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
20
|
|
21
|
Weberg AB, Murphy RP, Tomson NC. Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Chem Sci 2022; 13:5432-5446. [PMID: 35694353 PMCID: PMC9116365 DOI: 10.1039/d2sc01715f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
The power of oriented electrostatic fields (ESFs) to influence chemical bonding and reactivity is a phenomenon of rapidly growing interest. The presence of strong ESFs has recently been implicated as one of the most significant contributors to the activity of select enzymes, wherein alignment of a substrate's changing dipole moment with a strong, local electrostatic field has been shown to be responsible for the majority of the enzymatic rate enhancement. Outside of enzymology, researchers have studied the impacts of "internal" electrostatic fields via the addition of ionic salts to reactions and the incorporation of charged functional groups into organic molecules (both experimentally and computationally), and "externally" via the implementation of bulk fields between electrode plates. Incorporation of charged moieties into homogeneous inorganic complexes to generate internal ESFs represents an area of high potential for novel catalyst design. This field has only begun to materialize within the past 10 years but could be an area of significant impact moving forward, since it provides a means for tuning the properties of molecular complexes via a method that is orthogonal to traditional strategies, thereby providing possibilities for improved catalytic conditions and novel reactivity. In this perspective, we highlight recent developments in this area and offer insights, obtained from our own research, on the challenges and future directions of this emerging field of research.
Collapse
Affiliation(s)
- Alexander B Weberg
- R, oy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia Pennsylvania 19104 USA
| | - Ryan P Murphy
- R, oy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia Pennsylvania 19104 USA
| | - Neil C Tomson
- R, oy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 S. 34th Street Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
22
|
Ghosh TK, Maity S, Ghosh S, Gomila RM, Frontera A, Ghosh A. Role of Redox-Inactive Metal Ions in Modulating the Reduction Potential of Uranyl Schiff Base Complexes: Detailed Experimental and Theoretical Studies. Inorg Chem 2022; 61:7130-7142. [PMID: 35467851 DOI: 10.1021/acs.inorgchem.2c00645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mononuclear uranyl complex, [UO2L] (1), has been synthesized with the ligand N,N'-bis(3-methoxy-2-hydroxybenzylidene)-1,6-diamino-3-azahexane (H2L). The complex showed a reversible U(VI)/U(V) redox couple in cyclic voltammetric measurements. The reduction potential of this couple showed a positive shift upon the addition of redox-inactive alkali- and alkaline-earth Lewis acidic metal ions (Li+, Na+, K+, Ca2+, Sr2+, and Ba2+) to an acetonitrile solution of complex 1. The positive shift of the reduction potential has been explained on the basis of the Lewis acidity and internal electric-field effect of the respective metal ions. The bimetallic complexes [UO2LLi(NO3)] (2), [UO2LNa(BF4)]2 (3), [UO2LK(PF6)]2 (4), [(UO2L)2Ca]·(ClO4)2·CH3CN (5), [(UO2L)2Sr(H2O)2]·(ClO4)2·CH3CN (6), and [(UO2L)2Ba(ClO4)]·(ClO4) (7) have also been isolated in the solid state by reacting complex 1 with the corresponding metal ions and characterized by single-crystal X-ray diffraction. Density functional theory calculations of the optimized [UO2LM]n+ complexes have been used to rationalize the experimental reduction and electric-field potentials imposed by the non-redox-active cations.
Collapse
Affiliation(s)
- Tanmoy Kumar Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Souvik Maity
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Soumavo Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears, Carta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Carta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Ashutosh Ghosh
- Department of Chemistry, University College of Science, University of Calcutta, 92 APC Road, Kolkata 700009, India.,Rani Rashmoni Green University, Tarakeswar, Hooghly 712410, West Bengal, India
| |
Collapse
|
23
|
Kelty ML, McNeece AJ, Kurutz JW, Filatov AS, Anderson JS. Electrostatic vs. inductive effects in phosphine ligand donor properties and reactivity. Chem Sci 2022; 13:4377-4387. [PMID: 35509471 PMCID: PMC9007067 DOI: 10.1039/d1sc04277g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Enhanced rates and selectivity in enzymes are enabled in part by precisely tuned electric fields within active sites. Analogously, the use of charged groups to leverage electrostatics in molecular systems is a promising strategy to tune reactivity. However, separation of the through space and through bond effects of charged functional groups is a long standing challenge that limits the rational application of electric fields in molecular systems. To address this challenge we developed a method using the phosphorus selenium coupling value (J P-Se) of anionic phosphine selenides to quantify the electrostatic contribution of the borate moiety to donor strength. In this analysis we report the synthesis of a novel anionic phosphine, PPh2CH2BF3K, the corresponding tetraphenyl phosphonium and tetraethyl ammonium selenides [PPh4][SePPh2CH2BF3] and [TEA][SePPh2CH2BF3], and the Rh carbonyl complex [PPh4][Rh(acac)(CO)(PPh2(CH2BF3))]. Solvent-dependent changes in J P-Se were fit using Coulomb's law and support up to an 80% electrostatic contribution to the increase in donor strength of [PPh4][SePPh2CH2BF3] relative to SePPh2Et, while controls with [TEA][SePPh2CH2BF3] exclude convoluting ion pairing effects. Calculations using explicit solvation or point charges effectively replicate the experimental data. This J P-Se method was extended to [PPh4][SePPh2(2-BF3Ph)] and likewise estimates up to a 70% electrostatic contribution to the increase in donor strength relative to SePPh3. The use of PPh2CH2BF3K also accelerates C-F oxidative addition reactivity with Ni(COD)2 by an order of magnitude in comparison to the comparatively donating neutral phosphines PEt3 and PCy3. This enhanced reactivity prompted the investigation of catalytic fluoroarene C-F borylation, with improved yields observed for less fluorinated arenes. These results demonstrate that covalently bound charged functionalities can exert a significant electrostatic influence under common solution phase reaction conditions and experimentally validate theoretical predictions regarding electrostatic effects in reactivity.
