1
|
Mojtabazadeh H, Safaei-Ghomi J. High conductivity graphite paste for radio frequency identification tag with wireless hydrogen sensor based on CeO 2-Fe 2O 3-graphene oxide. RSC Adv 2025; 15:12773-12784. [PMID: 40264871 PMCID: PMC12013617 DOI: 10.1039/d5ra00587f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
Radio frequency identification (RFID) technology has made significant strides in recent years, opening up a world of possibilities for various industries. However, to achieve success, reliable and accurate real-time data is crucial. One exciting application of RFID technology is fast and wireless detection of gases. Hydrogen, in particular, is considered a clean fuel. However, it is highly flammable, and detecting it quickly and accurately is challenging in various industries. In this regard, our research focuses on developing a high-conductivity graphite paste for RFID tags integrated with a wireless hydrogen sensor based on nano-CeO2-Fe2O3-graphene oxide. In this work, we obtained a graphite paste using Ultra High Power (UHP) graphite electrodes with a high conductivity of 4.75 × 105 S cm-1 for non-metallic substrates and 4 × 106 S cm-1 with aluminum substrate. Furthermore, we incorporated a hydrogen gas detection sensor into the RFID tag utilizing graphene oxide and cerium oxide-iron oxide nanoparticles. The sensor demonstrated high sensitivity to low concentrations of H2 gas (1 ppm), with stable and repeatable performance. The wireless sensing response was evaluated through reflection coefficient (S 11) measurements, confirming effective impedance matching between the RFID chip and antenna. Through this research, we aim to promote the advancement of RFID technology by introducing a low-cost, battery-free sensing platform using graphite and nano-engineered materials, suitable for diverse industrial applications.
Collapse
Affiliation(s)
- Hossein Mojtabazadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 87317-51167 Kashan I. R. Iran +98-31-55552935 +98-31-55912385
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box 87317-51167 Kashan I. R. Iran +98-31-55552935 +98-31-55912385
| |
Collapse
|
2
|
Zhang N, Wang Z, Zhao Z, Zhang D, Feng J, Yu L, Lin Z, Guo Q, Huang J, Mao J, Yang J. 3D printing of micro-nano devices and their applications. MICROSYSTEMS & NANOENGINEERING 2025; 11:35. [PMID: 40011446 DOI: 10.1038/s41378-024-00812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 02/28/2025]
Abstract
In recent years, the utilization of 3D printing technology in micro and nano device manufacturing has garnered significant attention. Advancements in 3D printing have enabled achieving sub-micron level precision. Unlike conventional micro-machining techniques, 3D printing offers versatility in material selection, such as polymers. 3D printing technology has been gradually applied to the general field of microelectronic devices such as sensors, actuators and flexible electronics due to its adaptability and efficacy in microgeometric design and manufacturing processes. Furthermore, 3D printing technology has also been instrumental in the fabrication of microfluidic devices, both through direct and indirect processes. This paper provides an overview of the evolving landscape of 3D printing technology, delineating the essential materials and processes involved in fabricating microelectronic and microfluidic devices in recent times. Additionally, it synthesizes the diverse applications of these technologies across different domains.
Collapse
Affiliation(s)
- Naibo Zhang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
- The 54th Research Institute of Electronics Technology Group Corporation (CETC 54), Beijing, 100043, China
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Zilai Wang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zixin Zhao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dongxing Zhang
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China.
| | - Junyu Feng
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Linghao Yu
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Zhanhong Lin
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Qiuquan Guo
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Jianming Huang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Junfa Mao
- Shenzhen University, Shenzhen, 518060, China
| | - Jun Yang
- School of Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China.
| |
Collapse
|
3
|
Wen H, Si Y, Chen Z, Xin Y, Cao S, Chen C, Zu H, He D. GO-Enhanced MXene Sediment-Based Inks Achieve Remarkable Oxidation Resistance and High Conductivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:12731-12738. [PMID: 39950987 DOI: 10.1021/acsami.4c23060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
MXenes are emerging materials renowned for their exceptional conductivity, abundant functional groups, and excellent solution processability, making them highly promising as conductive-additive-free inks for flexible electronic devices. However, current preparation methods are hampered by low yields of MXene flakes so that substantial waste MXene sediments (MS) are generated. Here, we demonstrate a type of conductive ink with appropriate rheological properties, namely MG inks formulated using MS and graphene oxide (GO), for screen-printing frequency selective surface (FSS). GO facilitates interlayer interactions by covalently cross-linking with MXene flakes, resulting in a denser structure and significantly enhancing the conductivity of the best-performing MG-based ink to 849 S cm-1. Additionally, GO serves as a binder to considerably improve the rheological properties of MS, thus enabling high-quality printing on various substrates. The close stacking of MS and GO not only improves the oxidation resistance but also maintains conductivity above 97% even after 60 days. Furthermore, the MG-based FSS produced via straightforward screen printing demonstrates excellent performance and retains its functionality after 90 days of operation. This MS-based ink formulation represents a strategy of "turning trash into treasure" and highlights the potential of MS for the next generation of electronic devices.
Collapse
Affiliation(s)
- Haofan Wen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Yunfa Si
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Zibo Chen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Yitong Xin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shaowen Cao
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Cheng Chen
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Haoran Zu
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Daping He
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
4
|
Hadke S, Kang MA, Sangwan VK, Hersam MC. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chem Rev 2025; 125:835-932. [PMID: 39745782 DOI: 10.1021/acs.chemrev.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed. As a result of their diverse unique properties, atomically thin two-dimensional (2D) materials are promising building blocks for next-generation electronics including nonvolatile memory, in-memory and neuromorphic computing, and flexible edge-computing systems. Furthermore, 2D materials achieve biorealistic synaptic and neuronal responses that extend beyond conventional logic and memory systems. Here, we provide a comprehensive review of the growth, fabrication, and integration of 2D materials and van der Waals heterojunctions for neuromorphic electronic and optoelectronic devices, circuits, and systems. For each case, the relationship between physical properties and device responses is emphasized followed by a critical comparison of technologies for different applications. We conclude with a forward-looking perspective on the key remaining challenges and opportunities for neuromorphic applications that leverage the fundamental properties of 2D materials and heterojunctions.
Collapse
Affiliation(s)
- Shreyash Hadke
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min-A Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Liu G, Li X, Qiu Y, Zeng C, Zhu X, Wang C, Chen X, Wang C, Tian H, Shao J. Root-inspired, template-confined additive printing for fabricating high-robust conformal electronics. MICROSYSTEMS & NANOENGINEERING 2024; 10:191. [PMID: 39674831 DOI: 10.1038/s41378-024-00840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 11/03/2024] [Indexed: 12/16/2024]
Abstract
Conformal electronic devices on freeform surface play a critical role in the emerging smart robotics, smart skins, and integrated sensing systems. However, their functional structures such as circuits tend to tear-off, break, or crack under mechanical or thermal influence when in service, thus limiting the application reliability of conformal electronics. Herein, inspired by the tree root system, template-confined additive (TCA) printing technology was presented for reliable fabrication of robust circuits. TCA printing technology involves the penetration of adhesive into the functional material, thereby enhancing the mechanical robustness of the circuits, allowing them to maintain their electrical performance despite the presence of external damaging factors such as scratching, abrasion, folding, and high temperatures. For example, herein, the circuits could withstand mechanical abrasion at temperatures as high as 350 °C without compromising electrical properties. Benefiting from the confines of template, the printed circuits achieved resolutions of up to 300 nm, suitable for various materials such as P(VDF-TrFE), MWCNTs, and AgNPs, which enabled the multi-material self-aligned fabrication. Furthermore, the versatility of TCA printing was presented by fabricating circuits on arbitrary substrates, and realizing various devices, such as conformal temperature/humidity sensing system and epidermal ultra-thin energy storage system. These applications present the significant potential of TCA printing in fabricating intelligent devices.
Collapse
Affiliation(s)
- Guifang Liu
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiangming Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
- Frontier Institute of Science and Technology (FIST), 28 Xianning Road, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yangfan Qiu
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chuanhang Zeng
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xinkai Zhu
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chao Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoliang Chen
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), 28 Xianning Road, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chunhui Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
- Frontier Institute of Science and Technology (FIST), 28 Xianning Road, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
6
|
Cao Z, Xie Y, Lin JL, Zhong S, Yan C, Yang Z, Li M, Zhou Z, Peng W, Qiu S, Liu J, Li Y. Flexible Crossbar Molecular Devices with Patterned EGaIn Top Electrodes for Integrated All-Molecule-Circuit Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406456. [PMID: 39295460 DOI: 10.1002/adma.202406456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/25/2024] [Indexed: 09/21/2024]
Abstract
Here, a unique crossbar architecture is designed and fabricated, incorporating vertically integrated self-assembled monolayers in electronic devices. This architecture is used to showcase 100 individual vertical molecular junctions on a single chip with a high yield of working junctions and high device uniformity. The study introduces a transfer approach for patterned liquid-metal eutectic alloy of gallium and indium top electrodes, enabling the creation of fully flexible molecular devices with electrical functionalities. The devices exhibit excellent charge transport performance, sustain a high rectification ratio (>103), and stable endurance and retention properties, even when the devices are significantly bent. Furthermore, Boolean logic gates, including OR and AND gates, as well as half-wave and full-wave rectifying circuits, are successfully implemented. The unique design of the flexible molecular device represents a significant step in harnessing the potential of molecular devices for high-density integration and possible molecule-based computing.
