1
|
Gu Q, Wang L, Xu M, Zhou W, Liu G, Tian H, Efferth T, Wang C, Fu Y. The natural dihydrochalcone phloretin reduces lipid accumulation via downregulation of IIS and sbp-1/ SREBP pathways in HepG2 cells and Caenorhabditis elegans. Food Funct 2025. [PMID: 40326995 DOI: 10.1039/d5fo01105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Phloretin, a natural dihydrochalcone, exhibits significant potential in modulating lipid metabolism both in vitro and in vivo. This study investigated the effects of phloretin on lipid accumulation in HepG2 cells and Caenorhabditis elegans. In HepG2 cells, phloretin reduced lipid accumulation, ROS levels, and lipid peroxidation while ameliorating mitochondrial dysfunction. It downregulated lipid synthesis genes (SREBP, FASN) and upregulated PI3K-AKT pathway genes (AKT, FOXO, MTOR). In C. elegans, phloretin alleviated lipid accumulation-induced growth and locomotor impairments, reduced lipofuscin, ROS, glucose, and triglyceride levels, and modulated amino acid and lipid metabolism pathways. Gene expression analysis revealed downregulation of sbp-1, mdt-15, fat-5, fat-6, and fat-7, and upregulation of daf-16, age-1, and skn-1. Mutant studies confirmed that phloretin's lipid-lowering effects were mediated through the IIS and sbp-1/SREBP pathways. These findings suggest phloretin is a promising candidate for regulating lipid metabolism and preventing hyperlipidemia.
Collapse
Affiliation(s)
- Qi Gu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Mingyue Xu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Wanmei Zhou
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Guosheng Liu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Haiting Tian
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Chenlu Wang
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China.
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040, Harbin, PR China
| |
Collapse
|
2
|
Su S, Hu H, Liu K, Liu S, Luo Z, Yu J, Jiang T, Li X, Sun C, Yu L, Liang Y, Zhou L. Comparative analysis of translatomics and transcriptomics in the longissimus dorsi muscle of Luchuan and Duroc pigs. PLoS One 2025; 20:e0319399. [PMID: 40100799 PMCID: PMC11918432 DOI: 10.1371/journal.pone.0319399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
IMF (Intramuscular fat) content is a crucial indicator of meat quality in the livestock industry. However, the molecular mechanisms underlying IMF deposition remain unclear in pigs. In this study, we conducted RNC-seq (ribosome nascent-chain complex-bound RNA sequencing) and RNA-seq (RNA sequencing) analyses on the longissimus dorsi muscle of Duroc pigs (a lean breed) and Luchuan pigs (a fat breed) to uncover the genetic basis for the divergent IMF content. The results show that the overall translation level of Luchuan pigs is significantly higher than Duroc pigs, while there is no significant difference in the transcription level. Enzymes related to fatty acid synthesis and elongation, such as ACACA, FASN, and ELOVL5, are significantly up-regulated at the translation level, while enzymes associated with fatty acid degradation, namely ALDH1B1 and ALDH2, are significantly down-regulated. However, there is no significant difference in their transcription levels. qRT-PCR and Western Blotting experiments for ELOVL5 confirm the reliability of the sequencing results. Additionally, the translation initiation factor eIF4A1, known to positively regulate gene translation, displayed higher expression in Luchuan pigs rather than in Duroc pigs and the 5'UTR structural features of genes involved in translation up-regulation matched the mRNA selectivity of eIF4A1. In conclusion, these findings suggest the up-regulation of the eIF4A1 gene expression in Luchuan pigs may elevate the translation levels of genes related to lipid synthesis through translational regulation, further resulting in an increase in IMF content.
Collapse
Affiliation(s)
- Songtao Su
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hailong Hu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Kang Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Siqi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zupeng Luo
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsu Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Tianyu Jiang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiangling Li
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chang Sun
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yuehui Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
3
|
Tian S, Song Y, Guo L, Zhao H, Bai M, Miao M. Epigenetic Mechanisms in Osteoporosis: Exploring the Power of m 6A RNA Modification. J Cell Mol Med 2025; 29:e70344. [PMID: 39779466 PMCID: PMC11710941 DOI: 10.1111/jcmm.70344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning m6A RNA modification. m6A is the most prevalent dynamic and reversible modification in eukaryotes, mediating various metabolic processes of mRNAs, including splicing, structural conversion, translation, translocation and degradation and serves as a crucial component of epigenetic modification. Research has increasingly validated that m6A plays a vital role in the proliferation, differentiation, migration, invasion,and repair of bone marrow mesenchymal stem cells (BMSCs), osteoblasts and osteoclasts, all of which impact the whole process of osteoporosis pathogenesis. Continuous efforts have been made to target m6A regulators and natural products derived from traditional medicine, which exhibit multiple biological activities such as anti-inflammatory and anticancer effects, have emerged as a valuable resources for m6A drug discovery. This paper elaborates on m6A methylation and its regulatory role in osteoporosis, emphasising its implications for diagnosis and treatment, thereby providing theoretical references.
Collapse
Affiliation(s)
- Shuo Tian
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Yagang Song
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Lin Guo
- School of PharmacyHenan University of Chinese MedicineZhengzhouChina
| | - Hui Zhao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Ming Bai
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| | - Mingsan Miao
- Academy of Traditional Chinese MedicineHenan University of Chinese MedicineZhengzhouChina
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‐YaoZhengzhouChina
| |
Collapse
|
4
|
Xiao Y, Jiang T, Qi X, Zhou J, Pan T, Liao Q, Liu S, Zhang H, Wang J, Yang X, Yu L, Liang Y, Liang X, Batsaikhan B, Damba T, Batchuluun K, Liang Y, Zhang Y, Li Y, Zhou L. PROTAC-mediated FTO protein degradation effectively alleviates diet-induced obesity and hepatic steatosis. Int J Biol Macromol 2025; 285:138292. [PMID: 39631579 DOI: 10.1016/j.ijbiomac.2024.138292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Demethylation of N6-Methyladenosine (m6A) by fat mass and obesity-associated protein (FTO) occurs in the development of obesity and fatty liver disease. In this study, we synthesized FTO-degradation targeted chimera (FTO-DT), which exhibited excellent lipid-lowering activity at low concentration. At a concentration of 0.33 nM, the FTO-DT continuously and efficiently degraded FTO protein and reduced fat deposition. The FTO-DT improved energy metabolism and oxidative stress by increasing intracellular m6A levels, and further reduced fat deposition in hepatocytes, adipocytes, and mice fed a high-fat diet. The findings support the potential of FTO degradation by FTO-DT as a therapy for obesity and metabolic-associated fatty liver disease (MAFLD). This study provides a theoretical basis for the application of PROTACs in the treatment of metabolic disease and describes a novel approach for the development of drugs targeting metabolic disorders.
Collapse
Affiliation(s)
- Yang Xiao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Tianyu Jiang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xinyi Qi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinfeng Zhou
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Tingli Pan
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Qichao Liao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Siqi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Hao Zhang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiale Wang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xinzhen Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yuehui Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xue Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Batbold Batsaikhan
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia; Department of Health Research, Graduate School, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Turtushikh Damba
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Khongorzul Batchuluun
- Center for Research and Development of Institute of Biomedical Sciences, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia; Department of Health Research, Graduate School, Mongolian National University of Medical Sciences, Ulan Bator, Mongolia
| | - Yunxiao Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Ying Zhang
- School of Life Sciences, Biodiscovery Institute, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
5
|
Maurya S, Verma T, Aggarwal A, Kumar Singh M, Dutt Tripathi A, Trivedi A. Metabolomics and microscopic profiling of flaxseed meal- incorporated Peda. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100217. [PMID: 39308762 PMCID: PMC11416507 DOI: 10.1016/j.fochms.2024.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/20/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024]
Abstract
Functional dairy foods are in high demand due to their convenience, enhanced nutrition, intriguing flavors, and natural ingredients. The valorization of flaxseed by-products can potentially boost the functionality of these foods. This work involves the optimization of flaxseed meal powder (2%, 2.5%, 3%) during Peda preparation based on sensory and textural attributes. The optimized Peda (2%) exhibited significantly reduction in moisture (39.6%) and water activity (18.9%), while significantly increasing crude fiber (1.88%), protein (26.4%), fat (8%) and DPPH inhibition (274.5%) as compared to control Peda. Scanning electron microscopy of the optimized Peda revealed the surface displayed a dense, uneven texture, heavily coated with fat, and intergranular spaces filled with milk serum. Twenty-three primary compounds were recognized in high-resolution mass spectrometry (HR-MS), including 6 organic acids, 6 amino acids, 3 fatty acids, 3 other metabolite derivatives, 2 lipids, 2 bioactive components, and 1 sugar. Besides gas chromatography mass spectrometry (GC-MS) found six separate types of fatty acids. These compounds have been proven to possess various bioactivities, such as promoting brain activity, antioxidant, anti-diabetic, anti-inflammatory, cardiovascular-protective effects, etc. Flaxseed meal, as a plant-based substitute for dairy ingredients, offers a sustainable and healthy alternative, making flaxseed-incorporated Peda a functional food.