Collapse
Affiliation(s)
- Margaret L Kelty
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Andrew J McNeece
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Josh W Kurutz
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| | - John S Anderson
- Department of Chemistry, University of Chicago 929 E 57th St Chicago IL 60637 USA
| |
Collapse
|
24
|
Skubi KL, Hooper RX, Mercado BQ, Bollmeyer MM, MacMillan SN, Lancaster KM, Holland PL. Iron Complexes of a Proton-Responsive SCS Pincer Ligand with a Sensitive Electronic Structure. Inorg Chem 2022; 61:1644-1658. [PMID: 34986307 PMCID: PMC8792349 DOI: 10.1021/acs.inorgchem.1c03499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sulfur/carbon/sulfur pincer ligands have an interesting combination of strong-field and weak-field donors, a coordination environment that is also present in the nitrogenase active site. Here, we explore the electronic structures of iron(II) and iron(III) complexes with such a pincer ligand, bearing a monodentate phosphine, thiolate S donor, amide N donor, ammonia, or CO. The ligand scaffold features a proton-responsive thioamide site, and the protonation state of the ligand greatly influences the reduction potential of iron in the phosphine complex. The N-H bond dissociation free energy, derived from the Bordwell equation, is 56 ± 2 kcal/mol. Electron paramagnetic resonance (EPR) spectroscopy and superconducting quantum interference device (SQUID) magnetometry measurements show that the iron(III) complexes with S and N as the fourth donors have an intermediate spin (S = 3/2) ground state with a large zero field splitting, and X-ray absorption spectra show a high Fe-S covalency. The Mössbauer spectrum changes drastically with the position of a nearby alkali metal cation in the iron(III) amido complex, and density functional theory calculations explain this phenomenon through a change between having the doubly occupied orbital as dz2 or dyz, as the former is more influenced by the nearby positive charge.
Collapse
Affiliation(s)
- Kazimer L. Skubi
- Department of Chemistry, Yale University, New Haven, Connecticut 06511
| | - Reagan X. Hooper
- Department of Chemistry, Yale University, New Haven, Connecticut 06511
| | | | - Melissa M. Bollmeyer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
25
|
Nie W, McCrory C. Strategies for Breaking Molecular Scaling Relationships for the Electrochemical CO 2 Reduction Reaction. Dalton Trans 2022; 51:6993-7010. [DOI: 10.1039/d2dt00333c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) is a promising strategy for converting CO2 to fuels and value-added chemicals using renewable energy sources. Molecular electrocatalysts show promise for the selective conversion...
Collapse
|
26
|
Gupta G, Bera M, Paul S, Paria S. Electrochemical Properties and Reactivity Study of [Mn V(O)(μ-OR-Lewis Acid)] Cores. Inorg Chem 2021; 60:18006-18016. [PMID: 34813300 DOI: 10.1021/acs.inorgchem.1c02601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mononuclear manganese(V) oxo complex of a bis(amidate)bis(alkoxide) ligand, (NMe4)[MnV(HMPAB)(O)] [2; H4HMPAB = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene], was synthesized and structurally characterized. A Mn-Oterm distance of 1.566(4) Å was observed in the solid-state structure of 2, consistent with the Mn≡O formulation. The reaction of redox-inactive metal ions (Mn+ = Li+, Ca2+, Mg2+, Y3+, and Sc3+) with 2 resulted in the formation of 2-Mn+ species, which were characterized by UV-vis, 1H NMR, cyclic voltammetry, and in situ IR spectroscopy. Theoretical calculations suggested that the alkoxide oxygen atoms of the ligand scaffold are energetically most favorable for coordinating the Mn+ ions in 2. Complex 2 revealed one-electron-reduction potential at -0.01 V versus ferrocenium/ferrocene, which shifted anodically upon coordination of Mn+ ions to 2, and such a shift became more prominent with stronger Lewis acids. The oxygen-atom transfer (OAT) reactivities of 2 and 2-Mn+ species with triphenylphosphine were compared, which exhibited a systematic increase of the reaction rate with increasing Lewis acidity of Mn+ ions, and a plot of log k2 versus Lewis acidity of Mn+ ions (ΔE) followed a linear relationship. It was observed that 2-Sc3+ was ca. 3200 times more reactive toward the OAT reaction compared to 2. Hammett analysis of 2 exhibited a V-shaped plot, indicating a change of the reaction mechanism upon going from electron-rich to electron-deficient Ar3P substrates. In contrast, 2-Ca2+ and 2-Sc3+ showed an electrophilic nature toward the OAT reaction, thus demonstrating the role of the Lewis acid in controlling the OAT mechanism. The hydrogen-atom abstraction reaction of 2 and 2-Mn+ adducts with 1-benzyl-1,4-dihydronicotinamide was investigated, and it was observed that the rate of reaction did not vary considerably with the Lewis acidity of Mn+ ions. On the basis of Eyring analysis of 2 and 2-Mn+ adducts, we hypothesized an entropy-controlled hydrogen-atom-transfer reaction for 2-Sc3+, which is different from the reaction mechanism of 2 and 2-Ca2+.
