1
|
Yu X, Hu Y, Li Q, Lv Y, Tang H, Wen L, Cheng Y, Chen Z, Zhang T, Wu H. Overview of various protein engineering strategies to improve the catalytic activity, thermostability, and acid/base stability of β-glucanase. Int J Biol Macromol 2025; 308:142685. [PMID: 40164248 DOI: 10.1016/j.ijbiomac.2025.142685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/02/2025]
Abstract
β-Glucan is highly valued in the food and medical industries due to its various physiological functions. However, its aqueous solution tends to have high viscosity, which negatively impacts the brewing and feed industries. By hydrolyzing β-glucosidic bonds, β-glucanase could reduce the adverse effects of β-glucan. For this reason, β-glucanase is widely utilized in the brewing and animal feed production. The limited thermal and acid stability of β-glucanase restricts its applications in industrial settings. Therefore, it is of great importance to enhance the stability of existing β-glucanases through protein engineering. This review summarizes current integrated technical methods for the molecular modification of β-glucanases, including error-prone PCR, site-saturation mutagenesis, DNA recombination, sequence alignment, N- and C-terminal modifications, surface charge optimization, intermolecular force optimization, and rigidity of flexible regions. The aim is to provide a theoretical basis and practical guidance for the further modification of β-glucanases.
Collapse
Affiliation(s)
- Xun Yu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yang Hu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Qiaoling Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Ying Lv
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Hui Tang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Ting Zhang
- College of Food and Quality Engineering, Nanning University, Nanning, Guangxi 530200, China.
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China; National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.
| |
Collapse
|
2
|
Zhang B, Zhao W, Song D, Lyu X. Regulatory effect of β-glucan secreted by Rhizobium pusense on triglyceride metabolism and their relationships with the modulation of intestinal microbiota in mice fed a high-fat diet. Food Funct 2024; 15:8759-8774. [PMID: 39104327 DOI: 10.1039/d4fo01123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The present study investigated the regulatory effects of β-glucan secreted by Rhizobium pusense (RPG) on triglyceride metabolism and gut microbiota in mice fed a high-fat diet. The results indicated that supplementation with RPG significantly reduced body weight gain, blood glucose levels, and the tissue index of epididymal white adipose tissue (eWAT) and subcutaneous adipose tissue (SAT). Conversely, it increased the tissue index of brown adipose tissue (BAT). Furthermore, RPG supplementation effectively decreased the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in the serum. Regarding its influence on the triglyceride (TG) mechanism, RPG decreased TG levels in both serum and liver, while elevating TG levels in feces. Moreover, it moderated the composition of gut microbiota in mice fed a high-fat diet, particularly altering functionally relevant intestinal microbial phylotypes, leading to enhanced levels of short-chain fatty acids (SCFAs) in feces. Additionally, RPG treatment regulated the mRNA and protein levels of genes responsible for TG metabolism in the AMPK pathway, indicating an impact on TG synthesis and excretion in the liver. Pearson's correlation network analysis demonstrated strong correlations between key microbial phylotypes responsive to RPG intervention and parameters associated with TG metabolic disorders. SCFA levels were also found to correlate with the mRNA expression levels of genes involved in TG metabolism. Finally, lipidomics analyses were performed to investigate the underlying mechanisms of RPG intervention (glycerophospholipid metabolic pathway) and to identify potential lipid biomarkers, such as TG (18:2/20:4/22:6), TG (18:1/20:4/22:6), TG (20:1/18:1/22:4), PC (17:0/20:4), TG (18:1/20:4/22:5), PC (22:4/22:6), PC (20:0/22:6), PC (20:0e/20:4), DG (18:3e/18:2), DG (10:0/18:2), DG (18:2/14:2), TG (10:0/18:2/20:4), TG (16:1/14:3/18:2) and TG (16:0/14:2/22:6). Overall, our results suggest that RPG could activate the hepatic AMPK signaling pathway by regulating gut microbiota and metabolites through gut-liver crosstalk to exert a lipid-lowering effect in mice fed a high-fat diet and improve obesity.
Collapse
Affiliation(s)
- Bin Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Dong Song
- Jiangxi Baiyue Food Co. Ltd, Pingxiang, Jiangxi 337000, People's Republic of China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
3
|
El Omari N, Bakrim S, Khalid A, Abdalla AN, Iesa MAM, El Kadri K, Tang SY, Goh BH, Bouyahya A. Unveiling the molecular mechanisms: dietary phytosterols as guardians against cardiovascular diseases. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:27. [PMID: 38722432 PMCID: PMC11082103 DOI: 10.1007/s13659-024-00451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Until recently, the main pharmaceuticals used to control cholesterol and prevent cardiovascular disease (CVD) were statin-related drugs, known for their historical side effects. Therefore, there is growing interest in exploring alternatives, such as nutritional and dietary components, that could play a central role in CVD prevention. This review aims to provide a comprehensive understanding of how natural phytosterols found in various diets combat CVDs. We begin with a description of the overall approach, then we explore in detail the different direct and indirect mechanisms that contribute to reducing cardiovascular incidents. Phytosterols, including stigmasterol, β-sitosterol, ergosterol, and fucosterol, emerge as promising molecules within nutritional systems for protection against CVDs due to their beneficial effects at different levels through direct or indirect cellular, subcellular, and molecular mechanisms. Specifically, the mentioned phytosterols exhibit the ability to diminish the generation of various radicals, including hydroperoxides and hydrogen peroxide. They also promote the activation of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione, while inhibiting lipid peroxidation through the activation of Nrf2 and Nrf2/heme oxygenase-1 (HO-1) signaling pathways. Additionally, they demonstrate a significant inhibitory capacity in the generation of pro-inflammatory cytokines, thus playing a crucial role in regulating the inflammatory/immune response by inhibiting the expression of proteins involved in cellular signaling pathways such as JAK3/STAT3 and NF-κB. Moreover, phytosterols play a key role in reducing cholesterol absorption and improving the lipid profile. These compounds can be used as dietary supplements or included in specific diets to aid control cholesterol levels, particularly in individuals suffering from hypercholesterolemia.
