1
|
da Cunha IV, da Silva Oliveira DD, Calefi GG, Silva NBS, Martins CHG, Rezende Júnior CDO, Tsubone TM. Photosensitizer associated with efflux pump inhibitors as a strategy for photodynamic therapy against bacterial resistance. Eur J Med Chem 2025; 284:117197. [PMID: 39731789 DOI: 10.1016/j.ejmech.2024.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024]
Abstract
Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments. However, some efflux pumps can expel diverse substrates from inside the cell, including photosensitizers used in aPDT, contributing to multidrug-resistance mechanisms. Efflux Pump Inhibitors are potential solutions to combat resistance mediated by these pumps and can play a crucial role in enhancing aPDT's effectiveness against multidrug-resistant bacteria. Therefore, combining efflux pumps inhibitors with photosensitizers can possible to eliminate the pathogen more efficiently. This review summarizes the mechanisms in which bacteria resist conventional antibiotic treatment, with a particular emphasis on efflux pump-mediated resistance, and present aPDT as a promising strategy to combat antibiotic resistance. Additionally, we highlighted several molecules of photosensitizer associated with efflux pump inhibitors as potential strategies to optimize aPDT, aiming to offer a perspective on future research directions on aPDT for overcoming the limitations of antibiotic resistance.
Collapse
Affiliation(s)
- Ieda Vieira da Cunha
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Gabriel Guimarães Calefi
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | | | | | - Tayana Mazin Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Shleeva MO, Demina GR, Savitsky AP. A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections. Adv Drug Deliv Rev 2024; 215:115472. [PMID: 39549920 DOI: 10.1016/j.addr.2024.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Seku K, Bhagavanth Reddy G, Osman AI, Hussaini SS, Kumar NS, Al-Abri M, Pejjai B, Alreshaidan SB, Al-Fatesh AS, Kadimpati KK. Modified frankincense resin stabilized gold nanoparticles for enhanced antioxidant and synergetic activity in in-vitro anticancer studies. Int J Biol Macromol 2024; 278:134935. [PMID: 39179088 DOI: 10.1016/j.ijbiomac.2024.134935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
For the first time, Frankincense resin (FR) has been carboxymethylated to produce CMFR - AuNPs and the conjugate was utilized for the Doxorubicin drug loading. The carboxymethylation of the carboxylic, phenolic, and hydroxyl functional groups of FR has been developed into carboxymethylated Frankincense resin (CMFR). A novel CMFR-AuNPs was synthesized using the developed CMFR as a stabilizing and reducing agent. The antibacterial, antioxidant, and in-vitro anticancer activities were investigated by using CMFR-AuNPs and CMFR - AuNPs@DOX. CMFR-AuNPs demonstrated antioxidative properties by quenching DPPH radicals effectively. CMFR-AuNPs and DOX@CMFR-AuNPs demonstrated strong antibacterial activity against K. pneumoniae, S. aureus, B. subtilis, and E. coli. The cell viability was tested for CMFR -AuNPs at various concentrations of Dox-loaded CMFR -AuNPs (CMFR-AuNPs + Dox1, CMFR-AuNPs + Dox 2, & CMFR-AuNPs + Dox 3). The highest inhibition was observed on MCF-7 and HeLa cell lines using CMFR-AuNPs + Dox 3, respectively. Various techniques such as UV, FTIR, TGA, XRD, SEM, EDAX and TEM were used to characterize the designed CMFR and CMFR-AuNPs. After carboxy methylation, the amorphous nature of FR changed to crystallinity, as reflected in the XRD spectra. The XRD spectrum of the CMFR- AuNPs showed FCC structure due to the involvement of hydroxyl and carboxylic functional groups of CMFR strongly bound with the AuNPs. TGA results revealed that the CMFR is thermally more stable than FR. TEM revealed that CMFR - AuNPs were well dispersed, spherical, and hexagonal with an average diameter of 7 to 10 nm, while the size of doxorubicin loaded (DOX@CMFR-AuNPs) AuNPs was 11 to 13 nm. Green CMFR-AuNPs have the potential to enhance the drug loading and anticancer efficacy of drugs.
Collapse
Affiliation(s)
- Kondaiah Seku
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences -, Shinas, Sultanate of Oman.
| | - G Bhagavanth Reddy
- Department of Chemistry, Palamuru University PG Center, Wanaparthy, Telangana State, India
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom of Great Britain and Northern Ireland.
| | - Syed Sulaiman Hussaini
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences -, Shinas, Sultanate of Oman
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Muscat, Oman; Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Babu Pejjai
- Department of Physics, Sri Venkateshwara College of Engineering, Karakambadi Road, Tirupati 517507, India
| | - Salwa B Alreshaidan
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 800, Riyadh 11451, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Power and Environmental Engineering, Akademicka 2, Silesian University of Technology, 44 - 100 Gliwice, Poland.
| |
Collapse
|
4
|
Zheng MZ, Chen WX, Zhao YX, Fang Q, Wang LG, Tian SY, Shi YG, Chen JS. Ascorbic acid potentiates photodynamic inactivation mediated by octyl gallate and blue light for rapid eradication of planktonic bacteria and biofilms. Food Chem 2024; 448:139073. [PMID: 38574713 DOI: 10.1016/j.foodchem.2024.139073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.
Collapse
Affiliation(s)
- Mei-Zhi Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Wen-Xuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yue-Xin Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Qiang Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ling-Gang Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Shi-Yi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Yu-Gang Shi
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China; Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| | - Jian-She Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| |
Collapse
|
5
|
Usman O, Mohsin Baig MM, Ikram M, Iqbal T, Islam S, Syed W, Al-Rawi MBA, Naseem M. Green synthesis of metal nanoparticles and study their anti-pathogenic properties against pathogens effect on plants and animals. Sci Rep 2024; 14:11354. [PMID: 38762576 PMCID: PMC11102555 DOI: 10.1038/s41598-024-61920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
According to an estimate, 30% to 40%, of global fruit are wasted, leading to post harvest losses and contributing to economic losses ranging from $10 to $100 billion worldwide. Among, all fruits the discarded portion of oranges is around 20%. A novel and value addition approach to utilize the orange peels is in nanoscience. In the present study, a synthesis approach was conducted to prepare the metallic nanoparticles (copper and silver); by utilizing food waste (Citrus plant peels) as bioactive reductants. In addition, the Citrus sinensis extracts showed the reducing activity against metallic salts copper chloride and silver nitrate to form Cu-NPs (copper nanoparticles) and Ag-NPs (Silver nanoparticles). The in vitro potential of both types of prepared nanoparticles was examined against plant pathogenic bacteria Erwinia carotovora (Pectobacterium carotovorum) and pathogens effect on human health Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Moreover, the in vivo antagonistic potential of both types of prepared nanoparticles was examined by their interaction with against plant (potato slices). Furthermore, additional antipathogenic (antiviral and antifungal) properties were also examined. The statistical analysis was done to explain the level of significance and antipathogenic effectiveness among synthesized Ag-NPs and Cu-NPs. The surface morphology, elemental description and size of particles were analyzed by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy and zeta sizer (in addition polydispersity index and zeta potential). The justification for the preparation of particles was done by UV-Vis Spectroscopy (excitation peaks at 339 nm for copper and 415 nm for silver) and crystalline nature was observed by X-ray diffraction. Hence, the prepared particles are quite effective against soft rot pathogens in plants and can also be used effectively in some other multifunctional applications such as bioactive sport wear, surgical gowns, bioactive bandages and wrist or knee compression bandages, etc.
Collapse
Affiliation(s)
- Osama Usman
- Department of Physics, University of Lahore, Lahore, Pakistan
| | | | - Mujtaba Ikram
- Institute of Chemical Engineering and Technology (ICET), University of Punjab, Lahore, Pakistan
| | - Tehreem Iqbal
- Department of Physics, University of Lahore, Lahore, Pakistan
| | - Saharin Islam
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Wajid Syed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mahmood Basil A Al-Rawi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Misbah Naseem
- Department Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Asaftei M, Lucidi M, Cirtoaje C, Holban AM, Charitidis CA, Yang F, Wu A, Stanciu GA, Sağlam Ö, Lazar V, Visca P, Stanciu SG. Fighting bacterial pathogens with carbon nanotubes: focused review of recent progress. RSC Adv 2023; 13:19682-19694. [PMID: 37396836 PMCID: PMC10308885 DOI: 10.1039/d3ra01745a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
The fast and global spread of bacterial resistance to currently available antibiotics results in a great and urgent need for alternative antibacterial agents and therapeutic strategies. Recent studies on the application of nanomaterials as antimicrobial agents have demonstrated their potential for the management of infectious diseases. Among the diverse palette of nanomaterials currently used in biomedical applications, carbon nanotubes (CNTs) have gained massive interest given their many valuable properties, such as high thermal and electrical conductivity, tensile strength, flexibility convenient aspect ratio, and low fabrication costs. All these features are augmented by facile conjugation with functional groups. CNTs are currently available in many configurations, with two main categories being single-walled and multi-walled CNTs, depending on the number of rolled-up single-layer carbon atoms sheets making up the nanostructure. Both classes have been identified over the past years as promising antibacterial agents but the current level of understanding of their efficiency still harbors many pending questions. This mini-review surveys recent progress on the topic of antibacterial effects of CNTs and examines the proposed mechanisms of action(s) of different CNT typologies, placing the main focus on past studies addressing the antibacterial activity on Staphylococcus aureus and Escherichia coli, two prototypical Gram-positive and Gram-negative pathogens, respectively.