Collapse
Affiliation(s)
- Geetika Gupta
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, Kolkata 700009, India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
27
|
Synthesis and redox properties of heterobimetallic Re(bpyCrown-M)(CO)3Cl complexes, where M = Na+, K+, Ca2+, and Ba2+. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Lindeboom W, Fraser DAX, Durr CB, Williams CK. Heterodinuclear Zn(II), Mg(II) or Co(III) with Na(I) Catalysts for Carbon Dioxide and Cyclohexene Oxide Ring Opening Copolymerizations. Chemistry 2021; 27:12224-12231. [PMID: 34133043 PMCID: PMC8456860 DOI: 10.1002/chem.202101140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/16/2022]
Abstract
A series heterodinuclear catalysts, operating without co-catalyst, show good performances for the ring opening copolymerization (ROCOP) of cyclohexene oxide and carbon dioxide. The complexes feature a macrocyclic ligand designed to coordinate metals such as Zn(II), Mg(II) or Co(III), in a Schiff base 'pocket', and Na(I) in a modified crown-ether binding 'pocket'. The 11 new catalysts are used to explore the influences of the metal combinations and ligand backbones over catalytic activity and selectivity. The highest performance catalyst features the Co(III)Na(I) combination, [N,N'-bis(3,3'-triethylene glycol salicylidene)-1,2-ethylenediamino cobalt(III) di(acetate)]sodium (7), and it shows both excellent activity and selectivity at 1 bar carbon dioxide pressure (TOF=1590 h-1 , >99 % polymer selectivity, 1 : 10: 4000, 100 °C), as well as high activity at higher carbon dioxide pressure (TOF=4343 h-1 , 20 bar, 1 : 10 : 25000). Its rate law shows a first order dependence on both catalyst and cyclohexene oxide concentrations and a zeroth order for carbon dioxide pressure, over the range 10-40 bar. These new catalysts eliminate any need for ionic or Lewis base co-catalyst and instead exploit the coordination of earth-abundant and inexpensive Na(I) adjacent to a second metal to deliver efficient catalysis. They highlight the potential for well-designed ancillary ligands and inexpensive Group 1 metals to deliver high performance heterodinuclear catalysts for carbon dioxide copolymerizations and, in future, these catalysts may also show promise in other alternating copolymerization and carbon dioxide utilizations.
Collapse
Affiliation(s)
- Wouter Lindeboom
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordUK
| | - Duncan A. X. Fraser
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordUK
| | - Christopher B. Durr
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordUK
| | | |
Collapse
|
29
|
Léonard NG, Dhaoui R, Chantarojsiri T, Yang JY. Electric Fields in Catalysis: From Enzymes to Molecular Catalysts. ACS Catal 2021; 11:10923-10932. [DOI: 10.1021/acscatal.1c02084] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nadia G. Léonard
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Rakia Dhaoui
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
30
|
Kelsey SR, Kumar A, Oliver AG, Day VW, Blakemore JD. Promotion and Tuning of the Electrochemical Reduction of Hetero‐ and Homobimetallic Zinc Complexes**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shaun R. Kelsey
- Department of Chemistry University of Kansas 1567 Irving Hill Rd Lawrence KS 66045
| | - Amit Kumar
- Department of Chemistry University of Kansas 1567 Irving Hill Rd Lawrence KS 66045
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry University of Notre Dame 149 Stepan Chemistry Notre Dame IN 46556 USA
| | - Victor W. Day
- Department of Chemistry University of Kansas 1567 Irving Hill Rd Lawrence KS 66045
| | - James D. Blakemore
- Department of Chemistry University of Kansas 1567 Irving Hill Rd Lawrence KS 66045
| |
Collapse
|
31
|
Martin DJ, Mayer JM. Oriented Electrostatic Effects on O 2 and CO 2 Reduction by a Polycationic Iron Porphyrin. J Am Chem Soc 2021; 143:11423-11434. [PMID: 34292718 DOI: 10.1021/jacs.1c03132] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Next-generation energy technologies require improved methods for rapid and efficient chemical-to-electrical energy transformations. One new approach has been to include atomically positioned, electrostatic motifs in molecular catalysts to stabilize high-energy, charged intermediates. For example, an iron porphyrin bearing four cationic, o-N,N,N-trimethylanilinium groups (o-[N(CH3)3]+) has recently been used to catalyze the complex, multistep O2 and CO2 reduction reactions (ORR and CO2RR) with fast rates and at low overpotentials. The success of this catalyst is attributed, at least in part, to specific charge-charge interactions between the atomically positioned o-[N(CH3)3]+ groups and the bound substrate. However, by nature of the mono-ortho substitution pattern, there are four possible atropisomers of this metalloporphyrin and thus four unique electrostatic environments. This work reports that each of the four individual atropisomers catalyzes both the ORR and CO2RR with fast rates and low overpotentials. The maximum turnover frequencies vary among the atropisomers, by a factor of 60 for the ORR and a factor of 5 for CO2RR. For the ORR, the αβαβ isomer is the fastest and has the highest overpotential, while for the CO2RR the αααα isomer is the fastest and has the highest overpotential. The role of charge positioning is complex and can affect more than a single step such as CO2 binding. These data offer a first-of-a-kind perspective on atomically positioned charge and highlight the significance of high charge density, rather than orientation, on the thermodynamics and kinetics of multistep molecular electrochemical transformations.