Collapse
Affiliation(s)
- Sachin Maurya
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tarun Verma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankur Aggarwal
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Manish Kumar Singh
- Department of Food Technology, School of Engineering and Technology, Mizoram University, Aizawl, Mizoram, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankur Trivedi
- Department of Dairy Technology, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
6
|
Chen S, He T, Chen J, Wen D, Wang C, Huang W, Yang Z, Yang M, Li M, Huang S, Huang Z, Zhu H. Betaine delays age-related muscle loss by mitigating Mss51-induced impairment in mitochondrial respiration via Yin Yang1. J Cachexia Sarcopenia Muscle 2024; 15:2104-2117. [PMID: 39187977 PMCID: PMC11446699 DOI: 10.1002/jcsm.13558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/18/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the hallmarks of aging and a leading contributor to sarcopenia. Nutrients are essential for improving mitochondrial function and skeletal muscle health during the aging process. Betaine is a nutrient with potential muscle-preserving properties. However, whether and how betaine could regulate the mitochondria function in aging muscle are poorly understood. We aimed to explore the molecular target and underlying mechanism of betaine in attenuating the age-related mitochondrial dysfunction in skeletal muscle. METHODS Young mice (YOU, 2 months), old mice (OLD, 15 months), and old mice with betaine treatment (BET, 15 months) were fed for 12 weeks. The effects of betaine on muscle mass, strength, function, and subcellular structure of muscle fibres were assessed. RNA sequencing (RNA-seq) was conducted to identify the molecular target of betaine. The impacts of betaine on mitochondrial-related molecules, superoxide accumulation, and oxidative respiration were examined using western blotting (WB), immunofluorescence (IF) and seahorse assay. The underlying mechanism of betaine regulation on the molecular target to maintain mitochondrial function was investigated by luciferase reporter assay, chromatin immunoprecipitation and electrophoretic mobility shift assay. Adenoassociated virus transfection, succinate dehydrogenase staining (SDH), and energy expenditure assessment were performed on 20-month-old mice for validating the mechanism in vivo. RESULTS Betaine intervention demonstrated anti-aging effects on the muscle mass (P = 0.017), strength (P = 0.010), and running distance (P = 0.013). Mitochondrial-related markers (ATP5a, Sdha, and Uqcrc2) were 1.1- to 1.5-fold higher in BET than OLD (all P ≤ 0.036) with less wasted mitochondrial vacuoles accumulating in sarcomere. Bioinformatic analysis from RNA-seq displayed pathways related to mitochondrial respiration activity was higher enriched in BET group (NES = -0.87, FDR = 0.10). The quantitative real time PCR (qRT-PCR) revealed betaine significantly reduced the expression of a novel mitochondrial regulator, Mss51 (-24.9%, P = 0.002). In C2C12 cells, betaine restored the Mss51-mediated suppression in mitochondrial respiration proteins (all P ≤ 0.041), attenuated oxygen consumption impairment, and superoxide accumulation (by 20.7%, P = 0.001). Mechanically, betaine attenuated aging-induced repression in Yy1 mRNA expression (BET vs. OLD: 2.06 vs. 1.02, P = 0.009). Yy1 transcriptionally suppressed Mss51 mRNA expression both in vitro and in vivo. This contributed to the preservation of mitochondrial respiration, improvement for energy expenditure (P = 0.008), and delay of muscle loss during aging process. CONCLUSIONS Altogether, betaine transcriptionally represses Mss51 via Yy1, improving age-related mitochondrial respiration in skeletal muscle. These findings suggest betaine holds promise as a dietary supplement to delay skeletal muscle degeneration and improve age-related mitochondrial diseases.
Collapse
Affiliation(s)
- Si Chen
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Tongtong He
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Jiedong Chen
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Dongsheng Wen
- Department of Hepatobiliary Oncology, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chen Wang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Wenge Huang
- Center of Experimental AnimalsSun Yat‐sen UniversityGuangzhouChina
| | - Zhijun Yang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Mengtao Yang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Mengchu Li
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Siyu Huang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Zihui Huang
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| | - Huilian Zhu
- Department of Nutrition, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and HealthSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Liu W, Zhong X, Yi Y, Xie L, Zhou W, Cao W, Chen L. Prophylactic Effects of Betaine on Depression and Anxiety Behaviors in Mice with Dextran Sulfate Sodium-Induced Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21041-21051. [PMID: 39276097 DOI: 10.1021/acs.jafc.4c05547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Ulcerative colitis (UC) is a typical type of inflammatory bowl disease, which is accompanied by an increased risk of depression and anxiety-related psychological symptoms. Betaine is a naturally derived compound that can function as an anti-inflammatory drug and a neuromodulator. In-depth exploration of the potential role of betaine in treating UC-related depression and anxiety is crucial. This study aimed to elucidate the effects of betaine on UC-related depression and anxiety and clarify the underlying mechanisms. A dextran sulfate sodium (DSS)-induced mice model was established by 4% DSS drinking ad libitum for 7 days. The colonic injury was measured using hematoxylin-eosin (HE) staining and Alcian blue-periodic acid Schiff (AB-PAS) staining. Depression and anxiety-like behaviors were separately evaluated using a forced swimming test (FST), a tail suspension test (TST), a light-dark box test (LDBT), and an open field test (OFT). Immunohistochemistry was used to detect DNA damage and neurogenesis in the hippocampus. Western blotting was applied to detect the protein levels of macrophage polarization in mice colons and the alteration of mitochondrial dysfunction and the cGAS-STING pathway in the hippocampus. Betaine strongly alleviated mucosal structural disorder and mucin secretion reduction and promoted M2-macrophage polarization in the colon of DSS-treated mice. In addition, betaine could mitigate depression- and anxiety-like behaviors in DSS-treated mice, reduce the DNA damage and mitochondrial dysfunction, and inhibit the cGAS-STING signaling pathway. Our study reveals the antidepression/anxiety effects of betaine and further demonstrates the potential mechanism by which betaine inhibits DNA damage and mitochondrial dysfunction to block the cGAS-STING pathway, thereby repairing neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Wenjia Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yan Yi
- Institute Center of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lihua Xie
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenyan Zhou
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
8
|
Hu W, Nie Y, Huang L, Qian D. Contribution of phenolamides to the quality evaluation in Lycium spp. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118220. [PMID: 38657878 DOI: 10.1016/j.jep.2024.118220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Goji berry is a general term for various plant species in the genus Lycium. Goji has long been historically used in traditional Chinese medicines. Goji is a representative tonic medicine that has the effects of nourishing the liver and kidney and benefiting the essence and eyesight. It has been widely used in the treatment of various diseases, including tinnitus, impotence, spermatorrhea and blood deficiency, since ancient times. AIM OF THE REVIEW This study aims to comprehensively summarize the quality evaluation methods of the main compounds in goji, as well as the current research status of the phenolamides in goji and their pharmacological effects, to explore the feasibility of using phenolamides as quality control markers and thus improve the quality and efficacy in goji. MATERIALS AND METHODS Relevant literature from PubMed, Web of Science, Science Direct, CNKI and other databases was comprehensively collected, screened and summarized. RESULTS According to the collected literature, the quality evaluation markers of goji in the Pharmacopoeia of the People's Republic of China are Lycium barbarum polysaccharide (LBP) and betaine. As a result of its structure complexity, only the total level of LBP can be determined, while betaine is not prominent in the pharmacological action of goji and lacks species distinctiveness. Neither of them can well explain the quality of goji. KuA and KuB are commonly used as quality evaluation markers of the Lycii cortex because of their high levels and suitable pharmacological activity. Goji is rich in polyphenols, carotenoids and alkaloids. Many studies have used the above compounds to establish quality evaluation methods but the results have not been satisfactory. Phenolamides have often been neglected in previous studies because of their low single compound levels and high separation difficulty. However, in recent years, the favorable pharmacological activities of phenolamides have been gradually recognized, and studies on goji phenolamides are greatly increasing. In addition, phenolamides have higher species distinctiveness than other compounds and can be combined with other compounds to better evaluate the quality of goji to improve its average quality. CONCLUSIONS The phenolamides in the goji are rich and play a key role in antioxidation, anti-inflammation, neuroprotection and immunomodulation. As a result of their characteristics, it is suitable to evaluate the quality by quantitative analysis of multi-components by single-marker and fingerprint. This method can be combined with other techniques to improve the quality evaluation system of goji, which lays a foundation for their effectiveness and provides a reference for new quality evaluation methods of similar herbal medicines.
Collapse
Affiliation(s)
- Wenxiao Hu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yinglan Nie
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dan Qian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Wang W, Xu M, Diao H, Long Q, Gan F, Mao Y. Effects of grape seed proanthocyanidin extract on cholesterol metabolism and antioxidant status in finishing pigs. Sci Rep 2024; 14:21117. [PMID: 39256553 PMCID: PMC11387843 DOI: 10.1038/s41598-024-72075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Grape seed proanthocyanidin extract (GSPE) is a natural polyphenolic compound, which plays an important role in anti-inflammatory and antioxidant. The present study aimed to investigate the effects of GSPE supplementation on the cholesterol metabolism and antioxidant status of finishing pigs. In longissimus dorse (LD) muscle, the data showed that GSPE significantly decreased the contents of total cholesterol (T-CHO) and triglyceride (TG), and decreased the mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR) and Fatty acid synthase (FAS), while increased the mRNA expression of carnitine palmitoyl transferase-1b (CPT1b), peroxisome proliferator-activated receptors (PPARα) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). GSPE also reduced the enzyme activities of HMG-CoAR and FAS, and meanwhile amplified the activity of CPT1b in LD muscle of finishing pigs. Furthermore, dietary GSPE supplementation increased the serum catalase (CAT) and total antioxidant capacity (T-AOC), serum and liver total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) levels, while reduced serum and liver malondialdehyde (MDA) level in finishing pigs. In the liver, Superoxide Dismutase 1 (SOD1), catalase (CAT), glutathione peroxidase 1 (GPX1), Nuclear Factor erythroid 2-Related Factor 2 (NRF2) mRNA levels were increased by GSPE. In conclusion, this study showed that GSPE might be an effective dietary supplement for improving cholesterol metabolism and antioxidant status in finishing pigs.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Meng Xu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| | - Hui Diao
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co. Ltd, Chengdu, 610066, China
| | - Qingtao Long
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Fang Gan
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Yi Mao
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| |
Collapse
|
10
|
Wang Y, Zou J, Zhou H. N6-methyladenine RNA methylation epigenetic modification and diabetic microvascular complications. Front Endocrinol (Lausanne) 2024; 15:1462146. [PMID: 39296713 PMCID: PMC11408340 DOI: 10.3389/fendo.2024.1462146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
N6-methyladensine (m6A) has been identified as the best-characterized and the most abundant mRNA modification in eukaryotes. It can be dynamically regulated, removed, and recognized by its specific cellular components (respectively called "writers," "erasers," "readers") and have become a hot research field in a variety of biological processes and diseases. Currently, the underlying molecular mechanisms of m6A epigenetic modification in diabetes mellitus (DM) and diabetic microvascular complications have not been extensively clarified. In this review, we focus on the effects and possible mechanisms of m6A as possible potential biomarkers and therapeutic targets in the treatment of DM and diabetic microvascular complications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiayun Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Zhou Z, Yao Y, Sun Y, Wang X, Huang S, Hou J, Wang L, Wei F. Serum betaine and dimethylglycine in mid-pregnancy and the risk of gestational diabetes mellitus: a case-control study. Endocrine 2024:10.1007/s12020-024-03732-4. [PMID: 38448678 DOI: 10.1007/s12020-024-03732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE To investigate the associations of choline, betaine, dimethylglycine (DMG), L-carnitine, and Trimethylamine-N-oxide (TMAO) with the risk of Gestational diabetes mellitus (GDM) as well as the markers of glucose homeostasis. METHODS We performed a case-control study including 200 diagnosed GDM cases and 200 controls matched by maternal age (±2 years) and gestational age (±2 weeks). Concentrations of serum metabolites were measured by the high-performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). RESULTS Compared to the control group, GDM group had significantly lower serum betaine concentration and betaine/choline ratio, and higher DMG concentration. Furthermore, decreased betaine concentration and betaine/choline ratio, increased DMG concentration showed significant association with the risk of GDM. In addition, serum betaine concentrations were negatively associated with blood glucose levels at 1-h post-glucose load (OGTT-1h), and both betaine and L-carnitine concentrations were positively associated with 1,5-anhydroglucitol levels. Betaine/choline ratio was negatively associated with OGTT-1h and blood glucose levels at 2-h post-glucose load (OGTT-2h) and serum choline concentrations were negatively associated with fasting blood glucose and positively associated with OGTT-2h. CONCLUSION Decreased serum betaine concentrations and betaine/choline ratio, and elevated DMG concentrations could be significant risk factors for GDM. Furthermore, betaine may be associated with blood glucose regulation and short-term glycemic fluctuations.