Collapse
Affiliation(s)
- Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, 80000, Agadir, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, 45142, Jazan, Saudi Arabia.
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mohamed A M Iesa
- Department of Physiology, Al Qunfudah Medical College, Umm Al Qura University, Mecca, Saudi Arabia
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Rabat, Morocco
| | - Siah Ying Tang
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Malaysia.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Rabat, Morocco.
| |
Collapse
|
4
|
Tejedor-Calvo E, Morales D, Morillo L, Vega L, Caro M, Smiderle FR, Iacomini M, Marco P, Soler-Rivas C. Pressurized Liquid (PLE) Truffle Extracts Have Inhibitory Activity on Key Enzymes Related to Type 2 Diabetes (α-Glucosidase and α-Amylase). Foods 2023; 12:2724. [PMID: 37509816 PMCID: PMC10379309 DOI: 10.3390/foods12142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
An optimized PLE method was applied to several truffle species using three different solvent mixtures to obtain bioactive enriched fractions. The pressurized water extracts contained mainly (1 → 3),(1 → 6)-β-D-glucans, chitins, and heteropolymers with galactose and mannose in their structures. The ethanol extracts included fatty acids and fungal sterols and others such as brassicasterol and stigmasterol, depending on the species. They also showed a different fatty acid lipid profile depending on the solvent utilized and species considered. Ethanol:water extracts showed interesting lipids and many phenolic compounds; however, no synergic extraction of compounds was noticed. Some of the truffle extracts were able to inhibit enzymes related to type 2 diabetes; pressurized water extracts mainly inhibited the α-amylase enzyme, while ethanolic extracts were more able to inhibit α-glucosidase. Tuber brumale var. moschatum and T. aestivum var. uncinatum extracts showed an IC50 of 29.22 mg/mL towards α-amylase and 7.93 mg/mL towards α-glucosidase. Thus, use of the PLE method allows o bioactive enriched fractions to be obtained from truffles with antidiabetic properties.
Collapse
Affiliation(s)
- Eva Tejedor-Calvo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Forest Resources, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón-IA2 (CITA-Zaragoza University), Av. Montañana 930, 50059 Zaragoza, Spain
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain
| | - Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Morillo
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Vega
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mercedes Caro
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80240-020, PR, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba 81531-980, PR, Brazil
| | - Pedro Marco
- Department of Forest Resources, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón-IA2 (CITA-Zaragoza University), Av. Montañana 930, 50059 Zaragoza, Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research-CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Rangsinth P, Sharika R, Pattarachotanant N, Duangjan C, Wongwan C, Sillapachaiyaporn C, Nilkhet S, Wongsirojkul N, Prasansuklab A, Tencomnao T, Leung GPH, Chuchawankul S. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023; 12:2529. [PMID: 37444267 DOI: 10.3390/foods12132529] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ergosterol is an important sterol commonly found in edible mushrooms, and it has important nutritional value and pharmacological activity. Ergosterol is a provitamin. It has been well established that edible mushrooms are an excellent food source of vitamin D2 because ergosterol is a precursor that is converted to vitamin D2 under ultraviolet radiation. The pharmacological effects of ergosterol, which include antimicrobial, antioxidant, antimicrobial, anticancer, antidiabetic, anti-neurodegenerative, and other activities, have also been reported. This review aims to provide an overview of the available evidence regarding the pharmacological effects of ergosterol and its underlying mechanisms of action. Their potential benefits and applications are also discussed.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Rajasekharan Sharika
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chamaiphron Wongwan
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nichaporn Wongsirojkul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Rauf A, Joshi PB, Ahmad Z, Hemeg HA, Olatunde A, Naz S, Hafeez N, Simal-Gandara J. Edible mushrooms as potential functional foods in amelioration of hypertension. Phytother Res 2023; 37:2644-2660. [PMID: 37157920 DOI: 10.1002/ptr.7865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Edible mushrooms are popular functional foods attributed to their rich nutritional bioactive constituent profile influencing cardiovascular function. Edible mushrooms are omnipresent in various prescribed Dietary Approaches to Stop Hypertension, Mediterranean diet, and fortified meal plans as they are rich in amino acids, dietary fiber, proteins, sterols, vitamins, and minerals. However, without an understanding of the influence of mushroom bioactive constituents, mechanism of action on heart and allergenicity, it is difficult to fully comprehend the role of mushrooms as dietary interventions in alleviating hypertension and other cardiovascular malfunctions. To accomplish this endeavor, we chose to review edible mushrooms and their bioactive constituents in ameliorating hypertension. Hypertension and cardiovascular diseases are interrelated and if the former is managed by dietary changes, it is postulated that overall heart health could also be improved. With a concise note on different edible varieties of mushrooms, a particular focus is presented on the antihypertensive potential of mushroom bioactive constituents, mode of action, absorption kinetics and bioavailability. Ergosterol, lovastatin, cordycepin, tocopherols, chitosan, ergothioneine, γ-aminobutyric acid, quercetin, and eritadenine are described as essential bioactives with hypotensive effects. Finally, safety concerns on allergens and limitations of consuming edible mushrooms with special reference to chemical toxins and their postulated metabolites are highlighted. It is opined that the present review will redirect toxicologists to further investigate mushroom bioactives and allergens, thereby influencing dietary interventions for heart health.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Payal B Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, India
