1
|
Guimarães EFS, Graça GAP, Diogo EBT, Almeida RG, Pereira DB, Araujo MH, da Silva CDG, Gatto CC, Ramos VFS, Menna-Barreto RFS, Jardim GAM, da Silva Júnior EN. Electrochemical Halogenation of Naphthoquinones: A Modular and Sustainable Strategy Towards Trypanocidal Compounds. Chem Asian J 2024; 19:e202401050. [PMID: 39323072 DOI: 10.1002/asia.202401050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
An eco-friendly electrochemical halogenation of 2-amino-1,4-naphthoquinones has been developed. The new mild and energy efficient methodology comprises sustainable features like oxidant free and double role of the halogen source as electrolyte, originating twenty-six amino-halogenated naphthoquinoidal derivatives in good yields under mild conditions. This novel methodology permitted access to new potent trypanocidal prototypes, where six compounds were more active than benznidazole, the current market drug used in the treatment of Chagas Disease.
Collapse
Affiliation(s)
- Eduardo F S Guimarães
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela A P Graça
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Emilay B T Diogo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Renata G Almeida
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Daiane B Pereira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria H Araujo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Caren D G da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Claudia C Gatto
- Instituto de Química, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Victor F S Ramos
- Laboratório de Biologia Celular, IOC, FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
| | | | - Guilherme A M Jardim
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
2
|
Li F, Lin Z, Schmidt EW. Molecular basis of pigment structural diversity in echinoderms. iScience 2024; 27:110834. [PMID: 39310768 PMCID: PMC11414698 DOI: 10.1016/j.isci.2024.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
The varied pigments found in animals play both ecological and physiological roles. Virtually all echinoderms contain putative pigment biosynthetic enzymes, the polyketide synthases (PKSs). Among these, crinoids have complex pigments found both today and in ancient fossils. Here, we characterize a key pigment biosynthetic enzyme, CrPKS from the crinoid Anneissia japonica. We show that CrPKS produces 14-carbon aromatic pigment precursors. Despite making a compound previously found in fungi, the crinoid enzyme operates by different biochemical principles, helping to explain the diverse animal PKSs found throughout the metazoan (animal) kingdom. Unlike SpPks1 from sea urchins that had strict starter unit selectivity, CrPKS also incorporated starter units butyryl- or ethylmalonyl-CoA to synthesize a crinoid pigment precursor with a saturated side chain. By performing biochemical experiments, we show how changes in the echinoderm pigment biosynthetic enzymes unveil the vast variety of colors found in animals today.
Collapse
Affiliation(s)
- Feng Li
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Park S, Oh HY, Go HJ, Kubarova A, Lim JY, Choi J, Oh HM, Park NG. Screening and purification of antimicrobial materials from coelomic fluid of sea urchin, Heliocidaris crassispina. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109766. [PMID: 39009195 DOI: 10.1016/j.fsi.2024.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Marine organisms, such as sea urchins like Heliocidaris crassispina, produce bioactive substances with antimicrobial activity to protect themselves from the high density of microorganisms in their habitats. One such substance, Echinochrome A (Ech A), has been isolated from various sea urchins' shells and spines using strong acidic solutions and organic solvents. Ech A, however, has not been reported from the coelomic fluid of H. crassispina. In this study, we report the antimicrobial activity of H. crassispina coelomic fluid extract against various microbes, evaluating its potential for purifying potent antimicrobial materials. Upon confirming the extract as a promising source of antimicrobial materials, we isolated antimicrobial compounds from the extract. A series of HPLC steps were taken to purify antimicrobial materials from the H. crassispina coelomic fluid extract, resulting in the isolation of two single absorbance peaks showing antimicrobial activity against Staphylococcus aureus. One peak consisted of a single antimicrobial compound with a molecular weight (MW) corresponding to Ech A, while the other peak comprised five MWs inferred to be those of Ech A and its oxidative products. The elution of Ech A in two separate peaks may be attributable to the presence of Ech A's isomer, as reported in several previous studies. The use of the environmentally friendly extraction method in procurement of Ech A from the coelomic fluid would contribute to the implementation of risk-reducing extraction method for researchers studying Ech A from sea urchins.
Collapse
Affiliation(s)
- Soohyun Park
- School of Marine and Fisheries Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hye Young Oh
- Institute of Marine Life Science, Pukyong National University, Busan, 48513, Republic of Korea; Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hye-Jin Go
- Institute of Marine Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Anastasia Kubarova
- Institute of Marine Life Science, Pukyong National University, Busan, 48513, Republic of Korea; Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae Young Lim
- School of Marine and Fisheries Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Junseong Choi
- School of Marine and Fisheries Life Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Myoung Oh
- Institute of Liberal Arts Education, Pukyong National University, Busan, 48547, Republic of Korea
| | - Nam Gyu Park
- School of Marine and Fisheries Life Science, Pukyong National University, Busan, 48513, Republic of Korea; Department of Biotechnology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
4
|
Roncoroni M, Martinelli G, Farris S, Marzorati S, Sugni M. Sea Urchin Food Waste into Bioactives: Collagen and Polyhydroxynaphtoquinones from P. lividus and S. granularis. Mar Drugs 2024; 22:163. [PMID: 38667780 PMCID: PMC11051063 DOI: 10.3390/md22040163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Approximately 75,000 tons of different sea urchin species are globally harvested for their edible gonads. Applying a circular economy approach, we have recently demonstrated that non-edible parts of the Mediterranean Sea urchin Paracentrotus lividus can be fully valorized into high-value products: antioxidant pigments (polyhydroxynaphthoquinones-PHNQs) and fibrillar collagen can be extracted to produce innovative biomaterials for biomedical applications. Can waste from other edible sea urchin species (e.g., Sphaerechinus granularis) be similarly valorised? A comparative study on PHNQs and collagen extraction was conducted. PHNQ extraction yields were compared, pigments were quantified and identified, and antioxidant activities were assessed (by ABTS assay) and correlated to specific PHNQ presence (i.e., spinochrome E). Similarly, collagen extraction yields were evaluated, and the resulting collagen-based biomaterials were compared in terms of their ultrastructure, degradation kinetics, and resistance to compression. Results showed a partially similar PHNQ profile in both species, with significantly higher yield in P. lividus, while S. granularis exhibited better antioxidant activity. P. lividus samples showed higher collagen extraction yield, but S. granularis scaffolds showed higher stability. In conclusion, waste from different species can be successfully valorised through PHNQ and collagen extraction, offering diverse applications in the biomedical field, according to specific technical requirements.