Collapse
Affiliation(s)
- Zhou Cao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, P. R. China
| | - Chenshuai Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Zhenyu Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyao Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ziming Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shengzhe Qiu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
You K, Wang Z, Lin J, Guo X, Lin L, Liu Y, Li F, Huang W. On-Demand Picoliter-Level-Droplet Inkjet Printing for Micro Fabrication and Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402638. [PMID: 39149907 DOI: 10.1002/smll.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/29/2024] [Indexed: 08/17/2024]
Abstract
With the advent of Internet of Things (IoTs) and wearable devices, manufacturing requirements have shifted toward miniaturization, flexibility, environmentalization, and customization. Inkjet printing, as a non-contact picoliter-level droplet printing technology, can achieve material deposition at the microscopic level, helping to achieve high resolution and high precision patterned design. Meanwhile, inkjet printing has the advantages of simple process, high printing efficiency, mask-free digital printing, and direct pattern deposition, and is gradually emerging as a promising technology to meet such new requirements. However, there is a long way to go in constructing functional materials and emerging devices due to the uncommercialized ink materials, complicated film-forming process, and geometrically/functionally mismatched interface, limiting film quality and device applications. Herein, recent developments in working mechanisms, functional ink systems, droplet ejection and flight process, droplet drying process, as well as emerging multifunctional and intelligence applications including optics, electronics, sensors, and energy storage and conversion devices is reviewed. Finally, it is also highlight some of the critical challenges and research opportunities. The review is anticipated to provide a systematic comprehension and valuable insights for inkjet printing, thereby facilitating the advancement of their emerging applications.
Collapse
Affiliation(s)
- Kejia You
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Zhen Wang
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jiasong Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xuan Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350117, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
8
|
Cao L, Wang Z, Hu D, Dong H, Qu C, Zheng Y, Yang C, Zhang R, Xing C, Li Z, Xin Z, Chen D, Song Z, He Z. Pressure-constrained sonication activation of flexible printed metal circuit. Nat Commun 2024; 15:8324. [PMID: 39333109 PMCID: PMC11436825 DOI: 10.1038/s41467-024-52873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Metal micro/nanoparticle ink-based printed circuits have shown promise for promoting the scalable application of flexible electronics due to enabling superhigh metallic conductivity with cost-effective mass production. However, it is challenging to activate printed metal-particle patterns to approach the intrinsic conductivity without damaging the flexible substrate, especially for high melting-point metals. Here, we report a pressure-constrained sonication activation (PCSA) method of the printed flexible circuits for more than dozens of metal (covering melting points from room temperature to 3422 °C) and even nonmetallic inks, which is integrated with the large-scale roll-to-roll process. The PCSA-induced synergistic heat-softening and vibration-bonding effect of particles can enable multilayer circuit interconnection and join electronic components onto printed circuits without solder within 1 s at room temperature. We demonstrate PCSA-based applications of 3D flexible origami electronics, erasable and foldable double-sided electroluminescent displays, and custom-designed and large-area electronic textiles, thus indicating its potential for universality in flexible electronics.
Collapse
Affiliation(s)
- Lingxiao Cao
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhonghao Wang
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Daiwei Hu
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Haoxuan Dong
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunchun Qu
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi Zheng
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chao Yang
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Zhang
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunxiao Xing
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhen Li
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhe Xin
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Du Chen
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhenghe Song
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhizhu He
- Center for Agricultural Flexible Electronics Technology, College of Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
9
|
Nan X, Qin B, Xu Z, Jia Q, Hao J, Cao X, Mei S, Wang X, Kang T, Zhang J, Bai T. The effect of feed mechanisms on the structural design of flexible antennas, and research on their material processing and applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:091501. [PMID: 39287479 DOI: 10.1063/5.0206788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Flexible antennas are widely used in mobile communications, the Internet of Things, personalized medicine, aerospace, and military technologies due to their superior performance in terms of adaptability, impact resistance, high degree of freedom, miniaturization of structures, and cost-effectiveness. With excellent flexibility and portability, these antennas are now being integrated into paper, textiles, and even the human body to withstand the various mechanical stresses of daily life without compromising their performance. The purpose of this paper is to provide a comprehensive overview of the basic principles and current development of flexible antennas, systematically analyze the key performance factors of flexible antennas, such as structure, process, material, and application environment, and then discuss in detail the design structure, material selection, preparation process, and corresponding experimental validation of flexible antennas. Flexible antenna design in mobile communication, wearable devices, biomedical technology, and other fields in recent years has been emphasized. Finally, the development status of flexible antenna technology is summarized, and its future development trend and research direction are proposed.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Bolin Qin
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Qikun Jia
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Shixuan Mei
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xin Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tongtong Kang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jiale Zhang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Tingting Bai
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. SMALL METHODS 2024; 8:e2301341. [PMID: 38403854 DOI: 10.1002/smtd.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
11
|
Kholuiskaya SN, Siracusa V, Mukhametova GM, Wasserman LA, Kovalenko VV, Iordanskii AL. An Approach to a Silver Conductive Ink for Inkjet Printer Technology. Polymers (Basel) 2024; 16:1731. [PMID: 38932081 PMCID: PMC11207476 DOI: 10.3390/polym16121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Silver-based metal-organic decomposition inks composed of silver salts, complexing agents and volatile solvents are now the subject of much research due to the simplicity and variability of their preparation, their high stability and their relatively low sintering temperature. The use of this type of ink in inkjet printing allows for improved cost-effective and environmentally friendly technology for the production of electrical devices, including flexible electronics. An approach to producing a silver salt-based reactive ink for jet printing has been developed. The test images were printed with an inkjet printer onto polyimide substrates, and two-stage thermal sintering was carried out at temperatures of 60 °C and 100-180 °C. The structure and electrical properties of the obtained conductive lines were investigated. As a result, under optimal conditions an electrically conductive film with low surface resistance of approximately 3 Ω/square can be formed.
Collapse
Affiliation(s)
- Svetlana N. Kholuiskaya
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| | - Valentina Siracusa
- Department of Chemical Science (DSC), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Gulnaz M. Mukhametova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| | - Luybov A. Wasserman
- Emanuel Institute of Biochemical Physics, RAS, 4 Kosygina St., 119334 Moscow, Russia;
| | - Vladislav V. Kovalenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| | - Alexey L. Iordanskii
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (RAS), 4 Kosygina St., 119991 Moscow, Russia; (G.M.M.); (V.V.K.); (A.L.I.)
| |
Collapse
|
12
|
Fan F, Chen L, Zhou Y, Duan H. Multiscale Transfer Printing via Shape Memory Polymer with High Adhesion and Modulus Switchability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26824-26832. [PMID: 38733385 DOI: 10.1021/acsami.4c05828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Flexible electronics have gained significant attention as an innovative solution to meet the growing need for information collection from the human body and the environment. However, a critical challenge lies in the need for a transfer printing technique that can fabricate rigid and brittle devices on flexible organic substrates. Here, we develop a multiscale transfer printing technique using an ultraviolet-curable shape memory polymer (SMP) that serves as both the stamp and the receiver substrate. The SMP demonstrates exceptional mechanical performance with toughness at room temperature and remarkable flexibility near its glass transition temperature. The SMP material exhibits an impressive shape recovery ratio and remarkable adhesion switchability. We demonstrate robust transfer printing of diverse objects with different materials and morphologies and in situ transfer of multiscale metallic structures. In addition, the in situ fabricated transparent hyperthermia patches with embedded metal grids are demonstrated, offering potential application in the field of sensors, wearable devices, and electronic skin.
Collapse
Affiliation(s)
- Fu Fan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, PR China
| | - Lei Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, PR China
| | - Yu Zhou
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, PR China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, PR China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, PR China
| |
Collapse
|
13
|
Ece E, Ölmez K, Hacıosmanoğlu N, Atabay M, Inci F. Advancing 3D printed microfluidics with computational methods for sweat analysis. Mikrochim Acta 2024; 191:162. [PMID: 38411762 PMCID: PMC10899357 DOI: 10.1007/s00604-024-06231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
The intricate tapestry of biomarkers, including proteins, lipids, carbohydrates, vesicles, and nucleic acids within sweat, exhibits a profound correlation with the ones in the bloodstream. The facile extraction of samples from sweat glands has recently positioned sweat sampling at the forefront of non-invasive health monitoring and diagnostics. While extant platforms for sweat analysis exist, the imperative for portability, cost-effectiveness, ease of manufacture, and expeditious turnaround underscores the necessity for parameters that transcend conventional considerations. In this regard, 3D printed microfluidic devices emerge as promising systems, offering a harmonious fusion of attributes such as multifunctional integration, flexibility, biocompatibility, a controlled closed environment, and a minimal requisite analyte volume-features that leverage their prominence in the realm of sweat analysis. However, formidable challenges, including high throughput demands, chemical interactions intrinsic to the printing materials, size constraints, and durability concerns, beset the landscape of 3D printed microfluidic devices. Within this paradigm, we expound upon the foundational aspects of 3D printed microfluidic devices and proffer a distinctive perspective by delving into the computational study of printing materials utilizing density functional theory (DFT) and molecular dynamics (MD) methodologies. This multifaceted approach serves manifold purposes: (i) understanding the complexity of microfluidic systems, (ii) facilitating comprehensive analyses, (iii) saving both cost and time, (iv) improving design optimization, and (v) augmenting resolution. In a nutshell, the allure of 3D printing lies in its capacity for affordable and expeditious production, offering seamless integration of diverse components into microfluidic devices-a testament to their inherent utility in the domain of sweat analysis. The synergistic fusion of computational assessment methodologies with materials science not only optimizes analysis and production processes, but also expedites their widespread accessibility, ensuring continuous biomarker monitoring from sweat for end-users.