Collapse
Affiliation(s)
- Daniel J Martin
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
32
|
Wesley T, Román-Leshkov Y, Surendranath Y. Spontaneous Electric Fields Play a Key Role in Thermochemical Catalysis at Metal-Liquid Interfaces. ACS CENTRAL SCIENCE 2021; 7:1045-1055. [PMID: 34235265 PMCID: PMC8228591 DOI: 10.1021/acscentsci.1c00293] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 05/20/2023]
Abstract
Large oriented electric fields spontaneously arise at all solid-liquid interfaces via the exchange of ions and/or electrons with the solution. Although intrinsic electric fields are known to play an important role in molecular and biological catalysis, the role of spontaneous polarization in heterogeneous thermocatalysis remains unclear because the catalysts employed are typically disconnected from an external circuit, which makes it difficult to monitor or control the degree of electrical polarization of the surface. Here, we address this knowledge gap by developing general methods for wirelessly monitoring and controlling spontaneous electrical polarization at conductive catalysts dispersed in liquid media. By combining electrochemical and spectroscopic measurements, we demonstrate that proton and electron transfer from solution controllably, spontaneously, and wirelessly polarize Pt surfaces during thermochemical catalysis. We employ liquid-phase ethylene hydrogenation on a Pt/C catalyst as a thermochemical probe reaction and observe that the rate of this nonpolar hydrogenation reaction is significantly influenced by spontaneous electric fields generated by both interfacial proton transfer in water and interfacial electron transfer from organometallic redox buffers in a polar aprotic ortho-difluorobenzene solvent. Across these vastly disparate reaction media, we observe quantitatively similar scaling of ethylene hydrogenation rates with the Pt open-circuit electrochemical potential (E OCP). These results isolate the role of interfacial electrostatic effects from medium-specific chemical interactions and establish that spontaneous interfacial electric fields play a critical role in liquid-phase heterogeneous catalysis. Consequently, E OCP-a generally overlooked parameter in heterogeneous catalysis-warrants consideration in mechanistic studies of thermochemical reactions at solid-liquid interfaces, alongside chemical factors such as temperature, reactant activities, and catalyst structure. Indeed, this work establishes the experimental and conceptual foundation for harnessing electric fields to both elucidate surface chemistry and manipulate preparative thermochemical catalysis.
Collapse
Affiliation(s)
- Thejas
S. Wesley
- Department
of Chemical Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yogesh Surendranath
- Department
of Chemical Engineering and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Barlow JM, Ziller JW, Yang JY. Inhibiting the Hydrogen Evolution Reaction (HER) with Proximal Cations: A Strategy for Promoting Selective Electrocatalytic Reduction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01527] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jeffrey M. Barlow
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
34
|
Ponchai P, Adpakpang K, Bureekaew S. Selective cyclohexene oxidation to allylic compounds over a Cu-triazole framework via homolytic activation of hydrogen peroxide. Dalton Trans 2021; 50:7917-7921. [PMID: 33969847 DOI: 10.1039/d1dt00227a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilization of metal-organic frameworks as heterogeneous catalysts is crucial owing to their abundant catalytic sites and well-defined porous structures. Highly robust [Cu3(trz)3(μ3-OH)(OH)2(H2O)4]·2H2O (trz = 1,2,4-triazole) was employed as a catalyst for liquid-phase cyclohexene oxidation with hydrogen peroxide (H2O2). Possessing the porous structure together with Lewis acid attributes from the triangular [Cu3(trz)3(μ3-OH)] center, selective oxidation of cyclohexene to allylic products gives a molar yield of 31% with 87% selectivity. According to the highly selective allylic production, the reaction over the present Cu-MOF plausibly occurs via homolytic activation of H2O2. This finding elucidates the unique features of the MOF for efficient catalysis of cyclohexene oxidation.