Collapse
Affiliation(s)
- Margherita Roncoroni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy; (M.R.); (G.M.); (M.S.)
| | - Giordana Martinelli
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy; (M.R.); (G.M.); (M.S.)
| | - Stefano Farris
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Stefania Marzorati
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy; (M.R.); (G.M.); (M.S.)
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy; (M.R.); (G.M.); (M.S.)
| |
Collapse
|
5
|
Lixi F, Vitiello L, Giannaccare G. Marine Natural Products Rescuing the Eye: A Narrative Review. Mar Drugs 2024; 22:155. [PMID: 38667772 PMCID: PMC11050997 DOI: 10.3390/md22040155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Different degrees of visual impairment lead to a decrease in patient wellbeing, which has an adverse effect on many facets of social and professional life. Eye disorders can affect several parts of the eye, most notably the retina and the cornea, and the impacted areas might share a common form of cellular damage or dysfunction (such as inflammation, oxidative stress and neuronal degeneration). Considering that marine organisms inhabit a broad variety of marine habitats, they display a great degree of chemical diversity. As a result, molecules with a marine origin are receiving more and more attention in the hopes of developing novel therapeutic approaches. For instance, fucoxanthin has been demonstrated to be effective in protecting the retina against photo-induced damage, while largazole, astaxanthin and spirulina have all shown antioxidant, anti-inflammatory and antiapoptotic activities that can be useful for the management of several ocular diseases, such as age-related macular degeneration and ocular surface disorders. The aim of this review is to analyze the scientific literature relating to the therapeutic effects on the eye of the main natural marine products, focusing on their mechanism of action and potential clinical uses for the management of ocular diseases.
Collapse
Affiliation(s)
- Filippo Lixi
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, Italy;
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| |
Collapse
|
6
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Pelageev DN, Borisova KL, Anufriev VP. Dimeric (Poly)Hydroxynaphthazarins, Metabolites of Echinoderms and Lichens: The History of the Synthesis and Structure Elucidation. Mar Drugs 2023; 21:407. [PMID: 37504938 PMCID: PMC10381475 DOI: 10.3390/md21070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
This review provides information on the synthesis and revision of the structures of natural dimeric (poly)hydroxynaphthazarins, metabolites of echinoderms and lichens, and on the refinement of the direction and mechanism of reactions in the synthesis of some of these compounds.
Collapse
Affiliation(s)
- Dmitry N Pelageev
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Ksenia L Borisova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia
| | - Victor Ph Anufriev
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russia
| |
Collapse
|
8
|
Ageenko NV, Kiselev KV, Odintsova NA. Quinoid Pigments of Sea Urchins Scaphechinus mirabilis and Strongylocentrotus intermedius: Biological Activity and Potential Applications. Mar Drugs 2022; 20:611. [PMID: 36286435 PMCID: PMC9605347 DOI: 10.3390/md20100611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
This review presents literature data: the history of the discovery of quinoid compounds, their biosynthesis and biological activity. Special attention is paid to the description of the quinoid pigments of the sea urchins Scaphechinus mirabilis (from the family Scutellidae) and Strongylocentrotus intermedius (from the family Strongylocentrotidae). The marine environment is considered one of the most important sources of natural bioactive compounds with extremely rich biodiversity. Primary- and some secondary-mouthed animals contain very high concentrations of new biologically active substances, many of which are of significant potential interest for medical purposes. The quinone pigments are products of the secondary metabolism of marine animals, can have complex structures and become the basis for the development of new natural products in echinoids that are modulators of chemical interactions and possible active ingredients in medicinal preparations. More than 5000 chemical compounds with high pharmacological potential have been isolated and described from marine organisms. There are three well known ways of naphthoquinone biosynthesis-polyketide, shikimate and mevalonate. The polyketide pathway is the biosynthesis pathway of various quinones. The shikimate pathway is the main pathway in the biosynthesis of naphthoquinones. It should be noted that all quinoid compounds in plants and animals can be synthesized by various ways of biosynthesis.