Collapse
Affiliation(s)
- Mihaela Asaftei
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest Romania
- Department of Microbiology, University of Bucharest Romania
| | - Massimiliano Lucidi
- Department of Science, Roma Tre University Rome 00146 Italy
- NBFC, National Biodiversity Future Center Palermo 90133 Italy
| | | | | | - Costas A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens Greece
| | - Fang Yang
- CIXI Institute for Biomedical Engineering, Ningbo Institute for Materials Technology and Engineering, Chinese Academy of Sciences China
| | - Aiguo Wu
- CIXI Institute for Biomedical Engineering, Ningbo Institute for Materials Technology and Engineering, Chinese Academy of Sciences China
| | - George A Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest Romania
| | - Özge Sağlam
- Department of Mechanical Engineering, İzmir University of Economics Turkey
| | - Veronica Lazar
- Department of Microbiology, University of Bucharest Romania
| | - Paolo Visca
- Department of Science, Roma Tre University Rome 00146 Italy
- Santa Lucia Foundation IRCCS Rome 00179 Italy
| | - Stefan G Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest Romania
| |
Collapse
|
7
|
Das G, Patra JK. Evaluation of Antibacterial Mechanism of Action, Tyrosinase Inhibition, and Photocatalytic Degradation Potential of Sericin-Based Gold Nanoparticles. Int J Mol Sci 2023; 24:ijms24119477. [PMID: 37298428 DOI: 10.3390/ijms24119477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In recent times, numerous natural materials have been used for the fabrication of gold nanoparticles (AuNPs). Natural resources used for the synthesis of AuNPs are more environment friendly than chemical resources. Sericin is a silk protein that is discarded during the degumming process for obtaining silk. The current research used sericin silk protein waste materials as the reducing agent for the manufacture of gold nanoparticles (SGNPs) by a one-pot green synthesis method. Further, the antibacterial effect and antibacterial mechanism of action, tyrosinase inhibition, and photocatalytic degradation potential of these SGNPs were evaluated. The SGNPs displayed positive antibacterial activity (8.45-9.58 mm zone of inhibition at 50 μg/disc) against all six tested foodborne pathogenic bacteria, namely, Enterococcus feacium DB01, Staphylococcus aureus ATCC 13565, Listeria monocytogenes ATCC 33090, Escherichia coli O157:H7 ATCC 23514, Aeromonas hydrophila ATCC 7966, and Pseudomonas aeruginosa ATCC 27583. The SGNPs also exhibited promising tyrosinase inhibition potential, with 32.83% inhibition at 100 μg/mL concentration as compared to 52.4% by Kojic acid, taken as a reference standard compound. The SGNPs also displayed significant photocatalytic degradation effects, with 44.87% methylene blue dye degradation after 5 h of incubation. Moreover, the antibacterial mode of action of the SGNPs was also investigated against E. coli and E. feacium, and the results show that due to the small size of the nanomaterials, they could have adhered to the surface of the bacterial pathogens, and could have released more ions and dispersed in the bacterial cell wall surrounding environment, thereby disrupting the cell membrane and ROS production, and subsequently penetrating the bacterial cells, resulting in lysis or damage to the cell by the process of structural damage to the membrane, oxidative stress, and damage to the DNA and bacterial proteins. The overall outcome of the current investigation concludes the positive effects of the obtained SGNPs and their prospective applications as a natural antibacterial agent in cosmetics, environmental, and foodstuff industries, and for the management of environmental contagion.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| |
Collapse
|
8
|
Sri PSBJK, Kumar MP, Padmavathy S. Cd2+ Converted to CdO Using Cosmos sulphureus as Reducing Agent and Evaluation of Optical Property, Morphology and Antimicrobial Activity. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
9
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
10
|
Shajeelammal J, Mohammed S, Asok A, Shukla S. Removal of methylene blue and azo reactive dyes from aqueous solution and textile effluent via modified pulsed low-frequency ultrasound cavitation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29258-29280. [PMID: 36409415 DOI: 10.1007/s11356-022-24204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Organic dyes in the aqueous solutions and textile effluents cause severe environmental pollution due to their carcinogenic and mutagenic nature. Ultrasound (US) cavitation is one of the promising advanced oxidation processes (AOP) to remove the organic dyes from the aqueous solutions and textile effluents. Nevertheless, the conventional low-frequency US cavitation process exhibits very low efficiency in the dye removal process and demands effective modification to improve its performance. In this investigation, a conventional pulsed low-frequency (22 ± 2 kHz) US cavitation process has been modified by varying the US power (50-150 W), initial solution pH (2-10), and O2 flow rate (1-4 L min-1) to enhance the decomposition of cationic methylene blue (MB) dye in an aqueous solution. The operation of the classic Haber-Weiss reaction, both in the forward and backward directions, and the ozone effect have been observed, for the first time, under the modified US cavitation process, as confirmed via the radical trapping experiments. Moreover, the hydrothermally synthesized hydrogen titanate (H2Ti3O7) nanotubes (HTN) have been utilized as sonocatalyst, for the first time, for 100% dye removal, with effective regeneration obtained via an in-situ thermal activation of persulfate (PS, S2O82-). The most optimum values of US power, initial solution pH, O2 flow rate, HTN, and PS concentrations for 100% MB decomposition are observed to be 150 W, 2, 2 L min-1, 0.3 g L-1, and 10 mM, respectively. The decomposition of industrial azo reactive dyes in an aqueous solution as well as in a textile effluent has also been demonstrated using a modified pulsed low-frequency US cavitation process involving the thermal activation of PS without the use of HTN, which justifies its suitability for a commercial application.
Collapse
Affiliation(s)
- Jameelammal Shajeelammal
- Functional Materials Section (FMS), Materials Science and Technology Division (MSTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Industrial Estate P.O, Pappanamcode Thiruvananthapuram, 695019, Kerala, India
| | - Shahansha Mohammed
- Functional Materials Section (FMS), Materials Science and Technology Division (MSTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Industrial Estate P.O, Pappanamcode Thiruvananthapuram, 695019, Kerala, India
| | - Adersh Asok
- Photosciences and Photonics Section, Chemical Sciences and Technology Division (CSTD), CSIR-NIIST, Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Satyajit Shukla
- Functional Materials Section (FMS), Materials Science and Technology Division (MSTD), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Industrial Estate P.O, Pappanamcode Thiruvananthapuram, 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Fabrication, Properties, and Performance of Polymer-Clay Nanocomposites for Organic Dye Removal from Aqueous Media. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/5683415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Methylene blue dye (MB dye) is a harmful contaminant for wastewater streams of industries and is harmful to human and aquatic life. An ecofriendly sugar templating process was used to generate porous bentonite/polydimethylsiloxane (PB) and porous magnetite nanoparticles/bentonite/polydimethylsiloxane (PBNP) composite absorbents to remove MB dye in this study. During the infiltration of PDMS solution into the sugar template in the vacuum chamber, bentonite and magnetite particles were integrated on the surface of the PDMS, and the porous structure was generated during the leaching out of sugar particles in water. The absorbents were characterized using Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The absence of the methyl bond at 2924 cm-1 and phenol bond at 3325 cm-1 in the FTIR spectra of the formed membrane proves that the food grade sugar was completely removed. The SEM images confirm that porosity was achieved as well as uniform mixing of the in the formation of composite. MB dye was effectively removed from wastewater using the as-prepared composite as absorbent. The removal efficiencies of the composite PBNP and PB were ~91% and ~85%, respectively. The experimental data was applied to pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models as well as the Dubinin-Radushkevich, Harkins-Jura, and Elovich models for the adsorption isotherm. The data was found to fit the pseudo-second-order and Elovich models, respectively. The results show that the presence of magnetite nanoparticles improved MB dye removal significantly.
Collapse
|
12
|
Park GH, Lee SY, Lee JB, Chang BS, Lee JK, Um HS. Effect of photodynamic therapy according to differences in photosensitizers on Staphylococcus aureus biofilm on titanium. Photodiagnosis Photodyn Ther 2023; 41:103317. [PMID: 36738904 DOI: 10.1016/j.pdpdt.2023.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aimed to evaluate the antimicrobial effect of photodynamic therapy (PDT) against Staphylococcus aureus biofilm on a titanium surface and to compare the differences in the effect of PDT using toluidine blue O (TBO) and methylene blue (MB) as a photosensitizer. METHODS The bacterial strain S. aureus ATCC 25,923 was used. Sandblasted and acid-etched (SLA) disks were divided into the following six groups: phosphate buffer saline (PBS), TBO, MB, PBS with laser (PBS + L), TBO with laser (TBO + L), and MB with laser (MB + L). The laser group samples were irradiated by a cold diode laser for 60 s. After treatment, the number of surviving bacteria was calculated by counting the colony-forming units (CFUs) and confocal laser scanning microscopy (CLSM) was applied to observe the bacteria on the disk surface. RESULTS The TBO + L and MB + L groups showed significantly lower CFU/ml than the other groups (p < 0.01). The TBO + L group showed significantly lower CFU/ml than the MB + L group (p = 0.032). There was no significant difference between the PBS, TBO, MB, and PBS + L groups. Within the limitations of this in vitro study, PDT with TBO and MB can effectively reduce S. aureus biofilm on SLA titanium surfaces. TBO is more effective than MB as a photosensitizer. PDT with TBO may be applied to the treatment of peri‑implant disease in the future.