Collapse
Affiliation(s)
- Ziqing Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
| | - Yao Yao
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
| | - Yanan Sun
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Medical Insurance Office of Shenzhen Longgang Central Hospital, Shenzhen, Guangdong Province, China
| | - Xin Wang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Jiamusi University, Jiamusi, Heilongjiang Province, China
| | - Shang Huang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Shenzhen Children's Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Jianli Hou
- Department of Gynecology and Obstetrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China.
| | - Fengxiang Wei
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China.
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China.
| |
Collapse
|
12
|
da Rocha Junior ER, Porto VA, Crispim AC, Ursulino JS, de Jesus LWO, de Souza Bento E, Santos JCC, de Aquino TM. Assessment of thimerosal effects in sublethal concentrations on zebrafish (Danio rerio) embryos exploring NMR-based metabolomics profile. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104361. [PMID: 38211665 DOI: 10.1016/j.etap.2024.104361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Thimerosal, a preservative commonly used in the pharmaceutical and cosmetic industry, has raised concerns regarding its potentially toxic effects as an organic mercury compound. Within this context, using an NMR-based metabolomics profile and chemometric analysis, zebrafish embryos were used as an in vivo model to study the effects of thimerosal in metabolic profiles after exposure to sublethal concentrations of the mercury compound. The thimerosal concentrations of 40 and 80 nM were employed, corresponding to 40% and 80% of the LC50, respectively, for zebrafish embryos. The most significant alterations in the metabolic profile included changes in carbohydrates, amino acids, nucleotides, trimethylamine-N-oxide, ethanolamine, betaine, and ethanol. Furthermore, thimerosal exposure affects various metabolic pathways, impairing the nervous system, disrupting protein metabolism, and potentially causing oxidative damage. Therefore, adopting a metabolomics approach in this investigation provided insights into the potentially implicated metabolic pathways contributing to the deleterious effects of thimerosal in biological systems.
Collapse
Affiliation(s)
- Edmilson Rodrigues da Rocha Junior
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Viviane Amaral Porto
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Alessandre Carmo Crispim
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Jeferson Santana Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Edson de Souza Bento
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | | | - Thiago Mendonça de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil.
| |
Collapse
|
13
|
Huang W, Hua Y, Wang F, Xu J, Yuan L, Jing Z, Wang W, Zhao Y. Dietary betaine and/or TMAO affect hepatic lipid accumulation and glycometabolism of Megalobrama amblycephala exposed to a high-carbohydrate diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:59-75. [PMID: 36580207 DOI: 10.1007/s10695-022-01160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A 12-week experiment was conducted to explore the effects of betaine and/or TMAO on growth, hepatic health, gut microbiota, and serum metabolites in Megalobrama amblycephala fed with high-carbohydrate diets. The diets were as follows: CD group (control diet, 28.5% carbohydrate), HCD group (high-carbohydrate diet, 38.2% carbohydrate), HBD group (betaine-added diet, 38.3% carbohydrate + 1.2% betaine), HTD group (TMAO-added diet, 38.2% carbohydrate + 0.2% TMAO), and HBT group (diet added with both betaine and TMAO, 38.2% carbohydrate + 1.2% betaine + 0.2% TMAO). The results showed that the hepatosomatic index (HSI); whole-body crude fat; hepatic lipid accumulation; messenger RNA expression levels of gk, fpbase, g6pase, ahas, and bcat; serum branched-chain amino acids (BCAAs); ratio of Firmicutes-to-Bacteroidetes; and abundance of the genus Aeromonas were all significantly increased, while the abundance levels of the genus Lactobacillus and phyla Tenericutes and Bacteroidetes were drastically decreased in the HCD group. Compared with the HCD group, the HSI; whole-body crude fat; hepatic lipid accumulation; expression levels of fbpase, g6pase, pepck, ahas, and bcat; circulating BCAA; ratio of Firmicutes-to-Bacteroidetes; and abundance levels of the genus Aeromonas and phyla Tenericutes and Bacteroidetes were significantly downregulated in the HBD, HTD, and HBT groups. Meanwhile, the expression levels of pk were drastically upregulated in the HBD, HTD, and HBT groups as well as the abundance of Lactobacillus in the HBT group. These results indicated that the supplementation of betaine and/or TMAO in high-carbohydrate diets could affect the hepatic lipid accumulation and glycometabolism of M. amblycephala by promoting glycolysis, inhibiting gluconeogenesis and biosynthesis of BCAA, and mitigating the negative alteration of gut microbiota. Among them, the combination of betaine and TMAO had the best effect.
Collapse
Affiliation(s)
- Wangwang Huang
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yizhuo Hua
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Fan Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jia Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Lv Yuan
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Zhao Jing
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Weimin Wang
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China
| | - Yuhua Zhao
- College of Fisheries Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
14
|
Mao-Mao, Zhang JJ, Xu YP, Shao MM, Wang MC. Regulatory effects of natural products on N6-methyladenosine modification: A novel therapeutic strategy for cancer. Drug Discov Today 2024; 29:103875. [PMID: 38176674 DOI: 10.1016/j.drudis.2023.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
N6-methyladenosine (m6A) is considered to be the most common and abundant epigenetics modification in messenger RNA (mRNA) and noncoding RNA. Abnormal modification of m6A is closely related to the occurrence, development, progression, and prognosis of cancer. m6A regulators have been identified as novel targets for anticancer drugs. Natural products, a rich source of traditional anticancer drugs, have been utilized for the development of m6A-targeting drugs. Here, we review the key role of m6A modification in cancer progression and explore the prospects and structural modification mechanisms of natural products as potential drugs targeting m6A modification for cancer treatment.
Collapse
Affiliation(s)
- Mao-Mao
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Jin-Jing Zhang
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Yue-Ping Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Min-Min Shao
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Meng-Chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China.
| |
Collapse
|
15
|
Gu J, Cao H, Chen X, Zhang XD, Thorne RF, Liu X. RNA m6A modifications regulate crosstalk between tumor metabolism and immunity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1829. [PMID: 38114887 DOI: 10.1002/wrna.1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
In recent years, m6A modifications in RNA transcripts have arisen as a hot topic in cancer research. Indeed, a number of independent studies have elaborated that the m6A modification impacts the behavior of tumor cells and tumor-infiltrating immune cells, altering tumor cell metabolism along with the differentiation and functional activity of immune cells. This review elaborates on the links between RNA m6A modifications, tumor cell metabolism, and immune cell behavior, discussing this topic from the viewpoint of reciprocal regulation through "RNA m6A-tumor cell metabolism-immune cell behavior" and "RNA m6A-immune cell behavior-tumor cell metabolism" axes. In addition, we discuss the various factors affecting RNA m6A modifications in the tumor microenvironment, particularly the effects of hypoxia associated with cancer cell metabolism along with immune cell-secreted cytokines. Our analysis proposes the conclusion that RNA m6A modifications support widespread interactions between tumor metabolism and tumor immunity. With the current viewpoint that long-term cancer control must tackle cancer cell malignant behavior while strengthening anti-tumor immunity, the recognition of RNA m6A modifications as a key factor provides a new direction for the targeted therapy of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jinghua Gu
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Huake Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xiaoli Chen
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| | - Xu Dong Zhang
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Rick F Thorne
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
16
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Jaiswal A, Rawat PS, Singh SK, Bhatti JS, Khurana A, Navik U. Betaine Intervention as a Novel Approach to Preventing Doxorubicin-Induced Cardiotoxicity. ADVANCES IN REDOX RESEARCH 2023; 9:100084. [DOI: 10.1016/j.arres.2023.100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
18
|
Jiang T, Xiao Y, Zhou J, Luo Z, Yu L, Liao Q, Liu S, Qi X, Zhang H, Hou M, Miao W, Batsaikhan B, Damba T, Liang Y, Li Y, Zhou L. Arbutin alleviates fatty liver by inhibiting ferroptosis via FTO/SLC7A11 pathway. Redox Biol 2023; 68:102963. [PMID: 37984229 PMCID: PMC10694775 DOI: 10.1016/j.redox.2023.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a potentially serious disease that affects 30 % of the global population and poses a significant risk to human health. However, to date, no safe, effective and appropriate treatment modalities are available. In recent years, ferroptosis has emerged as a significant mode of cell death and has been found to play a key regulatory role in the development of NAFLD. In this study, we found that arbutin (ARB), a natural antioxidant derived from Arctostaphylos uva-ursi (L.), inhibits the onset of ferroptosis and ameliorates high-fat diet-induced NAFLD in vivo and in vitro. Using reverse docking, we identified the demethylase fat mass and obesity-related protein (FTO) as a potential target of ARB. Subsequent mechanistic studies revealed that ARB plays a role in controlling methylation of the SLC7A11 gene through inhibition of FTO. In addition, we demonstrated that SLC7A11 could alleviate the development of NAFLD in vivo and in vitro. Our findings identify the FTO/SLC7A11 axis as a potential therapeutic target for the treatment of NAFLD. Specifically, we show that ARB alleviates NAFLD by acting on the FTO/SLC7A11 pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Tianyu Jiang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yao Xiao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jinfeng Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zupeng Luo
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Lin Yu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Qichao Liao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Siqi Liu
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xinyi Qi
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Hao Zhang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Menglong Hou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - WeiWei Miao
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Batbold Batsaikhan
- Department of Internal Medicine, Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia; Department of Health Research, Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Turtushikh Damba
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Yunxiao Liang
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Yixing Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Lei Zhou
- Institute of Digestive Disease, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
19
|
Wu Y, Zeng Y, Ren Y, Yu J, Zhang Q, Xiao X. Insights into RNA N6-methyladenosine in Glucose and Lipid Metabolic Diseases and Their Therapeutic Strategies. Endocrinology 2023; 165:bqad170. [PMID: 37950364 DOI: 10.1210/endocr/bqad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The incidence of glucose and lipid metabolism diseases, including type 2 diabetes, obesity, metabolic syndrome, and nonalcoholic fatty liver disease, is rising, which places an enormous burden on people around the world. However, the mechanism behind these disorders remains incompletely understood. N6-methyladenosine (m6A) is 1 type of posttranscriptional RNA modification, and research has shown that it plays a crucial role in several metabolic diseases. m6A methylation is reversibly and dynamically regulated by methyltransferases (writers), demethylases (erasers), and m6A binding proteins (readers). Dysregulation of RNA m6A modification is related to different metabolic processes. Targeting RNA m6A methylation is a potential treatment strategy for these chronic metabolic diseases. This review discusses studies on RNA m6A modification in metabolic diseases and existing therapeutic drugs, with the aim of providing a concise perspective on its potential applications in managing metabolic disorders.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
20
|
Wang D, Zhang Y, Li Q, Zhang A, Xu J, Li Y, Li W, Tang L, Yang F, Meng J. N6-methyladenosine (m6A) in cancer therapeutic resistance: Potential mechanisms and clinical implications. Biomed Pharmacother 2023; 167:115477. [PMID: 37696088 DOI: 10.1016/j.biopha.2023.115477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Cancer therapy resistance (CTR) is the development of cancer resistance to multiple therapeutic strategies, which severely affects clinical response and leads to cancer progression, recurrence, and metastasis. N6-methyladenosine (m6A) has been identified as the most common, abundant, and conserved internal transcriptional alterations of RNA modifications, regulating RNA splicing, translation, stabilization, degradation, and gene expression, and is involved in the development and progression of a variety of diseases, including cancer. Recent studies have shown that m6A modifications play a critical role in both cancer development and progression, especially in reversing CTR. Although m6A modifications have great potential in CTR, the specific molecular mechanisms are not fully elucidated. In this review, we summarize the potential molecular mechanisms of m6A modification in CTR. In addition, we update recent advances in natural products from Traditional Chinese Medicines (TCM) and small-molecule lead compounds targeting m6A modifications, and discuss the great potential and clinical implications of these inhibitors targeting m6A regulators and combinations with other therapies to improve clinical efficacy and overcome CTR.