Collapse
Affiliation(s)
- Natalya V. Ageenko
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Federal State Budgetary Institution of Science, The Far Eastern Branch of the Russian Academy of Sciences (FEB RAS), 690041 Vladivostok, Russia
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Federal State Budgetary Institution of Science, FEB RAS, 690022 Vladivostok, Russia
| | - Nelly A. Odintsova
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Federal State Budgetary Institution of Science, The Far Eastern Branch of the Russian Academy of Sciences (FEB RAS), 690041 Vladivostok, Russia
| |
Collapse
|
9
|
Li F, Lin Z, Torres JP, Hill EA, Li D, Townsend CA, Schmidt EW. Sea Urchin Polyketide Synthase SpPks1 Produces the Naphthalene Precursor to Echinoderm Pigments. J Am Chem Soc 2022; 144:9363-9371. [PMID: 35588530 DOI: 10.1021/jacs.2c01416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly every animal species on Earth contains a unique polyketide synthase (PKS) encoded in its genome, yet no animal-clade PKS has been biochemically characterized, and even the chemical products of these ubiquitous enzymes are known in only a few cases. The earliest animal genome-encoded PKS gene to be identified was SpPks1 from sea urchins. Previous genetic knockdown experiments implicated SpPks1 in synthesis of the sea urchin pigment echinochrome. Here, we express and purify SpPks1, performing biochemical experiments to demonstrate that the sea urchin protein is responsible for the synthesis of 2-acetyl-1,3,6,8-tetrahydroxynaphthalene (ATHN). Since ATHN is a plausible precursor of echinochromes, this result defines a biosynthetic pathway to the ubiquitous echinoderm pigments and rewrites the previous hypothesis for echinochrome biosynthesis. Truncation experiments showed that, unlike other type I iterative PKSs so far characterized, SpPks1 produces the naphthalene core using solely ketoacylsynthase (KS), acyltransferase, and acyl carrier protein domains, delineating a unique class of animal nonreducing aromatic PKSs (aPKSs). A series of amino acids in the KS domain define the family and are likely crucial in cyclization activity. Phylogenetic analyses indicate that SpPks1 and its homologs are widespread in echinoderms and their closest relatives, the acorn worms, reinforcing their fundamental importance to echinoderm biology. While the animal microbiome is known to produce aromatic polyketides, this work provides biochemical evidence that animals themselves also harbor ancient, convergent, dedicated pathways to carbocyclic aromatic polyketides. More fundamentally, biochemical analysis of SpPks1 begins to define the vast and unexplored biosynthetic space of the ubiquitous animal PKS family.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China.,Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric A Hill
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Hira J, Stensvåg K. Evidence for association of Vibrio echinoideorum with tissue necrosis on test of the green sea urchin Strongylocentrotus droebachiensis. Sci Rep 2022; 12:4859. [PMID: 35318339 PMCID: PMC8940906 DOI: 10.1038/s41598-022-08772-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
"Sea urchin lesion syndrome" is known as sea urchin disease with the progressive development of necrotic epidermal tissue and loss of external organs, including appendages on the outer body surface. Recently, a novel strain, Vibrio echinoideorum has been isolated from the lesion of green sea urchin (Strongylocentrotus droebachiensis), an economically important mariculture species in Norway. V. echinoideorum has not been reported elsewhere in association with green sea urchin lesion syndrome. Therefore, in this study, an immersion based bacterial challenge experiment was performed to expose sea urchins (wounded and non-wounded) to V. echinoideorum, thereby mimicking a nearly natural host-pathogen interaction under controlled conditions. This infection experiment demonstrated that only the injured sea urchins developed the lesion to a significant degree when exposed to V. echinoideorum. Pure cultures of the employed bacterial strain were recovered from the infected animals and its identity was confirmed by the MALDI-TOF MS spectra profiling. Additionally, the hemolytic phenotype of V. echinoideorum substantiated its virulence potential towards the host, and this was also supported by the cytolytic effect on red spherule cells of sea urchin. Furthermore, the genome sequence of V. echinoideorum was assumed to encode potential virulence genes and were subjected to in silico comparison with the established virulence factors of Vibrio vulnificus and Vibrio tasmaniensis. This comparative virulence profile provided novel insights about virulence genes and their putative functions related to chemotaxis, adherence, invasion, evasion of the host immune system, and damage of host tissue and cells. Thus, it supports the pathogenicity of V. echinoideorum. In conclusion, the interaction of V. echinoideorum with injured sea urchin facilitates the development of lesion syndrome and therefore, revealing its potentiality as an opportunistic pathogen.