Collapse
Affiliation(s)
- Geun Hee Park
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea
| | - Si Young Lee
- Department of Microbiology and Immunology, Gangneung-Wonju National University, Gangneung 25457, South Korea; Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea
| | - Jong-Bin Lee
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea; Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea
| | - Beom-Seok Chang
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea; Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea
| | - Jae-Kwan Lee
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea; Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea.
| | - Heung-Sik Um
- Department of Periodontology, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea; Research Institute of Oral Sciences, Gangneung-Wonju National University College of Dentistry, Gangneung 25457, South Korea.
| |
Collapse
|
13
|
Tayah DY, Eid AM. Development of Miconazole Nitrate Nanoparticles Loaded in Nanoemulgel to Improve its Antifungal Activity. Saudi Pharm J 2023; 31:526-534. [PMID: 37063448 PMCID: PMC10102553 DOI: 10.1016/j.jsps.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Miconazole is a synthetic derivative of imidazole, a medication with a broad-spectrum antifungal agent that is used to treat localized vaginal, skin, and nail infections. The aim of the study was to develop an innovative technique to improve the permeability and efficacy of topical miconazole nitrate. A nanoemulgel of miconazole nitrate was formulated by the incorporation of a nanoemulsion and a hydrogel. The nanoemulsion was first optimized using a self-emulsifying technique, and the drug was then loaded into the optimum formulation and evaluated prior to mixing with the hydrogel. Miconazole nitrate nanoemulgel formulations were evaluated for their physical characteristics and antifungal activity. Based on the results, the formulation with 0.4 % Carbopol showed the highest release profile (41.8 mg/ml after 2 h); thus, it was chosen as the optimum formulation. A cell diffusion test was performed to examine the ability of the Miconazole nitrate nanoemulgel to penetrate the skin and reach the bloodstream. Percentage cumulative drug releases of 29.67 % and 23.79 % after 6 h were achieved for the MNZ nanoemulgel and the commercial cream, Daktazol, respectively. The antifungal activity of the novel MNZ nanoemulgel formulation was tested against Candida albicans and compared to Daktazol cream and almond oil; the results were: 40.9 ± 2.3 mm, 25.4 ± 2.7 mm and 18 ± 1.9 mm, respectively. In conclusion, a novel MNZ nanoemulgel showing superior antifungal activity compared to that of the commercial product has been developed. This nanotechnology technique is a step toward making pharmaceutical dosage forms that has a lot of promise.
Collapse
Affiliation(s)
| | - Ahmad M. Eid
- Corresponding author at: Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| |
Collapse
|
14
|
Soares JCM, Luiz MT, Oshiro Junior JA, Besegato JF, de Melo PBG, Rastelli ANDS, Chorilli M. Antimicrobial photodynamic therapy mediated by methylene blue-loaded polymeric micelles against Streptococcus mutans and Candida albicans biofilms. Photodiagnosis Photodyn Ther 2023; 41:103285. [PMID: 36639007 DOI: 10.1016/j.pdpdt.2023.103285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND Streptococcus mutans and Candida albicans can colonize the teeth, the oral cavity as biofilm and can cause oral infections. Thus, strategies to prevent and control oral biofilms are requested. The present study aims the development and characterization of methylene blue (MB)-loaded polymeric micelles for antimicrobial photodynamic therapy (aPDT) against Streptococcus mutans and Candida albicans biofilms METHODS: MB-loaded polymeric micelles were produced and characterized by particle size, polydispersity index, morphology, zeta potential, stability, MB release profile, and antimicrobial effect against S. mutans and C. albicans biofilms. RESULTS MB-loaded polymeric micelles showed a reduced particle size, moderate polydisperse profile, spherical and neutral shape, which demonstrated to be promising features to allow micelles penetration into biofilms. Antimicrobial effect against bacterial and yeast biofilms was demonstrated once MB was irradiated by light under 660 nm (aPDT). Furthermore, MB-loaded polymeric micelles showed significant inhibition of S. mutans and C. albicans biofilms. Furthermore, the treatment with MB-micelles incubated with high pre-incubation times (15 and 30 min) were more effective than 5 min. It can be explained by the time required for this nanosystem to penetrate the innermost layer of biofilms and release MB for aPDT. CONCLUSION MB-loaded polymeric micelles can effectively decrease the bacteria and yeast viability and it may cause positive impacts in the clinical practice. Thus, the developed formulation showed potential in the treatment to remove oral biofilms, but clinical studies are needed to confirm its potential.
Collapse
Affiliation(s)
- Jonas Corsino Maduro Soares
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Sao Paulo 14800-903, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Sao Paulo 14800-903, Brazil.
| | - João Augusto Oshiro Junior
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Sao Paulo 14800-903, Brazil
| | - João Felipe Besegato
- Departament of Restorative Dentistry, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | - Priscila Borges Gobbo de Melo
- Departament of Restorative Dentistry, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, Sao Paulo, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Sao Paulo 14800-903, Brazil.
| |
Collapse
|
15
|
Trigo-Gutierrez JK, Calori IR, de Oliveira Bárbara G, Pavarina AC, Gonçalves RS, Caetano W, Tedesco AC, Mima EGDO. Photo-responsive polymeric micelles for the light-triggered release of curcumin targeting antimicrobial activity. Front Microbiol 2023; 14:1132781. [PMID: 37152758 PMCID: PMC10157243 DOI: 10.3389/fmicb.2023.1132781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Nanocarriers have been successfully used to solubilize, deliver, and increase the bioavailability of curcumin (CUR), but slow CUR release rates hinder its use as a topical photosensitizer in antimicrobial photodynamic therapy. A photo-responsive polymer (PRP) was designed for the light-triggered release of CUR with an effective light activation-dependent antimicrobial response. The characterization of the PRP was compared with non-responsive micelles comprising Pluronics™ P123 and F127. According to the findings, the PRP formed photo-responsive micelles in the nanometric scale (< 100 nm) with a lower critical micelle concentration (3.74 × 10-4 M-1, 5.8 × 10-4 M-1, and 7.2 × 10-6 M-1 for PRP, F127, P123, respectively, at 25°C) and higher entrapment efficiency of CUR (88.7, 77.2, and 72.3% for PRP, F127, and P123 micelles, respectively) than the pluronics evaluated. The PRP provided enhanced protection of CUR compared to P123 micelles, as demonstrated in fluorescence quenching studies. The light-triggered release of CUR from PRP occurred with UV light irradiation (at 355 nm and 25 mW cm-2) and a cumulative release of 88.34% of CUR within 1 h compared to 80% from pluronics after 36 h. In vitro studies showed that CUR-loaded PRP was non-toxic to mammal cell, showed inactivation of the pathogenic microorganisms Candida albicans, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus, and decreased biofilm biomass when associated with blue light (455 nm, 33.84 J/cm2). The findings show that the CUR-loaded PRP micelle is a viable option for antimicrobial activity.
Collapse
Affiliation(s)
- Jeffersson Krishan Trigo-Gutierrez
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Geovana de Oliveira Bárbara
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ana Claudia Pavarina
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Renato Sonchini Gonçalves
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, Research Nucleus of Photodynamic Therapy, State University of Maringá, Maringá, Paraná, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering, Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
- *Correspondence: Ewerton Garcia de Oliveira Mima,
| |
Collapse
|
16
|
Law SK, Leung AWN, Xu C, Au DCT. Is it possible for Curcumin to conjugate with a carbon nanotube in photodynamic therapy? Photodiagnosis Photodyn Ther 2022; 40:103189. [PMID: 36336322 DOI: 10.1016/j.pdpdt.2022.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Siu Kan Law
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong.
| | | | - Chuanshan Xu
- Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Dawn Ching Tung Au
- Faculty of Science and Technology, The Technological and Higher Education Institute of Hong Kong, Tsing Yi, New Territories, Hong Kong
| |
Collapse
|
17
|
Semiconductor-assisted photodegradation of textile dye, photo-voltaic and antibacterial property of electrochemically synthesized Sr-doped CuO nano photocatalysts. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Ponzio RA, Ibarra LE, Achilli EE, Odella E, Chesta CA, Martínez SR, Palacios RE. Sweet light o' mine: Photothermal and photodynamic inactivation of tenacious pathogens using conjugated polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112510. [PMID: 36049287 DOI: 10.1016/j.jphotobiol.2022.112510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Each year a rising number of infections can not be successfully treated owing to the increasing pandemic of antibiotic resistant pathogens. The global shortage of innovative antibiotics fuels the emergence and spread of drug resistant microbes. Basic research, development, and applications of alternative therapies are urgently needed. Since the 90´s, light-mediated therapies have promised to be the next frontier combating multidrug-resistance microbes. These platforms have demonstrated to be a reliable, rapid, and efficient alternative to eliminate tenacious pathogens while avoiding the emergence of resistance mechanisms. Among the materials showing antimicrobial activity triggered by light, conjugated polymers (CPs) have risen as the most promising option to tackle this complex situation. These materials present outstanding characteristics such as high absorption coefficients, great photostability, easy processability, low cytotoxicity, among others, turning them into a powerful class of photosensitizer (PS)/photothermal agent (PTA) materials. Herein, we summarize and discuss the advances in the field of CPs with applications in photodynamic inactivation and photothermal therapy towards bacteria elimination. Additionally, a section of current challenges and needs in terms of well-defined benchmark experiments and conditions to evaluate the efficiency of phototherapies is presented.
Collapse
Affiliation(s)
- Rodrigo A Ponzio
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Estefanía E Achilli
- Laboratorio de Materiales Biotecnológicos (LaMaBio), Universidad Nacional de Quilmes-IMBICE (CONICET), Bernal B1876BXD, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
19
|
da Silva Canielles Caprara C, da Silva Freitas L, Iglesias BA, Ferreira LB, Ramos DF. Charge effect of water-soluble porphyrin derivatives as a prototype to fight infections caused by Acinetobacter baumannii by aPDT approaches. BIOFOULING 2022; 38:605-613. [PMID: 35875928 DOI: 10.1080/08927014.2022.2103804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In the last decade, Acinetobacter baumannii has emerged as a pathogen associated with infections in intensive care units worldwide, especially due to its ability to resist an extensive list of antibiotics. In this context, porphyrins have emerged as an important strategy in photodynamic therapy, since they are a group of tetrapyrrolic compounds with important photochemical and photobiological activities. In this study, the antimicrobial photodynamic activity of meso-tetra(4-N-methyl-pyridyl)porphyrin (H2TMePyP+) and meso-tetra(4-sulfonatophenyl)porphyrin (H2TPPS‒) was evaluated against A. baumannii by minimum inhibitory concentration (MIC), anti-biofilm activity, and the interaction with antibiotics after exposure to white-light LED irradiation. The cationic derivative H2TMePyP+ was more potent (MIC = 0.61 µM) than H2TPPS‒, with anti-biofilm activity and increased the antimicrobial activity of ciprofloxacin and amikacin. Given these findings, the tetra-cationic porphyrins can be assumed as prototypes to optimize and develop new agents by promoting oxidative stress and inducing free radical production.