Collapse
Affiliation(s)
- Dong Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingbo Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxuan Xu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jingyan Meng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
21
|
Wu L, Tang H. The role of N6-methyladenosine modification in rodent models of neuropathic pain: from the mechanism to therapeutic potential. Biomed Pharmacother 2023; 166:115398. [PMID: 37647691 DOI: 10.1016/j.biopha.2023.115398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
Neuropathic pain (NP) is a common chronic pain condition resulted from lesions or diseases of somatosensory nervous system, but the pathogenesis remains unclear. A growing body of evidence supports the relationship between pathogenesis and N6-methyladenosine (m6A) modifications of RNA. However, studies on the role of m6A modifications in NP are still at an early stage. Elucidating different etiologies is important for understanding the specific pathogenesis of NP. This article provides a comprehensive review on the role of m6A methylation modifications including methyltransferases ("writers"), demethylases ("erasers"), and m6A binding proteins ("readers") in NP models. Further analysis of the pathogenic mechanism relationship between m6A and NP provided novel theoretical and practical significance for clinical treatment of NP.
Collapse
Affiliation(s)
- Liping Wu
- Guangxi University of Traditional Chinese Medicine, Nanning, China; The First Clinical Medical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Hongliang Tang
- Guangxi Traditional Chinese Medicine University Affiliated Fangchenggang Hospital.
| |
Collapse
|
22
|
Xiao L, Li M, Xiao Y, Yu L, Li Y, Zhang Z, Zhang G, Li Y, Zhou L, Liang Y. Echinocystic acid prevents obesity and fatty liver via interacting with FABP1. Phytother Res 2023; 37:3617-3630. [PMID: 37092723 DOI: 10.1002/ptr.7839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
Long-term high-fat diet (HFD) will lead to obesity and their complications. Echinocystic acid (EA), a triterpene, shows anti-inflammatory and antioxidant effects. We predict that EA supplementation can prevent obesity, diabetes, and nonalcoholic steatohepatitis. To test our hypothesis, we investigated the effects of EA supplementation on mice with HFD-induced obesity in vivo and in vitro by adding EA to the diet of mice and the medium of HepG2 cells, the protein target of EA was analyzed by molecular docking. The results showed that EA ameliorated obesity and inhibited blood triglyceride and liver triglyceride concentrations than those in the HFD groups. The data on molecular docking indicated that FABP1 was a potential target of EA. Further experimental results confirmed that EA affected the triglyceride level by regulating the function of FABP1. This study may provide a new potential inhibitor for FABP1 and a new strategy for the treatment of obesity.
Collapse
Affiliation(s)
- Lianggui Xiao
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Mingming Li
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yang Xiao
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lin Yu
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhiwang Zhang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guo Zhang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yixing Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhou
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yunxiao Liang
- Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
23
|
Petit A, Tesseraud S, Beauclercq S, Nadal-Desbarats L, Cailleau-Audouin E, Réhault-Godbert S, Berri C, Le Bihan-Duval E, Métayer-Coustard S. Allantoic fluid metabolome reveals specific metabolic signatures in chicken lines different for their muscle glycogen content. Sci Rep 2023; 13:8867. [PMID: 37258592 DOI: 10.1038/s41598-023-35652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Nutrient availability in eggs can affect early metabolic orientation in birds. In chickens divergently selected on the Pectoralis major ultimate pH, a proxy for muscle glycogen stores, characterization of the yolk and amniotic fluid revealed a different nutritional environment. The present study aimed to assess indicators of embryo metabolism in pHu lines (pHu+ and pHu-) using allantoic fluids (compartment storing nitrogenous waste products and metabolites), collected at days 10, 14 and 17 of embryogenesis and characterized by 1H-NMR spectroscopy. Analysis of metabolic profiles revealed a significant stage effect, with an enrichment in metabolites at the end of incubation, and an increase in interindividual variability during development. OPLS-DA analysis discriminated the two lines. The allantoic fluid of pHu- was richer in carbohydrates, intermediates of purine metabolism and derivatives of tryptophan-histidine metabolism, while formate, branched-chain amino acids, Krebs cycle intermediates and metabolites from different catabolic pathways were more abundant in pHu+. In conclusion, the characterization of the main nutrient sources for embryos and now allantoic fluids provided an overview of the in ovo nutritional environment of pHu lines. Moreover, this study revealed the establishment, as early as day 10 of embryo development, of specific metabolic signatures in the allantoic fluid of pHu+ and pHu- lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cécile Berri
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | | | | |
Collapse
|
24
|
Juárez‐Fernández M, Goikoetxea‐Usandizaga N, Porras D, García‐Mediavilla MV, Bravo M, Serrano‐Maciá M, Simón J, Delgado TC, Lachiondo‐Ortega S, Martínez‐Flórez S, Lorenzo Ó, Rincón M, Varela‐Rey M, Abecia L, Rodríguez H, Anguita J, Nistal E, Martínez‐Chantar ML, Sánchez‐Campos S. Enhanced mitochondrial activity reshapes a gut microbiota profile that delays NASH progression. Hepatology 2023; 77:1654-1669. [PMID: 35921199 PMCID: PMC10113004 DOI: 10.1002/hep.32705] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Recent studies suggest that mitochondrial dysfunction promotes progression to NASH by aggravating the gut-liver status. However, the underlying mechanism remains unclear. Herein, we hypothesized that enhanced mitochondrial activity might reshape a specific microbiota signature that, when transferred to germ-free (GF) mice, could delay NASH progression. APPROACH AND RESULTS Wild-type and methylation-controlled J protein knockout (MCJ-KO) mice were fed for 6 weeks with either control or a choline-deficient, L-amino acid-defined, high-fat diet (CDA-HFD). One mouse of each group acted as a donor of cecal microbiota to GF mice, who also underwent the CDA-HFD model for 3 weeks. Hepatic injury, intestinal barrier, gut microbiome, and the associated fecal metabolome were then studied. Following 6 weeks of CDA-HFD, the absence of methylation-controlled J protein, an inhibitor of mitochondrial complex I activity, reduced hepatic injury and improved gut-liver axis in an aggressive NASH dietary model. This effect was transferred to GF mice through cecal microbiota transplantation. We suggest that the specific microbiota profile of MCJ-KO, characterized by an increase in the fecal relative abundance of Dorea and Oscillospira genera and a reduction in AF12 , Allboaculum , and [ Ruminococcus ], exerted protective actions through enhancing short-chain fatty acids, nicotinamide adenine dinucleotide (NAD + ) metabolism, and sirtuin activity, subsequently increasing fatty acid oxidation in GF mice. Importantly, we identified Dorea genus as one of the main modulators of this microbiota-dependent protective phenotype. CONCLUSIONS Overall, we provide evidence for the relevance of mitochondria-microbiota interplay during NASH and that targeting it could be a valuable therapeutic approach.
Collapse
Affiliation(s)
- María Juárez‐Fernández
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Biomedical Research Network on Liver and Digestive Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Naroa Goikoetxea‐Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - David Porras
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - María Victoria García‐Mediavilla
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Biomedical Research Network on Liver and Digestive Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Miren Bravo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Marina Serrano‐Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jorge Simón
- Biomedical Research Network on Liver and Digestive Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sofía Lachiondo‐Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS‐Fundación Jiménez Díaz‐Universidad Autónoma de Madrid, Madrid, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEM, Madrid, Spain
| | - Mercedes Rincón
- Department of Medicine, Immunobiology Division, University of Vermont, Burlington, Vermont, USA
| | - Marta Varela‐Rey
- Biomedical Research Network on Liver and Digestive Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Immunology, Microbiology and Parasitology Department, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Héctor Rodríguez
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Esther Nistal
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Biomedical Research Network on Liver and Digestive Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - María Luz Martínez‐Chantar
- Biomedical Research Network on Liver and Digestive Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sonia Sánchez‐Campos
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Biomedical Research Network on Liver and Digestive Diseases (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| |
Collapse
|
25
|
Zhu X, Zhou C, Zhao S, Zheng Z. Role of m6A methylation in retinal diseases. Exp Eye Res 2023; 231:109489. [PMID: 37084873 DOI: 10.1016/j.exer.2023.109489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023]
Abstract
Retinal diseases remain among the leading causes of visual impairment in developed countries, despite great efforts in prevention and early intervention. Due to the limited efficacy of current retinal therapies, novel therapeutic methods are urgently required. Over the past two decades, advances in next-generation sequencing technology have facilitated research on RNA modifications, which can elucidate the relevance of epigenetic mechanisms to disease. N6-methyladenosine (m6A), formed by methylation of adenosine at the N6-position, is the most widely studied RNA modification and plays an important role in RNA metabolism. It is dynamically regulated by writers (methyltransferases) and erasers (demethylases), and recognized by readers (m6A binding proteins). Although the discovery of m6A methylation can be traced back to the 1970s, its regulatory roles in retinal diseases are rarely appreciated. Here, we provide an overview of m6A methylation, and discuss its effects and possible mechanisms on retinal diseases, including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa, and proliferative vitreoretinopathy. Furthermore, we highlight potential agents targeting m6A methylation for retinal disease treatment and discuss the limitations and challenges of research in the field of m6A methylation.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuzhi Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
26
|
Zaki A, Jiang S, Zaghloul S, El-Rayes TK, Saleh AA, Azzam MM, Ragni M, Alagawany M. Betaine as an alternative feed additive to choline and its effect on performance, blood parameters, and egg quality in laying hens rations. Poult Sci 2023; 102:102710. [PMID: 37148572 DOI: 10.1016/j.psj.2023.102710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023] Open
Abstract
This research aimed to evaluate how using betaine levels as a choline substitute affects productive performance, egg quality parameters, fatty acids profile, and antioxidant status in laying hens. One hundred and forty brown chickens, 45 wk old, were divided into 4 groups, each group of 7 replicates with 5 chickens per replicate. The first group of diets with choline has control (A) 100% choline, the second group (B) 75% choline + 25% betaine, the third group (C) 50% choline + 50% betaine, and the fourth group (D) received 100% betaine. No significant effects were observed in final body weight (BW), body weight gain (BWG), egg production (EW), and feed intake (FI) for laying hens. In the diet in which betaine was replaced choline, egg mass (EM) and egg weight (EW) increased compared to the control group (P < 0.05). Also, after 12 wk of feeding, the egg quality parameters were not influenced; however, yolk color was increased significantly compared with the control group. Serum total cholesterol, LDL-lipoprotein, HDL-lipoprotein, triglyceride, glucose, aspartate transaminase (AST), and alanine transaminase (ALT) were not affected by replacing choline with betaine. Furthermore, liver malondialdehyde (MDA) content, yolk vitamin E, and fatty acid levels were not significantly affected by replacing choline with betaine. Moreover, hens fed betaine displayed an increased antibody titer of the Newcastle disease (ND) virus. EW and EM were increased by 3.50% and 5.43% in 100% betaine group (D) when compared to the control group. Isthmus weight was decreased by 48.28 % in 50% choline + 50% betaine group (C) when compared to the control group. ND was increased by 26.24% in 100% betaine group when compared to the control group. In conclusion, betaine supplementation positively affected productive performance, egg quality measurements, and immunity response in Bovans brown laying hens.