Collapse
Affiliation(s)
- Emre Ece
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Kadriye Ölmez
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Nedim Hacıosmanoğlu
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Chemistry, Hacettepe University, 06800, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
14
|
Huang H, Yang W. MXene-Based Micro-Supercapacitors: Ink Rheology, Microelectrode Design and Integrated System. ACS NANO 2024. [PMID: 38307615 DOI: 10.1021/acsnano.3c10246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
MXenes have shown great potential for micro-supercapacitors (MSCs) due to the high metallic conductivity, tunable interlayer spacing and intercalation pseudocapacitance. In particular, the negative surface charge and high hydrophilicity of MXenes make them suitable for various solution processing strategies. Nevertheless, a comprehensive review of solution processing of MXene MSCs has not been conducted. In this review, we present a comprehensive summary of the state-of-the-art of MXene MSCs in terms of ink rheology, microelectrode design and integrated system. The ink formulation and rheological behavior of MXenes for different solution processing strategies, which are essential for high quality printed/coated films, are presented. The effects of MXene and its compounds, 3D electrode structure, and asymmetric design on the electrochemical properties of MXene MSCs are discussed in detail. Equally important, we summarize the integrated system and intelligent applications of MXene MSCs and present the current challenges and prospects for the development of high-performance MXene MSCs.
Collapse
Affiliation(s)
- Haichao Huang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Weiqing Yang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
15
|
Piosik E, Modlińska A, Gołaszewski M, Chełminiak-Dudkiewicz D, Ziegler-Borowska M. Influence of the Type of Biocompatible Polymer in the Shell of Magnetite Nanoparticles on Their Interaction with DPPC in Two-Component Langmuir Monolayers. J Phys Chem B 2024; 128:781-794. [PMID: 38215049 DOI: 10.1021/acs.jpcb.3c05964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Magnetite nanoparticles (MNPs) are attractive nanomaterials for applications in magnetic resonance imaging, targeted drug delivery, and anticancer therapy due to their unique properties such as nontoxicity, wide chemical affinity, and intrinsic superparamagnetism. Their functionalization with polymers such as chitosan or poly(vinyl alcohol) (PVA) can not only improve their biocompatibility and biodegradability but it also plays an important role in their interactions with biological cells. In this work, the effect of the functionalization of MNPs with chitosan, PVA, and their blend on model cell membranes formed from 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) using a Langmuir technique was studied. The studies performed showed that the type of biocompatible polymer in the MNP shell plays a crucial role in the effectiveness of its adsorption process into the model cell membrane. Modification of MNPs with chitosan facilitates significantly more effective adsorption than coating them with PVA or with a chitosan and PVA blend. The presence of all the investigated MNPs in the DPPC monolayer at low concentrations does not affect its thermodynamic state, fluidity, or morphology, which is promising in terms of their biocompatibility. On the other hand, their high concentration (molar fraction above ≈0.05) exerts a disruptive effect on the model cell membrane and results in their aggregation, leading probably to the loss of their superparamagnetic properties essential for nanomedicine.
Collapse
Affiliation(s)
- Emilia Piosik
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, Poznań 60-965, Poland
| | - Anna Modlińska
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, Poznań 60-965, Poland
| | - Mateusz Gołaszewski
- Faculty of Material Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, Poznań 60-965, Poland
| | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, Toruń 87-100, Poland
| |
Collapse
|
16
|
Liu WC, Prentice JCA, Patrick CE, Watt AAR. Enhancing Conductivity of Silver Nanowire Networks through Surface Engineering Using Bidentate Rigid Ligands. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4150-4159. [PMID: 38197866 PMCID: PMC10811619 DOI: 10.1021/acsami.3c15207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Solution processable metallic nanomaterials present a convenient way to fabricate conductive structures, which are necessary in all electronic devices. However, they tend to require post-treatments to remove the bulky ligands around them to achieve high conductivity. In this work, we present a method to formulate a post-treatment free conductive silver nanowire ink by controlling the type of ligands around the silver nanowires. We found that bidentate ligands with a rigid molecular structure were effective in improving the conductivity of the silver nanowire networks as they could maximize the number of linkages between neighboring nanowires. In addition, DFT calculations also revealed that ligands with good LUMO to silver energy alignment were more effective. Because of these reasons, fumaric acid was found to be the most effective ligand and achieved a large reduction in sheet resistance of 70% or higher depending on the nanowire network density. The concepts elucidated from this study would also be applicable to other solution processable nanomaterials systems such as quantum dots for photovoltaics or LEDs which also require good charge transport being neighboring nanoparticles.
Collapse
Affiliation(s)
- Wing Chung Liu
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Joseph C. A. Prentice
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Christopher E. Patrick
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United
Kingdom
| | - Andrew A. R. Watt
- Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, United
Kingdom
| |
Collapse
|
17
|
Molés G, Connolly M, Valdehita A, Pulido-Reyes G, Fernandez-Cruz ML, Flahaut E, Navas JM. Testing the Aquatic Toxicity of 2D Few-Layer Graphene Inks Using Rainbow Trout ( Oncorhynchus mykiss): In Vivo and In Vitro Approaches to Support an SSbD Assessment. TOXICS 2024; 12:97. [PMID: 38393192 PMCID: PMC10892222 DOI: 10.3390/toxics12020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Graphene-based conductive inks offer attractive possibilities in many printing technology applications. Often, these inks contain a mixture of compounds, such as solvents and stabilizers. For the safe(r) and sustainable use of such materials in products, potentially hazardous components must be identified and considered in the design stage. In this study, the hazards of few-layer graphene (FLG)-based ink formulations were tested in fish using in vitro (RTL-W1 cell line) and in vivo aquatic ecotoxicity tests (OECD TG 203). Five ink formulations were produced using different processing steps, containing varying amounts of solvents and stabilizers, with the end products formulated either in aqueous solutions or in powder form. The FLG ink formulations with the highest contents of the stabilizer sodium deoxycholate showed greater in vitro cytotoxic effects, but they did not provoke mortality in juvenile rainbow trout. However, exposure led to increased activities of the cytochrome P450 1a (Cyp1a) and Cyp3a enzymes in the liver, which play an essential role in the detoxification of xenobiotics, suggesting that any effects will be enhanced by the presence of the stabilizers. These results highlight the importance of an SSbD approach together with the use of appropriate testing tools and strategies. By incorporating additional processing steps to remove identified cytotoxic residual solvents and stabilizers, the hazard profile of the FLG inks improved, demonstrating that, by following the principles of the European Commission's safe(r) and sustainable by design (SSbD) framework, one can contribute to the safe(r) and sustainable use of functional and advanced 2D materials in products.
Collapse
Affiliation(s)
- Gregorio Molés
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Mona Connolly
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
| | - Ana Valdehita
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
| | - Gerardo Pulido-Reyes
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
| | - Maria L. Fernandez-Cruz
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
| | - Emmanuel Flahaut
- Centre Inter-Universitaire de Recherche et D’Ingénierie en Matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS), 16 Av Edouard Belin, 31400 Toulouse, France;
| | - José M. Navas
- Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain; (G.M.); (M.C.); (A.V.); (G.P.-R.); (M.L.F.-C.)
| |
Collapse
|
18
|
Gupta B, Malviya R, Srivastava S, Ahmad I, Rab SO, Singh DP. 3D Printed Nanosensors for Cancer Diagnosis: Advances and Future Perspective. Curr Pharm Des 2024; 30:2993-3008. [PMID: 39161144 DOI: 10.2174/0113816128322300240725052530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 08/21/2024]
Abstract
Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Deependra Pratap Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- Graphic Era (Deemed to be University), Clement Town, Dehradun, India
| |
Collapse
|
19
|
Hou Z, Zeng S, Shen K, Healey PR, Schipper HJ, Zhang L, Zhang M, Jones MD, Sun L. Interactive deformable electroluminescent devices enabled by an adaptable hydrogel system with optical/photothermal/mechanical tunability. MATERIALS HORIZONS 2023; 10:5931-5941. [PMID: 37873969 DOI: 10.1039/d3mh01412f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Deformable electroluminescent devices (DELDs) with mechanical adaptability are promising for new applications in smart soft electronics. However, current DELDs still present some limitations, including having stimuli-insensitive electroluminescence (EL), untunable mechanical properties, and a lack of versatile stimuli response properties. Herein, a facile approach for fabricating in situ interactive and multi-stimuli responsive DELDs with optical/photothermal/mechanical tunability was proposed. A polyvinyl alcohol (PVA)/polydopamine (PDA)/graphene oxide (GO) adaptable hydrogel exhibiting optical/photothermal/mechanical tunability was used as the top ionic conductor (TIC). The TIC can transform from a viscoelastic state to an elastic state via a special freezing-salting out-rehydration (FSR) process. Meanwhile, it endows the DELDs with a photothermal response and thickness-dependent light shielding properties, allowing them to dynamically demonstrate "on" or "off" or "gradually change" EL response to various mechanical/photothermal stimuli. Thereafter, the DELDs with a viscoelastic TIC can be utilized as pressure-responsive EL devices and laser-engravable EL devices. The DELDs with an elastic TIC can withstand both linear and out-of-plane deformation, enabling the designs of various interactive EL devices/sensors to monitor linear sliders, human finger bending, and pneumatically controllable bulging. This work offers new opportunities for developing next-generation EL-responsive devices with widespread application based on adaptable hydrogel systems.