Collapse
Affiliation(s)
- Carolina da Silva Canielles Caprara
- Laboratório de Desenvolvimento de Novos Fármacos, Faculdade de Medicina, Universidade Federal do Rio Grande (FURG) - Rio Grande, Rio Grande, Brazil
| | - Livia da Silva Freitas
- Laboratório de Desenvolvimento de Novos Fármacos, Faculdade de Medicina, Universidade Federal do Rio Grande (FURG) - Rio Grande, Rio Grande, Brazil
| | - Bernardo Almeida Iglesias
- Departamento de Química, Laboratório de Bioinorgânica e Materiais Porfirínicos, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Lara Beatriz Ferreira
- Laboratório de Desenvolvimento de Novos Fármacos, Faculdade de Medicina, Universidade Federal do Rio Grande (FURG) - Rio Grande, Rio Grande, Brazil
| | - Daniela Fernandes Ramos
- Laboratório de Desenvolvimento de Novos Fármacos, Faculdade de Medicina, Universidade Federal do Rio Grande (FURG) - Rio Grande, Rio Grande, Brazil
| |
Collapse
|
20
|
Zubair M, Azeem M, Mumtaz R, Younas M, Adrees M, Zubair E, Khalid A, Hafeez F, Rizwan M, Ali S. Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119249. [PMID: 35390420 DOI: 10.1016/j.envpol.2022.119249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Both cancer and diabetes mellitus are serious health issues, accounting more than 11 million deaths worldwide annually. Targeted use of plant-mediated nanoparticles (NPs) in treatment of ailments has outstanding results due to their salient properties. The current study was designed to investigate the safe production of silver nanoparticles (AgNPs) from Acacia nilotica. Different concentrations of AgNO3 were tested to optimize the protocol for the synthesis of AgNPs from the bark extract. It was demonstrated that 0.1 M and 3 mM were found to be the optimum concentrations for the synthesis of AgNPs. Standard characterization techniques such as UV-vis spectrophotometry, SEM, SEM-EDX micrograph, spot analysis, elemental mapping and XRD were used for the conformation of biosynthesis of AgNPs. Absorption spectrum of plant-mediated AgNPs under UV-vis spectrophotometer showed a strong peak at 380 nm and 420 nm for AgNPs synthesized at 0.1 M and 3 mM concentration of salt. The SEM results showed that AgNPs were present in variable shapes within average particle size ranging from (20-50 nm). Anticancer, antidiabetic and antioxidant potential of green AgNPs was investigated and they showed promising results as compared to the positive and negative controls. Hence, AgNPs were found potent therapeutic agent against the human liver cancer cell lines (HepG2), strong inhibitor for α-glucosidase enzyme activity and scavenging agent against free radicals that cause oxidative stress. Further studies are however needed to confirm the molecular mechanism and biochemical reactions responsible for the anticancer and antidiabetic activities of the particles.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Muhammad Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Rabia Mumtaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Madiha Younas
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Errum Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Abdullah Khalid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Farhan Hafeez
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Tobe Camp, Abbottabad Campus, KPK, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000, Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
21
|
Feng CC, Lu WF, Liu YC, Liu TH, Chen YC, Chien HW, Wei Y, Chang HW, Yu J. A hemostatic keratin/alginate hydrogel scaffold with methylene blue mediated antimicrobial photodynamic therapy. J Mater Chem B 2022; 10:4878-4888. [PMID: 35698997 DOI: 10.1039/d2tb00898j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncontrollable bleeding and infection are two of the most common causes of trauma-related death. Yet, developing safe materials with high hemostatic and antibacterial effectiveness remains a challenge. Keratin-based biomaterials have been reported to exhibit the functions of enhancing platelet binding and activating and facilitating fibrinogen polymerization. In this study, we designed a hemostatic material with good biodegradability, biocompatibility, hemostatic ability, and antibacterial function to solve the shortcomings of common hemostatic materials. Methylene blue-loaded keratin/alginate composite scaffolds were prepared by the freeze-gelation method. The composite scaffolds exhibited over 1600% liquid absorption, well-interconnected pores, good biocompatibility, and biodegradability. We find that the keratin/alginate composite scaffolds' synergistic action may significantly reduce hemostasis time. To prevent infection, the drug-loaded scaffolds generated high burst release by absorbing wound exudate in the early stages of wound healing. The results obtained by the antimicrobial photoinactivation assay in vitro suggest that an antimicrobial photodynamic effect might be triggered, thereby preventing the fast growth of colonies.
Collapse
Affiliation(s)
- Ching-Chih Feng
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Wei-Fan Lu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Chen Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Tai-Hung Liu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yin-Chuan Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
22
|
Cui F, Li T, Wang D, Yi S, Li J, Li X. Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128597. [PMID: 35247736 DOI: 10.1016/j.jhazmat.2022.128597] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 05/27/2023]
Abstract
The prevalence of bacterial pathogens among humans has increased rapidly and poses a great threat to health. Two-thirds of bacterial infections are associated with biofilms. Recently, nanomaterials have emerged as anti-biofilm agents due to their enormous potential for combating biofilm-associated infections and infectious disease management. Among these, relatively high biocompatibility and unique physicochemical properties of carbon-based nanomaterials (CBNs) have attracted wide attention. This review presented the current advances in anti-biofilm CBNs. Different kinds of CBNs and their physicochemical characteristics were introduced first. Then, the various potential mechanisms underlying the action of anti-biofilm CBNs during different stages were discussed, including anti-biofouling activity, inhibition of quorum sensing, photothermal/photocatalytic inactivation, oxidative stress, and electrostatic and hydrophobic interactions. In particular, the review focused on the pivotal role played by CBNs as anti-biofilm agents and delivery vehicles. Finally, it described the challenges and outlook for the development of more efficient and bio-safer anti-biofilm CBNs.
Collapse
Affiliation(s)
- Fangchao Cui
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| | - Dangfeng Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shumin Yi
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Xuepeng Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
23
|
Zhang Y, Lou J, Williams GR, Ye Y, Ren D, Shi A, Wu J, Chen W, Zhu LM. Cu2+-Chelating Mesoporous Silica Nanoparticles for Synergistic Chemotherapy/Chemodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14061200. [PMID: 35745773 PMCID: PMC9229203 DOI: 10.3390/pharmaceutics14061200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a pH-responsive controlled-release mesoporous silica nanoparticle (MSN) formulation was developed. The MSNs were functionalized with a histidine (His)-tagged targeting peptide (B3int) through an amide bond, and loaded with an anticancer drug (cisplatin (CP)) and a lysosomal destabilization mediator (chloroquine (CQ)). Cu2+ was then used to seal the pores of the MSNs via chelation with the His-tag. The resultant nanoparticles showed pH-responsive drug release, and could effectively target tumor cells via the targeting effect of B3int. The presence of CP and Cu2+ permits reactive oxygen species to be generated inside cells; thus, the chemotherapeutic effect of CP is augmented by chemodynamic therapy. In vitro and in vivo experiments showed that the nanoparticles are able to effectively kill tumor cells. An in vivo cancer model revealed that the nanoparticles increase apoptosis in tumor cells, and thereby diminish the tumor volume. No off-target toxicity was noted. It thus appears that the functionalized MSNs developed in this work have great potential for targeted, synergistic anticancer therapies.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (Y.Z.); (J.L.); (Y.Y.); (D.R.)
| | - Jiadong Lou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (Y.Z.); (J.L.); (Y.Y.); (D.R.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Yuhan Ye
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (Y.Z.); (J.L.); (Y.Y.); (D.R.)
| | - Dandan Ren
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (Y.Z.); (J.L.); (Y.Y.); (D.R.)
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China; (A.S.); (J.W.)
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming 650500, China; (A.S.); (J.W.)
| | - Wenling Chen
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
- Correspondence: (W.C.); (L.-M.Z.)
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (Y.Z.); (J.L.); (Y.Y.); (D.R.)
- Correspondence: (W.C.); (L.-M.Z.)
| |
Collapse
|
24
|
Perumal V, Inmozhi C, Uthrakumar R, Robert R, Chandrasekar M, Mohamed SB, Honey S, Raja A, Al-Mekhlafi FA, Kaviyarasu K. Enhancing the photocatalytic performance of surface - Treated SnO 2 hierarchical nanorods against methylene blue dye under solar irradiation and biological degradation. ENVIRONMENTAL RESEARCH 2022; 209:112821. [PMID: 35092741 DOI: 10.1016/j.envres.2022.112821] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Surfactant -treated tin oxide (SnO2) hierarchical nanorods were successfully synthesized through hydrothermal technique. The X-ray diffraction analysis showed the prepared SnO2 possesses tetragonal rutile structure having appreciable crystallinity with crystallite sizes in the range of 110 nm-120 nm. UV-visible diffuse reflectance absorption spectra confirm that the better visible light absorption band of SnO2 hierarchical nanorods have red shift compared to the pure SnO2. Fourier transform infrared spectroscopy (FTIR) study evident that the as-prepared SnO2 nanorods encompass the characteristic bands of SnO2 nanostructures. The morphological analyses of prepared materials were performed by FESEM, which shows that hierarchal nanorods and complex nanostructures. EDX analyses disclose all the samples are composed of Sn and O elements. The photocatalytic performance of the prepared surfactant treated SnO2 hierarchical nanorods was evaluated using methylene blue (MB) dye removal under direct natural sunlight. Recycling experiment results of CTAB - SnO2 nanorods and photocatalytic reaction mechanism also discussed in detail.