Collapse
Affiliation(s)
- Aisha Zaki
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta 333516, Egypt
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, Guangdong, China.
| | - Saad Zaghloul
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta 333516, Egypt
| | - Talaat K El-Rayes
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta 333516, Egypt
| | - Ahmed A Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mahmoud Mostafa Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marco Ragni
- Department of Soil, Plant and Food Sciences, University of Bari 'Aldo Moro', 70126 Bari, Italy
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
27
|
Liu S, Liu K, Wang Y, Wu C, Xiao Y, Liu S, Yu J, Ma Z, Liang H, Li X, Li Y, Zhou L. Hesperidin methyl chalcone ameliorates lipid metabolic disorders by activating lipase activity and increasing energy metabolism. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166620. [PMID: 36494040 DOI: 10.1016/j.bbadis.2022.166620] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Obesity has become an increasingly serious health issue with the continuous improvement in living standards. Its prevalence has become an economic burden on health care systems worldwide. Flavonoids have been shown to be beneficial in the prevention and treatment of obesity. Here, we evaluated the therapeutic potential of the flavonoid hesperidin methyl chalcone (HMC) on mice with high-fat diet (HFD)-induced hepatic steatosis in vivo and in vitro. Treatment with HMC reduced oleic and palmitic acid-induced increases in intracellular triglyceride accumulation in HepG2, AML12 and LMH cells. HMC also enhanced energy metabolism and lowered oxidative stress. We used Discovery studio to dock key proteins associated with lipid metabolism disorders to HMC, and found that HMC interacted with lipase. Furthermore, we demonstrated that HMC improved lipase activity and lipolysis. In addition, we found that HMC promoted glucose absorption, alleviated lipid metabolic disorders, improved HFD-induced liver injury, and regulated HFD-induced changes in energy metabolism. In conclusion, our study demonstrated that HMC ameliorated HFD-induced obesity and its complications by promoting lipase activity, and provides a novel approach for the prevention and treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Songsong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Kang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yuwei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Chou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yang Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Jingsu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Zeqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Huanjie Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Xiangling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
28
|
Xiao Y, Xiao L, Li M, Liu S, Wang Y, Huang L, Liu S, Jiang T, Zhou L, Li Y. Perillartine protects against metabolic associated fatty liver in high-fat diet-induced obese mice. Food Funct 2023; 14:961-977. [PMID: 36541423 DOI: 10.1039/d2fo02227c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic associated fatty liver disease is the main cause of chronic liver disease in the world, but there is still no effective treatment. In the search for drugs to treat liver steatosis, we screened 303 natural products using HepG2 cells and discovered that perillartine derived from Perilla frutescens (L.) improved fat deposition as well as glucose homeostasis in hepatocytes. In vitro, perillartine reduced the expression of genes involved in lipid synthesis, lipid transport, and gluconeogenesis in hepatocytes, increased the number of mitochondria, and upregulated the phosphorylation of Akt. In vivo, perillartine reduced body weight gain and the fat rate, improved glucose metabolism and energy balance, and altered the gut microbial composition in mice given a high-fat diet. In addition, RORγ was identified as a possible target of perillartine through pharmacophore screening. Functional studies revealed that the overexpression of RORγ blocked the effects of perillartine, suggesting that it reduced lipid accumulation and regulated glucose metabolism by inhibiting the transcriptional activity of RORγ. Our results provide new information on a natural product inhibitor for RORγ and reveal that perillartine is a new candidate for the treatment of obesity and metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Yang Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Lianggui Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Mingming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Songsong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Yuwei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Liang Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Tianyu Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, P.R. China.
| |
Collapse
|
29
|
Ma Z, Wang S, Miao W, Zhang Z, Yu L, Liu S, Luo Z, Liang H, Yu J, Huang T, Li M, Gao J, Su S, Li Y, Zhou L. The Roles of Natural Alkaloids and Polyphenols in Lipid Metabolism: Therapeutic Implications and Potential Targets in Metabolic Diseases. Curr Med Chem 2023; 30:3649-3667. [PMID: 36345246 DOI: 10.2174/0929867330666221107095646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
The prevalence of obesity and its associated diseases has increased dramatically, and they are major threats to human health worldwide. A variety of approaches, such as physical training and drug therapy, can be used to reduce weight and reverse associated diseases; however, the efficacy and the prognosis are often unsatisfactory. It has been reported that natural food-based small molecules can prevent obesity and its associated diseases. Among them, alkaloids and polyphenols have been demonstrated to regulate lipid metabolism by enhancing energy metabolism, promoting lipid phagocytosis, inhibiting adipocyte proliferation and differentiation, and enhancing the intestinal microbial community to alleviate obesity. This review summarizes the regulatory mechanisms and metabolic pathways of these natural small molecules and reveals that the binding targets of most of these molecules are still undefined, which limits the study of their regulatory mechanisms and prevents their further application. In this review, we describe the use of Discovery Studio for the reverse docking of related small molecules and provide new insights for target protein prediction, scaffold hopping, and mechanistic studies in the future. These studies will provide a theoretical basis for the modernization of anti-obesity drugs and promote the discovery of novel drugs.
Collapse
Affiliation(s)
- Zeqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shengnan Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, China
| | - Weiwei Miao
- Institute of Oncology, Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zupeng Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huanjie Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jingsu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tengda Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mingming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiayi Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Songtao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
30
|
Li L, Sun Y, Zha W, Li L, Li H. Novel insights into the N 6-methyladenosine RNA modification and phytochemical intervention in lipid metabolism. Toxicol Appl Pharmacol 2022; 457:116323. [PMID: 36427654 DOI: 10.1016/j.taap.2022.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Epitranscriptome (RNA modification) plays a vital role in a variety of biological events. N6-methyladenosine (m6A) modification is the most prevalent mRNA modification in eukaryotic cells. Dynamic and reversible m6A modification affects the plasticity of epitranscriptome, which plays an essential role in lipid metabolism. In this review, we comprehensively delineated the role and mechanism of m6A modification in the regulation of lipid metabolism in adipose tissue and liver, and summarized phytochemicals that improve lipid metabolism disturbance by targeting m6A regulator, providing potential lead candidates for drug therapeutics. Moreover, we discussed the main challenges and possible future directions in this field.
Collapse
Affiliation(s)
- Linghuan Li
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuanhai Sun
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weiwei Zha
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lingqing Li
- Taizhou Municipal Hospital, Taizhou University, Taizhou 318000, PR China
| | - Hanbing Li
- Institute of Pharmacology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
31
|
Wang Z, Zhou J, Zhang H, Ge L, Li J, Wang H. RNA m 6 A methylation in cancer. Mol Oncol 2022; 17:195-229. [PMID: 36260366 PMCID: PMC9892831 DOI: 10.1002/1878-0261.13326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023] Open
Abstract
N6 -methyladenosine (m6 A) is one of the most abundant internal modifications in eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). It is a reversible and dynamic RNA modification that has been observed in both internal coding segments and untranslated regions. Studies indicate that m6 A modifications play important roles in translation, RNA splicing, export, degradation and ncRNA processing control. In this review, we focus on the profiles and biological functions of RNA m6 A methylation on both mRNAs and ncRNAs. The dynamic modification of m6 A and its potential roles in cancer development are discussed. Moreover, we discuss the possibility of m6 A modifications serving as potential biomarkers for cancer diagnosis and targets for therapy.
Collapse
Affiliation(s)
- Zhaotong Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiawang Zhou
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Haisheng Zhang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Lichen Ge
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Jiexin Li
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Hongsheng Wang
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
32
|
Yu J, Laybutt DR, Youngson NA, Morris MJ. Concurrent betaine administration enhances exercise-induced improvements to glucose handling in obese mice. Nutr Metab Cardiovasc Dis 2022; 32:2439-2449. [PMID: 36096978 DOI: 10.1016/j.numecd.2022.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Betaine supplementation has been shown to enhance hepatic lipid metabolism in obese mice and improve exercise performance in healthy populations. We examined effects of betaine supplementation, alone or in combination with treadmill exercise, on the metabolic consequences of high fat diet (HFD)-induced obesity in mice. METHODS AND RESULTS Male C57BL/6 J mice were fed chow or HFD. After 15 weeks, HFD mice were split into: HFD, HFD with betaine (1.5% w/v), HFD with treadmill exercise, and HFD with both betaine and exercise (15 m/min for 45min, 6 days/week; n = 12/group) for 10 weeks. Compared to HFD mice, body weight was significantly reduced in exercise and exercise-betaine mice, but not in mice given betaine alone. Similarly, adiposity was reduced by exercise but not by betaine alone. HFD-induced glucose intolerance was slightly improved by exercise, but not with betaine alone. Significantly greater benefits were observed in exercise-betaine mice, compared to exercise alone, such that GTT-outcomes were similar to controls. This was associated with reduced insulin levels during ipGTT, suggesting enhanced insulin sensitivity. Modest benefits were observed in fatty acid metabolism genes in skeletal muscle, whilst limited effects were observed in the liver. HFD-induced increases in hepatic Mpc1 (mitochondrial pyruvate carrier 1) were normalized by all treatments, suggesting potential links to altered glucose metabolism. CONCLUSIONS Our data show that drinking 1.5% betaine was sufficient to augment metabolic benefits of exercise in obese mice. These processes appear to be facilitated by altered glucose metabolism, with limited effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Josephine Yu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - D Ross Laybutt
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; Garvan Institute of Medical Research, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Neil A Youngson
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia; The Institute of Hepatology, Foundation for Liver Research, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Margaret J Morris
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
33
|
Yang Z, Xu C, Ma S, Zhao RQ, Yang HM, Wang ZY. Effects of betaine supplementation on reproductive performance of breeding geese. Br Poult Sci 2022; 64:283-288. [PMID: 36164766 DOI: 10.1080/00071668.2022.2128988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. An experiment feeding three concentrations of betaine was conducted using breeding geese to analyse the reproductive performance, serum biochemical indexes, egg quality and intestinal immunity.2. A total of 450 female and 90 male Jiangnan White breeding geese were divided into three treatments, with five pen replicates each containing 30 female geese and 6 male geese.3. The results showed that there was no significant effect on the reproductive performance, serum biochemical indexes or jejunal villi goblet cells of geese with different levels of betaine in the diet (P>0.05). Compared with the control group, the addition of 2.5 g/kg betaine to the diet showed a tendency to increase egg mass (P>0.05) the betaine content in the yolk (P<0.05). Feeding betaine significantly increased the height of jejunal villi and egg yolk total cholesterol content in female geese (P<0.05).4. In conclusion, adding betaine to the goose diet was effective in its ability to improve intestinal structures and increase egg production. Adding 2.5 g/kg betaine to feed significantly increased the content of TCHOL and betaine in goose eggs.