Collapse
Affiliation(s)
- Zaili Hou
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Songshan Zeng
- Macao Institute of Materials Science and Engineering, Zhuhai MUST Science and Technology Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Patrick R Healey
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Holly J Schipper
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Luqi Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Miranda Zhang
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael D Jones
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Luyi Sun
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
20
|
Pajor-Świerzy A, Szyk-Warszyńska L, Duraczyńska D, Szczepanowicz K. UV-Vis Sintering Process for Fabrication of Conductive Coatings Based on Ni-Ag Core-Shell Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7218. [PMID: 38005147 PMCID: PMC10673048 DOI: 10.3390/ma16227218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
The UV-Vis sintering process was applied for the fabrication of conductive coatings composed of low-cost nickel-silver (Ni@Ag) nanoparticles (NPs) with core-shell structures. The metallic films were formed on a plastic substrate (polyethylene napthalate, PEN), which required their sintering at low temperatures to prevent the heat-sensitive polymer from destroying them. The UV-Vis sintering method, as a non-invasive method, allowed us to obtain metallic coatings with good conductivity at room temperature. In optimal sintering conditions, i.e., irradiation with a wavelength of 350-400 nm and time of 90 min, conductivity corresponding to about 30% of that of bulk nickel was obtained for the coatings based on Ni@Ag NPs.
Collapse
Affiliation(s)
- Anna Pajor-Świerzy
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (D.D.); (K.S.)
| | | | | | | |
Collapse
|
21
|
Zhang Y. 3D Printing for Cancer Diagnosis: What Unique Advantages Are Gained? ACS MATERIALS AU 2023; 3:620-635. [PMID: 38089653 PMCID: PMC10636786 DOI: 10.1021/acsmaterialsau.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2024]
Abstract
Cancer is a complex disease with global significance, necessitating continuous advancements in diagnostics and treatment. 3D printing technology has emerged as a revolutionary tool in cancer diagnostics, offering immense potential in detection and monitoring. Traditional diagnostic methods have limitations in providing molecular and genetic tumor information that is crucial for personalized treatment decisions. Biomarkers have become invaluable in cancer diagnostics, but their detection often requires specialized facilities and resources. 3D printing technology enables the fabrication of customized sensor arrays, enhancing the detection of multiple biomarkers specific to different types of cancer. These 3D-printed arrays offer improved sensitivity, allowing the detection of low levels of biomarkers, even in complex samples. Moreover, their specificity can be fine-tuned, reducing false-positive and false-negative results. The streamlined and cost-effective fabrication process of 3D printing makes these sensor arrays accessible, potentially improving cancer diagnostics on a global scale. By harnessing 3D printing, researchers and clinicians can enhance early detection, monitor treatment response, and improve patient outcomes. The integration of 3D printing in cancer diagnostics holds significant promise for the future of personalized cancer care.
Collapse
Affiliation(s)
- Yu Zhang
- Division
of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78705, United States
- Pharmaceutics
and Drug Delivery, School of Pharmacy, The
University of Mississippi, Oxford, Mississippi 38677-1848, United States
| |
Collapse
|
22
|
Wang J, Sun S, Li X, Fei G, Wang Z, Xia H. Selective Laser Sintering of Polydimethylsiloxane Composites. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:684-696. [PMID: 37609593 PMCID: PMC10440645 DOI: 10.1089/3dp.2021.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Conductive silicone elastomer carbon nanotubes (CNTs) composites possess potential applications in a variety of fields, including electronic skin, wearable electronics, and human motion detection. Based on a novel self-made covalent adaptable network (CANs) of polydimethylsiloxane (PDMS) containg dynamic steric-hindrance pyrazole urea bond (PDMS-CANs), CNTs wrapped PDMS-CANs (CNTs@PDMS-CANs) powders were prepared by a liquid phase adsorption and deposition, and were successfully used for selective laser sintering (SLS) three-dimensional printing. SLS-printed PDMS-CANs/CNTs nanocomposites possess high electrical conductivity and low percolation threshold as SLS is one kind of quasi-static processing, which leads to the formation of conductive segregated CNTs network by using the PDMS powders with special CNTs wrapped structure. The introduction of dynamic pyrazole urea bond endows the materials self-healing capability under electrothermal and photothermal stimulus. In addition, due to the resistance difference of the damaged and intact areas, crack diagnosing can be realized by infrared thermograph under electricity. In an application demonstration in strain sensor, the composite exhibits a regular cyclic electrical resistance change at cyclic compression and bending, indicating a relative high reliability.
Collapse
Affiliation(s)
- Jinzhi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - Shaojie Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - Xue Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - Guoxia Fei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Nan Z, Wei W, Lin Z, Chang J, Hao Y. Flexible Nanocomposite Conductors for Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:172. [PMID: 37420119 PMCID: PMC10328908 DOI: 10.1007/s40820-023-01122-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 07/09/2023]
Abstract
HIGHLIGHTS Convincing candidates of flexible (stretchable/compressible) electromagnetic interference shielding nanocomposites are discussed in detail from the views of fabrication, mechanical elasticity and shielding performance. Detailed summary of the relationship between deformation of materials and electromagnetic shielding performance. The future directions and challenges in developing flexible (particularly elastic) shielding nanocomposites are highlighted. With the extensive use of electronic communication technology in integrated circuit systems and wearable devices, electromagnetic interference (EMI) has increased dramatically. The shortcomings of conventional rigid EMI shielding materials include high brittleness, poor comfort, and unsuitability for conforming and deformable applications. Hitherto, flexible (particularly elastic) nanocomposites have attracted enormous interest due to their excellent deformability. However, the current flexible shielding nanocomposites present low mechanical stability and resilience, relatively poor EMI shielding performance, and limited multifunctionality. Herein, the advances in low-dimensional EMI shielding nanomaterials-based elastomers are outlined and a selection of the most remarkable examples is discussed. And the corresponding modification strategies and deformability performance are summarized. Finally, expectations for this quickly increasing sector are discussed, as well as future challenges.
Collapse
Affiliation(s)
- Ze Nan
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| | - Wei Wei
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
| | - Zhenhua Lin
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| | - Jingjing Chang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| |
Collapse
|
24
|
Oliveira FM, Azadmanjiri J, Wang X, Yu M, Sofer Z. Structure Design and Processing Strategies of MXene-Based Materials for Electromagnetic Interference Shielding. SMALL METHODS 2023:e2300112. [PMID: 37129581 DOI: 10.1002/smtd.202300112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The development of new materials for electromagnetic interference (EMI) shielding is an important area of research, as it allows for the creation of more effective and high-efficient shielding solutions. In this sense, MXenes, a class of 2D transition metal carbides and nitrides have exhibited promising performances as EMI shielding materials. Electric conductivity, low density, and flexibility are some of the properties given by MXene materials, which make them very attractive in the field. Different processing techniques have been employed to produce MXene-based materials with EMI shielding properties. This review summarizes processes and the role of key parameters like the content of fillers and thickness in the desired EMI shielding performance. It also discusses the determination of power coefficients in defining the EMI shielding mechanism and the concept of green shielding materials, as well as their influence on the real application of a produced material. The review concludes with a summary of current challenges and prospects in the production of MXene materials as EMI shields.
Collapse
Affiliation(s)
- Filipa M Oliveira
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| | - Xuehang Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Minghao Yu
- Centre for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 166 28, Czech Republic
| |
Collapse
|
25
|
Zhu Q, Liu C, Tang S, Shen W, Lee HK. Application of three dimensional-printed devices in extraction technologies. J Chromatogr A 2023; 1697:463987. [PMID: 37084696 DOI: 10.1016/j.chroma.2023.463987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023]
Abstract
Sample pretreatment is an important and necessary process in chemical analysis. Traditional sample preparation methods normally consume moderate to large quantities of solvents and reagents, are time- and labor-intensive and can be prone to error (since they usually involve multiple steps). In the past quarter century or so, modern sample preparation techniques have evolved, from the advent of solid-phase microextraction and liquid-phase microextraction to the present day where they are now widely applied to extract analytes from simple as well as complex matrices leveraging on their extremely low solvent consumption, high extraction efficiency, generally straightforward and simple operation and integration of most, if not all, of the following aspects: Sampling, cleanup, extraction, preconcentration and ready-to-inject status of the final extract. One of the most interesting features of the progress of microextraction techniques over the years lies in the development of devices, apparatus and tools to facilitate and improve their operations. This review explores the application of a recent material fabrication technology that has been receiving a lot of interest, that of three-dimensional (3D) printing, to the manipulation of microextraction. The review highlights the use of 3D-printed devices in the extraction of various analytes and in different methods to address, and improves upon some current extraction (and microextraction) problems, issues and concerns.