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Khyber Pakhtunkhwa, Pakistan
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
7
|
Morales D. Food By-Products and Agro-Industrial Wastes as a Source of β-Glucans for the Formulation of Novel Nutraceuticals. Pharmaceuticals (Basel) 2023; 16:460. [PMID: 36986559 PMCID: PMC10051131 DOI: 10.3390/ph16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Food and agro-industrial by-products provoke a great environmental and economic impact that must be minimized by adding value to these wastes within the framework of circular economy. The relevance of β-glucans obtained from natural sources (cereals, mushrooms, yeasts, algae, etc.), in terms of their interesting biological activities (hypocholesterolemic, hypoglycemic, immune-modulatory, antioxidant, etc.), has been validated by many scientific publications. Since most of these by-products contain high levels of these polysaccharides or can serve as a substrate of β-glucan-producing species, this work reviewed the scientific literature, searching for studies that utilized food and agro-industrial wastes to obtain β-glucan fractions, attending to the applied procedures for extraction and/or purification, the characterization of the glucans and the tested biological activities. Although the results related to β-glucan production or extraction using wastes are promising, it can be concluded that further research on the glucans' characterization, and particularly on the biological activities in vitro and in vivo (apart from antioxidant capacity), is required to reach the final goal of formulating novel nutraceuticals based on these molecules and these raw materials.
Collapse
Affiliation(s)
- Diego Morales
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; or
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Ahmad I, Arif M, Mimi X, Zhang J, Ding Y, Lyu F. Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): A review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Li JH, Zhu YY, Gu FT, Wu JY. Efficient isolation of immunostimulatory polysaccharides from Lentinula edodes by autoclaving-ultrasonication extraction and fractional precipitation. Int J Biol Macromol 2023; 237:124216. [PMID: 36990414 DOI: 10.1016/j.ijbiomac.2023.124216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/08/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
A hyphenated process, autoclaving followed by ultrasonication (AU), was evaluated for efficient extraction of polysaccharides (PS) from Lentinula edodes (Shiitake) mushroom. The PS yield (w/w) was 8.44 % from hot-water extraction (HWE), 11.01 % by autoclaving extraction (AE), and 16.3 % by AUE. The AUE water extract was subject to fractional precipitation in four-steps with increasing ethanol concentration of 40 %, 50 %, 70 % and 80 % (v/v), yielding four PS fractions in descending molecular weight (MW), PS40 > PS50 > PS70 > PS80. All the four PS fractions were composed of four monosaccharide residues, mannose (Man), glucose (Glc) and galactose (Gal) but in different mole ratios. The PS40 fraction with the highest average MW (4.98 × 106) was the most abundant fraction, accounting for 64.4 % of the total PS mass and also had the highest glucose molar ratio (~80 %). PS40 also most significantly enhanced the NO, and ROS generation and phagocytic activity in RAW 264.7 cells. The results proved that AUE followed by fractional ethanol precipitation is an efficient strategy with reduced solvent expenditure for isolation of the major immunostimulatory PS from L. edodes mushroom.
Collapse
|
10
|
Das M, Gurusiddaiah SK. Ergosterol fraction from Agaricus bisporus modulates adipogenesis and skeletal glucose uptake in high fat diet induced obese C57BL/6 mice. Life Sci 2023; 315:121337. [PMID: 36592786 DOI: 10.1016/j.lfs.2022.121337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
AIM The study aimed to optimize a method of extracting ergosterol rich concentrate (ECF) and to evaluate its significant impact on adipogenesis and associated complications in high-fat diet (HFD) induced obese mice. METHODS A comparative analysis (soxhlet and ultra sound assisted extraction) was done to obtain the highest yield of ergosterol from Agaricus bisporus. The ECF was evaluated for the biological effect on 3T3-L1 pre-adipocytes in-vitro and in male C57BL/6 mice model in-vivo. KEY FINDINGS Ultra sound assisted extraction method using the solvent n-hexane resulted in highest ergosterol yield. ECF treatment significantly reduced the differentiation and lipid accumulation in pre-adipocyte cells without any cytotoxicity. In-vivo study illustrated beneficial impact on cholesterol metabolism by down regulating the hepatic gene expression of LXR-α, HMG-CoR and up-regulating LDL-R expression. Significant increase in fecal excretion of cholesterol and bile acids have also been observed among the ECF treated animals compared to high fat diet (HFD) fed mice. ECF had an anti-adipogenic activity in-vivo mainly by inhibiting the activity of PPAR-γ, C/EBP-α and SREBP-1c. The results also depicted the improvement of obesity associated insulin resistance by ECF treatment manly via decrease in plasma resistin and up-regulation in skeletal GLUT4 protein expression. SIGNIFICANCE Our study illustrated diverse activity of ECF in the therapeutic management of obesity associated metabolic complications mainly by reducing adipogenesis and improving glucose uptake in skeletal muscle in conjunction with improved cholesterol metabolism.
