1
|
Liu Y, Lan B, Fan Y, Wang D, Cao Y, Zhang F, Xie X. Atomic Defect-Directed Epitaxial Growth of Multimetallic Nanorods for High-Efficiency Alcohol Electro-Oxidation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27061-27075. [PMID: 40279487 DOI: 10.1021/acsami.5c05024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Site-selective epitaxial growth of metals onto shaped nanoparticles represents a versatile strategy for tailoring nanostructures to optimize the optical and catalytic properties. In this study, we systematically elucidate the critical factors governing the epitaxial growth of silver and platinum atoms onto gold nanorods (Au NRs), revealing that atomic defects on the Au NR surface dictate the deposition sites of Ag and Pt. By precisely modulating epitaxial growth conditions and density of surface atomic defects, we achieve the synthesis of dumbbell-shaped (DS) and thorny-shell (TS) structured Au-AgPt NRs. Notably, the DS-Au-AgPt0.24 NR catalyst demonstrated exceptional catalytic performance in alcohol fuel cell reactions, driven by their abundant atomic defects and strong strain effects localized at the crown structure. For ethylene glycol electro-oxidation, these DS-Au-AgPt0.24 NRs achieved a mass activity of 23.5 A mgPt-1 and a specific activity of 156.9 mA cm-2, which were 4.1 and 11.2 times higher than that of commercial platinum-carbon (Pt/C) catalysts (5.7 A mgPt-1 and 14.0 mA cm-2), respectively. Our findings not only advance the mechanistic understanding of defect-mediated epitaxial growth in multimetallic systems but also provide a blueprint for designing high-performance catalysts through atomic-scale structural engineering.
Collapse
Affiliation(s)
- Yue Liu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials, Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Bing Lan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials, Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yiyi Fan
- National Engineering Laboratory of Eco-Friendly Polymeric Materials, Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Dongling Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yifei Cao
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Fan Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials, Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaobin Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
2
|
Liu L, Song D, Kaiser ME, Liu J, De Yoreo JJ, Sushko ML. Epitaxial Growth of 2D Core-Crown SnS 2/SnSe 2 Heterostructure Through Interfacial Modification with Polyvinylpyrrolidone. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410526. [PMID: 40007086 PMCID: PMC11962701 DOI: 10.1002/smll.202410526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Indexed: 02/27/2025]
Abstract
Developing generalized strategies for controlled synthesis of 2D heterostructures remains a significant challenge because the existing approaches often suffer from poor reproducibility and scalability. In this study, a solution synthesis approach for epitaxial core-crown heterostructures with controlled band alignment, that overcomes these challenges is reported. Polyvinylpyrrolidone (PVP) is used as a structure-directing agent to reduce lattice mismatch between SnS2 and SnSe2 (10-10) surfaces and direct epitaxial growth of SnSe2 crown on SnS2 seed. Additionally, PVP adsorption to the basal plane prevents van der Waals stacking and stabilizes 2D heterostructures during synthesis. Driven by interfacial thermodynamics, the formation of the core-crown heterostructure is highly reproducible and the size of the 2D heterostructure and relative areas of the core and the crown can be precisely controlled in a two-step process by varying synthesis times for the seed and the crown. The identified growth pathway for 2D heterostructures can be generalized to other combinations of van der Waals materials to provide a platform for synthesizing micron-size epitaxial heterostructures with a desired electronic structure for catalysis and microelectronics.
Collapse
Affiliation(s)
- Lili Liu
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99352USA
- Energy and Environmental DirectoratePacific Northwest National LaboratoryRichlandWA99352USA
| | - Duo Song
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99352USA
| | - Mitchell E. Kaiser
- Department of Materials Science and EngineeringUniversity of WashingtonSeattleWA98195USA
| | - Jun Liu
- Energy and Environmental DirectoratePacific Northwest National LaboratoryRichlandWA99352USA
- Department of Materials Science and EngineeringUniversity of WashingtonSeattleWA98195USA
| | - James J. De Yoreo
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99352USA
- Department of Materials Science and EngineeringUniversity of WashingtonSeattleWA98195USA
| | - Maria L. Sushko
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99352USA
| |
Collapse
|
3
|
Nikolaev B, Yakovleva L, Fedorov V, Yudintceva N, Tarasova D, Perepelitsa E, Dmitrieva A, Sulatsky M, Srinivasan S, Sonawane SH, Srivastava A, Gupta S, Sonawane A, Combs SE, Shevtsov M. A New Method for Accelerated Aging of Nanoparticles to Assess the Colloidal Stability of Albumin-Coated Magnetic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:475. [PMID: 40214521 PMCID: PMC11990806 DOI: 10.3390/nano15070475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
The colloidal long-storage stability of nanosized drugs is a crucial factor for pharmacology, as they require much time for robust estimation. The application of bioavailable magnetic nanosuspensions in theranostics is limited by incomplete information about their colloidal stability in the internal media of human organisms. A method for the accelerated temperature stress "aging" of magnetic nanosized suspensions is proposed for the rapid assessment and prediction of the colloidal stability over time of nanosized iron oxide suspensions stabilized by albumin HSA. Colloidal stability is assessed using dynamic light scattering (DLS), fluorescence spectroscopy, electrophoresis, and ion monitoring methods during short- and long-term storage. Rapid assessment is achieved by short high-temperature (70 °C) processing of carboxymethyl-dextran-coated nanosol in the presence of albumin. The role of albumin in the sustained stability of superparamagnetic iron oxide particles (SPIONs) was studied under conditions mimicking blood plasma (pH = 7.4) and endolysosomal cell compartments (pH = 5.5). According to the fluorescence quenching and DLS data, colloidal stability is ensured by the formation of an HSA corona on carboxymethyl-dextran-coated SPIONs and their process of clustering. In the presence of albumin, the colloidal stability of nanoparticles is shown to increase from 80 to 121 days at a storage temperature of 8 °C The prognostic shelf life of magnetic nanosol is estimated by calculating the Van't Hoff's relation for the rate of chemical reactions. The validity of using the Van't Hoff's rule is confirmed by the agreement of the calculated activation energy at 8 °C and 70 °C. The developed method of the accelerated aging of nanoparticles can not only be employed for the estimation of the shelf life of magnetic nanoparticles coated with HSA in vitro but also for assessing the stability of SPIONs applied in vivo.
Collapse
Affiliation(s)
- Boris Nikolaev
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
| | - Ludmila Yakovleva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
- Department of Inorganic Chemistry and Biophysics, Saint-Petersburg State University of Veterinary Medicine, 196084 Saint-Petersburg, Russia
| | - Natalia Yudintceva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Daria Tarasova
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
| | | | - Anastasia Dmitrieva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
| | - Maksim Sulatsky
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
| | - Sivaprakash Srinivasan
- Department of Chemical Engineering, National Institute of Technology, Warangal 506004, Telangana State, India; (S.S.); (S.H.S.)
| | - Shirish H. Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal 506004, Telangana State, India; (S.S.); (S.H.S.)
| | - Anusha Srivastava
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India; (A.S.); (S.G.); (A.S.)
| | - Sharad Gupta
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India; (A.S.); (S.G.); (A.S.)
| | - Avinash Sonawane
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India; (A.S.); (S.G.); (A.S.)
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia; (B.N.); (L.Y.); (V.F.); (N.Y.); (D.T.); (A.D.); (M.S.)