Collapse
Affiliation(s)
- Panyapat Ponchai
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand.
| | - Kanyaporn Adpakpang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand.
| | - Sareeya Bureekaew
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand. and Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
35
|
Nie W, Tarnopol DE, McCrory CCL. Enhancing a Molecular Electrocatalyst’s Activity for CO2 Reduction by Simultaneously Modulating Three Substituent Effects. J Am Chem Soc 2021; 143:3764-3778. [DOI: 10.1021/jacs.0c09357] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Weixuan Nie
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Drew E. Tarnopol
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Charles C. L. McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
36
|
Weberg AB, McCollom SP, Thierer LM, Gau MR, Carroll PJ, Tomson NC. Using internal electrostatic fields to manipulate the valence manifolds of copper complexes. Chem Sci 2021; 12:4395-4404. [PMID: 34163703 PMCID: PMC8179517 DOI: 10.1039/d0sc06364a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of tetradentate tris(phosphinimine) ligands (R3P3tren) was developed and bound to CuI to form the trigonal pyramidal, C3v-symmetric cuprous complexes [R3P3tren-Cu][BArF4] (1PR3) (PR3 = PMe3, PMe2Ph, PMePh2, PPh3, PMe2(NEt2), BArF4 = B(C6F5)4). Electrochemical studies on the CuI complexes were undertaken, and the permethylated analog, 1PMe3, was found to display an unprecedentedly cathodic CuI/CuII redox potential (−780 mV vs. Fc/Fc+ in isobutyronitrile). Elucidation of the electronic structures of 1PR3via density functional theory (DFT) studies revealed atypical valence manifold configurations, resulting from strongly σ-donating phosphinimine moieties in the xy-plane that destabilize 2e (dxy/dx2−y2) orbital sets and uniquely stabilized a1 (dz2) orbitals. Support is provided that the a1 stabilizations result from intramolecular electrostatic fields (ESFs) generated from cationic character on the phosphinimine moieties in R3P3tren. This view is corroborated via 1-dimensional electrostatic potential maps along the z-axes of 1PR3 and their isostructural analogues. Experimental validation of this computational model is provided upon oxidation of 1PMe3 to the cupric complex [Me3P3tren-Cu][OTf]2 (2PMe3), which displays a characteristic Jahn–Teller distortion in the form of a see-saw, pseudo-Cs-symmetric geometry. A systematic anodic shift in the potential of the CuI/CuII redox couple as the steric bulk in the secondary coordination sphere increases is explained through the complexes' diminishing ability to access the ideal Cs-symmetric geometry upon oxidation. The observations and calculations discussed in this work support the presence of internal electrostatic fields within the copper complexes, which subsequently influence the complexes' properties via a method orthogonal to classic ligand field tuning. Secondary coordination sphere electrostatic effects tune the valence manifolds of copper centers, impacting molecular geometries, photophysical properties, and redox potentials.![]()
Collapse
Affiliation(s)
- Alexander B Weberg
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Samuel P McCollom
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Laura M Thierer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Michael R Gau
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Patrick J Carroll
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Neil C Tomson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
37
|
Martin DJ, Johnson SI, Mercado BQ, Raugei S, Mayer JM. Intramolecular Electrostatic Effects on O2, CO2, and Acetate Binding to a Cationic Iron Porphyrin. Inorg Chem 2020; 59:17402-17414. [DOI: 10.1021/acs.inorgchem.0c02703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel J. Martin
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Samantha I. Johnson
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Simone Raugei
- Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
38
|
Deacy A, Moreby E, Phanopoulos A, Williams CK. Co(III)/Alkali-Metal(I) Heterodinuclear Catalysts for the Ring-Opening Copolymerization of CO 2 and Propylene Oxide. J Am Chem Soc 2020; 142:19150-19160. [PMID: 33108736 PMCID: PMC7662907 DOI: 10.1021/jacs.0c07980] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 02/06/2023]
Abstract
The ring-opening copolymerization of carbon dioxide and propene oxide is a useful means to valorize waste into commercially attractive poly(propylene carbonate) (PPC) polyols. The reaction is limited by low catalytic activities, poor tolerance to a large excess of chain transfer agent, and tendency to form byproducts. Here, a series of new catalysts are reported that comprise heterodinuclear Co(III)/M(I) macrocyclic complexes (where M(I) = Group 1 metal). These catalysts show highly efficient production of PPC polyols, outstanding yields (turnover numbers), quantitative carbon dioxide uptake (>99%), and high selectivity for polyol formation (>95%). The most active, a Co(III)/K(I) complex, shows a turnover frequency of 800 h-1 at low catalyst loading (0.025 mol %, 70 °C, 30 bar CO2). The copolymerizations are well controlled and produce hydroxyl telechelic PPC with predictable molar masses and narrow dispersity (Đ < 1.15). The polymerization kinetics show a second order rate law, first order in both propylene oxide and catalyst concentrations, and zeroth order in CO2 pressure. An Eyring analysis, examining the effect of temperature on the propagation rate coefficient (kp), reveals the transition state barrier for polycarbonate formation: ΔG‡ = +92.6 ± 2.5 kJ mol-1. The Co(III)/K(I) catalyst is also highly active and selective in copolymerizations of other epoxides with carbon dioxide.