Collapse
Affiliation(s)
- Jonathan Hira
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Klara Stensvåg
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
11
|
Soleimani S, Mashjoor S, Yousefzadi M, Kumar M. Multi-target bioactivity of summer quinones production in the Persian Gulf burrowing black-type sea urchin. Heliyon 2022; 8:e09044. [PMID: 35284673 PMCID: PMC8908023 DOI: 10.1016/j.heliyon.2022.e09044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
After harvesting the sea urchin gonads for Japanese food "uni" echinoculture systems, the remaining shells and spines are considered waste. However, the material of shells and spines is thought to be rich in natural bioactive molecules. The current study used liquid chromatography-electrospray mass spectrometry to extract summer quinones pigment present in spines and shells of the burrowing sea urchin 'black' type Echinometra mathaei from the natural Qeshm Island echinoculture. Then, the biochemical, antioxidant, anti-inflammatory, antidiabetic, antibacterial, and cytotoxic activities of sea urchin quinones pigment were investigated. In terms of bioactivity, both shell and spine pigments demonstrated strong radical scavenging activity (antioxidant). The shell pigment exhibited maximum albumin denaturation inhibition (IC50 = 9.62 μg/ml) (anti-inflammatory), as well as α-amylase inhibition (92.28 percent 4.77) (antidiabetic). Pigments were discovered to have a low antibacterial effect against positive gramme bacteria, as well as low cytotoxic and embryotoxic effects when compared to Artemia salina and zebrafish (Danio rerio). For identification and quantification of pigment extracts, both the photodiode array detector and LC-ESI-MS were used. Spinochrome A, B, and C, as well as echinochrome A, were identified as bioactive quinonoid pigments. This chemical defence is discussed in relation to its algal diet and environmental conditions. In conclusion, the isolated pigments obtained from the shell and spines of E. mathaei sea urchins found to have potent bio-activity and can be used for various biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Sakineh Mashjoor
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (BHU), Varanasi, India
| |
Collapse
|
12
|
Synthesis and X-Ray Crystallographical Analysis of 5, 8-Dihydroxy-1, 4-Naphthoquinonne, Cobalt (II), Nickel (II) and Copper (II) Chelate Complexes. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Mahomoodally MF, Sanaa DA, Zengin G, Gallo M, Montesano D. Traditional Therapeutic Uses of Marine Animal Parts and Derived Products as Functional Foods – A Systematic Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Mauritius
| | - Dilmar Aniisah Sanaa
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Mauritius
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk Universtiy, Konya, Turkey
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
TG, DTA Pyrolytic Analysis of Cobalt, Nickel, Copper, Zinc, and 5,8-Dihydroxy-1,4-Naphthoquinone Chelate Complexes. J CHEM-NY 2021. [DOI: 10.1155/2021/6691137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The solid state reactions identified on the TG traces with correspondence to DTG peaks consequent to the nonisothermal decomposition of polymetallic chelates of the naphthazarin with Zn (II), Co (II), Ni (II), and Cu (II) over the temperature range ambient at 800°C have been studied kinetically following the Dave and Chopra method as these solid state reactions exhibited their resemblance with the Freeman recommended reaction for kinetic studies. The solid state reactions as described followed first order kinetics. The kinetic data showed the very low value of Z for each of the solid state reaction in reference, concluding on the solid state reactions (the nonisothermal decomposition of polymetallic chelate of Zn (II), Co (II), Ni (II), and Cu (II) as slow reactions).
Collapse
|
15
|
Kalinin VI. Echinoderms Metabolites: Structure, Functions, and Biomedical Perspectives. Mar Drugs 2021; 19:125. [PMID: 33652699 PMCID: PMC7996750 DOI: 10.3390/md19030125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Echinoderms are marine invertebrates belonging to the phylum Echinodermata (from the Ancient Greek words "echinos" (hedgehog) and "derma" (skin)). [...].
Collapse
Affiliation(s)
- Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| |
Collapse
|
16
|
Vasileva EA, Mishchenko NP, Tran VTT, Vo HMN, Fedoreyev SA. Spinochrome Identification and Quantification in Pacific Sea Urchin Shells, Coelomic Fluid and Eggs Using HPLC-DAD-MS. Mar Drugs 2021; 19:21. [PMID: 33419049 PMCID: PMC7825409 DOI: 10.3390/md19010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
The high-performance liquid chromatography method coupled with diode array and mass spectrometric detector (HPLC-DAD-MS) method for quinonoid pigment identification and quantification in sea urchin samples was developed and validated. The composition and quantitative ratio of the quinonoid pigments of the shells of 16 species of sea urchins, collected in the temperate (Sea of Japan) and tropical (South-China Sea) climatic zones of the Pacific Ocean over several years, were studied. The compositions of the quinonoid pigments of sea urchins Maretia planulata, Scaphechinus griseus, Laganum decagonale and Phyllacanthus imperialis were studied for the first time. A study of the composition of the quinonoid pigments of the coelomic fluid of ten species of sea urchins was conducted. The composition of quinonoid pigments of Echinarachnius parma jelly-like egg membrane, of Scaphechinus mirabilis developing embryos and pluteus, was reported for the first time. In the case of Scaphechinus mirabilis, we have shown that the compositions of pigment granules of the shell epidermis, coelomic fluid, egg membrane, developing embryos and pluteus are different, which should enable a fuller understanding of the functions of pigments at different stages of life.
Collapse
Affiliation(s)
- Elena A. Vasileva
- Laboratory of the Chemistry of Natural Quinonoid Compounds, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia; (N.P.M.); (S.A.F.)
| | - Natalia P. Mishchenko
- Laboratory of the Chemistry of Natural Quinonoid Compounds, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia; (N.P.M.); (S.A.F.)
| | - Van T. T. Tran
- Nhatrang Institute of Technology Research and Application, VAST, Khanh Hoa 650000, Vietnam; (V.T.T.T.); (H.M.N.V.)
| | - Hieu M. N. Vo
- Nhatrang Institute of Technology Research and Application, VAST, Khanh Hoa 650000, Vietnam; (V.T.T.T.); (H.M.N.V.)
| | - Sergey A. Fedoreyev
- Laboratory of the Chemistry of Natural Quinonoid Compounds, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia; (N.P.M.); (S.A.F.)