Collapse
Affiliation(s)
- V Perumal
- Department of Physics, Government Arts College (Autonomous), Salem, 636007, Tamil Nadu, India
| | - C Inmozhi
- Department of Physics, Government Arts College for Women , Salem, 636008, Tamil Nadu, India
| | - R Uthrakumar
- Department of Physics, Government Arts College (Autonomous), Salem, 636007, Tamil Nadu, India.
| | - R Robert
- Department of Physics, Government Arts College for Men, Krishnagiri, 635001, Tamil Nadu, India
| | - M Chandrasekar
- Department of Physics, Periyar University, Salem, 636011, Tamil Nadu, India
| | - S Beer Mohamed
- Department of Material Science, Central University of Tamil Nadu, Thiruvarur, 610001, Tamil Nadu, India
| | - Shehla Honey
- Centre for Nanosciences & Department of Physics, University of Okara, Okara, Pakistan; NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
| | - A Raja
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Fahd A Al-Mekhlafi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province, South Africa.
| |
Collapse
|
25
|
Babu N, Rahaman SA, John AM, Balakrishnan SP. Photosensitizer Anchored Nanoparticles: A Potential Material for Photodynamic Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202200850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nisha Babu
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | - Shaik Abdul Rahaman
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | - Athira Maria John
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India 560029
| | | |
Collapse
|
26
|
Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release 2022; 346:300-316. [PMID: 35483636 DOI: 10.1016/j.jconrel.2022.04.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach to aid the fight against looming antibiotic resistance. aPDT harnesses the energy of light through photosenstizers to generate highly reactive oxygen species that can inactivate bacteria and fungi with no resistance. To date aPDT has shown great efficacy against microbes causing localized infections in the skin and the oral cavity. However, its wide application in clinical settings has been limited due to both physicochemical and biological challenges. Over the past decade nanomaterials have contributed to promoting photosensitizer performance and aPDT efficiency, yet further developments are required to establish accredited treatment options. In this review we discuss the challenges facing the clinical application of aPDT and the opportunities that nanotechnology may offer to promote the safety and efficiency of aPDT.
Collapse
Affiliation(s)
- Muhammed Awad
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Nicky Thomas
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Timothy J Barnes
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| |
Collapse
|
27
|
Wang Y, Yao H, Zu Y, Yin W. Biodegradable MoO x @MB incorporated hydrogel as light-activated dressing for rapid and safe bacteria eradication and wound healing. RSC Adv 2022; 12:8862-8877. [PMID: 35424847 PMCID: PMC8985166 DOI: 10.1039/d2ra00963c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Wounds infected with drug-resistant bacteria are hard to treat, which remains a serious problem in clinical practice. An innovative strategy for treating wound infections is thus imperative. Herein, we describe the construction of a nanocomposite from biocompatible poly(vinyl alcohol) (PVA)/polyethylene glycol (PEG) hydrogel loaded biodegradable MoO x nanoparticles (NPs) and photosensitizer methylene blue (MB), denoted as MoO x @MB-hy. By incorporating MoO x @MB NPs, the nanocomposite hydrogel can act as a photoactivated wound dressing for near-infrared-II 1064 nm and 660 nm laser synergetic photothermal-photodynamic therapy (PTT-PDT). The key to PTT-induced heat becomes the most controllable release of MB from MoO x @MB-hy to produce more 1O2 under 660 nm irradiation. Importantly, MoO x @MB-hy can consume glutathione (GSH) and trap bacteria nearer to the distance limit of ROS damage to achieve a self-migration-enhanced accumulation of reactive oxygen species (ROS), thereby conquering the intrinsic shortcomings of short diffusion distance and lifetime of ROS. Consequently, MoO x @MB-hy has high antibacterial efficiencies of 99.28% and 99.16% against Ampr E. coli and B. subtilis within 15 min. Moreover, the light-activated strategy can rapidly promote healing in wounds infected by drug-resistant bacteria. This work paves a way to design a novel nanocomposite hydrogel dressing for safe and highly-efficient antibacterial therapy.
Collapse
Affiliation(s)
- Yifan Wang
- College of Pharmacy, School of Basic Medicine, Ningxia Medical University Yinchuan Ningxia 750004 China
| | - Huiqin Yao
- College of Pharmacy, School of Basic Medicine, Ningxia Medical University Yinchuan Ningxia 750004 China
| | - Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, National Center for Nanoscience and Technology, Chinese Academy of Sciences Beijing 100049 China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, National Center for Nanoscience and Technology, Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
28
|
Zhao D, Zhang R, Liu X, Li X, Xu M, Huang X, Xiao X. Screening of Chitosan Derivatives-Carbon Dots Based on Antibacterial Activity and Application in Anti-Staphylococcus aureus Biofilm. Int J Nanomedicine 2022; 17:937-952. [PMID: 35280335 PMCID: PMC8904944 DOI: 10.2147/ijn.s350739] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Pathogenic bacteria, especially the ones with highly organized, systematic aggregating bacteria biofilm, would cause great harm to human health. The development of highly efficient antibacterial and antibiofilm functional fluorescent nanomaterial would be of great significance. Methods This paper reports the preparation of a series of antibacterial functional carbon dots (CDs) with chitosan (CS) and its derivatives as raw materials through one-step route, and the impact of various experiment parameters upon the optical properties and the antibacterial abilities have been explored, including the structures of the raw materials, excipients, and solvents. Results The CDs prepared by quaternary ammonium salt of chitosan (QCS) and ethylenediamine (EDA) exhibit multiple antibacterial effects through membrane breaking, DNA and protein destroying, and the production of singlet oxygen. The CDs showed excellent broad-spectrum inhibitory activity against a variety of bacteria (Gram-positive and negative bacteria), in particular, to the biofilm of Staphylococcus aureus with minimum inhibitory concentration at 10 µg/mL, showing great potential in killing bacteria and biofilms. The biocompatibility experiments proved that QCS-EDA-CDs are non-toxic to human normal hepatocytes and have low haemolytic effect. Furthermore, the prepared QCS-EDA-CDs have been successfully used in bacterial and biofilm imaging thanks to their excellent optical properties. Conclusion This paper explored the preparation and application of functional CDs, which can be used as the visual probe and therapeutic agents in the treatment of infections caused by bacteria and biofilm.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
- Correspondence: Dan Zhao, Tel +1 806 208 4690, Email
| | - Rui Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| | - Xuemei Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| | - Xiaoyun Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| | - Xianju Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People’s Republic of China
- National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, 430065, People’s Republic of China
| |
Collapse
|
29
|
Soltani Nejad M, Samandari Najafabadi N, Aghighi S, Pakina E, Zargar M. Evaluation of Phoma sp. Biomass as an Endophytic Fungus for Synthesis of Extracellular Gold Nanoparticles with Antibacterial and Antifungal Properties. Molecules 2022; 27:1181. [PMID: 35208971 PMCID: PMC8879160 DOI: 10.3390/molecules27041181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of our study was to examine the different concentrations of AuNPs as a new antimicrobial substance to control the pathogenic activity. The extracellular synthesis of AuNPs performed by using Phoma sp. as an endophytic fungus. Endophytic fungus was isolated from vascular tissue of peach trees (Prunus persica) from Baft, located in Kerman province, Iran. The UltraViolet-Visible Spectroscopy (UV-Vis spectroscopy) and Fourier transform infrared spectroscopy provided the absorbance peak at 526 nm, while the X-ray diffraction and transmission electron microscopy images released the formation of spherical AuNPs with sizes in the range of 10-100 nm. The findings of inhibition zone test of Au nanoparticles (AuNPs) showed a desirable antifungal and antibacterial activity against phytopathogens including Rhizoctonia solani AG1-IA (AG1-IA has been identified as the dominant anastomosis group) and Xanthomonas oryzae pv. oryzae. The highest inhibition level against sclerotia formation was 93% for AuNPs at a concentration of 80 μg/mL. Application of endophytic fungus biomass for synthesis of AuNPs is relatively inexpensive, single step and environmentally friendly. In vitro study of the antifungal activity of AuNPs at concentrations of 10, 20, 40 and 80 μg/mL was conducted against rice fungal pathogen R. solani to reduce sclerotia formation. The experimental data revealed that the Inhibition rate (RH) for sclerotia formation was (15, 33, 74 and 93%), respectively, for their corresponding AuNPs concentrations (10, 20, 40 and 80 μg/mL). Our findings obviously indicated that the RH strongly depend on AuNPs rates, and enhance upon an increase in AuNPs rates. The application of endophytic fungi biomass for green synthesis is our future goal.
Collapse
Affiliation(s)
- Meysam Soltani Nejad
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran
| | - Neda Samandari Najafabadi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948978, Iran;
| | - Sonia Aghighi
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran;
| | - Elena Pakina
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia;
| | - Meisam Zargar
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran;
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia;
| |
Collapse
|
30
|
Membrane damage as mechanism of photodynamic inactivation using Methylene blue and TMPyP in Escherichia coli and Staphylococcus aureus. Photochem Photobiol Sci 2022; 21:209-220. [PMID: 35061201 DOI: 10.1007/s43630-021-00158-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022]
Abstract
The worldwide threat of antibiotic resistance requires alternative strategies to fight bacterial infections. A promising approach to support conventional antibiotic therapy is the antimicrobial photodynamic inactivation (aPDI). The aim of this work was to show further insights into the antimicrobial photodynamic principle using two photosensitizers (PS) of different chemical classes, Methylene Blue (MB) and TMPyP, and the organisms Escherichia coli and Staphylococcus aureus as Gram-negative and Gram-positive representatives. Planktonic cultures of both species were cultured under aerobic conditions for 24 h followed by treatment with MB or TMPyP at various concentrations for an incubation period of 10 min and subsequent irradiation for 10 min. Ability to replicate was evaluated by CFU assay. Accumulation of PS was measured using a spectrophotometer. The cytoplasmic membrane integrity was investigated by flow cytometry using SYBR Green and propidium iodide. In experiments on the replication ability of bacteria after photodynamic treatment with TMPyP or MB, a killing rate of 5 log10 steps of the bacteria was achieved. Concentration-dependent accumulation of both PS was shown by spectrophotometric measurements whereby a higher accumulation of TMPyP and less accumulation of MB was found for S. aureus as compared to E. coli. For the first time, a membrane-damaging effect of TMPyP and MB in both bacterial strains could be shown using flow cytometry analyses. Furthermore, we found that reduction of the replication ability occurs with lower concentrations than needed for membrane damage upon MB suggesting that membrane damage is not the only mechanism of aPDI using MB.