Collapse
Affiliation(s)
- Arron
C. Deacy
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Emma Moreby
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Andreas Phanopoulos
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Charlotte K. Williams
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| |
Collapse
|
39
|
Affiliation(s)
- James P. Shanahan
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Bullock RM, Chen JG, Gagliardi L, Chirik PJ, Farha OK, Hendon CH, Jones CW, Keith JA, Klosin J, Minteer SD, Morris RH, Radosevich AT, Rauchfuss TB, Strotman NA, Vojvodic A, Ward TR, Yang JY, Surendranath Y. Using nature's blueprint to expand catalysis with Earth-abundant metals. Science 2020; 369:eabc3183. [PMID: 32792370 PMCID: PMC7875315 DOI: 10.1126/science.abc3183] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous redox transformations that are essential to life are catalyzed by metalloenzymes that feature Earth-abundant metals. In contrast, platinum-group metals have been the cornerstone of many industrial catalytic reactions for decades, providing high activity, thermal stability, and tolerance to chemical poisons. We assert that nature's blueprint provides the fundamental principles for vastly expanding the use of abundant metals in catalysis. We highlight the key physical properties of abundant metals that distinguish them from precious metals, and we look to nature to understand how the inherent attributes of abundant metals can be embraced to produce highly efficient catalysts for reactions crucial to the sustainable production and transformation of fuels and chemicals.
Collapse
Affiliation(s)
- R Morris Bullock
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Laura Gagliardi
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Omar K Farha
- Department of Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Christopher W Jones
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - John A Keith
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jerzy Klosin
- Core R&D, Dow Chemical Co., Midland, MI 48674, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert H Morris
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas B Rauchfuss
- School of Chemical Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Neil A Strotman
- Process Research and Development, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Aleksandra Vojvodic
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas R Ward
- Department of Chemistry, University of Basel, CH-4058 Basel, Switzerland
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Yogesh Surendranath
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Meyer RL, Anjass MH, Petel BE, Brennessel WW, Streb C, Matson EM. Electronic Consequences of Ligand Substitution at Heterometal Centers in Polyoxovanadium Clusters: Controlling the Redox Properties through Heterometal Coordination Number. Chemistry 2020; 26:9905-9914. [PMID: 32196127 PMCID: PMC7496301 DOI: 10.1002/chem.201905624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Indexed: 02/01/2023]
Abstract
The rational control of the electrochemical properties of polyoxovanadate-alkoxide clusters is dependent on understanding the influence of various synthetic modifications on the overall redox processes of these systems. In this work, the electronic consequences of ligand substitution at the heteroion in a heterometal-functionalized cluster was examined. The redox properties of [V5 O6 (OCH3 )12 FeCl] (1-[V5 FeCl]) and [V5 O6 (OCH3 )12 Fe]X (2-[V5 Fe]X; X=ClO4 , OTf) were compared in order to assess the effects of changing the coordination environment around the iron center on the electrochemical properties of the cluster. Coordination of a chloride anion to iron leads to an anodic shift in redox events. Theoretical modelling of the electronic structure of these heterometal-functionalized clusters reveals that differences in the redox profiles of 1-[V5 FeCl] and 2-[V5 Fe]X arise from changes in the number of ligands surrounding the iron center (e.g., 6-coordinate vs. 5-coordinate). Specifically, binding of the chloride to the sixth coordination site appears to change the orbital interaction between the iron and the delocalized electronic structure of the mixed-valent polyoxovanadate core. Tuning the heterometal coordination environment can therefore be used to modulate the redox properties of the whole cluster.
Collapse
Affiliation(s)
- Rachel L. Meyer
- Department of ChemistryUniversity of RochesterRochesterNY14627USA
| | - Montaha H. Anjass
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Helmholtz Institute Ulm (HIU)Helmholtzstrasse 1189081UlmGermany
| | | | | | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Helmholtz Institute Ulm (HIU)Helmholtzstrasse 1189081UlmGermany
| | - Ellen M. Matson
- Department of ChemistryUniversity of RochesterRochesterNY14627USA
| |
Collapse
|
42
|
Taylor MG, Yang T, Lin S, Nandy A, Janet JP, Duan C, Kulik HJ. Seeing Is Believing: Experimental Spin States from Machine Learning Model Structure Predictions. J Phys Chem A 2020; 124:3286-3299. [PMID: 32223165 PMCID: PMC7311053 DOI: 10.1021/acs.jpca.0c01458] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Determination of ground-state spins
of open-shell transition-metal
complexes is critical to understanding catalytic and materials properties
but also challenging with approximate electronic structure methods.