| |
Collapse
|
17
|
Polonik S, Likhatskaya G, Sabutski Y, Pelageev D, Denisenko V, Pislyagin E, Chingizova E, Menchinskaya E, Aminin D. Synthesis, Cytotoxic Activity Evaluation and Quantitative Structure-Activity Analysis of Substituted 5,8-Dihydroxy-1,4-Naphthoquinones and their O- and S-Glycoside Derivatives Tested Against Neuro-2a Cancer Cells. Mar Drugs 2020; 18:E602. [PMID: 33260299 PMCID: PMC7761386 DOI: 10.3390/md18120602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Based on 6,7-substituted 2,5,8-trihydroxy-1,4-naphtoquinones (1,4-NQs) derived from sea urchins, five new acetyl-O-glucosides of NQs were prepared. A new method of conjugation of per-O-acetylated 1-mercaptosaccharides with 2-hydroxy-1,4-NQs through a methylene spacer was developed. Methylation of 2-hydroxy group of quinone core of acetylthiomethylglycosides by diazomethane and deacetylation of sugar moiety led to 28 new thiomethylglycosidesof 2-hydroxy- and 2-methoxy-1,4-NQs. The cytotoxic activity of starting 1,4-NQs (13 compounds) and their O- and S-glycoside derivatives (37 compounds) was determined by the MTT method against Neuro-2a mouse neuroblastoma cells. Cytotoxic compounds with EC50 = 2.7-87.0 μM and nontoxic compounds with EC50 > 100 μM were found. Acetylated O- and S-glycosides 1,4-NQs were the most potent, with EC50 = 2.7-16.4 μM. Methylation of the 2-OH group innaphthoquinone core led to a sharp increase in the cytotoxic activity of acetylated thioglycosidesof NQs, which was partially retained for their deacetylated derivatives. Thiomethylglycosides of 2-hydroxy-1,4-NQs with OH and MeO groups in quinone core at positions 6 and 7, resprectively formed a nontoxic set of compounds with EC50 > 100 μM. A quantitative structure-activity relationship (QSAR) model of cytotoxic activity of 22 1,4-NQ derivatives was constructed and tested. Descriptors related to the cytotoxic activity of new 1,4-NQ derivatives were determined. The QSAR model is good at predicting the activity of 1,4-NQ derivatives which are unused for QSAR models and nontoxic derivatives.
Collapse
Affiliation(s)
- Sergey Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Galina Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Yuri Sabutski
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Dmitry Pelageev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
- School of Natural Sciences, Far Eastern Federal University, Sukhanova St. 8, 690091 Vladivostok, Russia
| | - Vladimir Denisenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Evgeny Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Ekaterina Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Ekaterina Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
| | - Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry of Far Eastern Branch of Russian Academy of Sciences, Prospekt 100-let Vladivostoku, 159, 690022 Vladivostok, Russia; (S.P.); (G.L.); (Y.S.); (D.P.); (V.D.); (E.P.); (E.C.); (E.M.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
18
|
Mishchenko NP, Krylova NV, Iunikhina OV, Vasileva EA, Likhatskaya GN, Pislyagin EA, Tarbeeva DV, Dmitrenok PS, Fedoreyev SA. Antiviral Potential of Sea Urchin Aminated Spinochromes against Herpes Simplex Virus Type 1. Mar Drugs 2020; 18:E550. [PMID: 33167501 PMCID: PMC7694471 DOI: 10.3390/md18110550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is one of the most prevalent pathogens worldwide requiring the search for new candidates for the creation of antiherpetic drugs. The ability of sea urchin spinochromes-echinochrome A (EchA) and its aminated analogues, echinamines A (EamA) and B (EamB)-to inhibit different stages of HSV-1 infection in Vero cells and to reduce the virus-induced production of reactive oxygen species (ROS) was studied. We found that spinochromes exhibited maximum antiviral activity when HSV-1 was pretreated with these compounds, which indicated the direct effect of spinochromes on HSV-1 particles. EamB and EamA both showed the highest virucidal activity by inhibiting the HSV-1 plaque formation, with a selectivity index (SI) of 80.6 and 50.3, respectively, and a reduction in HSV-1 attachment to cells (SI of 8.5 and 5.8, respectively). EamA and EamB considerably suppressed the early induction of ROS due to the virus infection. The ability of the tested compounds to directly bind to the surface glycoprotein, gD, of HSV-1 was established in silico. The dock score of EchA, EamA, and EamB was -4.75, -5.09, and -5.19 kcal/mol, respectively, which correlated with the SI of the virucidal action of these compounds and explained their ability to suppress the attachment and penetration of the virus into the cells.
Collapse
Affiliation(s)
- Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.A.V.); (G.N.L.); (E.A.P.); (D.V.T.); (P.S.D.); (S.A.F.)
| | - Natalia V. Krylova
- G.P. Somov Institute of Epidemiology and Microbiology, Far-Eastern Branch of the Russian Academy of Sciences, 690087 Vladivostok, Russia; (N.V.K.); (O.V.I.)
| | - Olga V. Iunikhina
- G.P. Somov Institute of Epidemiology and Microbiology, Far-Eastern Branch of the Russian Academy of Sciences, 690087 Vladivostok, Russia; (N.V.K.); (O.V.I.)
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.A.V.); (G.N.L.); (E.A.P.); (D.V.T.); (P.S.D.); (S.A.F.)
| | - Galina N. Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.A.V.); (G.N.L.); (E.A.P.); (D.V.T.); (P.S.D.); (S.A.F.)
| | - Evgeny A. Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.A.V.); (G.N.L.); (E.A.P.); (D.V.T.); (P.S.D.); (S.A.F.)
| | - Darya V. Tarbeeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.A.V.); (G.N.L.); (E.A.P.); (D.V.T.); (P.S.D.); (S.A.F.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.A.V.); (G.N.L.); (E.A.P.); (D.V.T.); (P.S.D.); (S.A.F.)