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| |
Collapse
|
4
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
5
|
Arif M, Tahir F, Hussain T, Alrokayan S, Akhter T. Catalytic reduction of aldehydic and nitro groups of nitro-benzaldehyde derivatives by silver nanoparticle-containing smart alginate-poly( N-isopropylacrylamide-methacrylic acid) microgels. RSC Adv 2025; 15:8580-8593. [PMID: 40109923 PMCID: PMC11921896 DOI: 10.1039/d5ra00713e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Aromatic compounds containing aldehyde and nitro groups are very toxic to human health. Moreover, complete degradation of these compounds is not possible. Therefore, these compounds are converted into less toxic but more useful hydroxy-methyl aniline (HMA) derivatives. This conversion is performed using a suitable catalyst and a reducing agent. Therefore, alginate-poly(N-isopropylacrylamide-methacrylic acid) (AN-P(NIPAM-MAAc)) (AN-P(NM)) microgels were synthesized via a free radical precipitation polymerization (FRPP) method and were used as a micro-reactor for synthesis of silver (Ag) nanoparticles (NPs) into the polymeric network using in situ reduction methods. The synthesized AN-P(NM) microgels and Ag-AN-P(NM) hybrid microgels were characterized through SEM, FTIR, TEM, XRD, UV-vis spectroscopy, and EDX. Ag-AN-P(NM) exhibited temperature- and pH-responsive behavior as well as long-term stability of Ag nanoparticles in a polymeric network of AP(NM). Catalytic reduction of 4-nitrobenzaldehyde (4NBA) was evaluated under different conditions, such as different contents of Ag-AN-P(NM), 4NBA concentrations, temperatures, and concentrations of NaBH4. The Ag-AP(NM) hybrid microgels catalytically reduced 3-nitrobenzaldehyde (3NBA), 4NBA, and 3,5-dinitrobanzaldehyde (3,5DNBA) into their corresponding HA compounds in a water medium. The apparent rate constant (k ob) values for 3NBA, 4NBA, and 3,5DNBA were found to be 1.73 min-1, 1.48 min-1, and 1.19 min-1, respectively. Ag-AP(NM) exhibited outstanding catalytic efficiency, recyclability, and stability as well as retained its performance across multiple cycles.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Fatima Tahir
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, King Saud University Riyadh 11451 Saudi Arabia
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Salman Alrokayan
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University Seongnam-13120 Republic of Korea
| |
Collapse
|
6
|
Singh A, Dey P, Mihara H, Prakash NT, Prakash R. Facile synthesis of selenium nanoparticles and stabilization using exopolysaccharide from endophytic fungus, Nigrospora gullinensis, and their bioactivity study. BIOMASS CONVERSION AND BIOREFINERY 2025; 15:9581-9598. [DOI: 10.1007/s13399-024-05870-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 03/31/2025]
|
7
|
Wu C, Zhang Y, Yang HY. Rational Design and Facile Preparation of Palladium-Based Electrocatalysts for Small Molecules Oxidation. CHEMSUSCHEM 2025; 18:e202401127. [PMID: 39211939 DOI: 10.1002/cssc.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Direct liquid fuel cells (DLFCs) can convert the chemical energy of small organic molecules directly into electrical energy, which is a promising technique and always calls for electrocatalysts with high activity, stability and selectivity. Palladium (Pd)-based catalysts for DLFCs have been widely studied with the pursuit of ultra-high performance, however, most of the preparation routes require complex agents, multi-operation steps, even extreme experimental conditions, which are high-cost, energy-consuming, and not conducive to the scalable and sustainable production of catalysts. In this review, the recent progresses on not only the rational design strategies, but also the facile preparation methods of Pd-based electrocatalysts for small molecules oxidation reaction (SMOR) are comprehensively summarized. Based on the principles of green chemistry in material synthesis, the basic rules of "facile method" have been restricted, and the fabrication processes, perks and drawbacks, as well as practical applications of the "real" facile methods have been highlighted. The landscape of this review is to facilitate the mild preparation of efficient Pd-based electrocatalysts for SMOR, that is, to achieve a balance between "facile preparation" and "outstanding performance", thereby to stimulate the huge potential of sustainable nano-electrocatalysts in various research and industrial fields.
Collapse
Affiliation(s)
- Chenshuo Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Yingmeng Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 819 Xisaishan Road, Huzhou, 313001, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
8
|
Fais G, Sidorowicz A, Perra G, Dessì D, Loy F, Lai N, Follesa P, Orrù R, Cao G, Concas A. Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells. Mar Drugs 2024; 22:549. [PMID: 39728124 DOI: 10.3390/md22120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/Ag2O/ZnO nanocomposites (NCs), using polar and apolar extracts of Chlorella vulgaris, offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/Ag2O NPs synthesized with apolar (Ag/Ag2O NPs A) and polar (Ag/Ag2O NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag+ ion release and the disruption of mitochondrial function. However, it is more likely the organic content, rather than size, influenced anticancer activity, as commercial Ag NPs, despite smaller crystallite sizes, exhibit less effective activity. ZnO NPs P showed increased reactive oxygen species (ROS) generation, correlated with higher cytotoxicity, while ZnO NPs A produced lower ROS levels, resulting in diminished cytotoxic effects. A comparative analysis revealed significant differences in LD50 values and toxicity profiles. Differentiated PC12 cells showed higher resistance to ZnO, while AgNPs and Ag/Ag2O-based materials had similar effects on both cell types. This study emphasizes the crucial role of the synthesis environment and bioactive compounds from C. vulgaris in modulating nanoparticle surface chemistry, ROS generation, and cytotoxicity. The results provide valuable insights for designing safer and more effective nanomaterials for biomedical applications, especially for targeting tumor-like cells, by exploring the relationships between nanoparticle size, polarity, capping agents, and nanocomposite structures.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giovanni Perra
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Debora Dessì
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Francesco Loy
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Nicola Lai
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Roberto Orrù
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
9
|
Gatenio N, Kolusheva S, Chèvremont W, Moskovich S, Patil D, Song K, Golan Y. Optical and Structural Properties of Anisotropic ZnS Nanoparticle Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22982-22989. [PMID: 39413768 PMCID: PMC11526353 DOI: 10.1021/acs.langmuir.4c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
We studied the optical and structural properties of highly ordered arrays of surfactant-capped ZnS nanowires (NWs) and nanorods (NRs) in organic suspensions. The photoluminescence (PL) emission measured under different concentrations and postsynthesis washing cycles interestingly showed increasing emission upon decreasing nanoparticle (NP) concentration. Synchrotron small angle X-ray scattering measurements elucidated the liquid-crystal-like structure of the NPs in suspension under different concentrations and temperatures. The NWs are stacked in a simple structure with a hexagonal cross-section, whereas the structure of the NRs is more complex, resembling a smectic-c liquid crystal, and shows unusual thermal expansion versus temperature. The results point out that a certain amount of bound surfactant must be present on the NP surface to maximize the PL intensity.
Collapse
Affiliation(s)
- Naama Gatenio
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sofiya Kolusheva
- Ilse
Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - William Chèvremont
- ESRF −
The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9,France
| | - Shachar Moskovich
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Dhanush Patil
- School
of
Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM),
College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Kenan Song
- School
of
Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM),
College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Yuval Golan
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
10
|
Chen S, Rowley B, Ganganahalli R, Yeo BS. Electroreduction of CO to 2.8 A cm⁻ 2 C 2+ Products: Maximizing Efficiency with Minimalist Electrode Design Featuring a Mesopore-Rich Hydrophobic Copper Catalyst Layer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405938. [PMID: 39186060 PMCID: PMC11516069 DOI: 10.1002/advs.202405938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Indexed: 08/27/2024]
Abstract
This work shows how hydrophobicity and porosity can be incorporated into copper catalyst layers (CLs) for the efficient electroreduction of CO (CORR) in a flow cell. Oxide-derived (OD) Cu catalysts are synthesized using K+ and Cs+ as templates, termed respectively as OD-Cu-K and OD-Cu-Cs. CLs, assembled from OD-Cu-K and OD-Cu-Cs, exhibit enhanced CORR performance compared to "unmodified" OD-Cu CL. OD-Cu-Cs can notably reduce CO to C2+ products with Faradaic efficiencies (FE) as high as 96% (or 4% FE H2). During CO electrolysis at -3000 mA cm-2 (-0.73 V vs reversible hydrogen electrode), C2+ products and the alcohols are formed with respective current densities of -2804 and -1205 mA cm- 2. The mesopores in the OD-Cu-Cs CL act as barriers against electrolyte flooding. Contact angle measurements confirm the CL's hydrophobicity ranking: OD-Cu-Cs > OD-Cu-K > OD-Cu. The enhanced hydrophobicity of a catalyst is proposed to allow more triple-phase (CO-electrolyte-catalyst) interfaces to be available for CORR. This study shows how the pore size-hydrophobicity relationship can be harvested to guide the design of a less-is-more Cu electrode, which can attain high CORR current density and selectivity, without the additional use of hydrophobic polytetrafluoroethylene particles or dopants, such as Ag.
Collapse
Affiliation(s)
- Silu Chen
- Department of ChemistryFaculty of ScienceNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Ben Rowley
- Energy Transition Campus AmsterdamGrasweg 31, 1031 HWAmsterdamThe Netherlands
| | - Ramesha Ganganahalli
- Shell India Markets Private Ltd.Plot No. 7, Bengaluru Hardware Park, Mahadeva, KodigehalliBangalore562149India
| | - Boon Siang Yeo
- Department of ChemistryFaculty of ScienceNational University of Singapore3 Science Drive 3Singapore117543Singapore
| |
Collapse
|
11
|
Grabowska O, Singh A, Żamojć K, Samsonov SA, Wyrzykowski D. Exploring the Impact of Subtle Differences in the Chemical Structure of 1-Alkylsulfates and 1-Alkylsulfonates on Their Interactions with Human Serum Albumin. Molecules 2024; 29:4598. [PMID: 39407528 PMCID: PMC11478022 DOI: 10.3390/molecules29194598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The objective of this study was to examine the interactions between anionic surfactants, specifically 1-alkylsulfonates (KXS) and 1-alkylsulfates (SXS) ions, with human serum albumin (HSA). A combination of experimental techniques, including isothermal titration calorimetry (ITC), steady-state fluorescence spectroscopy (SF), and molecular dynamics-based approaches was employed to gain a comprehensive understanding of these processes. It has been demonstrated that the subtle variations in the charge distribution on the anionic surfactant headgroups have a significant impact on the number of binding sites, the stoichiometry of the resulting complexes, and the strength of the interactions between the surfactants and the protein. Additionally, we established that the affinity of the investigated ligands to specific regions on the protein surface is governed by both the charge of the surfactant headgroup and the length of the aliphatic hydrocarbon chain. In summary, the findings highlight the crucial role of charge distribution on surfactant functional groups in the binding mode and the thermodynamic stability of surfactant-protein complexes.