As an alternative approach, we demonstrate how structure alone can
be used to guide assignment of ground-state spin from experimentally
determined crystal structures of transition-metal complexes. We first
identify the limits of distance-based heuristics from distributions
of metal–ligand bond lengths of over 2000 unique mononuclear
Fe(II)/Fe(III) transition-metal complexes. To overcome these limits,
we employ artificial neural networks (ANNs) to predict spin-state-dependent
metal–ligand bond lengths and classify experimental ground-state
spins based on agreement of experimental structures with the ANN predictions.
Although the ANN is trained on hybrid density functional theory data,
we exploit the method-insensitivity of geometric properties to enable
assignment of ground states for the majority (ca. 80–90%) of
structures. We demonstrate the utility of the ANN by data-mining the
literature for spin-crossover (SCO) complexes, which have experimentally
observed temperature-dependent geometric structure changes, by correctly
assigning almost all (>95%) spin states in the 46 Fe(II) SCO complex
set. This approach represents a promising complement to more conventional
energy-based spin-state assignment from electronic structure theory
at the low cost of a machine learning model.
Collapse
Affiliation(s)
- Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tzuhsiung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sean Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jon Paul Janet
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Kennedy CR, Choi BY, Reeves MGR, Jacobsen EN. Enantioselective Catalysis of an Anionic Oxy-Cope Rearrangement Enabled by Synergistic Ion Binding. Isr J Chem 2020; 60:461-474. [PMID: 33132416 PMCID: PMC7592710 DOI: 10.1002/ijch.201900168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/20/2020] [Indexed: 01/09/2023]
Abstract
Charge-accelerated rearrangements present interesting challenges to enantioselective catalysis, due in large part to the competing requirements for maximizing reactivity (ion-pair separation) and stereochemical communication. Herein, we describe application of a synergistic ion-binding strategy to catalyze the anionic oxy-Cope rearrangement of a symmetric bis-styrenyl allyl alcohol in up to 75:25 e.r. Structure-reactivity-selectivity relationship studies, including linear free-energy-relationship analyses, with bifunctional urea catalysts indicate that H-bonding and cation-binding interactions act cooperatively to promote the chemo- and enantioselective [3,3]-rearrangement. Implications for catalyst designs applicable to other transformations involving oxyanionic intermediates are discussed.
Collapse
Affiliation(s)
- C Rose Kennedy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Bo Young Choi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Mary-Grace R Reeves
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
44
|
Anderson ME, Braïda B, Hiberty PC, Cundari TR. Revealing a Decisive Role for Secondary Coordination Sphere Nucleophiles on Methane Activation. J Am Chem Soc 2020; 142:3125-3131. [PMID: 31951407 DOI: 10.1021/jacs.9b12644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Density functional theory and ab initio calculations indicate that nucleophiles can significantly reduce enthalpic barriers to methane C-H bond activation. Valence bond analysis suggests the formation of a two-center three-electron bond as the origin for the catalytic nucleophile effect. A predictive model for methane activation catalysis follows, which suggests that strongly electron-attracting and electron-rich radicals, together with both a negatively charged and strongly electron-donating outer sphere nucleophile, result in the lowest reaction barriers. It is corroborated by the sensitivity of the calculated C-H activation barriers to the external nucleophile and to continuum solvent polarity. More generally, from the present studies, one may propose proteins with hydrophobic active sites, available strong nucleophiles, and hydrogen bond donors as attractive targets for engineering novel methane functionalizing enzymes.