Collapse
Affiliation(s)
- Z Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - C Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - S Ma
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - R Q Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| | - Z Y Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, P. R. China
| |
Collapse
|
34
|
Ilyas A, Wijayasinghe YS, Khan I, El Samaloty NM, Adnan M, Dar TA, Poddar NK, Singh LR, Sharma H, Khan S. Implications of trimethylamine N-oxide (TMAO) and Betaine in Human Health: Beyond Being Osmoprotective Compounds. Front Mol Biosci 2022; 9:964624. [PMID: 36310589 PMCID: PMC9601739 DOI: 10.3389/fmolb.2022.964624] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Osmolytes are naturally occurring small molecular weight organic molecules, which are accumulated in large amounts in all life forms to maintain the stability of cellular proteins and hence preserve their functions during adverse environmental conditions. Trimethylamine N-oxide (TMAO) and N,N,N-trimethylglycine (betaine) are methylamine osmolytes that have been extensively studied for their diverse roles in humans and have demonstrated opposing relations with human health. These osmolytes are obtained from food and synthesized endogenously using dietary constituents like choline and carnitine. Especially, gut microbiota plays a vital role in TMAO synthesis and contributes significantly to plasma TMAO levels. The elevated plasma TMAO has been reported to be correlated with the pathogenesis of numerous human diseases, including cardiovascular disease, heart failure, kidney diseases, metabolic syndrome, etc.; Hence, TMAO has been recognized as a novel biomarker for the detection/prediction of several human diseases. In contrast, betaine acts as a methyl donor in one-carbon metabolism, maintains cellular S-adenosylmethionine levels, and protects the cells from the harmful effects of increased plasma homocysteine. Betaine also demonstrates antioxidant and anti-inflammatory activities and has a promising therapeutic value in several human diseases, including homocystinuria and fatty liver disease. The present review examines the multifarious functions of TMAO and betaine with possible molecular mechanisms towards a better understanding of their emerging and diverging functions with probable implications in the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Yasanandana Supunsiri Wijayasinghe
- Department of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka,*Correspondence: Yasanandana Supunsiri Wijayasinghe, , Nitesh Kumar Poddar, , , Shahanavaj Khan,
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Nourhan M. El Samaloty
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India,*Correspondence: Yasanandana Supunsiri Wijayasinghe, , Nitesh Kumar Poddar, , , Shahanavaj Khan,
| | - Laishram R. Singh
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Hemlata Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Shahanavaj Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Saharanpur, Uttar Pradesh, India,*Correspondence: Yasanandana Supunsiri Wijayasinghe, , Nitesh Kumar Poddar, , , Shahanavaj Khan,
| |
Collapse
|
35
|
Gebeyew K, Yang C, Mi H, Cheng Y, Zhang T, Hu F, Yan Q, He Z, Tang S, Tan Z. Lipid metabolism and m 6A RNA methylation are altered in lambs supplemented rumen-protected methionine and lysine in a low-protein diet. J Anim Sci Biotechnol 2022; 13:85. [PMID: 35821163 PMCID: PMC9277831 DOI: 10.1186/s40104-022-00733-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/15/2022] [Indexed: 01/19/2023] Open
Abstract
Background Methionine or lysine has been reported to influence DNA methylation and fat metabolism, but their combined effects in N6-methyl-adenosine (m6A) RNA methylation remain unclarified. The combined effects of rumen-protected methionine and lysine (RML) in a low-protein (LP) diet on lipid metabolism, m6A RNA methylation, and fatty acid (FA) profiles in the liver and muscle of lambs were investigated. Sixty-three male lambs were divided into three treatment groups, three pens per group and seven lambs per pen. The lambs were fed a 14.5% crude protein (CP) diet (adequate protein [NP]), 12.5% CP diet (LP), and a LP diet plus RML (LP + RML) for 60 d. Results The results showed that the addition of RML in a LP diet tended to lower the concentrations of plasma leptin (P = 0.07), triglyceride (P = 0.05), and non-esterified FA (P = 0.08). Feeding a LP diet increased the enzyme activity or mRNA expression of lipogenic enzymes and decreased lipolytic enzymes compared with the NP diet. This effect was reversed by supplementation of RML with a LP diet. The inclusion of RML in a LP diet affected the polyunsaturated fatty acids (PUFA), n-3 PUFA, and n-6 PUFA in the liver but not in the muscle, which might be linked with altered expression of FA desaturase-1 (FADS1) and acetyl-CoA carboxylase (ACC). A LP diet supplemented with RML increased (P < 0.05) total m6A levels in the liver and muscle and were accompanied by decreased expression of fat mass and obesity-associated protein (FTO) and alkB homologue 5 (ALKBH5). The mRNA expressions of methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14) in the LP + RML diet group were lower than those in the other two groups. Supplementation of RML with a LP diet affected only liver YTH domain family (YTHDF2) proteins (P < 0.05) and muscle YTHDF3 (P = 0.09), which can be explained by limited m6A-binding proteins that were mediated in mRNA fate. Conclusions Our findings showed that the inclusion of RML in a LP diet could alter fat deposition through modulations of lipogenesis and lipolysis in the liver and muscle. These changes in fat metabolism may be associated with the modification of m6A RNA methylation. Graphical abstract A systematic graph illustrates the mechanism of dietary methionine and lysine influence on lipid metabolism and M6A. The green arrow with triangular heads indicates as activation and brown-wine arrows with flat heads indicates as suppression.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00733-z.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Hui Mi
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Tianxi Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Fan Hu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| | - Shaoxun Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China. .,University of Chinese Academy of Science, Beijing, 100049, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.,University of Chinese Academy of Science, Beijing, 100049, China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| |
Collapse
|
36
|
The Role of Betaine in Patients With Chronic Kidney Disease: a Narrative Review. Curr Nutr Rep 2022; 11:395-406. [PMID: 35792998 DOI: 10.1007/s13668-022-00426-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW This narrative review aimed to explore the functions of betaine and discuss its role in patients with chronic kidney disease (CKD). RECENT FINDINGS Some studies on CKD animal models have shown the benefits of betaine supplementation, including decreased kidney damage, antioxidant recovery status, and decreased inflammation. Betaine (N-trimethylglycine) is an N-trimethylated amino acid with an essential regulatory osmotic function. Moreover, it is a methyl donor and has anti-inflammatory and antioxidant properties. Additionally, betaine has positive effects on intestinal health by regulating the osmolality and gut microbiota. Due to these crucial functions, betaine has been studied in several diseases, including CKD, in which betaine plasma levels decline with the progression of the disease. Low betaine levels are linked to increased kidney damage, inflammation, oxidative stress, and intestinal dysbiosis. Furthermore, betaine is considered an essential metabolite for identifying CKD stages.
Collapse
|
37
|
Alonso-Bernáldez M, Asensio A, Palou-March A, Sánchez J, Palou A, Serra F, Palou M. Breast Milk MicroRNAs Related to Leptin and Adiponectin Function Can Be Modulated by Maternal Diet and Influence Offspring Phenotype in Rats. Int J Mol Sci 2022; 23:ijms23137237. [PMID: 35806240 PMCID: PMC9266562 DOI: 10.3390/ijms23137237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
There is evidence of the role of milk components in the metabolic programming of offspring. Here, we aimed to investigate the effects of a diet during lactation on breast milk leptin, adiponectin, and related miRNAs’ expression, and their impact on dams and their offspring. Dams were fed a control diet (controls) or a diet enriched with oleic acid, betaine, and leucine (TX) throughout lactation. A TX diet promoted higher leptin at lactation day (LD) five and lower adiponectin on LD15 (vs. controls) in milk, resulting in increased leptin to adiponectin (L/A) ratio throughout lactation. Moreover, TX diet reduced milk levels of miR-27a, miR-103, miR-200a, and miR-222. Concerning TX offspring, higher body fat was early observed and maintained into adult life, accompanied by higher HOMA-IR than controls at three months of age. Offspring body fat content in adulthood correlated positively with milk L/A ratio at LD15 and negatively with miRNAs modulated by the TX diet. In conclusion, maternal diet during lactation can modulate leptin and adiponectin interplay with miRNAs in milk, setting up the metabolic programming of the offspring. Better knowledge about the influence of diet on this process is necessary to promote a healthy adult life in the progeny.
Collapse
Affiliation(s)
- Marta Alonso-Bernáldez
- Alimentómica S.L. (Spin off no. 001 from UIB), Parc Bit, 07122 Palma de Mallorca, Spain; (M.A.-B.); (A.A.); (A.P.-M.); (M.P.)
| | - Antoni Asensio
- Alimentómica S.L. (Spin off no. 001 from UIB), Parc Bit, 07122 Palma de Mallorca, Spain; (M.A.-B.); (A.A.); (A.P.-M.); (M.P.)
| | - Andreu Palou-March
- Alimentómica S.L. (Spin off no. 001 from UIB), Parc Bit, 07122 Palma de Mallorca, Spain; (M.A.-B.); (A.A.); (A.P.-M.); (M.P.)