Collapse
|
31
|
Parra-Ortiz E, Malmsten M. Photocatalytic nanoparticles - From membrane interactions to antimicrobial and antiviral effects. Adv Colloid Interface Sci 2022; 299:102526. [PMID: 34610862 DOI: 10.1016/j.cis.2021.102526] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
As a result of increasing resistance among pathogens against antibiotics and anti-viral therapeutics, nanomaterials are attracting current interest as antimicrobial agents. Such materials offer triggered functionalities to combat challenging infections, based on either direct membrane action, effects of released ions, thermal shock induced by either light or magnetic fields, or oxidative photocatalysis. In the present overview, we focus on photocatalytic antimicrobial effects, in which light exposure triggers generation of reactive oxygen species. These, in turn, cause oxidative damage to key components in bacteria and viruses, including lipid membranes, lipopolysaccharides, proteins, and DNA/RNA. While an increasing body of studies demonstrate that potent antimicrobial effects can be achieved by photocatalytic nanomaterials, understanding of the mechanistic foundation underlying such effects is still in its infancy. Addressing this, we here provide an overview of the current understanding of the interaction of photocatalytic nanomaterials with pathogen membranes and membrane components, and how this translates into antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| |
Collapse
|
32
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
33
|
Maldonado-Carmona N, Ouk TS, Leroy-Lhez S. Latest trends on photodynamic disinfection of Gram-negative bacteria: photosensitizer's structure and delivery systems. Photochem Photobiol Sci 2021; 21:113-145. [PMID: 34784052 DOI: 10.1007/s43630-021-00128-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Etiological agents of previously eradicated infectious diseases are now resurgent as multidrug-resistant strains, especially for Gram-negative strains. Finding new therapeutic solutions is a real challenge for our society. In this framework, Photodynamic Antimicrobial ChemoTherapy relies on the generation of toxic reactive oxygen species in the presence of light, oxygen, and a photosensitizer molecule. The use of reactive oxygen species is common for disinfection processes, using chemical agents, such as chlorine and hydrogen peroxide, and as they do not have a specific molecular target, it decreases the potential of tolerance to the antimicrobial treatment. However, light-driven generated reactive species result in an interesting alternative, as reactive species generation can be easily tuned with light irradiation and several PSs are known for their low environmental impact. Over the past few years, this topic has been thoroughly studied, exploring strategies based on single-molecule PSs (tetrapyrrolic compounds, dipyrrinate derivatives, metal complexes, etc.) or on conjunction with delivery systems. The present work describes some of the most relevant advances of the last 6 years, focusing on photosensitizers design, formulation, and potentiation, aiming for the disinfection of Gram-negative bacteria.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France.,Department of Chemistry, University of Coimbra, Coimbra Chemistry Center, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Tan-Sothea Ouk
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France
| | - Stéphanie Leroy-Lhez
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France.
| |
Collapse
|
34
|
Gandhi AD, Kaviyarasu K, Supraja N, Velmurugan R, Suriyakala G, Babujanarthanam R, Zang Y, Soontarapa K, Almaary KS, Elshikh MS, Chen TW. Annealing dependent synthesis of cyto-compatible nano-silver/calcium hydroxyapatite composite for antimicrobial activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
35
|
Kattan HF. Efficacy of antimicrobial photodynamic therapy (aPDT) in reducing cariogenic bacteria in primary deciduous dentine. Photodiagnosis Photodyn Ther 2021; 36:102600. [PMID: 34699983 DOI: 10.1016/j.pdpdt.2021.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 11/15/2022]
Abstract
AIM The aim is to systematically review the efficacy of aPDT in minimizing cariogenic bacteria in primary dentine when compared to tooth preparation and endodontic debridement. MATERIALS AND METHODS The focused question was: Is aPDT (intervention) effective in minimizing the cariogenic bacteria (outcome) in deciduous dentine (participants) after caries removal when compared to before aPDT or mechanical caries removal alone (controls). The keywords that were used were: 'antimicrobial photodynamic therapy', 'dentine', 'primary teeth' and 'deciduous teeth' in different combinations. Following the exclusion of the irrelevant studies, eight (seven clinical studies and one in vitro study) studies were included in the review. The data from each study was extracted and the quality of each article was assessed. RESULTS In four out of the eight studies, aPDT with methylene blue or toluidine blue had improved the efficacy of microbial reduction in deciduous dentine when compared to conventional root canal treatment or caries removal. In four studies, no significant improvement in microbial reduction was observed following aPDT compared to caries removal or endodontic debridement without aPDT. Four studies received an overall quality grading of 'medium', three studies were assessed as having a 'low' quality and only one study received an overall grading of 'high' quality. CONCLUSION Within the limitations of this review, aPDT may improve the anti-bacterial efficacy of restorative and endodontic procedures in deciduous teeth. However, due to lack of long-term clinical trials and robust study designs, the efficacy of aPDT in minimizing cariogenic bacteria in deciduous dentine is debatable.
Collapse
Affiliation(s)
- Hiba F Kattan
- Preventive Dental Science Department, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| |
Collapse
|
36
|
Sathiyaraj S, Suriyakala G, Dhanesh Gandhi A, Babujanarthanam R, Almaary KS, Chen TW, Kaviyarasu K. Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. J Infect Public Health 2021; 14:1842-1847. [PMID: 34690096 DOI: 10.1016/j.jiph.2021.10.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND In recent decades focus of research has been toward an alternative antibacterial agent because of growing bacterial resistance and side effects of antibacterial agents. In the current study, the antibacterial activity of gold nanoparticles has been evaluated on selected human pathogens. METHODS In this study, we used panchagavya (PG) to synthesize gold nanoparticles, and the resulting nanoparticles (PG-AuNPs) were characterized by several spectroscopic techniques. In addition, antibacterial activity of PG-AuNPs against Escherichia coli, Bacillus subtilis, and Klebsiella pneumoniae were studied by well diffusion method. RESULTS The synthesis of AuNPs was affirmed by a colour change, which was further validated by UV-vis spectra with a maximum absorption peak at 527 nm. Bandgap energy was calculated as 2.13 eV by Tauc method from the UV result. The presence of amino acids and proteins in PG was responsible for the conversion of gold ions to AuNPs, according to FTIR analysis. (111), (200), (220), and (311) crystallographic planes were observed by XRD; further crystalline nature was validated by SAED analysis. The size and zeta value were found to be 53.29 nm and -9.8 mV respectively. Spherical shaped nanoparticles and elemental structure of PG-AuNPs were confirmed by HRTEM and EDS analysis. The antibacterial activity of PG-AuNPs showed the maximum and minimum zone of inhibition against K. pneumoniae (17.12 ± 0.14 mm) and B. subtilis (11.42 ± 0.58 mm). CONCLUSION Antibacterial activity of PG-AuNPs was found to be strong against gram negative bacteria and moderate against gram positive bacteria. Based on the result, it was concluded that PG-AuNPs could be used to combat antibiotic drug resistance. Besides, in vitro and in vivo toxicity studies of PG-AuNPs should be conducted.
Collapse
Affiliation(s)
- Sivaji Sathiyaraj
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Gunasekaran Suriyakala
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India
| | - Arumugam Dhanesh Gandhi
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Ranganathan Babujanarthanam
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, Tamil Nadu, India.
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, P.O. Box 722, Somerset West, Western Cape Province, South Africa.
| |
Collapse
|
37
|
Mani M, Pavithra S, Mohanraj K, Kumaresan S, Alotaibi SS, Eraqi MM, Gandhi AD, Babujanarthanam R, Maaza M, Kaviyarasu K. Studies on the spectrometric analysis of metallic silver nanoparticles (Ag NPs) using Basella alba leaf for the antibacterial activities. ENVIRONMENTAL RESEARCH 2021; 199:111274. [PMID: 34000268 DOI: 10.1016/j.envres.2021.111274] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
In this present investigation, an aqueous Basella alba leaves extract was used to synthesize AgNPs. The green synthesis approach is carried out in our work due to non-toxic, less cost, and ecofriendly methods. FTIR spectra are used to confirm the biomolecules present in B.alba leaves extract along with AgNPs and these compounds are responsible for Ag particle from micro to nanostructure. The FCC structure and crystalline nature of the AgNPs are analyzed with the help of XRD and TEM techniques respectively. DLS and Zeta potential techniques are carried out to find the size and stability of AgNPs respectively and UV is used to verify the presence of AgNPs in synthesized samples employing SPR peaks around 435 nm. The antioxidant studies expose eminent scavenging activity which ranges from 13.71% to maximum 67.88%. Green synthesized AgNPs possess well organized biological activities concerning antioxidant and antibacterial, which can be used in some biologically applications.