Collapse
Affiliation(s)
| | | | | | - Sergey A. Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (O.G.); (A.S.); (K.Ż.)
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (O.G.); (A.S.); (K.Ż.)
| |
Collapse
|
12
|
Zhang Y, Liu Y, Lu Y, Gong S, Haick H, Cheng W, Wang Y. Tailor-Made Gold Nanomaterials for Applications in Soft Bioelectronics and Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405046. [PMID: 39022844 DOI: 10.1002/adma.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shu Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
13
|
Adwin Jose P, Sankarganesh M, Dhaveethu Raja J, Arumugam S. DNA/BSA interaction, anticancer, antimicrobial and catalytic applications of synthesis of nitro substituted pyrimidine-based Schiff base ligand capped nickel nanoparticles. J Biomol Struct Dyn 2024; 42:5931-5945. [PMID: 37394819 DOI: 10.1080/07391102.2023.2230283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The objective of this research was to create stable nickel nanoparticles using nickel chloride salt and a Schiff base ligand called DPMN. The synthesis process involved a two-step phase transfer procedure. Spectroscopic techniques such as UV-Visible and FT-IR were used to confirm the formation of ligand-stabilized nickel nanoparticles (DPMN-NiNPs). To analyze the size, surface morphology, and quality of DPMN-NiNPs, SEM and TEM techniques were utilized. In vitro studies were performed to investigate the potential anticancer activity of the synthesized compounds against three different cancer cell lines and one normal cell line, and the results were compared to those of cis-platin. The researchers also conducted tests to determine the ability of DPMN-NiNPs to bind to CT-DNA using various techniques such as electronic absorption, fluorescence, viscometric, and cyclic voltammetric. The results showed that the synthesized DPMN-NiNPs exhibited good DNA binding ability, which was further validated by denaturation of DNA using thermal and sonochemical methods. The researchers also investigated the antimicrobial and antioxidant activities of DPMN-NiNPs, which demonstrated better biological activities than DPMN alone. Furthermore, the synthesized nano compounds were found to selectively damage cancer cell lines without harming normal cell lines. Finally, the researchers examined the potential of DPMN-NiNPs as a catalyst in dye degradation by testing its ability to decompose methyl red dye using UV-Visible spectroscopy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Paulraj Adwin Jose
- Department of Chemistry, E.G.S. Pillay Engineering College, Nagapattinam, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | | | - Sakthivel Arumugam
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| |
Collapse
|
14
|
Rubčić M, Herak M, Zagorec L, Domazet Jurašin D. Transition Metal-Based Dimeric Metallosurfactants: From Organic-Inorganic Hybrid Structures and Low-Dimensional Magnets to Metallomicelles. Inorg Chem 2024; 63:12218-12230. [PMID: 38885971 PMCID: PMC11220752 DOI: 10.1021/acs.inorgchem.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
The dimeric (gemini) as well as metallosurfactants exhibit enhanced physicochemical properties compared with conventional surfactants. By uniting the benefits of both, a series of novel dimeric metallosurfactants of the type (12-2-12)[MBr4] (M = Co, Ni, Cu and Zn) was successfully prepared by the reaction of the dimeric surfactant bis(N,N-dimethyl-N-dodecyl)ethylene-1,2-diammonium dibromide, 12-2-12, and the MBr2 salt. Structures and magnetic properties of the materials were studied comprehensively in the solid state, while their micellization was explored in solution. The obtained results unveil that the incorporation and the choice of transition metal more significantly influence surfactants' structures ((12-2-12)2+ cations adopt V-, U-, or trans-conformations) and the magnetic features (metal ions form 1D or 2D magnetic lattice) than their solution properties. However, all synthesized metallosurfactants display improved self-assembly properties compared with the metal-free precursor. The investigated systems represent a fruitful platform for the development of multifunctional materials as they are simple to produce, can be obtained in high yields, and show advanced properties both in solution and in the solid state. Notably, this work unveils a simple approach to the design and synthesis of novel low-dimensional magnetic systems of great potential for future spintronic and optoelectronic devices.
Collapse
Affiliation(s)
- Mirta Rubčić
- Faculty
of Science, Department of Chemistry, University
of Zagreb, Horvatovac 102a ,Zagreb HR-10000, Croatia
| | - Mirta Herak
- Department
for Research of Materials Under Extreme Conditions, Institute of Physics, Bijenička cesta 46 ,Zagreb HR-10000, Croatia
| | - Leona Zagorec
- Faculty
of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19 ,Zagreb HR-10000, Croatia
| | - Darija Domazet Jurašin
- Division
of Physical Chemistry, Ruđer Bošković
Institute, Bijenička
54 ,Zagreb HR-10000, Croatia
| |
Collapse
|
15
|
Mallick L, Annadata HV, Chakraborty B. Vacancy-Rich SnO 2 Quantum Dot Stabilized by Polyoxomolybdate as Electrocatalyst for Selective NH 3 Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32385-32393. [PMID: 38873812 DOI: 10.1021/acsami.4c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The pronounced conductivity of tin dioxide (SnO2) nanoparticles makes it an ideal multifunctional electrode material, while the challenge is to stabilize the quantum dot (QD) SnO2 nanocore in water. An Anderson-type polyoxomolybdate, (NH4)6[Mo7O24], is employed as an inorganic ligand to stabilize a ca. 6 nm SnO2 QD (Mox@SnO2). X-ray scattering and diffraction studies confirm the tetragonal SnO2 nanocore in Mox@SnO2. Elemental analyses are in good agreement with the mass spectrometric detection of the [Mo7O24]6- cluster present in Mox@SnO2. The ionic POMs attached to the SnO2 surface through [Mo-O-Sn] covalent linkages have been established by surface zeta potential, shift of the [Mo = O]t Raman vibration, and extended X-ray absorption fine structure (EXAFS) analyses. The presence of the [Mo7O24]6- cluster in the Mox@SnO2 is responsible for the remarkable aqueous stability of Mox@SnO2 in the pH range of 3-9. Dominant oxygen vacancy in the SnO2 core, identified by EXAFS data and the anisotropic electron paramagnetic resonance (EPR) signals (g ∼ 2.4 and 1.9), results in facile electronic conduction in Mox@SnO2 while being deposited on the electrode surface. Mox@SnO2 acts as an active catalyst for the electrocatalytic nitrate reduction (eNOR) to ammonia with 94% faradaic efficiency (FE) at -0.2 V vs RHE and a yield rate of 28.9 mg h-1 cm-2. The stability of Mox@SnO2 in acidic pH provides scope to reuse the Mox@SnO2 electrode at least four times with notable NH3 selectivity and a superior production rate (239.06 mmol g-1(cat) h-1). This study demonstrates the essential role of POM in stabilizing SnO2 QD, harnessing its electrochemical activity toward electrocatalytic ammonia production.
Collapse
Affiliation(s)
- Laxmikanta Mallick
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016, India
| | - Harshini V Annadata
- Beamline Development and Application Section, Bhabha Atomic Research Center, Trombay Mumbai 400085, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas New Delhi 110016, India
| |
Collapse
|
16
|
Vidović K, Hočevar S, Grgić I, Metarapi D, Dominović I, Mifka B, Gregorič A, Alfoldy B, Ciglenečki I. Do bromine and surface-active substances influence the coastal atmospheric particle growth? Heliyon 2024; 10:e31632. [PMID: 38828296 PMCID: PMC11140702 DOI: 10.1016/j.heliyon.2024.e31632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
New particle formation (NPF) is considered a major source of aerosol particles and cloud condensation nuclei (CCN); however, our understanding of NPF and the subsequent particle growth mechanisms in coastal areas remains limited. This study provides evidence of frequent NPF events followed by particle growth in the middle Adriatic Sea during the summer months at the coastal station of Rogoznica in Croatia. To our knowledge, this is the first study to report such events in this region. Our research aims to improve the understanding of NPF by investigating particle growth through detailed physicochemical characterization and event classification. We used a combination of online measurements and offline particle collection, followed by a thorough chemical analysis. Our results suggest the role of bromine in the particle growth process and provide evidence for its involvement in combination with organic compounds. In addition, we demonstrated the significant influence of surface-active substances (SAS) on particle growth. NPF and particle growth events have been observed in air masses originating from the Adriatic Sea, which can serve as an important source of volatile organic compounds (VOC). Our study shows an intricate interplay between bromine, organic carbon (OC), and SAS in atmospheric particle growth, contributing to a better understanding of coastal NPF processes. In this context, we also introduced a new approach using the semi-empirical 1st derivative method to determine the growth rate for each time point that is not sensitive to the nonlinear behavior of the particle growth over time. We observed that during NPF and particle growth event days, the OC concentration measured in the ultrafine mode particle fraction was higher compared to non-event days. Moreover, in contrast to non-event days, bromine compounds were detected in the ultrafine mode atmospheric particle fraction on nearly all NPF and particle growth event days. Regarding sulfuric acid, the measured sulfate concentration in the ultrafine mode atmospheric particle fraction on both NPF event and non-event days showed no significant differences. This suggests that sulfuric acid may not be the primary factor influencing the appearance of NPF and the particle growth process in the coastal region of Rogoznica.