Collapse
Affiliation(s)
- Qi Zhu
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China.
| | - Wei Shen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China
| | - Hian Kee Lee
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, China; Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
26
|
Zhu S, Zhou Q, Yi J, Xu Y, Fan C, Lin C, Wu J, Lin Y. Using Wool Keratin as a Structural Biomaterial and Natural Mediator to Fabricate Biocompatible and Robust Bioelectronic Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207400. [PMID: 36807836 PMCID: PMC10104662 DOI: 10.1002/advs.202207400] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The design and fabrication of biopolymer-incorporated flexible electronics have attracted immense interest in healthcare systems, degradable implants, and electronic skin. However, the application of these soft bioelectronic devices is often hampered by their intrinsic drawbacks, such as poor stability, inferior scalability, and unsatisfactory durability. Herein, for the first time, using wool keratin (WK) as a structural biomaterial and natural mediator to fabricate soft bioelectronics is presented. Both theoretical and experimental studies reveal that the unique features of WK can endow carbon nanotubes (CNTs) with excellent water dispersibility, stability, and biocompatibility. Therefore, well-dispersed and electroconductive bio-inks can be prepared via a straightforward mixing process of WK and CNTs. The as-obtained WK/CNTs inks can be directly exploited to design versatile and high-performance bioelectronics, such as flexible circuits and electrocardiogram electrodes. More impressively, WK can also be a natural mediator to connect CNTs and polyacrylamide chains to fabricate a strain sensor with enhanced mechanical and electrical properties. With conformable and soft architectures, these WK-derived sensing units can be further assembled into an integrated glove for real-time gesture recognition and dexterous robot manipulations, suggesting the great potential of the WK/CNT composites for wearable artificial intelligence.
Collapse
Affiliation(s)
- Shuihong Zhu
- Department of PhysicsResearch Institute for Biomimetics and Soft MatterFujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Qifan Zhou
- Department of PhysicsResearch Institute for Biomimetics and Soft MatterFujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Jia Yi
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Yihua Xu
- Department of PhysicsResearch Institute for Biomimetics and Soft MatterFujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Chaoyu Fan
- Department of PhysicsResearch Institute for Biomimetics and Soft MatterFujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Changxu Lin
- Department of PhysicsResearch Institute for Biomimetics and Soft MatterFujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Jianyang Wu
- Department of PhysicsResearch Institute for Biomimetics and Soft MatterFujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
| | - Youhui Lin
- Department of PhysicsResearch Institute for Biomimetics and Soft MatterFujian Provincial Key Laboratory for Soft Functional Materials ResearchXiamen UniversityXiamen361005P. R. China
- National Institute for Data Science in Health and MedicineXiamen UniversityXiamen361102P. R. China
| |
Collapse
|
27
|
Diatezo L, Le MQ, Tonellato C, Puig L, Capsal JF, Cottinet PJ. Development and Optimization of 3D-Printed Flexible Electronic Coatings: A New Generation of Smart Heating Fabrics for Automobile Applications. MICROMACHINES 2023; 14:762. [PMID: 37420995 DOI: 10.3390/mi14040762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 07/09/2023]
Abstract
Textile-based Joule heaters in combination with multifunctional materials, fabrication tactics, and optimized designs have changed the paradigm of futuristic intelligent clothing systems, particularly in the automobile field. In the design of heating systems integrated into a car seat, conductive coatings via 3D printing are expected to have further benefits over conventional rigid electrical elements such as a tailored shape and increased comfort, feasibility, stretchability, and compactness. In this regard, we report on a novel heating technique for car seat fabrics based on the use of smart conductive coatings. For easier processes and integration, an extrusion 3D printer is employed to achieve multilayered thin films coated on the surface of the fabric substrate. The developed heater device consists of two principal copper electrodes (so-called power buses) and three identical heating resistors made of carbon composites. Connections between the copper power bus and the carbon resistors are made by means of sub-divide the electrodes, which is critical for electrical-thermal coupling. Finite element models (FEM) are developed to predict the heating behavior of the tested substrates under different designs. It is pointed out that the most optimized design solves important drawbacks of the initial design in terms of temperature regularity and overheating. Full characterizations of the electrical and thermal properties, together with morphological analyses via SEM images, are conducted on different coated samples, making it possible to identify the relevant physical parameters of the materials as well as confirm the printing quality. It is discovered through a combination of FEM and experimental evaluations that the printed coating patterns have a crucial impact on the energy conversion and heating performance. Our first prototype, thanks to many design optimizations, entirely meets the specifications required by the automobile industry. Accordingly, multifunctional materials together with printing technology could offer an efficient heating method for the smart textile industry with significantly improved comfort for both the designer and user.
Collapse
Affiliation(s)
- Léopold Diatezo
- Electrical Department, Ladoua Campus, University Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| | - Minh-Quyen Le
- Electrical Department, Ladoua Campus, University Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| | | | - Lluis Puig
- Company TESCA-Group, 17452 Massanes, Spain
| | - Jean-Fabien Capsal
- Electrical Department, Ladoua Campus, University Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| | - Pierre-Jean Cottinet
- Electrical Department, Ladoua Campus, University Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| |
Collapse
|
28
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, et alLuo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Show More Authors] [Citation(s) in RCA: 312] [Impact Index Per Article: 156.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
29
|
Clement N, Kandasubramanian B. 3D Printed Ionogels In Sensors. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2126784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Navya Clement
- Polymer Science, CIPET: Institute of Petrochemical Technology (IPT), HIL Colony, Edayar Road, Pathalam, Eloor, Udyogmandal P.O, Kochi 683501, India
| | | |
Collapse
|
30
|
Słoma M. 3D printed electronics with nanomaterials. NANOSCALE 2023; 15:5623-5648. [PMID: 36880539 DOI: 10.1039/d2nr06771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A large variety of printing, deposition and writing techniques have been incorporated to fabricate electronic devices in the last decades. This approach, printed electronics, has gained great interest in research and practical applications and is successfully fuelling the growth in materials science and technology. On the other hand, a new player is emerging, additive manufacturing, called 3D printing, introducing a new capability to create geometrically complex constructs with low cost and minimal material waste. Having such tremendous technology in our hands, it was just a matter of time to combine advances of printed electronics technology for the fabrication of unique 3D structural electronics. Nanomaterial patterning with additive manufacturing techniques can enable harnessing their nanoscale properties and the fabrication of active structures with unique electrical, mechanical, optical, thermal, magnetic and biological properties. In this paper, we will briefly review the properties of selected nanomaterials suitable for electronic applications and look closer at the current achievements in the synergistic integration of nanomaterials with additive manufacturing technologies to fabricate 3D printed structural electronics. The focus is fixed strictly on techniques allowing as much as possible fabrication of spatial 3D objects, or at least conformal ones on 3D printed substrates, while only selected techniques are adaptable for 3D printing of electronics. Advances in the fabrication of conductive paths and circuits, passive components, antennas, active and photonic components, energy devices, microelectromechanical systems and sensors are presented. Finally, perspectives for development with new nanomaterials, multimaterial and hybrid techniques, bioelectronics, integration with discrete components and 4D-printing are briefly discussed.
Collapse
Affiliation(s)
- Marcin Słoma
- Micro- and Nanotechnology Division, Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 8 Sw. A Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
31
|
Tang Z, Liu Y, Zhang Y, Sun Z, Huang W, Chen Z, Jiang X, Zhao L. Design and Synthesis of Functional Silane-Based Silicone Resin and Application in Low-Temperature Curing Silver Conductive Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1137. [PMID: 36986031 PMCID: PMC10054377 DOI: 10.3390/nano13061137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
In the field of flexible electronics manufacturing, inkjet printing technology is a research hotspot, and it is key to developing low-temperature curing conductive inks that meet printing requirements and have suitable functions. Herein, methylphenylamino silicon oil (N75) and epoxy-modified silicon oil (SE35) were successfully synthesized through functional silicon monomers, and they were used to prepare silicone resin 1030H with nano SiO2. 1030H silicone resin was used as the resin binder for silver conductive ink. The silver conductive ink we prepared with 1030H has good dispersion performance with a particle size of 50-100 nm, as well as good storage stability and excellent adhesion. Additionally, the printing performance and conductivity of the silver conductive ink prepared with n,n-dimethylformamide (DMF): proprylene glycol monomethyl ether (PM) (1:1) as solvent are better than those of the silver conductive ink prepared by DMF and PM solvent. Cured at a low temperature of 160 °C, the resistivity of 1030H-Ag-82%-3 conductive ink is 6.87 × 10-6 Ω·m, and that of 1030H-Ag-92%-3 conductive ink is 0.564 × 10-6 Ω·m, so the low-temperature curing silver conductive ink has high conductivity. The low-temperature curing silver conductive ink we prepared meets the printing requirements and has potential for practical applications.