Collapse
Affiliation(s)
- Moumita Das
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh Kumar Gurusiddaiah
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore 570 020, Karnataka, India.
| |
Collapse
|
11
|
Physicochemical Characteristics and Storage Stability of Hybrid Beef Patty Using Shiitake Mushroom (Lentinus edodes). J FOOD QUALITY 2023. [DOI: 10.1155/2023/7239709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
This study evaluated the physicochemical characteristics and storage stability (at 0, 3, and 7 days) of hybrid beef patties with different amount of shiitake mushrooms (Lentinus edodes) added. Shiitake mushrooms contain healthy ingredients such as ergosterol and β-glucan. Four proportions of shiitake mushrooms were added to beef patties (T1, 20%, T2, 40%, T3, 60%, T4, 80%) as a substitute for beef and compared with a control group (CON 0%). Chemical composition, water holding capacity (WHC), cooking loss, pH, color, texture profile analysis, and sensory properties of the products were compared on day 0. As a storage stability experiment, volatile basic nitrogen (VBN), 2-thiobarbituric acid reactive substances (TBARS), and total microbial count were compared (0, 3, and 7 days). The results revealed that replacement with shiitake improved the WHC and cooking loss of patties but had a negative effect on sensory properties and storage stability. These results indicate that shiitake mushrooms can be added along with beef to produce hybrid patties; however, the usage amount must be considered.
Collapse
|
12
|
Combining UV Irradiation and Alkaline Deacetylation to Obtain Vitamin D- and Chitosan-Enriched Fractions from Shiitake Mushrooms (Lentinula edodes). FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-02998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Lin T, Zhou Z, Xing C, Zhou J, Fan G, Xie C. Effect of color protection treatment on the browning and enzyme activity of Lentinus edodes during processing. Food Sci Nutr 2022; 10:2989-2998. [PMID: 36171772 PMCID: PMC9469847 DOI: 10.1002/fsn3.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/26/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Fresh Lentinus edodes (L. edodes) are prone to browning (including enzymatic and nonenzymatic browning), which affects their quality and leads to economic losses during later processing. This study explored various effective color protection methods (color protection reagent and/or blanching) for inhibiting the browning of L. edodes. First, a single-factor experiment and a response surface method were used to optimize the concentration of the color retention reagent. The compound color retention reagent (comprising 0.1% phytic acid, 0.8% sodium citrate, and 0.5% d-sodium erythorbate) had the smallest total color difference (ΔE) value, suggesting that the compound color reagent had a better inhibiting effect than the single agent. Following this, the blanching conditions were studied; the polyphenol oxidase (PPO) activity was the lowest when the blanching temperature was 90°C and blanching time 180 s, indicating that browning is likely to be minimal. Finally, comparing the oxidase activity and total color difference (ΔE) revealed that combining the two color protection methods inhibits browning better than using a single method (color protection reagent or blanching). In addition, the polysaccharide and vitamin C (VC) contents of L. edodes under optimal color protection conditions were determined, which were 0.96 and 2.54 g/100 g fresh weight (FW), respectively. The results demonstrated that this color protection method effectively inhibits browning, reduces the nutritional loss, and improves the quality of L. edodes.
Collapse
Affiliation(s)
- Tong Lin
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| | - Zhiguo Zhou
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| | - Chunmiao Xing
- College of Life ScienceLangfang Normal UniversityLangfangChina
| | - Jiahui Zhou
- College of Life ScienceLangfang Normal UniversityLangfangChina
| | - Gongjian Fan
- College of Light Industry and Food EngineeringNanjing Forestry UniversityNanjingChina
| | - Chunyan Xie
- College of Life ScienceLangfang Normal UniversityLangfangChina
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei ProvinceLangfangChina
- Edible and Medicinal Fungi Research and Development Center of Hebei UniversitiesLangfangChina
| |
Collapse
|
14
|
Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. Int J Food Microbiol 2022; 377:109783. [PMID: 35728418 DOI: 10.1016/j.ijfoodmicro.2022.109783] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/17/2022] [Accepted: 06/05/2022] [Indexed: 01/10/2023]
Abstract
In the present review the latest research studies on Kombucha tea are summarized. Special attention has been paid on microbial population, chemical parameters, biocellulose production, and mainly, on the latest evidences of the biological activities of Kombucha tea. Kombucha tea is a fermented sweetened black or green tea which is obtained from a fermentative process driven by a symbiotic culture of yeast, acetic acid bacteria and lactic acid bacteria. In the last years, its consumption has increasingly grown due to its multiple and potential benefits on human health. This fact has motivated a significant increase in the number of research studies that are focused on the biological activities of this beverage. In this context, this review gathers the main studies that have analyzed the different properties of Kombucha tea (as antioxidant, antimicrobial, antidiabetic, antitumoral, anti-inflammatory, antihypertensive, hepatoprotective, hypocholesterolemic, and probiotic activities). It is highlighted that nowadays few human-based evidences are available to prove the beneficial effect of Kombucha tea on humans' health. In conclusion, further work on Kombucha tea is needed since nowadays few information is available on both clinical studies and the characterization of bioactive compounds and their properties.