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation Group), University of the Balearic Islands, 07121 Palma de Mallorca, Spain; (J.S.); (A.P.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Juana Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation Group), University of the Balearic Islands, 07121 Palma de Mallorca, Spain; (J.S.); (A.P.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation Group), University of the Balearic Islands, 07121 Palma de Mallorca, Spain; (J.S.); (A.P.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francisca Serra
- Alimentómica S.L. (Spin off no. 001 from UIB), Parc Bit, 07122 Palma de Mallorca, Spain; (M.A.-B.); (A.A.); (A.P.-M.); (M.P.)
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation Group), University of the Balearic Islands, 07121 Palma de Mallorca, Spain; (J.S.); (A.P.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence:
| | - Mariona Palou
- Alimentómica S.L. (Spin off no. 001 from UIB), Parc Bit, 07122 Palma de Mallorca, Spain; (M.A.-B.); (A.A.); (A.P.-M.); (M.P.)
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation Group), University of the Balearic Islands, 07121 Palma de Mallorca, Spain; (J.S.); (A.P.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
38
|
Xia Z, Kong F, Wang K, Zhang X. Role of N6-Methyladenosine Methylation Regulators in the Drug Therapy of Digestive System Tumours. Front Pharmacol 2022; 13:908079. [PMID: 35754499 PMCID: PMC9218687 DOI: 10.3389/fphar.2022.908079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Digestive system tumours, including stomach, colon, esophagus, liver and pancreatic tumours, are serious diseases affecting human health. Although surgical treatment and postoperative chemoradiotherapy effectively improve patient survival, current diagnostic and therapeutic strategies for digestive system tumours lack sensitivity and specificity. Moreover, the tumour's tolerance to drug therapy is enhanced owing to tumour cell heterogeneity. Thus, primary or acquired treatment resistance is currently the main hindrance to chemotherapy efficiency. N6-methyladenosine (m6A) has various biological functions in RNA modification. m6A modification, a key regulator of transcription expression, regulates RNA metabolism and biological processes through the interaction of m6A methyltransferase ("writers") and demethylase ("erasers") with the binding protein decoding m6A methylation ("readers"). Additionally, m6A modification regulates the occurrence and development of tumours and is a potential driving factor of tumour drug resistance. This review systematically summarises the regulatory mechanisms of m6A modification in the drug therapy of digestive system malignancies. Furthermore, it clarifies the related mechanisms and therapeutic prospects of m6A modification in the resistence of digestive system malignancies to drug therapy.
Collapse
Affiliation(s)
- Zhelin Xia
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Fanhua Kong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, China
| | - Kunpeng Wang
- Department of General Surgery Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, China
| | - Xin Zhang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
39
|
Betaine Promotes Fat Accumulation and Reduces Injury in Landes Goose Hepatocytes by Regulating Multiple Lipid Metabolism Pathways. Animals (Basel) 2022; 12:ani12121530. [PMID: 35739867 PMCID: PMC9219492 DOI: 10.3390/ani12121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Betaine is a well-established supplement used in livestock feeding. In our previous study, betaine was shown to result in the redistribution of body fat, a healthier steatosis phenotype, and an increased liver weight and triglyceride storage of the Landes goose liver, which is used for foie-gras production. However, these effects are not found in other species and strains, and the underlying mechanism is unclear. Here, we studied the underpinning molecular mechanisms by developing an in vitro fatty liver cell model using primary Landes goose hepatocytes and a high-glucose culture medium. Oil red-O staining, a mitochondrial membrane potential assay, and a qRT-PCR were used to quantify lipid droplet characteristics, mitochondrial β-oxidation, and fatty acid metabolism-related gene expression, respectively. Our in vitro model successfully simulated steatosis caused by overfeeding. Betaine supplementation resulted in small, well-distributed lipid droplets, consistent with previous experiments in vivo. In addition, mitochondrial membrane potential was restored, and gene expression of fatty acid synthesis genes (e.g., sterol regulatory-element binding protein, diacylglycerol acyltransferase 1 and 2) was lower after betaine supplementation. By contrast, the expression of lipid hydrolysis transfer genes (mitochondrial transfer protein and lipoprotein lipase) was higher. Overall, the results provide a scientific basis and theoretical support for the use of betaine in animal production.
Collapse
|
40
|
Zhang Z, Luo Z, Yu L, Xiao Y, Liu S, ALuo Z, Ma Z, Huang L, Xiao L, Jia M, Song Z, Zhang H, Li Y, Zhou L. Ruthenium 360 and mitoxantrone inhibit mitochondrial calcium uniporter channel to prevent liver steatosis induced by high-fat diet. Br J Pharmacol 2022; 179:2678-2696. [PMID: 34862596 DOI: 10.1111/bph.15767] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic fatty liver disease (NAFLD) affects over 25% of the general population and lacks an effective treatment. Recent evidence implicates disrupted mitochondrial calcium homeostasis in the pathogenesis of hepatic steatosis. EXPERIMENTAL APPROACH In this study, mitochondrial calcium uniporter (MCU) was inhibited through classical genetic approaches, viral vectors or small molecule inhibitors in vivo to study its role in hepatic steatosis induced by high-fat diet (HFD). In vitro, MCU was overexpressed or inhibited to change mitochondrial calcium homeostasis, endoplasmic reticulum-mitochondrial linker was adopted to increase mitochondria-associated membranes (MAMs) and MICU1-EF hand mutant was used to decrease the sensitivity of mitochondrial calcium uptake 1 (MICU1) to calcium and block MCU channel. KEY RESULTS Here, we found that inhibition of liver MCU by AAV virus and classical genetic approaches can prevent HFD-induced liver steatosis. MCU regulates mitochondrial calcium homeostasis and affects lipid accumulation in liver cells. In addition, a HFD in mice enlarged the MAM. The high-calcium environment produced by MAM invalidated the function of MICU1 and led to persistent open of MCU channels. Therefore, it caused mitochondrial calcium overload and liver fat deposition. Inhibition of MAM and MCU alleviated HFD-induced hepatic steatosis. MCU inhibitors (Ru360 and mitoxantrone) can block MCU channels and reduce mitochondrial calcium levels. Intraperitoneal injection of MCU inhibitors (0.01-μM·kg-1 bodyweight) can alleviate HFD-induced hepatic steatosis. CONCLUSION AND IMPLICATIONS These findings provide molecular insights into the way HFD disrupts mitochondrial calcium homeostasis and identify MCU as a promising drug target for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zupeng Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yang Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhier ALuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zeqiang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Liang Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lianggui Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengting Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Haojie Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
41
|
El Okle OS, Tohamy HG, Althobaiti SA, Soliman MM, Ghamry HI, Farrag F, Shukry M. Ornipural® Mitigates Malathion-Induced Hepato-Renal Damage in Rats via Amelioration of Oxidative Stress Biomarkers, Restoration of Antioxidant Activity, and Attenuation of Inflammatory Response. Antioxidants (Basel) 2022; 11:antiox11040757. [PMID: 35453442 PMCID: PMC9031224 DOI: 10.3390/antiox11040757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
The current study was instigated by investigating the ameliorative potential of Ornipural® solution against the hepato-renal toxicity of malathion. A total number of 35 male Wistar albino rats were divided equally into five groups. Group 1 served as control and received normal saline intraperitoneally. Group 2, the sham group, were administered only corn oil (vehicle of malathion) orally. Group 3 was orally intoxicated by malathion in corn oil at a dose of 135 mg/kg BW via intra-gastric gavage. Group 4 received malathion orally concomitantly with Ornipural® intraperitoneally. Group 5 was given Ornipural® solution in saline via intraperitoneal injection at a dose of (1 mL/kg BW). Animals received the treatment regime for 30 days. Histopathological examination revealed the harmful effect of malathion on hepatic and renal tissue. The results showed that malathion induced a significant decrease in body weight and marked elevation in the activity of liver enzymes, LDH, and ACP. In contrast, the activity of AchE and Paraoxonase was markedly decreased. Moreover, there was a significant increase in the serum content of bilirubin, cholesterol, and kidney injury markers. A significant elevation in malondialdehyde, nitric oxide (nitrite), and 8-hydroxy-2-deoxyguanosine was observed, along with a substantial reduction in antioxidant activity. Furthermore, malathion increased tumor necrosis factor-alpha, the upregulation of IL-1B, BAX, and IFN-β genes, and the downregulation of Nrf2, Bcl2, and HO-1 genes. Concurrent administration of Ornipural® with malathion attenuated the detrimental impact of malathion through ameliorating metabolic biomarkers, restoring antioxidant activity, reducing the inflammatory response, and improving pathologic microscopic alterations. It could be concluded that Ornipural® solution demonstrates hepatorenal defensive impacts against malathion toxicity at biochemical, antioxidants, molecular, and cellular levels.