Collapse
Affiliation(s)
- Zhiqiang Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Zicai Sun
- Dongguan Yimei Material Technology Co., Ltd., Dongguan 523000, China
| | - Weidong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Zhikai Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; (Z.T.); (Y.L.); (W.H.); (Z.C.); (X.J.); (L.Z.)
| |
Collapse
|
32
|
Rodrigues AF, Rebelo C, Reis T, Simões S, Bernardino L, Peça J, Ferreira L. Engineering optical tools for remotely controlled brain stimulation and regeneration. Biomater Sci 2023; 11:3034-3050. [PMID: 36947145 DOI: 10.1039/d2bm02059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Neurological disorders are one of the world's leading medical and societal challenges due to the lack of efficacy of the first line treatment. Although pharmacological and non-pharmacological interventions have been employed with the aim of regulating neuronal activity and survival, they have failed to avoid symptom relapse and disease progression in the vast majority of patients. In the last 5 years, advanced drug delivery systems delivering bioactive molecules and neuromodulation strategies have been developed to promote tissue regeneration and remodel neuronal circuitry. However, both approaches still have limited spatial and temporal precision over the desired target regions. While external stimuli such as electromagnetic fields and ultrasound have been employed in the clinic for non-invasive neuromodulation, they do not have the capability of offering single-cell spatial resolution as light stimulation. Herein, we review the latest progress in this area of study and discuss the prospects of using light-responsive nanomaterials to achieve on-demand delivery of drugs and neuromodulation, with the aim of achieving brain stimulation and regeneration.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina Rebelo
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Tiago Reis
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Susana Simões
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - João Peça
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Lino Ferreira
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
33
|
Zhou S, Jiang L, Dong Z. Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chem Rev 2023; 123:2276-2310. [PMID: 35522923 DOI: 10.1021/acs.chemrev.1c00976] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid flowing around a solid edge, i.e., overflow, is a commonly observed flow behavior. Recent research into surface wetting properties and microstructure-controlled overflow behavior has attracted much attention. Achieving controllable macroscale liquid dynamics by manipulating the micro-nanoscale liquid overflow has stimulated diverse scientific interest and fostered widespread use in practical applications. In this review, we outline the evolution of overflow and present a critical survey of the mechanism of surface wetting properties and microstructure-controlled liquid overflow in multilength scales ranging from centimeter to micro and even nanoscale. We summarize the latest progress in utilizing the mechanisms to manipulate liquid overflow and achieve macroscale liquid dynamics and in emerging applications to manipulate overflow for sustainable development in various fields, along with challenges and perspectives.
Collapse
Affiliation(s)
- Shan Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
34
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
35
|
Kong X, Li H, Wang J, Wang Y, Zhang L, Gong M, Lin X, Wang D. Direct Writing of Silver Nanowire Patterns with Line Width down to 50 μm and Ultrahigh Conductivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9906-9915. [PMID: 36762969 DOI: 10.1021/acsami.2c22885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct writing of one-dimensional nanomaterials with large aspect ratios into customized, highly conductive, and high-resolution patterns is a challenging task. In this work, thin silver nanowires (AgNWs) with a length-to-diameter ratio of 730 are employed as a representative example to demonstrate a potent direct ink writing (DIW) strategy, in which aqueous inks using a natural polymer, sodium alginate, as the thickening agent can be easily patterned with arbitrary geometries and controllable structural features on a variety of planar substrates. With the aid of a quick spray-and-dry postprinting treatment at room temperature, the electrical conductivity and substrate adhesion of the written AgNWs-patterns improve simultaneously. This simple, environment benign, and low-temperature DIW strategy is effective for depositing AgNWs into patterns that are high-resolution (with line width down to 50 μm), highly conductive (up to 1.26 × 105 S/cm), and mechanically robust and have a large alignment order of NWs, regardless of the substrate's hardness, smoothness, and hydrophilicity. Soft electroadhesion grippers utilizing as-manufactured interdigitated AgNWs-electrodes exhibit an increased shear adhesion force of up to 15.5 kPa at a driving voltage of 3 kV, indicating the strategy is very promising for the decentralized and customized manufacturing of soft electrodes for future soft electronics and robotics.
Collapse
Affiliation(s)
- Xiangyi Kong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hejian Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianping Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yangyang Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiang Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongrui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
36
|
Chen X, Wang X, Pang Y, Bao G, Jiang J, Yang P, Chen Y, Rao T, Liao W. Printed Electronics Based on 2D Material Inks: Preparation, Properties, and Applications toward Memristors. SMALL METHODS 2023; 7:e2201156. [PMID: 36610015 DOI: 10.1002/smtd.202201156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Printed electronics, which fabricate electrical components and circuits on various substrates by leveraging functional inks and advanced printing technologies, have recently attracted tremendous attention due to their capability of large-scale, high-speed, and cost-effective manufacturing and also their great potential in flexible and wearable devices. To further achieve multifunctional, practical, and commercial applications, various printing technologies toward smarter pattern-design, higher resolution, greater production flexibility, and novel ink formulations toward multi-functionalities and high quality have been insensitively investigated. 2D materials, possessing atomically thin thickness, unique properties and excellent solution-processable ability, hold great potential for high-quality inks. Besides, the great variety of 2D materials ranging from metals, semiconductors to insulators offers great freedom to formulate versatile inks to construct various printed electronics. Here, a detailed review of the progress on 2D material inks formulation and its printed applications has been provided, specifically with an emphasis on emerging printed memristors. Finally, the challenges facing the field and prospects of 2D material inks and printed electronics are discussed.
Collapse
Affiliation(s)
- Xiaopei Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiongfeng Wang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yudong Pang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guocheng Bao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jie Jiang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuankang Chen
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tingke Rao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wugang Liao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
37
|
Lv J, Thangavel G, Lee PS. Reliability of printed stretchable electronics based on nano/micro materials for practical applications. NANOSCALE 2023; 15:434-449. [PMID: 36515001 DOI: 10.1039/d2nr04464a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent decades have witnessed the booming development of stretchable electronics based on nano/micro composite inks. Printing is a scalable, low-cost, and high-efficiency fabrication tool to realize stretchable electronics through additive processes. However, compared with conventional flexible electronics, stretchable electronics need to experience more severe mechanical deformation which may cause destructive damage. Most of the reported works in this field mainly focus on how to achieve a high stretchability of nano/micro composite conductors or single working modules/devices, with limited attention given to the reliability for practical applications. In this minireview, we summarized the failure modes when printing stretchable electronics using nano/micro composite ink, including dysfunction of the stretchable interconnects, the stress-concentrated rigid-soft interfaces for hybrid electronics, the vulnerable vias upon stretching, thermal accumulation, and environmental instability of stretchable materials. Strategies for tackling these challenges to realize reliable performances are proposed and discussed. Our review provides an overview on the importance of reliable, printable, and stretchable electronics, which are the key enablers in propelling stretchable electronics from fancy demos to practical applications.
Collapse
Affiliation(s)
- Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| |
Collapse
|
38
|
Kurmendra. Nanomaterial Gas Sensors for Biosensing Applications: A Review. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:104-118. [PMID: 34844549 DOI: 10.2174/1872210515666211129115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nanomaterial is one of the most used materials for various gas sensing applications to detect toxic gases, human breath, and other specific gas sensing. One of the most important applications of nanomaterial based gas sensors is biosensing applications. In this review article, the gas sensors for biosensing are discussed on the basis of crystalline structure and different categories of nanomaterial. METHODS In this paper, firstly, rigorous efforts have been made to find out research questions by going through a structured and systematic survey of available peer reviewed high quality articles in this field. The papers related to nanomaterial based biosensors are then reviewed qualitatively to provide substantive findings from the recent developments in this field. RESULTS In this mini-review article, firstly, classifications of nanomaterial gas sensors have been presented on the basis of the crystalline structure of nanomaterial and different types of nanomaterial available for biosensing applications. Further, the gas sensors based on nanomaterial for biosensing applications are collected and reviewed in terms of their performance parameters such as sensing material used, target gas component, detection ranges (ppm-ppb), response time, operating temperature and method of detection, etc. The different nanomaterials possess slightly different sensing and morphological properties due to their structure; therefore, it can be said that a nanomaterial must be selected carefully for a particular application. The 1D nanomaterials show the best selectivity and sensitivity for gases available in low concentration ranges due to their miniaturised structure compared to 2D and 3D nanomaterials. However, these 2D and 3D nanomaterials also so good sensing properties compared to bulk semiconductor materials. The polymer and nanocomposites which are also discussed in this patent article have opened the door for future research and have great potential for new generation gas sensors for detecting biomolecules. CONCLUSION These nanomaterials extend great properties towards sensing the application of different gases for a lower concentration of particular gas particles. Nano polymer and nanocomposites have great potential to be used as gas sensors for the detection of biomolecules.
Collapse
Affiliation(s)
- Kurmendra
- Department of Electronics and Communication Engineering, Rajiv Gandhi University (A Central University),
Doimukh, Itanagar - 791112, Arunachal Pradesh, India
| |
Collapse
|
39
|
Flake Cu-5Ag alloy powder with enhanced oxidation resistance via aging. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Ivanišević I, Kovačić M, Zubak M, Ressler A, Krivačić S, Katančić Z, Gudan Pavlović I, Kassal P. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234252. [PMID: 36500875 PMCID: PMC9739383 DOI: 10.3390/nano12234252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/14/2023]
Abstract
The large-scale manufacturing of flexible electronics is nowadays based on inkjet printing technology using specially formulated conductive inks, but achieving adequate wetting of different surfaces remains a challenge. In this work, the development of a silver nanoparticle-based functional ink for printing on flexible paper and plastic substrates is demonstrated. Amphiphilic silver nanoparticles with narrow particle size distribution and good dispersibility were prepared via a two-step wet chemical synthesis procedure. First, silver nanoparticles capped with poly(acrylic acid) were prepared, followed by an amidation reaction with 3-morpholynopropylamine (MPA) to increase their lipophilicity. Density functional theory (DFT) calculations were performed to study the interactions between the particles and the dispersion medium in detail. The amphiphilic nanoparticles were dispersed in solvents of different polarity and their physicochemical and rheological properties were determined. A stable ink containing 10 wt% amphiphilic silver nanoparticles was formulated and inkjet-printed on different surfaces, followed by intense pulsed light (IPL) sintering. Low sheet resistances of 3.85 Ω sq-1, 0.57 Ω sq-1 and 19.7 Ω sq-1 were obtained for the paper, coated poly(ethylene terephthalate) (PET) and uncoated polyimide (PI) flexible substrates, respectively. Application of the nanoparticle ink for printed electronics was demonstrated via a simple flexible LED circuit.