Collapse
|
15
|
Argyropoulos D, Psallida C, Sitareniou P, Flemetakis E, Diamantopoulou P. Biochemical Evaluation of Agaricus and Pleurotus Strains in Batch Cultures for Production Optimization of Valuable Metabolites. Microorganisms 2022; 10:microorganisms10050964. [PMID: 35630408 PMCID: PMC9147170 DOI: 10.3390/microorganisms10050964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
The production of various biochemical compounds such as proteins, glucans and glucanases, from the mycelium of four strains of Basidiomycetes species, Agaricus bisporus, Agaricus subrufescens, Pleurotus eryngii and Pleurotus ostreatus, during batch culture in shaking flasks, was studied. Fungi were cultured for 26 days in defined media with glucose as carbon source and were primarily evaluated for their ability to consume glucose and produce mycelial mass and intracellular polysaccharides (IPS). Results showed that on the 26th day of cultivation, P. ostreatus produced the maximum biomass (16.75 g/L), whereas P. eryngii showed the maximum IPS concentration (3.82 g/L). All strains presented a similar pattern in total protein production, with A. bisporus having the highest percentage of total proteins (36%, w/w). The calculated correlation coefficients among ribonucleic acid (RNA) vs. biomass (0.97) and RNA vs. protein (0.97) indicated a very strong relation between RNA and biomass/protein synthesis. The studied strains exhibited an increase in total glucan and glucanase (β-1,6) production during cultivation, with A. bisporus reaching the highest glucan percentage (8%, w/w) and glucanase activity (12.7 units/g biomass). Subsequently, processed analytical data were used in contour-graph analysis for data extrapolation to optimize future continuous culture.
Collapse
Affiliation(s)
- Dimitrios Argyropoulos
- Genetic Identification Laboratory, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Dimitra, 1 S. Venizelou Street, 14123 Lykovryssi, Greece; (D.A.); (C.P.); (P.S.)
| | - Charoula Psallida
- Genetic Identification Laboratory, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Dimitra, 1 S. Venizelou Street, 14123 Lykovryssi, Greece; (D.A.); (C.P.); (P.S.)
| | - Paraskevi Sitareniou
- Genetic Identification Laboratory, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Dimitra, 1 S. Venizelou Street, 14123 Lykovryssi, Greece; (D.A.); (C.P.); (P.S.)
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Dimitra, 1 S. Venizelou Street, 14123 Lykovryssi, Greece
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Panagiota Diamantopoulou
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-Dimitra, 1 S. Venizelou Street, 14123 Lykovryssi, Greece
- Correspondence: ; Tel.: +30-210-2845940
| |
Collapse
|
16
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
17
|
Tejedor-Calvo E, García-Barreda S, Sánchez S, Morales D, Soler-Rivas C, Ruiz-Rodriguez A, Sanz MÁ, Garcia AP, Morte A, Marco P. Supercritical CO2 extraction method of aromatic compounds from truffles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Liu Z, Bhandari B, Guo C, Zheng W, Cao S, Lu H, Mo H, Li H. 3D Printing of Shiitake Mushroom Incorporated with Gums as Dysphagia Diet. Foods 2021; 10:foods10092189. [PMID: 34574299 PMCID: PMC8465407 DOI: 10.3390/foods10092189] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
With the speeding tendency of aging society, the population experienced dysphagia is increasing quickly. Desirable dysphagic diets should be safe, visually appealing and nutritious. 3D printing allows for creation of personalized nutritious foods with regular-like appearance. Shiitake mushroom, rich in protein and bioactive compounds, is suitable for elderly, but its hard texture was not friendly to the elderly with dysphagia. This study investigated the feasibility of production of dysphagic product using shiitake mushroom by 3D printing with various gums addition, including arabic gum (AG), xanthan gum (XG) and k-carrageenan gum (KG) at concentrations of 0.3%, 0.6% and 0.9% (w/w). Data suggested that XG and KG incorporation significantly increased inks’ mechanical strength by decreasing water mobility and promoting the formation of hydrogen bond, enabling 3D printed objects with great self-supporting capacity. The XG containing and KG-0.3% samples were categorized into level 5—minced and moist dysphagia diet within international dysphagia diet standardization initiative (IDDSI) framework. AG addition decreased mechanical strength and viscosity, hardness and self-supporting capacity of 3D printed constructions. AG-0.3% and AG-0.6% samples could not be classified as dysphagia diets based on IDDSI tests. This study provides useful information for dysphagia diet development with appealing appearance by 3D printing.