Collapse
Affiliation(s)
- Mary E Anderson
- Department of Chemistry and Biochemistry , Texas Woman's University , Denton , Texas 76204 , United States
| | - Benoît Braïda
- Laboratoire de Chimie Théorique , Sorbonne Université , UMR7616 CNRS, Paris 75252 , France
| | - Philippe C Hiberty
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000 , Orsay 91405 , France
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM) , University of North Texas , Denton , Texas 76203 , United States
| |
Collapse
|
45
|
Rice DB, Grotemeyer EN, Donovan AM, Jackson TA. Effect of Lewis Acids on the Structure and Reactivity of a Mononuclear Hydroxomanganese(III) Complex. Inorg Chem 2020; 59:2689-2700. [PMID: 32045220 DOI: 10.1021/acs.inorgchem.9b02980] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of Sc(OTf)3 and Al(OTf)3 to the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq)]+ (1) gives rise to new intermediates with spectroscopic properties and chemical reactivity distinct from those of [MnIII(OH)(dpaq)]+. The electronic absorption spectra of [MnIII(OH)(dpaq)]+ in the presence of Sc(OTf)3 (1-ScIII) and Al(OTf)3 (1-AlIII) show modest perturbations in electronic transition energies, consistent with moderate changes in the MnIII geometry. A comparison of 1H NMR data for 1 and 1-ScIII confirm this conclusion, as the 1H NMR spectrum of 1-ScIII shows the same number of hyperfine-shifted peaks as the 1H NMR spectrum of 1. These 1H NMR spectra, and that of 1-AlIII, share a similar chemical-shift pattern, providing firm evidence that these Lewis acids do not cause gross distortions to the structure of 1. Mn K-edge X-ray absorption data for 1-ScIII provide evidence of elongation of the axial Mn-OH and Mn-N(amide) bonds relative to those of 1. In contrast to these modest spectroscopic perturbations, 1-ScIII and 1-AlIII show greatly enhanced reactivity toward hydrocarbons. While 1 is unreactive toward 9,10-dihydroanthracene (DHA), 1-ScIII and 1-AlIII react rapidly with DHA (k2 = 0.16(1) and 0.25(2) M-1 s-1 at 50 °C, respectively). The 1-ScIII species is capable of attacking the much stronger C-H bond of ethylbenzene. The basis for these perturbations to the spectroscopic properties and reactivity of 1 in the presence of these Lewis acids was elucidated by comparing properties of 1-ScIII and 1-AlIII with the recently reported MnIII-aqua complex [MnIII(OH2)(dpaq)]2+ ( J. Am. Chem. Soc. 2018, 140, 12695-12699). Because 1-ScIII and 1-AlIII show 1H NMR spectra essentially identical to that of [MnIII(OH2)(dpaq)]2+, the primary effect of these Lewis acids on 1 is protonation of the hydroxo ligand caused by an increase in the Brønsted acidity of the solution.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Anna M Donovan
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
46
|
Hofmann AJ, Jandl C, Hess CR. Structural Differences and Redox Properties of Unsymmetric Diiron PDIxCy Complexes. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas J. Hofmann
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Christian Jandl
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Corinna R. Hess
- Department of Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
47
|
Kumar A, Lionetti D, Day VW, Blakemore JD. Redox-Inactive Metal Cations Modulate the Reduction Potential of the Uranyl Ion in Macrocyclic Complexes. J Am Chem Soc 2020; 142:3032-3041. [DOI: 10.1021/jacs.9b11903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Amit Kumar
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Davide Lionetti
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Victor W. Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D. Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
48
|
Nandy A, Chu DBK, Harper DR, Duan C, Arunachalam N, Cytter Y, Kulik HJ. Large-scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics. Phys Chem Chem Phys 2020; 22:19326-19341. [DOI: 10.1039/d0cp02977g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The origin of distinct 3d vs. 4d transition metal complex sensitivity to exchange is explored over a large data set.
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Daniel B. K. Chu
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Daniel R. Harper
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Chenru Duan
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Naveen Arunachalam
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Yael Cytter
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Heather J. Kulik
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
49
|
Mandal T, Singh V, Choudhury J. Coordination Booster-Catalyst Assembly: Remote Osmium Outperforming Ruthenium in Boosting Catalytic Activity. Chem Asian J 2019; 14:4774-4779. [PMID: 31560812 DOI: 10.1002/asia.201901215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Presented herein is a set of bimetallic and trimetallic "coordination booster-catalyst" assemblies in which the coordination complexes [RuII (terpy)2 ] and [OsII (terpy)2 ] acted as boosters for enhancement of the catalytic activity of [RuII (NHC)(para-cymene)]-based catalytic site. The boosters accelerated the oxidative loss of para-cymene from the catalytic site to generate the active catalyst during the oxidation of alkenes and alkynes into corresponding aldehydes, ketones and diketones. It was found that the boosting efficiency of the [OsII (terpy)2 ] units was considerably higher than its congener [RuII (terpy)2 ] unit in these assemblies. Mechanistic studies were conducted to understand this unique improvement.
Collapse
Affiliation(s)
- Tanmoy Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India
| | - Vivek Singh
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India
| |
Collapse
|
50
|
Arnett CH, Kaiser JT, Agapie T. Remote Ligand Modifications Tune Electronic Distribution and Reactivity in Site-Differentiated, High-Spin Iron Clusters: Flipping Scaling Relationships. Inorg Chem 2019; 58:15971-15982. [PMID: 31738534 DOI: 10.1021/acs.inorgchem.9b02470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis, characterization, and reactivity of [LFe3O(RArIm)3Fe][OTf]2, the first Hammett series of a site-differentiated cluster. The cluster reduction potentials and CO stretching frequencies shift as expected on the basis of the electronic properties of the ligand: electron-donating substituents result in more reducing clusters and weaker C-O bonds. However, unusual trends in the energetics of their two sequential CO binding events with the substituent σp parameters are observed. Specifically, introduction of electron-donating substituents suppresses the first CO binding event (ΔΔH by as much as 7.9 kcal mol-1) but enhances the second (ΔΔH by as much as 1.9 kcal mol-1). X-ray crystallography, including multiple-wavelength anomalous diffraction, Mössbauer spectroscopy, and SQUID magnetometry, reveal that these substituent effects result from changes in the energetic penalty associated with electronic redistribution within the cluster, which occurs during the CO binding event.
Collapse
Affiliation(s)
- Charles H Arnett
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Jens T Kaiser
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|