Collapse
Affiliation(s)
- Irena Ivanišević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marin Kovačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marko Zubak
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, P.O. Box 589, 33014 Tampere, Finland
| | - Sara Krivačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Zvonimir Katančić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Iva Gudan Pavlović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
41
|
Zeng X, He P, Hu M, Zhao W, Chen H, Liu L, Sun J, Yang J. Copper inks for printed electronics: a review. NANOSCALE 2022; 14:16003-16032. [PMID: 36301077 DOI: 10.1039/d2nr03990g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive inks have attracted tremendous attention owing to their adaptability and the convenient large-scale fabrication. As a new type of conductive ink, copper-based ink is considered to be one of the best candidate materials for the conductive layer in flexible printed electronics owing to its high conductivity and low price, and suitability for large-scale manufacturing processes. Recently, tremendous progress has been made in the preparation of cooper-based inks for electronic applications, but the antioxidation ability of copper-based nanomaterials within inks or films, that is, long-term reliability upon exposure to water and oxygen, still needs more exploration. In this review, we present a comprehensive overview of copper inks for printed electronics from ink preparation, printing methods and sintering, to antioxidation strategies and electronic applications. The review begins with an overview of the development of copper inks, followed by a demonstration of various preparation methods for copper inks. Then, the diverse printing techniques and post-annealing strategies used to fabricate conductive copper patterns are discussed. In addition, antioxidation strategies utilized to stabilize the mechanical and electrical properties of copper nanomaterials are summarized. Then the diverse applications of copper inks for electronic devices, such as transparent conductive electrodes, sensors, optoelectronic devices, and thin-film transistors, are discussed. Finally, the future development of copper-based inks and the challenges of their application in printed electronics are discussed.
Collapse
Affiliation(s)
- Xianghui Zeng
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Pei He
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Minglu Hu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Weikai Zhao
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Huitong Chen
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Longhui Liu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Jia Sun
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Junliang Yang
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
42
|
Runfang H, Yangfan Y, Leilei L, Jianlong J, Qiang Z, Lifeng D, Shengbo S, Qiang L. P3HT-based organic field effect transistor for low-cost, label-free detection of immunoglobulin G. J Biotechnol 2022; 359:75-81. [DOI: 10.1016/j.jbiotec.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022]
|
43
|
Deng Z, Li L, Tang P, Jiao C, Yu ZZ, Koo CM, Zhang HB. Controllable Surface-Grafted MXene Inks for Electromagnetic Wave Modulation and Infrared Anti-Counterfeiting Applications. ACS NANO 2022; 16:16976-16986. [PMID: 36197991 DOI: 10.1021/acsnano.2c07084] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional transition metal carbide/nitride (MXene) conductive inks are promising for scalable production of printable electronics, electromagnetic devices, and multifunctional coatings. However, the susceptible oxidation and poor rheological property seriously impede the printability of MXene inks and the exploration of functional devices. Here, we proposed a controllable surface grafting strategy for MXene flakes (p-MXene) with prepolymerized polydopamine macromolecules to protect against water and oxygen, enrich surface chemistry, and significantly optimize the rheological properties of the inks. The obtained p-MXene inks can adapt to screen-printing and other high-viscosity processing techniques, facilitating the development of patterned electromagnetic films and coatings. Interestingly, the printed MXene polarizer can freely switch and quantitatively control microwave transmission, giving an inspiring means for smart microwave modulation beyond the commonly reported shielding function. Moreover, the introduction of polydopamine nanoshell enables the infrared emissivity of MXene coating to be adjusted to a large extent, which can produce infrared anti-counterfeiting patterns in a thermal imager. Therefore, multifunctional antioxidant p-MXene inks will greatly extend the potential applications for the next-generation printable electronics and devices.
Collapse
Affiliation(s)
- Zhiming Deng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lulu Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pingping Tang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenyang Jiao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chong Min Koo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419 Republic of Korea
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
44
|
Zhao B, Sivasankar VS, Subudhi SK, Sinha S, Dasgupta A, Das S. Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks. NANOSCALE 2022; 14:14858-14894. [PMID: 36196967 DOI: 10.1039/d1nr04912g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Additive manufacturing, also known as 3D printing (3DP), is a novel and developing technology, which has a wide range of industrial and scientific applications. This technology has continuously progressed over the past several decades, with improvement in productivity, resolution of the printed features, achievement of more and more complex shapes and topographies, scalability of the printed components and devices, and discovery of new printing materials with multi-functional capabilities. Among these newly developed printing materials, carbon-nanotubes (CNT) based inks, with their remarkable mechanical, electrical, and thermal properties, have emerged as an extremely attractive option. Various formulae of CNT-based ink have been developed, including CNT-nano-particle inks, CNT-polymer inks, and CNT-based non-nanocomposite inks (i.e., CNT ink that is not in a form where CNT particles are suspended in a polymer matrix). Various types of sensors as well as soft and smart electronic devices with a multitude of applications have been fabricated with CNT-based inks by employing different 3DP methods including syringe printing (SP), aerosol-jet printing (AJP), fused deposition modeling (FDM), and stereolithography (SLA). Despite such progress, there is inadequate literature on the various fluid mechanics and colloidal science aspects associated with the printability and property-tunability of nanoparticulate inks, specifically CNT-based inks. This review article, therefore, will focus on the formulation, dispersion, and the associated fluid mechanics and the colloidal science of 3D printable CNT-based inks. This article will first focus on the different examples where 3DP has been employed for printing CNT-based inks for a multitude of applications. Following that, we shall highlight the various key fluid mechanics and colloidal science issues that are central and vital to printing with such inks. Finally, the article will point out the open existing challenges and scope of future work on this topic.
Collapse
Affiliation(s)
- Beihan Zhao
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | | | - Swarup Kumar Subudhi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Shayandev Sinha
- Defect Metrology Group, Logic Technology Development, Intel Corporation, Hillsboro, OR 97124, USA
| | - Abhijit Dasgupta
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
45
|
Carapezzi S, Boschetto G, Todri-Sanial A. Capillary-force-driven self-assembly of carbon nanotubes: from ab initio calculations to modeling of self-assembly. NANOSCALE ADVANCES 2022; 4:4131-4137. [PMID: 36285210 PMCID: PMC9514721 DOI: 10.1039/d2na00295g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
In elasto-capillary driven self-assembly of arrays of carbon nanotubes (CNTs) different factors play a role, from the mechanical properties of CNTs to the array geometry. In this work, we provide a multi-scale investigation where we first use density functional theory (DFT) to predict fully ab initio relevant mechanical properties such as Young's modulus, Poisson's ratio, and surface energy. To the best of our knowledge, we are the first to report DFT calculations of the surface energy of CNTs. Then, we feed the computed DFT parameters into a model for capillary-force-driven self-assembly of CNTs. By doing so, we are able to derive and predict cross-correlation between material parameters and array architecture.
Collapse
Affiliation(s)
- Stefania Carapezzi
- Microelectronics Department, LIRMM, University of Montpellier, CNRS 161 Rue Ada Montpellier France
| | - Gabriele Boschetto
- Microelectronics Department, LIRMM, University of Montpellier, CNRS 161 Rue Ada Montpellier France
| | - Aida Todri-Sanial
- Microelectronics Department, LIRMM, University of Montpellier, CNRS 161 Rue Ada Montpellier France
| |
Collapse
|
46
|
Gan T, Xiao Q, Handschuh-Wang S, Huang X, Wang H, Deng X, Hu S, Wang B, Wu Q, Zhou X. Conformally Adhesive, Large-Area, Solidlike, yet Transient Liquid Metal Thin Films and Patterns via Gelatin-Regulated Droplet Deposition and Sintering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42744-42756. [PMID: 36068651 DOI: 10.1021/acsami.2c12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adhesion and spreading of liquid metals (LMs) on substrates are essential steps for the generation of flexible electronics and thermal management devices. However, the controlled deposition is limited by the high surface tension and peculiar wetting and adhesion behavior of LMs. Herein, we introduce gelatin-regulated LM droplet deposition and sintering (GLMDDS), for the upscalable production of conformally adhesive, solidlike, yet transient LM thin films and patterns on diverse substrates. This method involves four steps: homogeneous deposition of LM microdroplets, gelation of the LM-gelatin solution, toughening of the gelatin hydrogel by solvent displacement, and peeling-induced sintering of LM microdroplets. The LM thin film exhibits a three-layer structure, comprising an LM microdroplet-embedded tough organohydrogel adhesion layer, a continuous LM layer, and an oxide skin. The composite exhibits high stretchability and mechanical robustness, conformal adhesion to various substrates, high conductivity (4.35 × 105 S·m-1), and transience (86% LM recycled). Large-scale deposition (i.e., 5.6 dm2) and the potential for patterns on diverse substrates demonstrate its upscalability and broad suitability. Finally, the LM thin films and patterns are applied for flexible and wearable devices, i.e., pressure sensors, heaters, human motion tracking devices, and thermal management devices, illustrating the broad applicability of this strategy.