Collapse
Affiliation(s)
- Kristijan Vidović
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Physical Oceanography Chemistry of Aquatic Systems, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Samo Hočevar
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Irena Grgić
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Dino Metarapi
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Iva Dominović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Physical Oceanography Chemistry of Aquatic Systems, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Boris Mifka
- Faculty of Physics University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Asta Gregorič
- University of Nova Gorica, Center for Atmospheric Research, Vipavska 11c, 5270 Ajdovščina, Slovenia
- Aerosol d.o.o., Kamniška 39A, 1000, Ljubljana, Slovenia
| | | | - Irena Ciglenečki
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Physical Oceanography Chemistry of Aquatic Systems, Bijenička cesta 54, 10000, Zagreb, Croatia
| |
Collapse
|
17
|
Fateh ST, Aghaii AH, Aminzade Z, Shahriari E, Roohpour N, Koosha F, Dezfuli AS. Inorganic nanoparticle-cored dendrimers for biomedical applications: A review. Heliyon 2024; 10:e29726. [PMID: 38694058 PMCID: PMC11061704 DOI: 10.1016/j.heliyon.2024.e29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Hybrid nanostructures exhibit a synergistic combination of features derived from their individual components, showcasing novel characteristics resulting from their distinctive structure and chemical/physical properties. Surface modifiers play a pivotal role in shaping INPs' primary attributes, influencing their physicochemical properties, stability, and functional applications. Among these modifiers, dendrimers have gained attention as highly effective multifunctional agents for INPs, owing to their unique structural qualities, dendritic effects, and physicochemical properties. Dendrimers can be seamlessly integrated with diverse inorganic nanostructures, including metal NPs, carbon nanostructures, silica NPs, and QDs. Two viable approaches to achieving this integration involve either growing or grafting dendrimers, resulting in inorganic nanostructure-cored dendrimers. The initial step involves functionalizing the nanostructures' surface, followed by the generation of dendrimers through stepwise growth or attachment of pre-synthesized dendrimer branches. This hybridization imparts superior qualities to the resulting structure, including biocompatibility, solubility, high cargo loading capacity, and substantial functionalization potential. Combining the unique properties of dendrimers with those of the inorganic nanostructure cores creates a multifunctional system suitable for diverse applications such as theranostics, bio-sensing, component isolation, chemotherapy, and cargo-carrying applications. This review summarizes the recent developments, with a specific focus on the last five years, within the realm of dendrimers. It delves into their role as modifiers of INPs and explores the potential applications of INP-cored dendrimers in the biomedical applications.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Ronash Technology Pars Company(AMINBIC), Tehran, Iran
| | - Zahra Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Fereshteh Koosha
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
18
|
Yousefi N, Zahedi Y, Yousefi A, Hosseinzadeh G, Jekle M. Development of carboxymethyl cellulose-based nanocomposite incorporated with ZnO nanoparticles synthesized by cress seed mucilage as green surfactant. Int J Biol Macromol 2024; 265:130849. [PMID: 38484807 DOI: 10.1016/j.ijbiomac.2024.130849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
This study aimed to enhance carboxymethyl cellulose (CMC)-based films by incorporating zinc oxide nanoparticles (ZnO NPs) and cress seed mucilage (CSM), with a view to augmenting the physical, mechanical, and permeability properties of the resulting nanocomposite films. For the first time, CSM was exploited as a green surfactant to synthetize ZnO NPs using hydrothermal method. Seven distinct film samples were meticulously produced and subjected to a comprehensive array of analyses. The findings revealed that the incorporation of CSM/ZnO-5 % improved the physical properties of the films, demonstrating a significant reduction in moisture content and water vapor permeability (WVP). Increasing the concentration of NPs in conjunction with CSM markedly decreased the solubility of the nanocomposites by up to 56 %. The films containing CSM/ZnO showed higher tensile strength and elongation at the break values. The UV absorption of the films exhibited a substantial rise with the addition of ZnO NPs, particularly with an increased content in the presence of CSM. The thermal stability of nanocomposites containing a high concentration of CSM/ZnO exhibited an improvement compared to the control sample. In light of these results, the CMC/CSM/ZnO-5 % film emerges as a promising candidate for a biocompatible packaging material, exhibiting favorable physical characteristics.
Collapse
Affiliation(s)
- Nazanin Yousefi
- Department of Food Science and Technology, Faculty of Agriculture and Natural resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Younes Zahedi
- Department of Food Science and Technology, Faculty of Agriculture and Natural resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Alireza Yousefi
- Department of Plant-based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.
| | - Ghader Hosseinzadeh
- Department of Chemical Engineering, Faculty of Engineering, University of Bonab, Bonab, Iran
| | - Mario Jekle
- Department of Plant-based Foods, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
19
|
Bajrami D, Hossain SI, Barbarossa A, Sportelli MC, Picca RA, Gentile L, Mastrolonardo F, Rosato A, Carocci A, Colabufo NA, Mizaikoff B, Cioffi N. A scalable route to quaternary ammonium-functionalized AgCl colloidal antimicrobials inhibiting food pathogenic bacteria and biofilms. Heliyon 2024; 10:e25260. [PMID: 38327442 PMCID: PMC10847915 DOI: 10.1016/j.heliyon.2024.e25260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
This study explores how a simple argentometric titration-like approach could be evolved into a versatile, scalable, fast, and robust strategy for the production of AgCl/quaternary ammonium compounds (QACs) colloidal nanoantimicrobials (NAMs). These systems, which are green, stable, cost-effective, and reproducible are found to be effective against a wide range of food pathogenic bacteria and biofilms. The option of a large-scale production for such colloidal suspensions was explored via the use of a peristaltic pump. The utilization of various types of biosafe QACs and a wide range of solvents including aqueous and organic ones renders this system green and versatile. Nanocolloids (NCs) were characterized using UV-Vis, X-ray photoelectron and Fourier transform infrared (FTIR) spectroscopies. Their morphology and crystalline nature were investigated by transmission electron microscopy (TEM) and selected area diffraction pattern (SAED). Nanoparticle (NP) size distribution and hydrodynamic radius were measured by dynamic light scattering (DLS), while the ζ-potential was found to be highly positive, thus indicating significant colloidal stability and antimicrobial activity. In fact, the higher the NP surface charge, the stronger was their bioactivity. Furthermore, the antibacterial and antibiofilm effects of the as-prepared NCs were tested against Gram-positive bacteria, such as Staphylococcus aureus (ATCC 29213) and Listeria monocytogenes 46, and Gram-negative bacteria, such as Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). The results clearly indicate that AgCl/QACs provide pronounced antibiofilm activity with long-term bacteriostatic effects against foodborne pathogenic bacteria rendering them an ideal choice for active food packaging systems.
Collapse
Affiliation(s)
- Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Syed Imdadul Hossain
- Chemistry Department, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) C/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Alexia Barbarossa
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry Department, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) C/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) C/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | - Luigi Gentile
- Chemistry Department, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) C/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| | | | - Antonio Rosato
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126, Bari, Italy
| | - Nicola Antonio Colabufo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126, Bari, Italy
- Biofordrug Srl, University of Bari “Aldo Moro”, Via Dante 95, 70019, Triggiano, Bari, Italy
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
- Hahn-Schickard, Sedanstrasse 14, 89077, Ulm, Germany
| | - Nicola Cioffi
- Chemistry Department, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70126, Bari, Italy
- CSGI (Center for Colloid and Surface Science) C/o Dept. Chemistry, Via E. Orabona, 4, 70126, Bari, Italy
| |
Collapse
|
20
|
Lau K, Giera B, Barcikowski S, Reichenberger S. The multivariate interaction between Au and TiO 2 colloids: the role of surface potential, concentration, and defects. NANOSCALE 2024; 16:2552-2564. [PMID: 38221893 DOI: 10.1039/d3nr06205h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The established DLVO theory explains colloidal stability by the electrostatic repulsion between electrical double layers. While the routinely measured zeta potential can estimate the charges of double layers, it is only an average surface property which might deviate from the local environment. Moreover, other factors such as the ionic strength and the presence of defects should also be considered. To investigate this multivariate problem, here we model the interaction between a negatively charged Au particle and a negatively charged TiO2 surface containing positive/neutral defects (e.g. surface hydroxyls) based on the finite element method, over 6000 conditions of these 6 parameters: VPart (particle potential), VSurf (surface potential), VDef (defect potential), DD (defect density), Conc (salt concentration), and R (particle radius). Using logistic regression, the relative importance of these factors is determined: VSurf > VPart > DD > Conc > R > VDef, which agrees with the conventional wisdom that the surface (and zeta) potential is indeed the most decisive descriptor for colloidal interactions, and the salt concentration is also important for charge screening. However, when defects are present, it appears that their density is more influential than their potential. To predict the fate of interactions more confidently with all the factors, we train a support vector machine (SVM) with the simulation data, which achieves 97% accuracy in determining whether adsorption is favorable on the support. The trained SVM including a graphical user interface for querying the prediction is freely available online for comparing with other materials and models. We anticipate that our model can stimulate further colloidal studies examining the importance of the local environment, while simultaneously considering multiple factors.