Collapse
Affiliation(s)
- Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Z.L.); (W.Z.); (S.C.); (H.L.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Chaofan Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Wenqi Zheng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Z.L.); (W.Z.); (S.C.); (H.L.)
| | - Shangqiao Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Z.L.); (W.Z.); (S.C.); (H.L.)
| | - Hongyu Lu
- Jiangsu Provincial Supervising and Testing Research Institute for Products’ Quality, Nanjing 210000, China;
| | - Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Z.L.); (W.Z.); (S.C.); (H.L.)
- Correspondence:
| | - Hongbo Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Z.L.); (W.Z.); (S.C.); (H.L.)
| |
Collapse
|
19
|
Ma X, Fan X, Wang G, Xu R, Yan L, Zhou Y, Gong Y, Xiao Y, Bian Y. Enhanced Expression of Thaumatin-like Protein Gene ( LeTLP1) Endows Resistance to Trichoderma atroviride in Lentinula edodes. Life (Basel) 2021; 11:863. [PMID: 34440607 PMCID: PMC8398078 DOI: 10.3390/life11080863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/17/2023] Open
Abstract
Lentinula edodes (shiitake mushrooms) is heavily affected by the infection of Trichoderma atroviride, causing yield loss and decreases quality in shiitake mushrooms. The selection and breeding of fungal-resistant L. edodes species are an important approach to protecting L. edodes from T. atroviride infection. Herein, a highly resistant L. edodes strain (Y3334) and a susceptible strain (Y55) were obtained by using a resistance evaluation test. Transcriptome analyses and qRT-PCR detection showed that the expression level of LeTLP1 (LE01Gene05009) was strongly induced in response to T. atroviride infection in the resistant Y3334. Then, LeTLP1-silenced and LeTLP1-overexpression transformants were obtained. Overexpression of LeTLP1 resulted in resistance to T. atroviride. Compared with the parent strain Y3334, LeTLP1-silenced transformants had reduced resistance relative to T. atroviride. Additionally, the LeTLP1 protein (Y3334) exhibited significant antifungal activity against T. atroviride. These findings suggest that overexpression of LeTLP1 is a major mechanism for the resistance of L. edodes to T. atroviride. The molecular basis provides a theoretical basis for the breeding of resistant L. edodes strains and can eventually contribute to the mushroom cultivation industry and human health.
Collapse
Affiliation(s)
- Xiaolong Ma
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.M.); (X.F.); (G.W.); (R.X.); (L.Y.); (Y.Z.); (Y.G.); (Y.X.)
- Key Laboratory of Agro-Microbial Resource and Development, Ministry of Agriculture, Wuhan 430070, China
| | - Xiaolin Fan
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.M.); (X.F.); (G.W.); (R.X.); (L.Y.); (Y.Z.); (Y.G.); (Y.X.)
- Key Laboratory of Agro-Microbial Resource and Development, Ministry of Agriculture, Wuhan 430070, China
| | - Gangzheng Wang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.M.); (X.F.); (G.W.); (R.X.); (L.Y.); (Y.Z.); (Y.G.); (Y.X.)
- Key Laboratory of Agro-Microbial Resource and Development, Ministry of Agriculture, Wuhan 430070, China
| | - Ruiping Xu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.M.); (X.F.); (G.W.); (R.X.); (L.Y.); (Y.Z.); (Y.G.); (Y.X.)
- Key Laboratory of Agro-Microbial Resource and Development, Ministry of Agriculture, Wuhan 430070, China
| | - Lianlian Yan
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.M.); (X.F.); (G.W.); (R.X.); (L.Y.); (Y.Z.); (Y.G.); (Y.X.)
- Key Laboratory of Agro-Microbial Resource and Development, Ministry of Agriculture, Wuhan 430070, China
| | - Yan Zhou
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.M.); (X.F.); (G.W.); (R.X.); (L.Y.); (Y.Z.); (Y.G.); (Y.X.)
- Key Laboratory of Agro-Microbial Resource and Development, Ministry of Agriculture, Wuhan 430070, China
| | - Yuhua Gong
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.M.); (X.F.); (G.W.); (R.X.); (L.Y.); (Y.Z.); (Y.G.); (Y.X.)
- Key Laboratory of Agro-Microbial Resource and Development, Ministry of Agriculture, Wuhan 430070, China
| | - Yang Xiao
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.M.); (X.F.); (G.W.); (R.X.); (L.Y.); (Y.Z.); (Y.G.); (Y.X.)
- Key Laboratory of Agro-Microbial Resource and Development, Ministry of Agriculture, Wuhan 430070, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.M.); (X.F.); (G.W.); (R.X.); (L.Y.); (Y.Z.); (Y.G.); (Y.X.)