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (E.A.V.); (G.N.L.); (E.A.P.); (D.V.T.); (P.S.D.); (S.A.F.)
| |
Collapse
|
19
|
Mishchenko NP, Vasileva EA, Gerasimenko AV, Grigorchuk VP, Dmitrenok PS, Fedoreyev SA. Isolation and Structure Determination of Echinochrome A Oxidative Degradation Products. Molecules 2020; 25:E4778. [PMID: 33080948 PMCID: PMC7587531 DOI: 10.3390/molecules25204778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/13/2023] Open
Abstract
Echinochrome A (Ech A, 1) is one of the main pigments of several sea urchin species and is registered in the Russian pharmacopeia as an active drug substance (Histochrome®), used in the fields of cardiology and ophthalmology. In this study, Ech A degradation products formed during oxidation by O2 in air-equilibrated aqueous solutions were identified, isolated, and structurally characterized. An HPLC method coupled with diode-array detection (DAD) and mass spectrometry (MS) was developed and validated to monitor the Ech A degradation process and identify the appearing compounds. Five primary oxidation products were detected and their structures were proposed on the basis of high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as 7-ethyl-2,2,3,3,5,7,8-heptahydroxy-2,3-dihydro-1,4-naphthoquinone (2), 6-ethyl-5,7,8-trihydroxy-1,2,3,4-tetrahydronaphthalene-1,2,3,4-tetraone (3), 2,3-epoxy-7-ethyl-2,3-dihydro-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone (4), 2,3,4,5,7-pentahydroxy-6-ethylinden-1-one (5), and 2,2,4,5,7-pentahydroxy-6-ethylindane-1,3-dione (6). Three novel oxidation products were isolated, and NMR and HR-ESI-MS methods were used to establish their structures as 4-ethyl-3,5,6-trihydroxy-2-oxalobenzoic acid (7), 4-ethyl-2-formyl-3,5,6-trihydroxybenzoic acid (8), and 4-ethyl-2,3,5-trihydroxybenzoic acid (9). The known compound 3-ethyl-2,5-dihydroxy-1,4-benzoquinone (10) was isolated along with products 7-9. Compound 7 turned out to be unstable; its anhydro derivative 11 was obtained in two crystal forms, the structure of which was elucidated using X-ray crystallography as 7-ethyl-5,6-dihydroxy-2,3-dioxo-2,3-dihydrobenzofuran-4-carboxylic acid and named echinolactone. The chemical mechanism of Ech A oxidative degradation is proposed. The in silico toxicity of Ech A and its degradation products 2 and 7-10 were predicted using the ProTox-II webserver. The predicted median lethal dose (LD50) value for product 2 was 221 mg/kg, and, for products 7-10, it appeared to be much lower (≥2000 mg/kg). For Ech A, the predicted toxicity and mutagenicity differed from our experimental data.
Collapse
Affiliation(s)
- Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (E.A.V.); (P.S.D.); (S.A.F.)
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (E.A.V.); (P.S.D.); (S.A.F.)
| | - Andrey V. Gerasimenko
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia;
| | - Valeriya P. Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far-Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia;
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (E.A.V.); (P.S.D.); (S.A.F.)
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia; (E.A.V.); (P.S.D.); (S.A.F.)
| |
Collapse
|
20
|
Anti-inflammatory polyoxygenated furanocembranoids, salmacembranes A–B from the sea urchin Salmacis bicolor attenuate pro-inflammatory cyclooxygenases and lipoxygenase. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Hou Y, Carne A, McConnell M, Mros S, Bekhit AA, El-Din A Bekhit A. Macroporous resin extraction of PHNQs from Evechinus chloroticus sea urchin and their in vitro antioxidant, anti-bacterial and in silico anti-inflammatory activities. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Hou Y, Carne A, McConnell M, Mros S, Vasileva EA, Mishchenko NP, Burrow K, Wang K, Bekhit AA, Bekhit AEDA. PHNQ from Evechinus chloroticus Sea Urchin Supplemented with Calcium Promotes Mineralization in Saos-2 Human Bone Cell Line. Mar Drugs 2020; 18:E373. [PMID: 32707634 PMCID: PMC7404214 DOI: 10.3390/md18070373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Polyhydroxylated naphthoquinones (PHNQs), known as spinochromes that can be extracted from sea urchins, are bioactive compounds reported to have medicinal properties and antioxidant activity. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay showed that pure echinochrome A exhibited a cytotoxic effect on Saos-2 cells in a dose-dependent manner within the test concentration range (15.625-65.5 µg/mL). The PHNQ extract from New Zealand sea urchin Evechinus chloroticus did not induce any cytotoxicity within the same concentration range after 21 days of incubation. Adding calcium chloride (CaCl2) with echinochrome A increased the number of viable cells, but when CaCl2 was added with the PHNQs, cell viability decreased. The effect of PHNQs extracted on mineralized nodule formation in Saos-2 cells was investigated using xylenol orange and von Kossa staining methods. Echinochrome A decreased the mineralized nodule formation significantly (p < 0.05), while nodule formation was not affected in the PHNQ treatment group. A significant (p < 0.05) increase in mineralization was observed in the presence of PHNQs (62.5 µg/mL) supplemented with 1.5 mM CaCl2. In conclusion, the results indicate that PHNQs have the potential to improve the formation of bone mineral phase in vitro, and future research in an animal model is warranted.