Collapse
Affiliation(s)
- Kinran Lau
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Essen, Germany.
| | - Brian Giera
- Center for Engineered Materials and Manufacturing, Lawrence Livermore National Laboratory, California, USA
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Essen, Germany.
| | - Sven Reichenberger
- Technical Chemistry I, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Essen, Germany.
| |
Collapse
|
21
|
Bhuyan T, Mohanta YK, Patowary K, Maity S, Nayak D, Deka K, Meenakshi Sundaram K, Muthupandian S, Sarma H. Therapeutic potential of lipopeptide biosurfactant-fabricated copper oxide nanoparticles: Mechanistic insight into their biocompatibility using zebra fish. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100227. [DOI: 10.1016/j.crbiot.2024.100227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
|
22
|
Jamdar M, Monsef R, Ganduh SH, Dawi EA, Jasim LS, Salavati-Niasari M. Unraveling the potential of sonochemically achieved DyMnO 3/Dy 2O 3 nanocomposites as highly efficient visible-light-driven photocatalysts in decolorization of organic contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115801. [PMID: 38064791 DOI: 10.1016/j.ecoenv.2023.115801] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
In the present day, the widespread presence of lingering contaminants in ecosystems has prompted scientists to develop novel semiconductor nanoarchitectures that assist in photocatalytic reactions mediated by visible light. As a result, we propose to prepare a series of Dy-Mn-O based nano-catalysts using a sonochemical approach utilizing various ionic phases of surfactants as structure-directing agents. In this study, X-ray diffraction (XRD) and Rietveld refinement techniques were used to explore the fundamental effects of surfactants on the compositional-structural features of the materials. In terms of morphological profiles, DyMnO3/Dy2O3 (DM) nanostructures fabricated with Triton X-80 as a structure-directing agent showed the best uniformity with an acceptable size range between 14.14 and 52.35 nm. In the visible-light-driven photocatalytic domain, these nanocomposites provide high responsiveness based on their optical band gap value of 2.0 eV. According to our findings, two individual factors affect dye activity, namely dye type and concentration, which is why a high decomposition efficiency of 78.8% was obtained for 10 ppm Acid violet (AV) using DyMnO3/Dy2O3 nanocomposites after 120 min of exposure to visible light. Furthermore, radical quenching test confirmation confirmed the mechanistic behind the degradation process. This indicates that active species of O2•- and •OH may play a significant role in photocatalysis. As a result of repeated processes over three consecutive cycles, binary DyMnO3/Dy2O3 nanocomposites had an efficiency of 64.4% in removing dyes from the environment, indicating their high stability.
Collapse
Affiliation(s)
- Mina Jamdar
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box.87317-51167, Kashan, Iran
| | - Rozita Monsef
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box.87317-51167, Kashan, Iran
| | - Safaa H Ganduh
- Department of Chemistry Pharmaceutical, College of Pharmacy, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Elmuez A Dawi
- College of Humanities and Sciences, Department of Mathematics, and Science, Ajman University, P.O. Box 346, Ajman, UAE
| | - Layth S Jasim
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P. O. Box.87317-51167, Kashan, Iran.
| |
Collapse
|
23
|
Tang L, Han Q, Wang B, Yang Z, Song C, Feng G, Wang S. Constructing perfect cubic Ag-Cu alloyed nanoclusters through selective elimination of phosphine ligands. Phys Chem Chem Phys 2023; 26:62-66. [PMID: 38086629 DOI: 10.1039/d3cp04224c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The aspiration of chemists has always been to design and achieve control over nanoparticle morphology at the atomic level. Here, we report a synthesis strategy and crystal structure of a perfect cubic Ag-Cu alloyed nanocluster, [Ag55Cu8I12(S-C6H32,4(CH3)2)24][(PPh4)] (Ag55Cu8I12 for short). The structure of this cluster was determined by single-crystal X-ray diffraction (SCXRD) and further validated by X-ray photoelectron spectroscopy (XPS), inductively coupled plasma (ICP), Energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and 1H and 31P nuclear magnetic resonance (NMR). The surface deviation of the cube was measured to be 0.291 Å, making it the flattest known cube to date.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Qikai Han
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Zhonghua Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China
| | - Chunyuan Song
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Guanyu Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China.
| |
Collapse
|
24
|
Chang Y, Huang J, Shi S, Xu L, Lin H, Chen T. Precise Engineering of a Se/Te Nanochaperone for Reinvigorating Cancer Radio-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212178. [PMID: 37204161 DOI: 10.1002/adma.202212178] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Facilely synthesized nanoradiosensitizers with well-controlled structure and multifunctionality are greatly desired to address the challenges of cancer radiotherapy. In this work, a universal method is developed for synthesizing chalcogen-based TeSe nano-heterojunctions (NHJs) with rod-, spindle-, or dumbbell-like morphologies by engineering the surfactant and added selenite. Interestingly, dumbbell-shaped TeSe NHJs (TeSe NDs) as chaperone exhibit better radio-sensitizing activities than the other two nanostructural shapes. Meanwhile, TeSe NDs can serve as cytotoxic chemodrugs that degrade to highly toxic metabolites in acidic environment and deplete GSH within tumor to facilitate radiotherapy. More importantly, the combination of TeSe NDs with radiotherapy significantly decreases regulatory T cells and M2-phenotype tumor-associated macrophage infiltrations within tumors to reshape the immunosuppressive microenvironment and induce robust T lymphocytes-mediated antitumor immunity, resulting in great abscopal effects on combating distant tumor progression. This study provides a universal method for preparing NHJ with well-controlled structure and developing nanoradiosensitizers to overcome the clinical challenges of cancer radiotherapy.
Collapse
Affiliation(s)
- Yanzhou Chang
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jiarun Huang
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Sujiang Shi
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ligeng Xu
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Hao Lin
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Tianfeng Chen
- Department of Chemistry, College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| |
Collapse
|
25
|
Bonser CAR, Astete CE, Sabliov CM, Davis JA. Elucidating the insecticidal mechanisms of zein nanoparticles on Anticarsia gemmatalis (Lepidoptera: Erebidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1196-1204. [PMID: 37229568 DOI: 10.1093/jee/toad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Previous research suggested that positively charged zein nanoparticles [(+)ZNP] were toxic to neonates of Anticarsia gemmatalis Hübner and deleterious to noctuid pests. However, specific modes of action for ZNP have not been elucidated. Diet overlay bioassays attempted to rule out the hypothesis that A. gemmatalis mortality was caused by surface charges from component surfactants. Overlay bioassays indicated that negatively charged zein nanoparticles [(-)ZNP] and its anionic surfactant, sodium dodecyl sulfate (SDS), exhibited no toxic effects when compared to the untreated check. Nonionic zein nanoparticles [(N)ZNP] appeared to increase mortality compared to the untreated check, though larval weights were unaffected. Overlay results for (+)ZNP and its cationic surfactant, didodecyldimethylammonium bromide (DDAB), were found to be consistent with former research indicating high mortalities, and thus, dosage response curves were conducted. Concentration response tests found the LC50 for DDAB on A. gemmatalis neonates was 208.82 a.i./ml. To rule out possible antifeedant capabilities, dual choice assays were conducted. Results indicated that neither DDAB nor (+)ZNP were antifeedants, while SDS reduced feeding when compared to other treatment solutions. Oxidative stress was tested as a possible mode of action, with antioxidant levels used as a proxy for reactive oxygen species (ROS) in A. gemmatalis neonates, which were fed diet treated with different concentrations of (+)ZNP and DDAB. Results indicated that both (+)ZNP and DDAB decreased antioxidant levels compared to the untreated check, suggesting that both (+)ZNP and DDAB may inhibit antioxidant levels. This paper adds to the literature on potential modes of action by biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Colin A R Bonser
- Department of Entomology, LSU Agricultural Center, 404 Life Science Building, Baton Rouge, LA 70803, USA
| | - Carlos E Astete
- Department of Biological and Agricultural Engineering, LSU Agricultural Center, 149 E. B. Doran Building, Baton Rouge, LA 70803, USA
| | - Cristina M Sabliov
- Department of Biological and Agricultural Engineering, LSU Agricultural Center, 149 E. B. Doran Building, Baton Rouge, LA 70803, USA
| | - Jeffrey A Davis
- Department of Entomology, LSU Agricultural Center, 404 Life Science Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
26
|
Xu L, Chen M, Cui Q, Wang C, Zhang M, Zheng L, Li S, Zhang H, Liang G. Ultra-clean ternary Au/Ag/AgCl nanoclusters favoring cryogenic temperature-boosted broadband SERS ultrasensitive detection. OPTICS EXPRESS 2023; 31:26474-26495. [PMID: 37710508 DOI: 10.1364/oe.495426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023]
Abstract
Exploring multifunctional surface-enhanced Raman scattering (SERS) substrates with high sensitivity, broadband response property and reliable practicability should be required for ultrasensitive molecular detection in complex environments, which is heavily dependent on the photo-induced charge transfer (PICT) efficiency realized on the desirable nano-architectures. Herein, we introduce ultra-clean ternary Au/Ag/AgCl nanoclusters (NCs) with broadband resonance crossing the visible light to near-infrared region created by one step laser irradiation of mixed metal ion solution. Interestingly, the surface defects and interaction among these unique cluster-like ternary nanostructures would be further enhanced by thermal annealing treatment at 300°C, providing higher broadband SERS activities than the reference ternary nanoparticles under 457, 532, 633, 785, and 1064 nm wavelengths excitation. More importantly, the further promoted SERS activities of the resultant Au/Ag/AgCl NCs with achievable ∼5-fold enhancement than the initial one can be conventionally realized by simplistically declining the temperature from normal 20°C to cryogenic condition at about -196°C, due to the lower temperature-suppressed non-radiative recombination of lattice thermal phonons and photogenerated electrons. The cryogenic temperature-boosted SERS of the resultant Au/Ag/AgCl NCs enables the limit of detection (LOD) of folic acid (FA) biomolecules to be achieved as low as 10-12 M, which is obviously better than that of 10-9 M at room temperature condition. Overall, the smart Au/Ag/AgCl NCs-based broadband SERS sensor provides a new avenue for ultrasensitive biomolecular monitoring at cryogenic condition.