- Key Laboratory of Agro-Microbial Resource and Development, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
20
|
Curci F, Cavalluzzi MM, Milani G, Clodoveo ML, Radojčić Redovniković I, Cellamare S, Franchini C, Mandracchia D, Corbo F. Phyllostachys Pubescens: From Traditional to Functional Food. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1933020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Francesca Curci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - M. M. Cavalluzzi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - G. Milani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - M. L. Clodoveo
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | | | - S. Cellamare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - C. Franchini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - D. Mandracchia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - F. Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| |
Collapse
|
21
|
Živković J, Ivanov M, Stojković D, Glamočlija J. Ethnomycological Investigation in Serbia: Astonishing Realm of Mycomedicines and Mycofood. J Fungi (Basel) 2021; 7:jof7050349. [PMID: 33947042 PMCID: PMC8146042 DOI: 10.3390/jof7050349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
This study aims to fill the gaps in ethnomycological knowledge in Serbia by identifying various fungal species that have been used due to their medicinal or nutritional properties. Ethnomycological information was gathered using semi-structured interviews with participants from different mycological associations in Serbia. A total of 62 participants were involved in this study. Eighty-five species belonging to 28 families were identified. All of the reported fungal species were pointed out as edible, and only 15 of them were declared as medicinal. The family Boletaceae was represented by the highest number of species, followed by Russulaceae, Agaricaceae and Polyporaceae. We also performed detailed analysis of the literature in order to provide scientific evidence for the recorded medicinal use of fungi in Serbia. The male participants reported a higher level of ethnomycological knowledge compared to women, whereas the highest number of used fungi species was mentioned by participants within the age group of 61–80 years. In addition to preserving ethnomycological knowledge in Serbia, this study can present a good starting point for further pharmacological investigations of fungi.
Collapse
Affiliation(s)
- Jelena Živković
- Institute for Medicinal Plants Research “Dr Josif Pancic”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (J.G.)
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (J.G.)
- Correspondence: ; Tel.: +381-112078419
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (J.G.)
| |
Collapse
|
22
|
Sheng K, Wang C, Chen B, Kang M, Wang M, Liu K, Wang M. Recent advances in polysaccharides from Lentinus edodes (Berk.): Isolation, structures and bioactivities. Food Chem 2021; 358:129883. [PMID: 33940295 DOI: 10.1016/j.foodchem.2021.129883] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Abstract
Lentinus edodes, an important edible mushroom cultivated in East Asia for thousands of years, has been widely used as food and medicinal ingredient worldwide. Modern phytochemistry studies have demonstrated that L. edodes is very rich in bioactive polysaccharides, especially the β-glucans. Over the past two decades, the isolation, chemical properties, and bioactivities of polysaccharides from fruiting bodies, mycelium and fermentation broth of L. edodes have been drawing much attention from scholars around the world. It has been demonstrated that L. edodes polysaccharides possess various remarkable biological activities, including anti-oxidant, anti-tumor, anti-aging, anti-inflammation, immunomodulatory, antiviral, and hepatoprotection effects. This review summarizes the recent development of polysaccharides from L. edodes including the isolation methods, structural features, bioactivities and mechanisms, and their structure-activity relationship, which can provide useful research underpinnings and update information for their further application as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Kangjia Sheng
- College of Food Science & Engineering, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Cuiling Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Bitao Chen
- College of Food Science & Engineering, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Meijuan Kang
- Library of Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Minchang Wang
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Ke Liu
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Ming Wang
- College of Food Science & Engineering, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
23
|
Oak trees (Quercus spp.) as a source of extracts with biological activities: A narrative review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Morales D, Shetty SA, López-Plaza B, Gómez-Candela C, Smidt H, Marín FR, Soler-Rivas C. Modulation of human intestinal microbiota in a clinical trial by consumption of a β-D-glucan-enriched extract obtained from Lentinula edodes. Eur J Nutr 2021; 60:3249-3265. [PMID: 33580297 DOI: 10.1007/s00394-021-02504-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of this study was to evaluate the hypocholesterolemic, immune- and microbiota-modulatory effect of a mushroom extract in hypercholesterolemic subjects. METHODS A randomized, controlled, double-blind, and parallel clinical trial was carried out with subjects from 18 to 65 years old (n = 52) with untreated mild hypercholesterolemia. Volunteers consumed a β-D-glucan-enriched (BGE) mixture (10.4 g/day) obtained from shiitake mushrooms (Lentinula edodes) ensuring a 3.5 g/day of fungal β-D-glucans or a placebo incorporated in three different commercial creams. RESULTS This mixture showed hypocholesterolemic activities in vitro and in animal studies. After eight weeks intervention, no significant differences in lipid- or cholesterol-related parameters were found compared to placebo subjects as well as before and after the BGE mixture administration. No inflammatory or immunomodulatory responses were noticed and no changes in IL-1β, IL-6, TNF-α or oxLDL were recorded. However, consumption of the BGE mixture was safe and managed to achieve the dietary fibre intake recommended as cardiovascular protective diet. Moreover, the BGE mixture modulated the colonic microbiota differently compared to placebo. Microbial community composition varied from before to after the intervention with several genera being positively or negatively correlated with some biomarkers related to cholesterol metabolism. CONCLUSION These results suggested a relation between cholesterol metabolism, microbiota and BGE administration. Nevertheless, the precise significance of this differential modulation was not fully elucidated and requires further studies.