Collapse
Affiliation(s)
- Osama S. El Okle
- Departement of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Hossam G. Tohamy
- Departement of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Saed A. Althobaiti
- Biology Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence:
| |
Collapse
|
42
|
Arazi H, Aboutalebi S, Taati B, Cholewa JM, Candow DG. Effects of short-term betaine supplementation on muscle endurance and indices of endocrine function following acute high-intensity resistance exercise in young athletes. J Int Soc Sports Nutr 2022; 19:1-16. [PMID: 35599921 PMCID: PMC9116406 DOI: 10.1080/15502783.2022.2041988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective This study examined the effects of short-term betaine supplementation on muscle endurance, plasma lactate, testosterone and cortisol levels, and the testosterone to cortisol (T/C) ratio in response to acute resistance exercise (RE). Method Using a double-blind, crossover study design, 10 handball players (age ± SD = 16 ± 1 yrs) without prior-structured RE experience performed a high-intensity RE session (leg press followed by bench press; 5 sets to volitional fatigue using 80% baseline 1 repetition maximum (1RM)), before and after 14 days of either placebo (maltodextrin) or betaine (2.5 g·d−1) supplementation. A 30-day washout period separated each treatment. 48 h prior to testing sessions, participants recorded their food intake and did not perform strenuous exercise. Venous blood was sampled before supplementation, and before and after each RE session. Results After betaine supplementation, participants performed more repetitions (p < 0.001) during the leg press (Betaine: 35.8 ± 4.3; Placebo: 24.8 ± 3.6, Cohen’s d = 2.77) and bench press (Betaine: 36.3 ± 2.6; Placebo: 26.1 ± 3.5, Cohen’s d = 3.34). Betaine resulted in lower post-exercise cortisol (Betaine: 7.6 ± 1.7; Placebo: 13 ± 3.4 µg.dL−1, p = 0.003, generalized eta squared (ηG2) = 0.49) and lactate (Betaine: 5.2 ± 0.3; Placebo: 6 ± 0.3 mmol.L−1, p < 0.001, ηG2 = 0.96) and higher total testosterone (Betaine: 15.2 ± 2.2; Placebo: 8.7 ± 1.7 ng.mL−1, p < 0.001, ηG2 = 0.87) and T/C ratio (Betaine: 0.21 ± 0.05; Placebo: 0.07 ± 0.02, p < 0.001, = 0.82). Conclusions Two weeks of betaine supplementation improved upper- and lower-body muscle endurance and influenced indices of endocrine function following an acute session of high-intensity RE in adolescent handball players.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht Iran
| | - Shima Aboutalebi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht Iran
| | - Behzad Taati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht Iran
| | - Jason M. Cholewa
- Department of Exercise Physiology, College of Health Sciences, University of Lynchburg, Lynchburg, VA USA
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
43
|
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 2022; 21:52. [PMID: 35164788 PMCID: PMC8842557 DOI: 10.1186/s12943-022-01510-2] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progression and prognosis of cancer, and aberrant m6A regulators have been identified as novel anticancer drug targets. Both traditional medicine-related approaches and modern drug discovery platforms have been used in an attempt to develop m6A-targeted drugs. Here, we provide an update of the latest findings on m6A modification and the critical roles of m6A modification in cancer progression, and we summarize rational sources for the discovery of m6A-targeted anticancer agents from traditional medicines and computer-based chemosynthetic compounds. This review highlights the potential agents targeting m6A modification for cancer treatment and proposes the advantage of artificial intelligence (AI) in the discovery of m6A-targeting anticancer drugs. Three stages of m6A-targeting anticancer drug discovery: traditional medicine-based natural products, modern chemical modification or synthesis, and artificial intelligence (AI)-assisted approaches for the future.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wei-Qing Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shu-Ran Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Min-Feng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Yu Lyu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, USA
| | - Jia-Xu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
44
|
Targeting N6-methyladenosine RNA modification combined with immune checkpoint Inhibitors: A new approach for cancer therapy. Comput Struct Biotechnol J 2022; 20:5150-5161. [PMID: 36187919 PMCID: PMC9508382 DOI: 10.1016/j.csbj.2022.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
|
45
|
Association of m.5178C>A variant with serum lipid levels: a systematic review and meta-analysis. Biosci Rep 2021; 41:230366. [PMID: 34859818 PMCID: PMC8685646 DOI: 10.1042/bsr20212246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Emerging evidence shows that m.5178C>A variant is associated with a lower risk of coronary artery disease (CAD). However, the specific mechanisms remain elusive. Since dyslipidemia is one of the most critical risk factors for CAD and accounts for at least 50% of the population-attributable risk, it is tempting to speculate that the reduced CAD risk caused by the m.5178C>A variant may stem from an improved lipid profile. In order to verify this hypothesis, we conducted the present study to clarify the association of m.5178C>A variant with lipid levels. Methods: By searching ten databases for studies published before 30 June 2021. Thirteen East Asian populations (7587 individuals) were included for the analysis. Results: The present study showed that m.5178C>A variant was associated with higher high-density lipoprotein cholesterol (HDL-C) [standardized mean difference (SMD) = 0.12, 95% confidence interval (CI) = 0.06–0.17, P<0.001] and total cholesterol (TC) (SMD = 0.08, 95% CI = 0.02–0.14, P=0.01) levels. In subgroup analysis, the association of m.5178C>A variant with higher HDL-C levels were observed in Japanese (SMD = 0.09, 95% CI = 0.01–0.17, P=0.03) and Chinese populations (SMD = 0.13, 95% CI = 0.07–0.20, P<0.001). However, the association of m.5178C>A variant with lower low-density lipoprotein cholesterol (LDL-C) levels were only observed in Japanese populations (SMD = −0.11, 95% CI = −0.22 to 0.00, P=0.04). Conclusions: The m.5178C>A variant was associated with higher HDL-C and lower LDL-C levels in Japanese populations, which may contribute to decreased CAD risk and longevity of Japanese.
Collapse
|
46
|
Wang C, Ma C, Gong L, Dai S, Li Y. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms. Eur J Pharmacol 2021; 912:174604. [PMID: 34743980 DOI: 10.1016/j.ejphar.2021.174604] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Betaine is a kind of water-soluble quaternary amine-type alkaloid widely existing in food, such as wheat germ, beet, spinach, shrimp and wolfberry. As an important methyl donor and osmotic pressure regulator in human body, betaine plays an important role in a variety of physiological activities. In recent years, a large number of literatures have shown that betaine has good preventive and therapeutic effects on many liver diseases, including chemical or drug-induced liver injury, nonalcoholic fatty liver disease, alcoholic fatty liver disease, liver fibrosis, hepatitis B and hepatitis C. Therefore, by searching the databases of Web of Science, PubMed, SciFinder and CNKI, this paper has summarized the molecular mechanisms of betaine in improving liver diseases. The results show that the improvement of liver diseases by betaine is closely related to a variety of molecular mechanisms, including inhibition of inflammatory response, improvement of insulin resistance, reduction of endoplasmic reticulum stress, alleviation of liver oxidative stress, increase of autophagy, remodeling of intestinal flora and regulation of epigenetic modification. More importantly, nuclear transcription factor kappa (NF-κB), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α/γ (PPAR-α/γ), liver X receptor α (LXRα), protein kinase B (Akt), toll-like receptor 4 (TLR4) and cysteinyl aspartate specific proteinase-3 (Caspase-3) signaling pathways are considered as important molecular targets for betaine to improve liver diseases. These important findings will provide a direction and basis for further exploring the pathogenesis of various liver diseases and tapping the potential of betaine in the clinical treatment.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
47
|
Rehman A, Mehta KJ. Betaine in ameliorating alcohol-induced hepatic steatosis. Eur J Nutr 2021; 61:1167-1176. [PMID: 34817678 PMCID: PMC8921017 DOI: 10.1007/s00394-021-02738-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023]
Abstract
Alcohol-associated liver disease (AALD) is one of most common chronic liver diseases. Hepatic steatosis is the earliest stage in AALD pathological spectrum, reversible by alcohol abstinence. Untreated steatosis can progress to steatohepatitis, fibrosis and/or cirrhosis. Considering the difficulties in achieving complete abstinence, challenges in disease reversal at advanced stages, high costs of AALD management and lack of standardised prescribed medications for treatment, it is essential to explore low-cost natural compounds that can target AALD at an early stage and halt or decelerate disease progression. Betaine is a non-hazardous naturally occurring nutrient. Here, we address the mechanisms of alcohol-induced hepatic steatosis, the role of betaine in reversing the effects i.e., its action against hepatic steatosis in animal models and humans, and the associated cellular and molecular processes. Accordingly, the review discusses how betaine restores the alcohol-induced reduction in methylation potential by elevating the levels of S-adenosylmethionine and methionine. It details how betaine reinstates alcohol-induced alterations in the expressions and/or activities of protein phosphtase-2A, FOXO1, PPAR-α, AMPK, SREBP-1c, fatty acid synthase, diacylglycerol transferase-2, adiponectin and nitric oxide. Interrelationships between these factors in preventing de novo lipogenesis, reducing hepatic uptake of adipose-tissue-derived free fatty acids, promoting VLDL synthesis and secretion, and restoring β-oxidation of fatty acids to attenuate hepatic triglyceride accumulation are elaborated. Despite its therapeutic potential, very few clinical trials have examined betaine’s effect on alcohol-induced hepatic lipid accumulation. This review will provide further confidence to conduct randomised control trials to enable maximum utilisation of betaine’s remedial properties to treat alcohol-induced hepatic steatosis.
Collapse
Affiliation(s)
- Aisha Rehman
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
48
|
Yao H, Hu Y, Wang Q, Zhang Y, Rao K, Shi S. Effects of dietary dimethylglycine supplementation on laying performance, egg quality, and tissue index of hens during late laying period. Poult Sci 2021; 101:101610. [PMID: 34936951 PMCID: PMC8704446 DOI: 10.1016/j.psj.2021.101610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, the effects of 5 graded dietary levels (0.025, 0.05, 0.075, 0.1, and 0.125%) of dimethylglycine (DMG) were studied in laying hens during the late laying period (71–78 wk). Graded doses of DMG from 0.025 to 0.125% in the diet produced quadratic positive (P < 0.05) responses in the laying rate, egg-feed ratio, yolk color, grade follicular weight, and the number of large white follicles and linear positive (P < 0.05) responses in average egg weight, and the number of large white follicles. With 0.1% DMG, the laying rate and egg-feed ratio improved (P < 0.05), and the abdominal fat percentage decreased. Considering the laying performance under the conditions used in this study, the best-fit model for the DMG requirements of laying hens was estimated to range from 0.049 to 0.065% DMG during the late laying period based on a regression analysis. The addition of DMG did not affect the total cholesterol (TCH) and triglyceride (TG) contents in the plasma of laying hens; however, it significantly reduced the abdominal fat rate. DMG may change the course of lipid deposition in laying hens during the late laying period. In conclusion, supplementation with DMG can improve the laying rate and follicles development of laying hens.
Collapse
Affiliation(s)
- Hong Yao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China; College of Animal Husbandry and Veterinary, Southwest Minzu University, Chengdu, 610041, China
| | - Yan Hu
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Wang
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China
| | - Yijian Zhang
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China
| | - Kaiqing Rao
- College of Animal Husbandry and Veterinary, Southwest Minzu University, Chengdu, 610041, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
49
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: Insights into disease and dysfunction networks. Life Sci 2021; 285:119943. [PMID: 34516992 DOI: 10.1016/j.lfs.2021.119943] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
50
|
Huang T, Yu J, Luo Z, Yu L, Liu S, Wang P, Jia M, Wu T, Miao W, Zhou L, Song Z, Zhang H, Li Y. Translatome analysis reveals the regulatory role of betaine in high fat diet (HFD)-induced hepatic steatosis. Biochem Biophys Res Commun 2021; 575:20-27. [PMID: 34454176 DOI: 10.1016/j.bbrc.2021.08.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/23/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common disease with a multitude of complications. Increasing evidence shows that the dietary supplement with betaine, a natural chemical molecule, can effectively reduce the fat accumulation in the liver. Translational regulation is considered to play a vital role in gene expression, but whether betaine functions through the regulation of gene translational level is still unclear. To this end, RNC-seq (mRNAs bound to ribosome-nascent chain complex sequencing) and RNA-seq co-analyses were performed to identify betaine target genes by using the liver samples from high-fat diet adding betaine treated and high-fat diet treated mice. The results showed that betaine does play a lipid-lowering role by regulating the expression of gene translation levels; some NAFLD- and lipid metabolism-associated genes were differentially expressed at translational level, for example. And the translation ratio (TR) of gene significantly increased after betaine treatment. Finally, we identified a novel function gene, Gpc1, which may mediate the lipid-lowering effect of betaine in the liver. To sum up, this study depicted the molecular portrait of mice liver with or without betaine treatment from the angel of translatome and transcriptome, giving insights into the molecular mechanism of betaine-mediated lipid-lowering effect and also providing new clues for understanding and prevention of NAFLD.
Collapse
Affiliation(s)
- Tengda Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Jingsu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Zupeng Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Lin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Peng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Mengting Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Tian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Weiwei Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Haojie Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|