Collapse
|
27
|
Tran NM, Nguyen AN, Bae J, Kim J, Kim D, Yoo H. Recent strategies for constructing hierarchical multicomponent nanoparticles/metal-organic framework hybrids and their applications. NANOSCALE ADVANCES 2023; 5:3589-3605. [PMID: 37441260 PMCID: PMC10334412 DOI: 10.1039/d3na00213f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023]
Abstract
Hybrid nanoparticles with unique tailored morphologies and compositions can be utilized for numerous applications owing to their combination of inherent properties as well as the structural and supportive functions of each component. Controlled encapsulation of nanoparticles within nanospaces (NPNSs) of metal-organic frameworks (MOFs) (denoted as NPNS@MOF) can generate a large number of hybrid nanomaterials, facilitating superior activity in targeted applications. In this review, recent strategies for the fabrication of NPNS@MOFs with a hierarchical architecture, tailorability, unique intrinsic properties, and superior catalytic performance are summarized. In addition, the latest and most important examples in this sector are emphasized since they are more conducive to the practical applicability of NPNS@MOF nanohybrids.
Collapse
Affiliation(s)
- Ngoc Minh Tran
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Anh Ngoc Nguyen
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Jungeun Bae
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Jinhee Kim
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Dahae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| |
Collapse
|
28
|
Faeli Qadikolae A, Sharma S. Molecular simulations of adsorption of surfactant micelles on partially and fully covered iron surfaces. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
29
|
Halford GC, Personick ML. Bridging Colloidal and Electrochemical Nanoparticle Growth with In Situ Electrochemical Measurements. Acc Chem Res 2023; 56:1228-1238. [PMID: 37140656 DOI: 10.1021/acs.accounts.3c00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ConspectusProspective applications involving the electrification of industrial chemical processes and electrical energy to chemical fuels interconversion as part of the energy transition to renewable energy sources have led to an increasing need for highly tailored nanostructures immobilized on electrode surfaces. Control of surface facet structure across material compositions is of particular importance for ensuring performance in such applications. Colloidal methods for producing shaped nanoparticles in solution are abundant, particularly for noble metals. However, significant technical challenges remain with respect to rationally designing syntheses for the novel compositions and morphologies required to sustainably enable the above technological advances as well as in developing methods for uniformly and reproducibly dispersing colloidally synthesized nanostructures on electrode surfaces. The direct synthesis of nanoparticles on electrodes using chemical reduction approaches remains challenging, though recent advances have been made for certain materials and structures. Electrochemical nanoparticle synthesis─where an applied current or potential instead of a chemical reducing agent drives the redox chemistry of nanoparticle growth─is poised to play an important role in advancing the fabrication of nanostructured electrodes. Specifically, this Account focuses on the colloidal-inspired design of electrochemical syntheses and the interplay between colloidal and electrochemical approaches in terms of understanding the fundamental chemical reaction mechanisms of nanoparticle growth. An initial discussion of the development of electrochemical particle syntheses that incorporate colloidal synthetic tools highlights the promising emergent capabilities that result from blending these two approaches. Furthermore, it demonstrates how existing colloidal syntheses can be directly translated to electrochemical growth on a conductive surface using real-time electrochemical measurements of the chemistry of the growth solution. Measuring the open circuit potential of a colloidal synthesis over time and then replicating that measured potential during electrochemical deposition leads to the formation of the same nanoparticle shape. These in situ open circuit and chronopotentiometric measurements also give fundamental insight about the changing chemical environment during particle growth. We highlight how these time-resolved electrochemical measurements, as well as correlated spectroelectrochemical monitoring of particle formation kinetics, enable the extraction of information regarding mechanisms of particle formation that is difficult to obtain using other approaches. This information can be translated back into colloidal synthesis design via a directed, intentional approach to synthetic development. We additionally explore the added flexibility of synthetic design for methods involving electrochemically driven reduction as compared to the use of chemical reducing agents. The Account concludes with a brief perspective on potential future directions in both fundamental studies and synthetic development enabled by this emerging integrated electrochemical approach.
Collapse
Affiliation(s)
- Gabriel C Halford
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Michelle L Personick
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
30
|
Yon M, Gibot L, Gineste S, Laborie P, Bijani C, Mingotaud C, Coutelier O, Desmoulin F, Pestourie C, Destarac M, Ciuculescu-Pradines D, Marty JD. Assemblies of poly( N-vinyl-2-pyrrolidone)-based double hydrophilic block copolymers triggered by lanthanide ions: characterization and evaluation of their properties as MRI contrast agents. NANOSCALE 2023; 15:3893-3906. [PMID: 36723163 DOI: 10.1039/d2nr04691a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Because of the formation of specific antibodies to poly(ethylene glycol) (PEG) leading to life-threatening side effects, there is an increasing need to develop alternatives to treatments and diagnostic methods based on PEGylated copolymers. Block copolymers comprising a poly(N-vinyl-2-pyrrolidone) (PVP) segment can be used for the design of such vectors without any PEG block. As an example, a poly(acrylic acid)-block-poly(N-vinyl-2-pyrrolidone) (PAA-b-PVP) copolymer with controlled composition and molar mass is synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Mixing this copolymer with lanthanide cations (Gd3+, Eu3+, Y3+) leads to the formation of hybrid polyion complexes with increased stability, preventing the lanthanide cytotoxicity and in vitro cell penetration. These new nanocarriers exhibit enhanced T1 MRI contrast, when intravenously administered into mice. No leaching of gadolinium ions is detected from such hybrid complexes.
Collapse
Affiliation(s)
- Marjorie Yon
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Stéphane Gineste
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Pascale Laborie
- Plateforme scientifique et technique Institut de Chimie de Toulouse ICT - UAR 2599, Université de Toulouse, CNRS, Toulouse, France
| | | | - Christophe Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Olivier Coutelier
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
- CREFRE-Anexplo, Université de Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Carine Pestourie
- CREFRE-Anexplo, Université de Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Mathias Destarac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Diana Ciuculescu-Pradines
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| |
Collapse
|
31
|
Li Y, Liu X, Zheng J. A dual-ratiometric electrochemical sensor based on Cu/N-doped porous carbon derived from Cu-metal organic framework for acetaminophen determination. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
32
|
Łuczak J, Kroczewska M, Baluk M, Sowik J, Mazierski P, Zaleska-Medynska A. Morphology control through the synthesis of metal-organic frameworks. Adv Colloid Interface Sci 2023; 314:102864. [PMID: 37001207 DOI: 10.1016/j.cis.2023.102864] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
Designable morphology and predictable properties are the most challenging goals in material engineering. Features such as shape, size, porosity, agglomeration ratio significantly affect the final properties of metal-organic frameworks (MOFs) and can be regulated throughout synthesis parameters but require a deep understanding of the mechanisms of MOFs formation. Herein, we systematically summarize the effects of the individual synthesis factors, such as pH of reaction mixture, including acidic or basic character of modulators, temperature, solvents types, surfactants type and content and ionic liquids on the morphology of growing MOFs. We identified main mechanisms of MOFs' growth leading to different morphology of final particles and next systematically discuss the effect of miscellaneous parameters on MOFs morphology based on the main mechanisms related to the nucleation, growth and formation of final MOFs structure, including coordination modulation, protonation/deprotonation acting and modulation by surfactants or capping agents. The effect of microwaves and ultrasound employment during synthesis is also considered due to their affecting especially nucleation and particles growing steps during MOFs formation.