Collapse
Affiliation(s)
- M Mani
- Spectrophysics Research Laboratory, PG & Research Department of Physics, Arignar Anna Government Arts College, Cheyyar, 604407, Tamil Nadu, India.
| | - S Pavithra
- Spectrophysics Research Laboratory, PG & Research Department of Physics, Arignar Anna Government Arts College, Cheyyar, 604407, Tamil Nadu, India
| | - K Mohanraj
- Department and Graduate Institute of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 41349, Taiwan
| | - S Kumaresan
- Spectrophysics Research Laboratory, PG & Research Department of Physics, Arignar Anna Government Arts College, Cheyyar, 604407, Tamil Nadu, India
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mostafa M Eraqi
- Microbiology and Immunology Department, Veterinary Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza, P.O. Box 12622, Egypt; Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Arumugam Dhanesh Gandhi
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Ranganathan Babujanarthanam
- Nano and Energy Bioscience Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamil Nadu, India
| | - M Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), IThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province, South Africa
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), IThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province, South Africa.
| |
Collapse
|
38
|
Mani M, Okla MK, Selvaraj S, Ram Kumar A, Kumaresan S, Muthukumaran A, Kaviyarasu K, El-Tayeb MA, Elbadawi YB, Almaary KS, Ahmed Almunqedhi BM, Elshikh MS. A novel biogenic Allium cepa leaf mediated silver nanoparticles for antimicrobial, antioxidant, and anticancer effects on MCF-7 cell line. ENVIRONMENTAL RESEARCH 2021; 198:111199. [PMID: 33932479 DOI: 10.1016/j.envres.2021.111199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
In the present study, Allium cepa leaf extract was utilized to reduce the silver nitrate into the nanoscale range of silver ions (Ag NPs). The biosynthesized Ag NPs were extensively characterized by X-ray diffraction analysis (XRD), Dynamic light scattering analysis (DLS), UV-Visible spectroscopy (UV-vis), Transmission electron microscopy (TEM), Energy dispersive X-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR). The antioxidant activity of synthesized Ag NPs was verified by DPPH assay. From the results obtained from XRD and DLS studies, the size of Ag NPs was determined to be around 54.3 nm. The measured zeta potential value of -19.1 mV confirms the excellent stability of biosynthesized Ag NPs. TEM analyses reveal that the biosynthesized Ag NPs have a spherical structure of 13 nm in size. The presence of various functional groups was confirmed through FTIR studies and EDAX verifies the weight percentage of silver content in biosynthesized nanoparticles to be 30.33%. In the present study, anti-cancer activity was carried out by using breast cancer cell line MCF-7. Further, silver nanoparticles exhibited antimicrobial effectiveness against gram-positive Bacillus cereus and gram-negative Escherichia coli. The MTT assay also showed better cytotoxic activity against the MCF- 7 cell line.
Collapse
Affiliation(s)
- M Mani
- Spectrophysics Research Laboratory, PG and Research Department of Physics, Arignar Anna Government Arts College, Cheyyar - 604407, Tamil Nadu, India
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - S Selvaraj
- Department of Science and Humanities, St. Joseph College of Engineering, Sriperumbudur - 602117, Chennai, Tamil Nadu, India
| | - A Ram Kumar
- PG and Research Department of Biochemistry, Indo- American College, Cheyyar - 604407, Tamil Nadu, India
| | - S Kumaresan
- Spectrophysics Research Laboratory, PG and Research Department of Physics, Arignar Anna Government Arts College, Cheyyar - 604407, Tamil Nadu, India
| | - Azhaguchamy Muthukumaran
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India
| | - K Kaviyarasu
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), IThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, 7129, PO Box 722, Somerset West, Western Cape Province, South Africa.
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yahya B Elbadawi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
39
|
Synthesis of Mesoporous Silica Coated Gold Nanorods Loaded with Methylene Blue and Its Potentials in Antibacterial Applications. NANOMATERIALS 2021; 11:nano11051338. [PMID: 34069626 PMCID: PMC8160648 DOI: 10.3390/nano11051338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023]
Abstract
In this work, the successful preparation and characterization of gold nanorods (AuNRs) coated with a mesoporous silica shell (AuNRs@Simes) was achieved. Conjugation with methylene blue (MB) as a model drug using ultrasound-stimulated loading has been explored for further application in light-mediated antibacterial studies. Lyophilization of this conjugated nanosystem was analyzed using trehalose (TRH) as a cryogenic protector. The obtained stable dry formulation shows potent antimicrobial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria after a simple post-treatment irradiation method with a red laser during a short time period.
Collapse
|
40
|
Development of a high-level light-activated disinfectant for hard surfaces and medical devices. Int J Antimicrob Agents 2021; 58:106360. [PMID: 33992750 DOI: 10.1016/j.ijantimicag.2021.106360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 05/01/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Bacterial spores are an important consideration in healthcare decontamination, with cross-contamination highlighted as a major route of transmission due to their persistent nature. Their containment is extremely difficult due to the toxicity and cost of first-line sporicides. METHODS Susceptibility of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli to phenothiazinium photosensitizers and cationic surfactants under white- or red-light irradiation was assessed by determination of minimum inhibitory concentrations, minimum bactericidal concentrations and time-kill assays. B. subtilis spore eradication was assessed via time-kill assays, with and without nutrient and non-nutrient germinant supplementation of photosensitizer, surfactant and photosensitizer-surfactant solutions in the presence and absence of light. RESULTS Under red-light irradiation, >5-log10 colony-forming units/mL reduction of vegetative bacteria was achieved within 10 min with toluidine blue O (TBO) and methylene blue (MB). Cationic surfactant addition did not significantly enhance spore eradication by photosensitizers (P>0.05). However, addition of a nutrient germinant mixture to TBO achieved a 6-log10 reduction after 20 min of irradiation, while providing 1-2 log10 improvement in spore eradication for MB and pyronin Y. CONCLUSIONS Light-activated photosensitizer solutions in the presence of surfactants and germination-promoting agents provide a highly effective method to eradicate dormant and vegetative bacteria. These solutions could provide a useful alternative to traditional chemical agents used for high-level decontamination and infection control within health care.
Collapse
|
41
|
Wang S, Liu X, Yu L, Zhao Y, Sun M. Low surface energy self‐polishing polymer grafted
MWNTs
for antibacterial coating and controlled‐release property of
Cu
2
O
. J Appl Polym Sci 2021. [DOI: 10.1002/app.50267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shuai Wang
- School of Materials Science and Engineering Ocean University of China Qingdao P. R. China
| | - Xiaojie Liu
- School of Materials Science and Engineering Ocean University of China Qingdao P. R. China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China Qingdao P. R. China
| | - Yong Zhao
- School of Materials Science and Engineering Ocean University of China Qingdao P. R. China
| | - Mingliang Sun
- School of Materials Science and Engineering Ocean University of China Qingdao P. R. China
- State Key Laboratory of Marine Coatings Marine Chemical Research Institute Co., Ltd. Qingdao China
| |
Collapse
|
42
|
Teixeira-Santos R, Gomes M, Gomes LC, Mergulhão FJ. Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: a systematic review. iScience 2021; 24:102001. [PMID: 33490909 PMCID: PMC7809508 DOI: 10.1016/j.isci.2020.102001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although high-performance carbon materials are widely used in surface engineering, with emphasis on carbon nanotubes (CNTs), the application of CNT nanocomposites on medical surfaces is poorly documented. In this study, we aimed to evaluate the antimicrobial and anti-adhesive properties of CNT-based surfaces. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria and 59 studies were selected for the qualitative analysis. Results from the analyzed studies suggest that surfaces containing modified CNTs, and specially CNTs conjugated with different polymers, exhibited strong antimicrobial and anti-adhesive activities. These composites seem to preserve the CNT toxicity to microorganisms and promote CNT-cell interactions, as well as to protect them from nonspecific protein adsorption. However, CNTs cannot yet compete with the conventional strategies to fight biofilms as their toxicity profile on the human body has not been thoroughly addressed. This review can be helpful for the development of new engineered medical surfaces.
Collapse
Affiliation(s)
- Rita Teixeira-Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marisa Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
43
|
Klausen M, Ucuncu M, Bradley M. Design of Photosensitizing Agents for Targeted Antimicrobial Photodynamic Therapy. Molecules 2020; 25:E5239. [PMID: 33182751 PMCID: PMC7696090 DOI: 10.3390/molecules25225239] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
Photodynamic inactivation of microorganisms has gained substantial attention due to its unique mode of action, in which pathogens are unable to generate resistance, and due to the fact that it can be applied in a minimally invasive manner. In photodynamic therapy (PDT), a non-toxic photosensitizer (PS) is activated by a specific wavelength of light and generates highly cytotoxic reactive oxygen species (ROS) such as superoxide (O2-, type-I mechanism) or singlet oxygen (1O2*, type-II mechanism). Although it offers many advantages over conventional treatment methods, ROS-mediated microbial killing is often faced with the issues of accessibility, poor selectivity and off-target damage. Thus, several strategies have been employed to develop target-specific antimicrobial PDT (aPDT). This includes conjugation of known PS building-blocks to either non-specific cationic moieties or target-specific antibiotics and antimicrobial peptides, or combining them with targeting nanomaterials. In this review, we summarise these general strategies and related challenges, and highlight recent developments in targeted aPDT.