Collapse
Affiliation(s)
- Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qi Xiao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaoqin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Haifei Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xiaobo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shuangyan Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qixing Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
47
|
van Hazendonk L, Pinto AM, Arapov K, Pillai N, Beurskens MRC, Teunissen JP, Sneck A, Smolander M, Rentrop CHA, Bouten PCP, Friedrich H. Printed Stretchable Graphene Conductors for Wearable Technology. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8031-8042. [PMID: 36117880 PMCID: PMC9477090 DOI: 10.1021/acs.chemmater.2c02007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Skin-compatible printed stretchable conductors that combine a low gauge factor with a high durability over many strain cycles are still a great challenge. Here, a graphene nanoplatelet-based colloidal ink utilizing a skin-compatible thermoplastic polyurethane (TPU) binder with adjustable rheology is developed. Stretchable conductors that remain conductive even under 100% strain and demonstrate high fatigue resistance to cyclic strains of 20-50% are realized via printing on TPU. The sheet resistances of these conductors after drying at 120 °C are as low as 34 Ω □-1 mil-1. Furthermore, photonic annealing at several energy levels is used to decrease the sheet resistance to <10 Ω □-1 mil-1, with stretchability and fatigue resistance being preserved and tunable. The high conductivity, stretchability, and cyclic stability of printed tracks having excellent feature definition in combination with scalable ink production and adjustable rheology bring the high-volume manufacturing of stretchable wearables into scope.
Collapse
Affiliation(s)
- Laura
S. van Hazendonk
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Artur M. Pinto
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- LEPABE, Faculdade
de Engenharia, Universidade do Porto, 4200-180 Porto, Portugal
| | - Kirill Arapov
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Nikhil Pillai
- Pulseforge, 400 Parker Drive, Suite 1110, Austin, Texas 78728, United States
| | - Michiel R. C. Beurskens
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | | | - Asko Sneck
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | - Maria Smolander
- VTT
Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | | | - Piet C. P. Bouten
- Holst
Centre - TNO, High Tech
Campus 31, 5656AE Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory
of Physical Chemistry and Center for Multiscale Electron Microscopy,
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
48
|
Cassa MA, Maselli M, Zoso A, Chiono V, Fracchia L, Ceresa C, Ciardelli G, Cianchetti M, Carmagnola I. Development of an Innovative Soft Piezoresistive Biomaterial Based on the Interconnection of Elastomeric PDMS Networks and Electrically-Conductive PEDOT:PSS Sponges. J Funct Biomater 2022; 13:135. [PMID: 36135570 PMCID: PMC9500767 DOI: 10.3390/jfb13030135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 01/12/2023] Open
Abstract
A deeply interconnected flexible transducer of polydimethylsiloxane (PDMS) and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) was obtained as a material for the application of soft robotics. Firstly, transducers were developed by crosslinking PEDOT:PSS with 3-glycidyloxypropryl-trimethoxysilane (GPTMS) (1, 2 and 3% v/v) and using freeze-drying to obtain porous sponges. The PEDOT:PSS sponges were morphologically characterized, showing porosities mainly between 200 and 600 µm2; such surface area dimensions tend to decrease with increasing degrees of crosslinking. A stability test confirmed a good endurance for up to 28 days for the higher concentrations of the crosslinker tested. Consecutively, the sponges were electromechanically characterized, showing a repeatable and linear resistance variation by the pressure triggers within the limits of their working range (∆RR0 max = 80% for 1-2% v/v of GPTMS). The sponges containing 1% v/v of GPTMS were intertwined with a silicon elastomer to increase their elasticity and water stability. The flexible transducer obtained with this method exhibited moderately lower sensibility and repeatability than the PEDOT:PSS sponges, but the piezoresistive response remained stable under mechanical compression. Furthermore, the transducer displayed a linear behavior when stressed within the limits of its working range. Therefore, it is still valid for pressure sensing and contact detection applications. Lastly, the flexible transducer was submitted to preliminary biological tests that indicate a potential for safe, in vivo sensing applications.
Collapse
Affiliation(s)
- Maria Antonia Cassa
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Polito BIOMed Lab, Politecnico di Torino, Corso Castelfidardo 30/a, 10129 Torino, Italy
| | - Martina Maselli
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alice Zoso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Polito BIOMed Lab, Politecnico di Torino, Corso Castelfidardo 30/a, 10129 Torino, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Polito BIOMed Lab, Politecnico di Torino, Corso Castelfidardo 30/a, 10129 Torino, Italy
- Institute for Chemical and Physical Processes (CNR-IPCF), National Research Council, 56124 Pisa, Italy
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Polito BIOMed Lab, Politecnico di Torino, Corso Castelfidardo 30/a, 10129 Torino, Italy
- Institute for Chemical and Physical Processes (CNR-IPCF), National Research Council, 56124 Pisa, Italy
| | - Matteo Cianchetti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Polito BIOMed Lab, Politecnico di Torino, Corso Castelfidardo 30/a, 10129 Torino, Italy
| |
Collapse
|
49
|
Kralj M, Krivačić S, Ivanišević I, Zubak M, Supina A, Marciuš M, Halasz I, Kassal P. Conductive Inks Based on Melamine Intercalated Graphene Nanosheets for Inkjet Printed Flexible Electronics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172936. [PMID: 36079974 PMCID: PMC9457697 DOI: 10.3390/nano12172936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 05/27/2023]
Abstract
With the growing number of flexible electronics applications, environmentally benign ways of mass-producing graphene electronics are sought. In this study, we present a scalable mechanochemical route for the exfoliation of graphite in a planetary ball mill with melamine to form melamine-intercalated graphene nanosheets (M-GNS). M-GNS morphology was evaluated, revealing small particles, down to 14 nm in diameter and 0.4 nm thick. The M-GNS were used as a functional material in the formulation of an inkjet-printable conductive ink, based on green solvents: water, ethanol, and ethylene glycol. The ink satisfied restrictions regarding stability and nanoparticle size; in addition, it was successfully inkjet printed on plastic sheets. Thermal and photonic post-print processing were evaluated as a means of reducing the electrical resistance of the printed features. Minimal sheet resistance values (5 kΩ/sq for 10 printed layers and 626 Ω/sq for 20 printed layers) were obtained on polyimide sheets, after thermal annealing for 1 h at 400 °C and a subsequent single intense pulsed light flash. Lastly, a proof-of-concept simple flexible printed circuit consisting of a battery-powered LED was realized. The demonstrated approach presents an environmentally friendly alternative to mass-producing graphene-based printed flexible electronics.
Collapse
Affiliation(s)
- Magdalena Kralj
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sara Krivačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Irena Ivanišević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marko Zubak
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Antonio Supina
- Institute of Physics, Bijenička cesta 46, 10000 Zagreb, Croatia
| | - Marijan Marciuš
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Halasz
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
50
|
Wang Y, Xu C, Jahnke T, Verestek W, Schmauder S, Spatz JP. Microstructural Modeling and Simulation of a Carbon Black-Based Conductive Polymer-A Template for the Virtual Design of a Composite Material. ACS OMEGA 2022; 7:28820-28830. [PMID: 36033654 PMCID: PMC9404170 DOI: 10.1021/acsomega.2c01755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Carbon black is the most frequently applied conductive additive in rubber and polymer composites. In this work, we show how a carbon black microstructure in a polymer matrix can be conclusively modeled based on carbon black aggregation as well as an agglomeration mechanism using a state-of-the-art mathematical model. This novel and flexible microstructural modeling method enables us to virtually investigate the morphology of conductive additives within a polymer matrix and can be adapted to many conductive polymer combinations used for different applications. Furthermore, we calculate the electrical conductivity of the composite using a finite volume-based as well as a discrete element-based simulation technique and validate the results with experimental data. Utilizing a novel discrete element method (DEM) modeling technique, we were able to improve calculation times by a factor of 12.2 compared to finite volume method (FVM) simulations while maintaining high accuracy. Using this approach, we are able to predict the required carbon black content and minimize the amount of additive to create a polymer composite with a designated target conductivity.
Collapse
Affiliation(s)
- Yuanzhen Wang
- Department
of Cellular Biophysics, Max Planck Institute
For Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
For Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Chensheng Xu
- Institute
For Materials Testing, Materials Science And Strength Of Materials
(IMWF), University Of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Timotheus Jahnke
- Department
of Cellular Biophysics, Max Planck Institute
For Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
For Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| | - Wolfgang Verestek
- Institute
For Materials Testing, Materials Science And Strength Of Materials
(IMWF), University Of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Siegfried Schmauder
- Institute
For Materials Testing, Materials Science And Strength Of Materials
(IMWF), University Of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
For Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
For Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld, 69120 Heidelberg, Germany
| |
Collapse
|