Collapse
Affiliation(s)
- Justyna Łuczak
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Malwina Kroczewska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mateusz Baluk
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jakub Sowik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Paweł Mazierski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | |
Collapse
|
33
|
Brown KA, Gugger MK, Roberts DS, Moreno D, Chae PS, Ge Y, Jin S. Synthesis, Self-Assembly Properties, and Degradation Characterization of a Nonionic Photocleavable Azo-Sulfide Surfactant Family. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1465-1473. [PMID: 36638323 PMCID: PMC10164600 DOI: 10.1021/acs.langmuir.2c02820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We report the synthesis and characterization of a new family of maltose-derived nonionic surfactants that contain a photocleavable azo-sulfide linker (mAzo). The self-assembly properties of these surfactants were investigated using surface tension measurements to determine the critical micelle concentration (CMC), dynamic light scattering (DLS) to reveal the hydrodynamic radius of their self-assemblies, and transmission electron microscopy (TEM) to elucidate the micelle morphology. Ultraviolet-visible (UV-visible) spectroscopy confirmed the rapid photodegradation of these surfactants, but surface tension measurements of the surfactant solutions before and after degradation showed unusual degradation products. The photodegradation process was further studied using online liquid chromatography coupled with mass spectrometry (LC-MS),which revealed that these surfactants can form another photo-stable surfactant post-degradation. Finally, traditionally challenging proteins from heart tissue were solubilized using the mAzo surfactants to demonstrate their potential in biological applications.
Collapse
Affiliation(s)
- Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Morgan K. Gugger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - David Moreno
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan, 15588, South Korea
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
34
|
Arif M. Catalytic degradation of azo dyes by bimetallic nanoparticles loaded in smart polymer microgels. RSC Adv 2023; 13:3008-3019. [PMID: 36756456 PMCID: PMC9850705 DOI: 10.1039/d2ra07932a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The contamination of water by azo dyes is increasing rapidly due to their waste use in textile industries. These dyes are very toxic for living things. Therefore, it is very important to remove these dyes from water. Various materials are reported for this purpose. Here, the most effective system of bimetallic nanoparticles in smart polymer microgels was prepared. The microgel system of N-isopropylmethacrylamide (NMA) (monomer) and methacrylic acid (MAa) (comonomer) was synthesized by a free radical precipitation polymerization method and then bimetallic (Ag/Ni) nanoparticles were encapsulated into the P(NMA-MAa) microgels by in situ reduction of both silver and nickel salts by NaBH4 (reductant) after insertion of both (Ag+/Ni2+) ions. The P(NMA-MAa) microgels and Ag/Ni-P(NMA-MAa) hybrid microgels were characterized with FTIR, UV-vis, TGA, XRD, DLS, EDX, and STEM. The pH and temperature responsive behavior of Ag/Ni-P(NMA-MAa) was also evaluated. The catalytic efficiency of Ag/Ni-P(NMA-MAa) was assessed for degradation of methyl orange (MOr), congo red (CRe), eriochrome black T (EBlT) and methyl red (MRe) dyes under various conditions in aqueous medium. The apparent rate constant (k 0) value for MOr, CRe, EBlT and MRe was found to be 0.925 min-1, 0.486 min-1, 0.540 min-1 and 0.525 min-1 respectively. The Ag/Ni-P(NMA-MAa) was found to be an excellent recyclable catalyst.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| |
Collapse
|
35
|
Alkyl Chain Length and Headgroup Dependent Stability and Agglomeration Properties of Surfactant-Assisted Colloidal Selenium Nanoparticles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Almutairi EM, Ghanem MA, Al-Warthan A, Kuniyil M, Adil SF. Hydrazine High-Performance Oxidation and Sensing Using a Copper Oxide Nanosheet Electrocatalyst Prepared via a Foam-Surfactant Dual Template. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:129. [PMID: 36616039 PMCID: PMC9823773 DOI: 10.3390/nano13010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This work demonstrates hydrazine electro-oxidation and sensing using an ultrathin copper oxide nanosheet (CuO-NS) architecture prepared via a versatile foam-surfactant dual template (FSDT) approach. CuO-NS was synthesised by chemical deposition of the hexagonal surfactant Brij®58 liquid crystal template containing dissolved copper ions using hydrogen foam that was concurrently generated by a sodium borohydride reducing agent. The physical characterisations of the CuO-NS showed the formation of a two-dimensional (2D) ultrathin nanosheet architecture of crystalline CuO with a specific surface area of ~39 m2/g. The electrochemical CuO-NS oxidation and sensing performance for hydrazine oxidation revealed that the CuO nanosheets had a superior oxidation performance compared with bare-CuO, and the reported state-of-the-art catalysts had a high hydrazine sensitivity of 1.47 mA/cm2 mM, a low detection limit of 15 μM (S/N = 3), and a linear concentration range of up to 45 mM. Moreover, CuO-NS shows considerable potential for the practical use of hydrazine detection in tap and bottled water samples with a good recovery achieved. Furthermore, the foam-surfactant dual template (FSDT) one-pot synthesis approach could be used to produce a wide range of nanomaterials with various compositions and nanoarchitectures at ambient conditions for boosting the electrochemical catalytic reactions.
Collapse
Affiliation(s)
| | - Mohamed A. Ghanem
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | |
Collapse
|
37
|
Dement’eva OV, Matsur VA, Zaikin AS, Salavatov NA, Staltsov MS, Rudoy VM. Octadecyltrimethylammonium Bromide Micelles as a Template in the Seedless Synthesis of Gold Nanorods. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22600312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Fizer MM, Fizer OI, Slivka MV, Mariychuk RT. New [1,3]thiazolo[3,2-b][1,2,4]triazol-7-ium cationic surfactant as a stabilizer of silver and gold nanoparticles. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
39
|
Capping Agents for Selenium Nanoparticles in Biomedical Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Rajagopal S, Thangudu S, Feng JY, Sriram P, Yen TJ, Hwang KC. Hotspots in action: near-infrared light mediated photoelectrochemical oxygen evolution on high index faceted plasmonic gold nanoarchitectures. NANOSCALE 2022; 14:11323-11334. [PMID: 35894176 DOI: 10.1039/d2nr02741k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photo-induced electrochemical water splitting is a fascinating approach to overcome the present energy demands as well as environmental issues. To this end, near-infrared (NIR) photocatalysts stand out as promising candidates (where 53% of the solar light is NIR light) to solve the present energy crisis but the lack of NIR-activated photocatalysts has remained a great challenge for decades. Herein, for the first time, we report the synthesis of high-index faceted plasmonic Au nano-branched 12 tip nanostars, which can absorb the whole spectral region of electromagnetic radiation (UV-vis-NIR), for efficient water splitting. Moreover, the plasmonic hot spots on the Au 12 tip nanostars significantly promote the photoelectrochemical oxygen evolution reaction (OER) under NIR light (915 nm) with long-term stability. Remarkably, the Au 12 tip nanostars exhibit 250-fold enhancement of activity under 915 nm laser irradiation and 6.5-fold enhancement of activity under 532 nm laser irradiation, as compared to the Au NPs. Furthermore, the Finite-Difference Time-Domain (FDTD) study confirmed that the significant photoelectrochemical (PEC) enhancement in the NIR light region could be attributed to the hot-electron injection/plasmonic hot spot mechanism upon localized surface plasmonic resonance (LSPR) excitation. Overall, we anticipate that the present work would help to develop new NIR photoelectrocatalysts for meeting future energy demands.
Collapse
Affiliation(s)
- Sanjeevan Rajagopal
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Suresh Thangudu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - June-Yen Feng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Pavithra Sriram
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China
| | - Ta-Jen Yen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| |
Collapse
|
41
|
Zhang S, Liu X, Luo H, Wu Z, Wei B, Shao Z, Huang C, Hua K, Xia L, Li J, Liu L, Ding W, Wang H, Sun Y. Morphological Modulation of Co 2C by Surface-Adsorbed Species for Highly Effective Low-Temperature CO 2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shunan Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaofang Liu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Hu Luo
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Zhaoxuan Wu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Baiyin Wei
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Zilong Shao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chaojie Huang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaimin Hua
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Xia
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Lei Liu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weitong Ding
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hui Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai 201203, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai 201203, P. R. China
- Shanghai Institute of Clean Technology, Shanghai 201620, P. R. China
| |
Collapse
|
42
|
Saita S, Takeda SI, Kawasaki H. Hansen Solubility Parameter Analysis on Dispersion of Oleylamine-Capped Silver Nanoinks and their Sintered Film Morphology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2004. [PMID: 35745345 PMCID: PMC9230637 DOI: 10.3390/nano12122004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022]
Abstract
Optimizing stabilizers and solvents is crucial for obtaining highly dispersed nanoparticle inks. Generally, nonpolar (hydrophobic) ligand-stabilized nanoparticles show superior dispersibility in nonpolar solvents, whereas polar ligand (hydrophilic)-stabilized nanoparticles exhibit high dispersibility in polar solvents. However, these properties are too qualitative to select optimum stabilizers and solvents for stable nanoparticle inks, and researchers often rely on their experiences. This study presents a Hansen solubility parameter (HSP)-based analysis of the dispersibility of oleylamine-capped silver nanoparticle (OAm-Ag NP) inks for optimizing ink preparation. We determined the HSP sphere of the OAm-Ag NPs, defined as the center coordinate, and the interaction radius in 3D HSP space. The solvent's HSP inside the HSP sphere causes high dispersibility of the OAm-Ag NPs in the solvent. In contrast, the HSPs outside the sphere resulted in low dispersibility in the solvent. Thus, we can quantitatively predict the dispersibility of the OAm-Ag NPs in a given solvent using the HSP approach. Moreover, the HSP sphere method can establish a correlation between the dispersibility of the particles in inks and the sintered film morphology, facilitating electronic application of the nanoparticle inks. The HSP method is also helpful for optimizing stabilizers and solvents for stable nanoparticle inks in printed electronics.