Collapse
Affiliation(s)
- Diego Morales
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), Universidad Autónoma de Madrid, C/ Nicolas Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sudarshan A Shetty
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Bricia López-Plaza
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Carmen Gómez-Candela
- Nutrition Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Francisco Ramón Marín
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), Universidad Autónoma de Madrid, C/ Nicolas Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cristina Soler-Rivas
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research - CIAL (UAM+CSIC), Universidad Autónoma de Madrid, C/ Nicolas Cabrera 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
25
|
Maheshwari G, Gessner DK, Neuhaus K, Most E, Zorn H, Eder K, Ringseis R. Influence of a Biotechnologically Produced Oyster Mushroom ( Pleurotus sajor-caju) on the Gut Microbiota and Microbial Metabolites in Obese Zucker Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1524-1535. [PMID: 33497213 DOI: 10.1021/acs.jafc.0c06952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mushrooms are a rich source of dietary fiber. This study aimed to characterize the modulation of colonic microbiota in Zucker rats after supplementing their diet with a biotechnologically produced oyster mushroom (Pleurotus sajor-caju). Microbiota composition and short chain fatty acids (SCFAs) in the colon and bile acids in the plasma of the rats were analyzed to assess the effects of P. sajor-caju supplementation on the microbiota in the colon and its interplay with the host in the event of hepatic steatosis. Microbiota profiles were distinctly modulated by P. sajor-caju supplementation between the obese control rats and the obese rats fed the 5% P. sajor-caju-supplemented diet. P. sajor-caju enhanced the growth of SCFAs-producing bacterial genera, including Faecalibaculum, Bifidobacterium, Roseburia, and Blautia, and decreased the relative abundance of the pathogenic genus Escherichia-Shigella. This was also accompanied by distinct changes in the concentrations of bile acids in the plasma and concentrations of SCFAs in the colon, supporting the initial potentiality of P. sajor-caju as a prebiotic in cases of hepatic steatosis and liver inflammation.
Collapse
Affiliation(s)
- Garima Maheshwari
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Freising 85354, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Giessen 35392, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany
| |
Collapse
|
26
|
|
27
|
Evaluation of Polish wild Mushrooms as Beta-Glucan Sources. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197299. [PMID: 33036263 PMCID: PMC7579588 DOI: 10.3390/ijerph17197299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/26/2022]
Abstract
Mushroom beta-glucans show immunomodulatory, anticancer and antioxidant features. Numerous papers have been published in the last years on fungal polysaccharides, especially beta-glucans, demonstrating their various biological activities. However substantial data about beta-glucan contents in many mushroom species, especially wild mushrooms, are still missing. Therefore, the main objective of the study was to evaluate β-glucans in 18 species of wild mushrooms and three species of commercial mushrooms for comparison purposes. The contents of β-glucans were determined by the Megazyme method and with the Congo red method, which differ in analytical procedure. Among wild mushrooms, the highest mean β-glucan content assessed with the Megazyme method was found in Tricholoma portentosum (34.97 g/100 g DM), whereas with the Congo red method in Lactarius deliciosus (17.11 g/100 g DM) and Suillus grevillei (16.97 g/100 g DM). The β-glucans in wild mushrooms assessed with the Megazyme method were comparable to commercial mushrooms, whereas β-glucans assessed with the Congo red method were generally higher in wild mushrooms, especially in Russula vinosa, L. deliciosus and S. grevillei. This study indicates wild mushrooms as interesting material for β-glucan extraction for food industry and medicinal purposes.
Collapse
|
28
|
Chen S, Wang R, Cheng M, Wei G, Du Y, Fan Y, Li J, Li H, Deng Z. Serum Cholesterol-Lowering Activity of β-Sitosterol Laurate Is Attributed to the Reduction of Both Cholesterol Absorption and Bile Acids Reabsorption in Hamsters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10003-10014. [PMID: 32811147 DOI: 10.1021/acs.jafc.0c04386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The research was performed to delineate how β-sitosterol laurate (β-SLE) consumption influenced serum and hepatic lipids. The results showed that 220 mg/5 mL oil/kg body weight of β-SLE robustly reduced serum total triglyceride and cholesterol levels and the epididymal adipocyte size, and efficiently protected hepatic polyunsaturated fatty acids against lipid peroxidation through superoxide dismutase and glutathione transferase activity enhancement and malondialdehyde level reduction. Based on the changes of fecal cholesterol contents, fecal and hepatic bile acid (BAs) levels, and related protein expression, it was concluded that the mechanisms for lowering serum cholesterol by β-SLE involved (i) the enhanced excretion of fecal cholesterol via down-regulation of intestinal Niemann-Pick C1-like 1 protein; (ii) the increased conversion from cholesterol to primary BAs via up-regulation of cholesterol-7α-hydroxylase and sterol 27-hydroxylase, which was induced by the reduced BAs reabsorption through up-regulating ileal apical sodium-dependent bile acid transporter and ileal bile acid-binding protein.
Collapse
Affiliation(s)
- Sunni Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ruiqi Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Mingyan Cheng
- State Centre of Quality Supervision and Inspection for Camellia Products, Ganzhou 341000, Jiangxi, China
| | - Guohua Wei
- Yichun Dahaigui Life Science Co., Ltd, Yichun 336000, Jiangxi, China
| | - Yingxue Du
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yawei Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| |
Collapse
|