Collapse
Affiliation(s)
- Yakun Hou
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; (Y.H.); (K.B.); (K.W.)
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Michelle McConnell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (M.M.); (S.M.)
| | - Sonya Mros
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; (M.M.); (S.M.)
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.A.V.); (N.P.M.)
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.A.V.); (N.P.M.)
| | - Keegan Burrow
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; (Y.H.); (K.B.); (K.W.)
| | - Ke Wang
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; (Y.H.); (K.B.); (K.W.)
| | - Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
- Pharmacy Program, Allied Health Department, College of Health Sciences, University of Bahrain, Sakheer P.O. Box 32 038, Bahrain
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand; (Y.H.); (K.B.); (K.W.)
| |
Collapse
|
23
|
In vitro antioxidant and antimicrobial activities, and in vivo anti-inflammatory activity of crude and fractionated PHNQs from sea urchin (Evechinus chloroticus). Food Chem 2020; 316:126339. [DOI: 10.1016/j.foodchem.2020.126339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 11/18/2022]
|
24
|
Hira J, Wolfson D, Andersen AJC, Haug T, Stensvåg K. Autofluorescence mediated red spherulocyte sorting provides insights into the source of spinochromes in sea urchins. Sci Rep 2020; 10:1149. [PMID: 31980652 PMCID: PMC6981155 DOI: 10.1038/s41598-019-57387-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Red spherule cells (RSCs) are considered one of the prime immune cells of sea urchins, but their detailed biological role during immune responses is not well elucidated. Lack of pure populations accounts for one of the major challenges of studying these cells. In this study, we have demonstrated that live RSCs exhibit strong, multi-colour autofluorescence distinct from other coelomocytes, and with the help of fluorescence-activated cell sorting (FACS), a pure population of live RSCs was successfully separated from other coelomocytes in the green sea urchin, Strongylocentrotus droebachiensis. This newly developed RSCs isolation method has allowed profiling of the naphthoquinone content in these cells. With the use of ultra high-performance liquid chromatography, UV absorption spectra, and high-resolution tandem mass spectrometry, it was possible to identify sulphated derivatives of spinochrome C, D, E and spinochrome dimers, which suggests that the RSCs may play an important biological role in the biogenesis of naphthoquinone compounds and regulating their bioactivity.
Collapse
Affiliation(s)
- Jonathan Hira
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Deanna Wolfson
- Department of Physics and Technology, The Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aaron John Christian Andersen
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tor Haug
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klara Stensvåg
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
25
|
Shikov AN, Pozharitskaya ON, Faustova NM, Kosman VM, Makarov VG, Razzazi-Fazeli E, Novak J. Pharmacokinetic Study of Bioactive Glycopeptide from Strongylocentrotus droebachiensis After Intranasal Administration to Rats Using Biomarker Approach. Mar Drugs 2019; 17:E577. [PMID: 31614490 PMCID: PMC6835498 DOI: 10.3390/md17100577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
A glycopeptide fraction (GPF) from internal organs of green sea urchins (Strongylocentrotus droebachiensis Müller, Strongylocentrotidae) has been reported to be an effective bronchitis treatment. In this study, we evaluated the pharmacokinetic and tissue distribution of GPF, following single and repeated intranasal (i/n) administration over the course of seven days in rats. The method measuring lactate dehydrogenase as biomarker was used to analyse the plasma and tissue concentrations of GPF. GPF appears in the plasma 15 min after single i/n administration (100 µg/kg) and reaches its maximum at 45 min. The area under the curve (AUC)0-24 and Cmax were similar using both i/n and intravenous administration, while mean residence time (MRT) and T1/2 after i/n administration were significantly higher compared with intravenous (i/v) administration. The absolute bioavailability of GPF after i/n administration was 89%. The values of tissue availability (ft) provided evidence about the highest concentration of GPF in the nose mucosa (ft = 34.9), followed by spleen (ft = 4.1), adrenal glands (ft = 3.8), striated muscle (ft = 1.8), kidneys (ft = 0.5), and liver (ft = 0.3). After repeated dose administration, GPF exhibited significantly higher AUC0-24 and MRT, indicating its accumulation in the plasma.
Collapse
Affiliation(s)
- Alexander N. Shikov
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia
| | - Olga N. Pozharitskaya
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Natalia M. Faustova
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Vera M. Kosman
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Valery G. Makarov
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia; (O.N.P.); (N.M.F.); (V.M.K.)