Collapse
Affiliation(s)
- Satoshi Saita
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan;
| | - Shin-ichi Takeda
- Takeda Colloid Techno-Consulting Co., Ltd., Osaka 564-0051, Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan;
| |
Collapse
|
43
|
Najeeb J, Farwa U, Ishaque F, Munir H, Rahdar A, Nazar MF, Zafar MN. Surfactant stabilized gold nanomaterials for environmental sensing applications - A review. ENVIRONMENTAL RESEARCH 2022; 208:112644. [PMID: 34979127 DOI: 10.1016/j.envres.2021.112644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Surfactant stabilized Gold (Au) nanomaterials (NMs) have been documented extensively in recent years for numerous sensing applications in the academic literature. Despite the crucial role these surfactants play in the sensing applications, the comprehensive reviews that highlights the fundamentals associated with these assemblies and impact of these surfactants on the properties and sensing mechanisms are still quite scare. This review is an attempt in organizing the vast literature associated with this domain by providing critical insights into the fundamentals, preparation methodologies and sensing mechanisms of these surfactant stabilized Au NMs. For the simplification, the surfactants are divided into the typical and advanced surfactants and the Au NMs are classified into Au nanoparticles (NPs) and Au nanoclusters (NCs) depending upon the complexity in structure and size of the NMs respectively. The preparative methodologies are also elaborated for enhancing the understanding of the readers regarding such assemblies. The case studies regarding surfactant stabilized Au NMs were further divided into colorimetric sensors, surface plasmonic resonance (SPR) based sensors, luminescence-based sensors, and electrochemical/electrical sensors depending upon the property utilized by the sensor for the sensing of an analyte. Future perspectives are also discussed in detail for the researchers looking for further progress in that particular research domain.
Collapse
Affiliation(s)
- Jawayria Najeeb
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Fatima Ishaque
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Hira Munir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98615-538, Iran
| | - Muhammad Faizan Nazar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore, Multan Campus, 60700, Pakistan.
| | | |
Collapse
|
44
|
Xu M, Yang F. Transition Metal Nanoparticles‐Catalyzed Organic Reactions within Porous Organic Cages. ChemCatChem 2022. [DOI: 10.1002/cctc.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miao Xu
- Beijing Institute of Technology Advanced Research Institute of Multidisciplinary Sciences 100081 Beijing CHINA
| | - Fanzhi Yang
- Beijing Institute of Technology Advanced Research Institute for Multidisciplinary Science 5 South Zhongguancun Street, Haidian District 100081 Beijing CHINA
| |
Collapse
|
45
|
Suresh K, Kalenak AP, Sotuyo A, Matzger AJ. Metal-Organic Framework (MOF) Morphology Control by Design. Chemistry 2022; 28:e202200334. [PMID: 35143079 PMCID: PMC9303320 DOI: 10.1002/chem.202200334] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/25/2023]
Abstract
Exerting morphological control over metal-organic frameworks (MOFs) is critical for determining their catalytic performance and to optimize their packing behavior in areas from separations to fuel gas storage. A mechanism-based approach to tailor the morphology of MOFs is introduced and experimentally demonstrated for five cubic Zn4 O-based MOFs. This methodology provides three key features: 1) computational screening for selection of appropriate additives to change crystal morphology based on knowledge of the crystal structure alone; 2) use of additive to metal cluster geometric relationships to achieve morphologies expressing desired crystallographic facets; 3) potential for suppression of interpenetration for certain phases.
Collapse
Affiliation(s)
- Kuthuru Suresh
- Department of ChemistryUniversity of Michigan930 North University AvenueAnn ArborMI48109-1055United States
| | - Andre P. Kalenak
- Department of ChemistryUniversity of Michigan930 North University AvenueAnn ArborMI48109-1055United States
| | - Ania Sotuyo
- Department of ChemistryUniversity of Michigan930 North University AvenueAnn ArborMI48109-1055United States
| | - Adam J. Matzger
- Department of ChemistryUniversity of Michigan930 North University AvenueAnn ArborMI48109-1055United States
- Macromolecular Science and Engineering ProgramUniversity of Michigan930 North University AvenueAnn ArborMI48109-1055United States
| |
Collapse
|
46
|
Surfactant-free synthesis of sub-10 nm Co3O4 in a rotating packed bed and its high catalytic activity for AP pyrolysis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Zhu Y, Wu D, Chen J, Ma N, Dai W. Enhanced water-resistant performance of Cu-BTC through polyvinylpyrrolidone protection and its capture ability evaluation of methylene blue. NEW J CHEM 2022. [DOI: 10.1039/d1nj05561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water instability issues greatly restrict the application of Cu-BTC for cationic dye (e.g. methylene blue (MB)) capture from wastewater.
Collapse
Affiliation(s)
- Yingzhi Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Danping Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jiehong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
48
|
Zhang R, Yang J, Zhao X, Yang H, Li H, Ji B, Zhou G, Ma X, Yang D. Electrochemical deposited zeolitic imidazolate frameworks as an efficient electrocatalyst for CO2 electrocatalytic reduction. ChemCatChem 2021. [DOI: 10.1002/cctc.202101653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Jie Yang
- Zhengzhou University College of Chemistry CHINA
| | - Xinbo Zhao
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Han Yang
- Zhengzhou University College of Chemistry CHINA
| | - Hongping Li
- Zhengzhou University College of Chemistry CHINA
| | - Bairun Ji
- Zhengzhou University College of Chemistry CHINA
| | | | - Xiaoxue Ma
- Liaoning University College of Chemistry CHINA
| | - Dexin Yang
- Zhengzhou University College of Chemistry and Molecular Engineering No. 100 Science Avenue, High-tech Development Zone 450001 Zhengzhou CHINA
| |
Collapse
|
49
|
Zhao Z, Wang Y, Delmas C, Mingotaud C, Marty JD, Kahn ML. Mechanistic insights into the anisotropic growth of ZnO nanoparticles deciphered through 2D size plots and multivariate analysis. NANOSCALE ADVANCES 2021; 3:6696-6703. [PMID: 36132654 PMCID: PMC9419515 DOI: 10.1039/d1na00591j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 06/16/2023]
Abstract
The control and understanding of the nucleation and growth of nano-objects are key points for improving and/or considering the new applications of a given material at the nanoscale. Mastering the morphology is essential as the final properties are drastically affected by the size, shape, and surface structure. Yet, a number of challenges remain, including evidencing and understanding the relationship between the experimental parameters of the synthesis and the shape of the nanoparticles. Here we analyzed jointly and in detail the formation of anisotropic ZnO nanoparticles under different experimental conditions by using two different analytical tools enabling the analysis of TEM images: 2D size plots and multivariate statistical analysis. Well-defined crystalline ZnO nanorods were obtained through the hydrolysis of a dicyclohexyl zinc precursor in the presence of a primary fatty amine. Such statistical tools allow one to fully understand the effect of experimental parameters such as the hydrolysis rate, the mixing time before hydrolysis, the length of the ligand aliphatic chain, and the amount of water. All these analyses suggest a growth process by oriented attachment. Taking advantage of this mechanism, the size and aspect ratio of the ZnO nanorods can be easily tuned. These findings shed light on the relative importance of experimental parameters that govern the growth of nano-objects. This general methodological approach can be easily extended to any type of nanoparticle.
Collapse
Affiliation(s)
- Zhihua Zhao
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse 205 Route de Narbonne 31077 Toulouse France
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Yinping Wang
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse 205 Route de Narbonne 31077 Toulouse France
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Céline Delmas
- MIAT, Université de Toulouse, INRA 31326 Castanet-Tolosan France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier 118, Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Myrtil L Kahn
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse 205 Route de Narbonne 31077 Toulouse France
| |
Collapse
|
50
|
Unal DN, Yıldırım S, Kurbanoglu S, Uslu B. Current trends and roles of surfactants for chromatographic and electrochemical sensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|