Collapse
Affiliation(s)
- Maxime Klausen
- School of Chemistry and the EPSRC IRC Proteus, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
| | - Muhammed Ucuncu
- School of Chemistry and the EPSRC IRC Proteus, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Mark Bradley
- School of Chemistry and the EPSRC IRC Proteus, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK;
| |
Collapse
|
44
|
Ghasemian Dazmiri M, Alinezhad H, Hossaini Z, Bekhradnia AR. Green synthesis of Fe
3
O
4
/ZnO magnetic core‐shell nanoparticles by
Petasites hybridus
rhizome water extract and their application for the synthesis of pyran derivatives: Investigation of antioxidant and antimicrobial activity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | - Ahmad R. Bekhradnia
- Pharmaceutical Sciences Research Center, Department of Medicinal ChemistryMazandaran University of Medical Sciences Sari Iran
- Department of Chemistry and BiochemistryMontana State University Bozeman MT 59717 USA
| |
Collapse
|
45
|
Contreras A, Raxworthy MJ, Wood S, Tronci G. Hydrolytic Degradability, Cell Tolerance and On-Demand Antibacterial Effect of Electrospun Photodynamically Active Fibres. Pharmaceutics 2020; 12:E711. [PMID: 32751391 PMCID: PMC7465204 DOI: 10.3390/pharmaceutics12080711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/17/2023] Open
Abstract
Photodynamically active fibres (PAFs) are a novel class of stimulus-sensitive systems capable of triggering antibiotic-free antibacterial effect on-demand when exposed to light. Despite their relevance in infection control, however, the broad clinical applicability of PAFs has not yet been fully realised due to the limited control in fibrous microstructure, cell tolerance and antibacterial activity in the physiologic environment. We addressed this challenge by creating semicrystalline electrospun fibres with varying content of poly[(l-lactide)-co-(glycolide)] (PLGA), poly(ε-caprolactone) (PCL) and methylene blue (MB), whereby the effect of polymer morphology, fibre composition and photosensitiser (PS) uptake on wet state fibre behaviour and functions was studied. The presence of crystalline domains and PS-polymer secondary interactions proved key to accomplishing long-lasting fibrous microstructure, controlled mass loss and controlled MB release profiles (37 °C, pH 7.4, 8 weeks). PAFs with equivalent PLGA:PCL weight ratio successfully promoted attachment and proliferation of L929 cells over a 7-day culture with and without light activation, while triggering up to 2.5 and 4 log reduction in E. coli and S. mutans viability, respectively. These results support the therapeutic applicability of PAFs for frequently encountered bacterial infections, opening up new opportunities in photodynamic fibrous systems with integrated wound healing and infection control capabilities.
Collapse
Affiliation(s)
- Amy Contreras
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK; (A.C.); (M.J.R.)
| | - Michael J. Raxworthy
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK; (A.C.); (M.J.R.)
- Neotherix Ltd., The Hiscox Building, Peasholme Green, York YO1 7PR, UK
| | - Simon Wood
- School of Dentistry, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK;
| | - Giuseppe Tronci
- School of Dentistry, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK;
- Clothworkers Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
46
|
Ambrósio JAR, Pinto BCDS, da Silva BGM, Passos JCDS, Beltrame Junior M, Costa MS, Simioni AR. BSA nanoparticles loaded-methylene blue for photodynamic antimicrobial chemotherapy (PACT): effect on both growth and biofilm formation by Candida albicans. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2182-2198. [DOI: 10.1080/09205063.2020.1795461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Milton Beltrame Junior
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| | - Andreza Ribeiro Simioni
- Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba – UNIVAP, São José dos Campos, Brazil
| |
Collapse
|
47
|
Fonseca G, Dourado D, Barreto M, Cavalcanti M, Pavelski M, Ribeiro L, Frigo L. Antimicrobial Photodynamic Therapy (aPDT) for decontamination of high-speed handpieces: A comparative study. Photodiagnosis Photodyn Ther 2020; 30:101686. [DOI: 10.1016/j.pdpdt.2020.101686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
|
48
|
Costa Magacho C, Guerra Pinto J, Müller Nunes Souza B, Correia Pereira AH, Ferreira-Strixino J. Comparison of photodynamic therapy with methylene blue associated with ceftriaxone in gram-negative bacteria; an in vitro study. Photodiagnosis Photodyn Ther 2020; 30:101691. [PMID: 32109621 DOI: 10.1016/j.pdpdt.2020.101691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
The resistance of microorganisms increases the need for new antimicrobial therapies. The aim of this study was to evaluate the in vitro action of photodynamic therapy and its combination with ceftriaxone in third generation cephalosporin resistant gram-negative bacteria. Clinical strains of Klebsiella pneumoniae, Enterobacter aerogenes and Escherichia coli were obtained, incubated with MB for 15 min combined or not with ceftriaxone and irradiated with fluence of 10 and 25 J/cm². MB internalization was evaluated by confocal microscopy. Cell viability was assessed by counting colony forming units and bacterian metabolism by the resazurin test. MB has been observed within cells, although not in all bacteria. PDT-MB alone and combined with Ceftriaxone reduced bacterial growth by approximately 1 log at 10 J/cm² of fluence and 4 logs by 25 J/cm², with a significant difference from the control group. The reduction in bacterial growth between the treated groups was similar, without significant difference between them. The Resazurin test showed lower bacterial metabolic activity in the treated groups, but it did not allow to observe difference between fluences. It was concluded with this study that the internalization of MB was not observed in all cells of K. pneumoniae, E. aerogenes and E. coli strains. There was less bacterial metabolic activity in the treated groups, with no variation between different fluences. PDT-MB 25 J/cm² alone and combined with Ceftriaxone showed antimicrobial action, but the PDT-MB/Ceftriaxone combination had no potentiating effect.
Collapse
Affiliation(s)
- Christiane Costa Magacho
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Juliana Guerra Pinto
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Beatriz Müller Nunes Souza
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - André Henrique Correia Pereira
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Juliana Ferreira-Strixino
- Laboratório de Fotobiologia Aplicada à Saúde (FOTOBIOS), Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
49
|
Lam PL, Wong RSM, Lam KH, Hung LK, Wong MM, Yung LH, Ho YW, Wong WY, Hau DKP, Gambari R, Chui CH. The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chem Biol Interact 2020; 320:109023. [PMID: 32097615 DOI: 10.1016/j.cbi.2020.109023] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/18/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023]
Abstract
Antimicrobial resistance remains a serious problem that results in high mortality and increased healthcare costs globally. One of the major issues is that resistant pathogens decrease the efficacy of conventional antimicrobials. Accordingly, development of novel antimicrobial agents and therapeutic strategies is urgently needed to overcome the challenge of antimicrobial resistance. A potential strategy is to kill pathogenic microorganisms via the formation of reactive oxygen species (ROS). ROS are defined as a number of highly reactive molecules that comprise molecular oxygen (O2), superoxide anion (O2•-), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH). ROS exhibit antimicrobial actions against a broad range of pathogens through the induction of oxidative stress, which is an imbalance between ROS and the ability of the antioxidant defence system to detoxify ROS. ROS-dependent oxidative stress can damage cellular macromolecules, including DNA, lipids and proteins. This article reviews the antimicrobial action of ROS, challenges to ROS hypothesis, work to solidify ROS-mediated antimicrobial lethality hypothesis, recent developments in antimicrobial agents using ROS as an antimicrobial strategy, safety concerns related to ROS, and future directions in ROS research.
Collapse
Affiliation(s)
- P-L Lam
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - R S-M Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - K-H Lam
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - L-K Hung
- Research and Development Division, Kamford Genetics Company Limited, Hong Kong, China
| | - M-M Wong
- Research and Development Division, Kamford Genetics Company Limited, Hong Kong, China
| | - L-H Yung
- Research and Development Division, Kamford Genetics Company Limited, Hong Kong, China
| | - Y-W Ho
- Allways Health Care Medical Centre, Tsuen Wan, Hong Kong, China
| | - W-Y Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - D K-P Hau
- One Health International Limited, Shatin, Hong Kong, China.
| | - R Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy.
| | - C-H Chui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Research and Development Division, Kamford Genetics Company Limited, Hong Kong, China.
| |
Collapse
|
50
|
Clarance P, Luvankar B, Sales J, Khusro A, Agastian P, Tack JC, Al Khulaifi MM, AL-Shwaiman HA, Elgorban AM, Syed A, Kim HJ. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J Biol Sci 2020; 27:706-712. [PMID: 32210692 PMCID: PMC6997865 DOI: 10.1016/j.sjbs.2019.12.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to explore the anticancer potentials of the gold nanoparticles (NPs) obtained by green synthesis method using an endophytic strain Fusarium solani ATLOY - 8 has been isolated from the plant Chonemorpha fragrans. The formation of the NPs was analyzed by UV, FTIR, SEM and XRD. The synthesized NPs showed pink-ruby red colors and high peak plasmon band was observed between 510 and 560 nm. It is observed that intensity of absorption steadily increases the wavelength and band stabilizes at 551 nm. The XRD pattern revealed the angles at 19, 38.32, 46.16, 57.50, and 76.81° respectively. Interestingly, the FTIR band absorption noted at 1413 cm-1, 1041 cm-1 and 690 cm-1 ascribed the presence of amine II bands of protein, C-N and C-H stretching vibrations of the nanoparticles. SEM analysis indicated that the average diameter of the synthesized nanoparticles was between 40 and 45 nm. These NPs showed cytotoxicity on cervical cancer cells (He La) and against human breast cancer cells (MCF-7) and the NPs exhibited dose dependent cytotoxic effect. IC50 value was 0.8 ± 0.5 μg/mL on MCF-7 cell line and was found to be 1.3 ± 0.5 μg/mL on MCF-7 cell lines. The synthesized NPs induced apoptosis on these cancer cell lines. The accumulation of apoptotic cells decreased in sub G0 and G1 phase of cell cycle in the MCF-7 cancer cells were found to be 55.13%, 52.11% and 51.10% after 12 h exposure to different concentrations. The results altogether provide an apparent and versatile biomedical application for safer chemotherapeutic agent with little systemic toxicity.
Collapse
Affiliation(s)
- Prince Clarance
- Department of Plant Biology & Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Ben Luvankar
- Department of Plant Biology & Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Jerin Sales
- Department of Plant Biology & Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Ameer Khusro
- Department of Plant Biology & Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Paul Agastian
- Department of Plant Biology & Biotechnology, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - J.-C. Tack
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Manal M. Al Khulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hind A. AL-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - H.-J. Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|