| | - Ebrahim Razzazi-Fazeli
- Vetcore facility for Research, University of Veterinary Medicine, Veterinärplatz 1. 1210 Wien, Austria;
| | - Johannes Novak
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, Veterinärplatz 1. 1210 Wien, Austria;
| |
Collapse
|
26
|
Yoon CS, Kim HK, Mishchenko NP, Vasileva EA, Fedoreyev SA, Shestak OP, Balaneva NN, Novikov VL, Stonik VA, Han J. The protective effects of echinochrome A structural analogs against oxidative stress and doxorubicin in AC16 cardiomyocytes. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0044-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Prokopov IA, Kovaleva EL, Minaeva ED, Pryakhina EA, Savin EV, Gamayunova AV, Pozharitskaya ON, Makarov VG, Shikov AN. Animal-derived medicinal products in Russia: Current nomenclature and specific aspects of quality control. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111933. [PMID: 31116966 DOI: 10.1016/j.jep.2019.111933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Animal-derived medicinal products (ADMP) had been extensively used in Russia and became a part of officinal medicine in 1778. AIM OF THE STUDY The aim of the current review was to analyse the ADMPs authorised in the Russian Federation and to identify specific aspects of quality evaluation of these medicinal products. MATERIALS AND METHODS Information of ADMPs was extracted from the online State Register of Medicinal Products of the Russian Federation. At the next stage, we systematically searched library catalogues, E-library.ru, Medline/PubMed, Scopus, Web of Science and Google Scholar databases to find data related to ADMP quality evaluation, clinically proven efficacy and safety. RESULTS For classification of ADMP, we propose an approach based on the raw material used: ADMPs derived from marine organisms, ADMPs from cattle and pigs and ADMPs from other terrestrial animals. The majority of ADMPs authorised in Russia are produced by local manufacturers. ADMPs are available in dosage forms of solution for parenteral administration (35% of all products) and lyophilisates for parenteral use (19%), tablets and capsules (17% and 11%, respectively), ointments (5%) and powders (3%). ADMPs belong to the following pharmacotherapeutic groups: medicines for tissue regeneration and repair stimulators (30%), digestive enzyme products (22%), anticoagulants (17%), proteolytic agents (6%) and medicines for the treatment of chronic prostatitis (5%). The most important approaches to standardisation of ADMPs are implementation of modern requirements for registration dossiers, development of risk-oriented approaches for evaluation of impurities, elaboration of advanced instrumental and in vitro test methods capable of replacing in vivo methods and harmonisation of the potency units used for standardisation. CONCLUSIONS The key features of ADMPs that help them retain their leading position in the pharmaceutical market are as follows: (i) their unique composition usually represented by a complex of biologically active substances; (ii) a high degree of affinity of the active ingredient of an ADMP to the human body and (iii) proved safety and clinical efficiency. Variability in the quality of raw ingredients, epidemiological situation and other conditions pose additional challenges for the development of ADMPs and for the standardisation.
Collapse
Affiliation(s)
- Ilya A Prokopov
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia.
| | - Elena L Kovaleva
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia
| | - Elena D Minaeva
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia
| | - Ekaterina A Pryakhina
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia
| | - Evgenyi V Savin
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia
| | - Alexandra V Gamayunova
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, 8/2 Petrovsky Blvd, Moscow, 127051, Russia
| | - Olga N Pozharitskaya
- Saint-Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo 245, 188663, Russia
| | - Valery G Makarov
- Saint-Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo 245, 188663, Russia
| | - Alexander N Shikov
- Saint-Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo 245, 188663, Russia
| |
Collapse
|
28
|
Sabuzi F, Coletti A, Pomarico G, Floris B, Galloni P, Conte V. Modulating electron transfer in ferrocene-naphthoquinone dyads: New insights in parameters influencing ET efficiency. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Moreno-Ramírez YDR, Martínez-Ávila GCG, González-Hernández VA, Castro-López C, Torres-Castillo JA. Free Radical-Scavenging Capacities, Phenolics and Capsaicinoids in Wild Piquin Chili ( Capsicum annuum var. Glabriusculum). Molecules 2018; 23:E2655. [PMID: 30332792 PMCID: PMC6222680 DOI: 10.3390/molecules23102655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 01/18/2023] Open
Abstract
The total phenolic compounds content, free radical-scavenging capacity and capsaicinoid content in populations of wild Piquin chili (C. annuum) were studied. Aqueous and hydroalcoholic extracts from nine ecotypes were evaluated. High contents of phenolic compounds and free radical-scavenging capacities were observed for both extracts; however, the values that were found for the hydroalcoholic phase were substantially higher. LC-MS analysis allowed for the detection of 32 compounds, where apigenin-8-C-glucoside followed by vanillic acid 1-O-β-o-glucopyranosylester (Isomer I or II) and 7-ethoxy-4-methylcoumarin were the most widely distributed; they were found in more than 89% of the ecotypes. The diversity of identified phenolic compounds was different among ecotypes, allowing them to be distinguished by chemical diversity, free radical-scavenging capacities and heat Scoville units. The total capsaicinoid content was higher in Population I (23.5 mg/g DW) than in Populations II and III, which had contents of 15.3 and 10.7 mg/g DW, respectively. This variability could lead to phytochemical exploitation and the conservation of the natural populations of wild chili.
Collapse
Affiliation(s)
- Yolanda Del Rocio Moreno-Ramírez
- Institute of Applied Ecology, Autonomous University of Tamaulipas, Gulf Division 356, Ciudad Victoria, 87019 Tamaulipas, Mexico.
| | - Guillermo C G Martínez-Ávila
- Laboratory of Chemistry and Biochemistry, School of Agronomy, Autonomous University of Nuevo Leon, General Escobedo, 66050 Nuevo Leon, Mexico.
| | - Víctor Arturo González-Hernández
- Posgrado de Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Texcoco, 56230 Estado de Mexico, Mexico.
| | - Cecilia Castro-López
- Laboratory of Chemistry and Biochemistry, School of Agronomy, Autonomous University of Nuevo Leon, General Escobedo, 66050 Nuevo Leon, Mexico.
| | - Jorge Ariel Torres-Castillo
- Institute of Applied Ecology, Autonomous University of Tamaulipas, Gulf Division 356, Ciudad Victoria, 87019 Tamaulipas, Mexico.
| |
Collapse
|